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Urban and road planners must take right decisions related to urban traffic management and control-
ling noise pollution. Their assessments and resolutions have important consequences on the annoyance
of population exposed to road-traffic-noise and controlling other environmental pollutants (e.g. NOx or

Road traffic noise
Noise impact
Urban environments

ultrafine particles emitted by heavy vehicles). One of the key decisions is the selection of which noise
control actions should be taken in sensitive areas (residential or hospital areas, school areas etc), that
could include costly measures such as reducing the overall traffic, banning or reducing traffic of heavy

vehicles, inspection of motorbikes sound emission, etc. For an efficient decision-making in noise control
actions, it is critical to classify a given location in a sensitive area according to the different prevailing
traffic conditions.

This paper outlines an expert system aimed to help urban planners to classify urban locations based
on their traffic composition. To induce knowledge into the system, several machine learning algorithms
are used, based on multi-layer Perceptron and support vector machines with sequential minimal opti-
mization. As input variables for these algorithms, a combination of environment variables was used. For
the development of the classification models, four feature selection techniques, i.e., two subset evalu-
ation (correlation-based feature-subset selection and consistency-based subset evaluation) and two at-
tribute evaluation (ReliefF and minimum redundancy maximum relevance) were implemented to reduce
the models’ complexity. The overall procedure was tested on a full database collected in the city of
Granada (Spain), which includes urban locations with road-traffic as dominant noise source. Among all
the possibilities tested, support vector machines based models achieves the better results in classifying
the considered urban locations into the 4 categories observed, with values of average weighted F-measure
and Kappa statistics (used as indicators) up to 0.9 and 0.8. Regarding the feature selection techniques,
attribute evaluation algorithms (ReliefF and mRMR) achieve better classification results than subset eval-
uation algorithms in reducing the model complexity, and so relevant environmental variables are chosen
for the proposed procedure. Results show that these tools can be used for addressing a prompt assess-
ment of potential road-traffic-noise related problems, as well as for gathering information in order to
take more well-founded actions against urban road-traffic noise.

© 2016 Published by Elsevier Ltd.

1. Introduction traffic has been found as the predominant source of noise and
most airborne pollutants (Can et al., 2011b). Both noise and air
pollution are major environmental stressors that may lead to im-
portant psychological or physiological effects (Foraster et al., 2011).
In terms of environmental noise, the influence of road-traffic-noise
on human health has been analyzed by several studies (Babisch,
2006; Babisch et al., 2013; Brink, 2011; Caciari et al., 2013; Fyhri
& Klaboe, 2009; Ising & Krupa, 2004; Muzet, 2007; Pirrera, De
Valck, & Cluydts, 2010), which pointed out the road-traffic-noise
not only as the most annoying noise source in urban environments
(Calixto, Diniz, & Zannin, 2003), but also as a concern for public

1.1. Urban road-traffic and noise

Road-traffic is known to be one of the main sources of pollu-
tion in urban environments (Nedic, Despotovic, Cvetanovic, Despo-
tovic, & Babic, 2014). In many European urban areas, the road-
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health and environmental welfare (Kassomenos, Vogiatzis, & Bento
Coelho, 2014). Furthermore, road-traffic-noise influences property
prices in urban areas (Blanco & Flindell, 2011).

An important aspect to be considered is the composition of the
road-traffic. The appearance of heavy vehicles and powered two
wheelers (motorbikes and mopeds) in traffic lead to higher noise
levels and reported annoyance (Braun, Walsh, Homer, & Chuter,
2013; Paviotti & Vogiatzis, 2012). Moreover, these road vehicles
have been found as the most prevalent noticed-sound-events (NSE)
in urban environments (Torija, Ruiz, Alba-Fernandez, & Ramos-
Ridao, 2012). Under the assumption that sound has to be notice-
able in order for it to contribute to an overall impression of annoy-
ance, the NSE is a crucial factor to be considered for the evaluation
of road-traffic-noise annoyance (De Coensel et al., 2009). Therefore,
a tool for the identification of NSE might be used for the elabora-
tion of action plans against environmental noise in urban environ-
ments.

Due to the good correlations found between noise levels and
traffic intensity, some authors have approached the estimation of
traffic parameters from recorded sound levels (Can et al.,, 2011a;
Torija & Ruiz, 2012). Thus, for instance, Torija and Ruiz (2012) de-
veloped a series of classifiers to detect the urban scenarios where
the percentage of heavy vehicles or motorcycles/mopeds is greater
than a given threshold.

1.2. Applications of machine learning in environmental noise
modeling

Machine learning algorithms have been widely applied to real-
world environmental applications. As two of the most applied ma-
chine learning methods, artificial neural network (ANN) and sup-
port vector machine (SVM) are powerful algorithms for classifica-
tion and regression problems. Thus, ANN- and SVM-based models
have been developed in research fields such as, air pollution (Hajek
& Olej, 2012), geology (Anifowose, Labadin, & Abdulraheem, 2015;
Feng, Zhang, Zhang, & Wen, 2015), hydrology (Cho et al., 2014;
Lafdani, Nia, & Ahmadi, 2013; Tan, Yan, Gao, & Yang, 2012; Xu &
Liu, 2013), meteorology (Mercer, Dyer, & Zhang, 2013; Wu, Long, &
Liu, 2015), renewable energy (Ekici, 2014; Gnana Sheela & Deepa,
2013; Mena, Rodriguez, Castilla & Arahal, 2014; Yadav & Chandel,
2014; Yadav, Malik, & Chandel, 2014; Yaici & Entchev, 2014; Zheng
& Qiao, 2013), or transportation (Jiang, Zhang, & Chen, 2014; Li et
al., 2014; Ma, Tao, Wang, Yu, & Wang, 2015; Zhu, Cao, & Zhu, 2014).

Regarding noise related applications, several authors have used
ANN algorithms to develop prediction models. Thus, Givargis and
Karimi (2010) presented a multi-layer Perceptron (MLP) model
which uses 5 input variables (hourly traffic flow, percentage of
heavy vehicles, hourly mean traffic speed, gradient and angle of
view) for the estimation of hourly A-weighted sound pressure level
(Laeq, 1 1) In roads in Tehran at distances under 4 m from the near-
side carriageway edge. In this work no significant difference was
detected between the performance of the developed neural net-
work and a calibrated version of the CORTN model (UK Calculation
of Road Traffic Noise). Kumar, Nigam, and Kumar (2014) applied
a multi-layer feed forward back propagation (BP) neural network,
trained by Levenberg-Marquardt (L-M) algorithm, to develop an
ANN model for predicting highway traffic noise. This model ac-
curately estimated the 10 percentile exceeded sound level (La1g)
and the Laeq descriptor by accounting the input parameters found
as more relevant to Indian highway traffic conditions (traffic vol-
ume, heavy vehicle percentage and average vehicle speed). Nedic
et al. (2014) used 5 input variables (number of light motor ve-
hicles, number of medium trucks, number of heavy trucks, num-
ber of buses and the average traffic flow speed) for the develop-
ment of an ANN model for Laeq prediction in Serbian roads, which
outperformed some classical noise prediction models. In order to

assess road-traffic-noise in urban environments, Cammarata, Cava-
lieri, and Fichera (1995), using data collected with typical features
of commercial, residential and industrial area, and with number of
cars, number of motorcycles, number of trucks, average height of
the buildings and width of the road as input variables, proposed
a two cascading level neural architecture, where at the first level
a learning vector quantification (LVQ) network filters the data dis-
carding all the wrong measurements, while at the second level the
BP algorithm predicts the sound pressure level (Laeq) in urban en-
vironments. Genaro et al. (2010) included 25 input variables, which
were found as the whole variable set used by all the traditional
noise prediction models evaluated. In this work, a MLP model was
implemented to predict Laeq descriptor using data samples from
the city of Granada (Spain). Also, a principal component analysis
(PCA) was used to simplify the model (up to 11 input variables).
This model outperformed the traditional noise prediction models.
Torija, Ruiz, and Ramos-Ridao (2012), using a set of variables for
the characterization of sound emission and propagation (20 in-
put variables) and 821 samples collected in urban environments
(Granada, Spain), developed an ANN model (trained by Levenberg-
Marquardt variant with Bayesian regulation back-propagation al-
gorithm) for the estimation of the Laeq descriptor, but also the
estimation of parameters related to the temporal structure and
spectral composition of urban sound environments (L3qs5-125 Hz»
L160-1600 Hz» L2-10 khz» TSLV and CF). Moreover, a reduction of the
input variables (up to 14) based on the analysis of the correla-
tion coefficients and the distribution of the test residuals were per-
formed.

Other applications of ANN in the acoustics field have been
related to classification issues. Sanchez-Pérez, Sanchez-Fernandez,
Suarez-Guerra, and Carbajal-Hernandez (2013) developed a model
for aircraft classification with an identification performance above
85%. This model was based on the take-off noise signal segmen-
tation (four segments) in time. Once extracted the different air-
craft noise patterns, by using Linear Predictive Coding (LPC), the
classification was addressed with the implementation of four par-
allel MLP (one for each segment). Moreover, a wrapper feature
selection method was used for reducing the computational cost.
Marquez-Molina, Sanchez-Fernandez, Suarez-Guerra, and Sanchez-
Pérez (2014) developed an aircraft take-off noises classification
model. For the obtaining of the input variables, a feature extraction
process of aircraft take-off signals was conducted through a 1/24
octave analysis and Mel frequency cepstral coefficients (MFCC), and
the classification model was made by using two parallel feed for-
ward neural networks (FFNN), achieving a total effectiveness of
83%. Torija and Ruiz (2012) performed an analysis to identify the
1/3-octave bands most influential on road-traffic intensity. Based
on the gathered information, a series of MLP-based model were
developed for the estimation of the overall road-traffic intensity
and for the detection of conditions with percentage of heavy ve-
hicles or motorbikes/mopeds larger than the usual values.

Although SVM algorithms have not been as extensively used in
noise-related issues as ANN, some interesting applications could be
highlighted. Barkana and Uzkent (2011) presented two stages clas-
sification method for the automatic recognition of environmental
noises, where first, a feature extraction based on the pitch range
was conducted, and second, SVM and k-means algorithms as clas-
sification techniques were trained on the extracted features. SVM
classifier outperformed k-means by about 7%. Based on a previous
study (Torija, Ruiz, & Ramos-Ridao, 2013) on the differentiation
of urban soundscapes as a function of 14 acoustical descriptors
and 15 semantic differential scales, Torija, Ruiz, and Ramos-Ridao
(2014) implemented two techniques, SVM and SVM trained using
sequential minimal optimization algorithm (SMO), for the develop-
ment of a model for the classification of urban soundscapes (using
the same 14 acoustical descriptors as input variables). According to
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the results showed, SMO model (91.3% of instances correctly clas-
sified) outperformed SVM. Finally, in Torija and Ruiz (2015) is pre-
sented a comparative analysis of the performance of multiple lin-
ear regression (MLR), MLP, SMO and Gaussian processes for regres-
sion (GPR) algorithms in the estimation of Laeq in urban environ-
ments. Also, the performance of two feature-selection techniques,
correlation-based feature-subset selection (CFS) and wrapper for
feature-subset selection (WFS), and the data reduction technique
PCA is evaluated. The use of WFS along with either SMO or GPR
provided the best Lpeq estimation. On the other hand, approaches
based on fuzzy logic have been widely used for developing expert
systems for assessing noise pollution (Zaheeruddin, 2006, 2008).

1.3. Objective and interest of this work

Information and communications technologies (ITCs) are now
available to local authorities for addressing an effective manage-
ment of urban environments aimed at improving the quality of life
of the population. Sensor platforms allow the continuous monitor-
ing of urban noise via inexpensive and highly accurate devices.

The objective of this paper is to exploit these data recorded
by noise monitoring systems already available to city planners, to
search for an automated procedure for the classification of urban
locations according to their content in heavy vehicles and motor-
bikes/mopeds, which can be extended to a more comprehensive
expert system for selecting noise control actions. With this auto-
mated classification, it can be suggested a whole procedure to en-
vironmental impact assessment of urban noise, as is proposed in
this paper.

Given this objective, rules and decisions (knowledge base) are
implemented in an automated procedure for classifying urban lo-
cations based on their traffic composition using machine learning
algorithms to induce knowledge to an expert system. As a result of
this research, along with a set of environmental variables selected
for the characterization of the urban location, the proposed proce-
dure uses a number of noise recorded metrics as input variables.
Thus, once integrated in an expert noise monitoring system, it will
allow an automatic classification of urban locations on the basis
of their traffic content. For this procedure, several possibilities are
suggested and tested in this work, such as several different ma-
chine learning classification algorithms or features selection tech-
niques to select the most efficient ones and the selection of input
variables.

Unlike the previous approaches briefly summarised in the pre-
ceding subsection, the developed classifier was aimed at classifying
urban locations based on the content in heavy vehicles and motor-
bikes/mopeds using a set of environment variables (temporal pe-
riod, road conditions, speed, and geometry of the locations) along
with energy-equivalent sound level and 1/3-octave bands sound
levels as input variables. Thus, from data gathered by noise mon-
itoring systems the developed classifier will identify urban sce-
narios with high number of loud events in traffic. Information on
number and source of loud events is a helpful knowledge in order
to assess environmental noise impact and to define corrective mea-
sures. The number of loud events has been found to play an impor-
tant role in explaining road-traffic-noise annoyance (Bartels, Marki,
& Miiller, 2015; Guski, 1999), so that the classification model pre-
sented in this paper might be used for addressing more effective
actions in order to reduce noise impact in urban environments.

With the suggested procedure, city-planners can effectively
know if a given location in a sensitive area (e.g. residential or hos-
pital area) can be classified as dominated by motorbikes, heavy
traffic, light traffic or several mixed traffic conditions. From this
classification, they can adopt actions for timely and efficient con-
trolling noise pollution and urban traffic management (Uzkent,
Barkana, & Yang, 2011).

This paper is organized as follows. In Section 2 the method-
ology of this research is shown. In this section the fundamentals
of a set of machine learning algorithms models suggested for the
classification of urban locations according to their percentage of
heavy vehicles (HV) and motorbikes/mopeds (MM) in urban traffic
are described and adapted for the context of the problem issued
here. Four feature selection techniques are also implemented for
the development of the classification models. For the evaluation of
the classification performance of the developed models, two statis-
tic indicators were used, F-measure and Cohen’s Kappa, and their
practical implementation and interpretation is commented. Next,
in Section 3, the different algorithms and methods were evalu-
ated to suggest a final suggested procedure for classification. To
accomplish this, we use a wide noise database measured in the
city of Granada (Spain) previously tested in many studies. Thus,
in this section it is firstly tested the classification performance
of machine-learning algorithms based on the indicators defined
in the previous section. In a second stage different combinations
of classification algorithms and feature extraction techniques were
implemented and tested. Finally in this section several statistical
tests were used to evaluate the appearance of statistically signif-
icant differences among the developed models, based on the F-
measure and the Kappa statistics. Taking into account these re-
sults, in Section 4 is given a discussion on the results obtained
and it is suggested the ‘optimal’ structure (high accuracy and min-
imum computational/operational cost) for the developed classifi-
cation model, as well as the suggested set of input variables to
be used. From this discussion, a whole procedure is suggested for
environmental noise impact assessment to help urban planners in
this task. Finally some conclusions are driven in Section 5 to show
the potential uses of the outlined procedure.

2. Methodology

As an application of machine learning algorithms to environ-
mental modeling, in this paper a series of models were developed
for the classification of urban locations according to their percent-
age of heavy vehicles (HV) and motorbikes/mopeds (MM) in traf-
fic. These models were built on the basis of a series of recorded
sound parameters and environment variables for the characteriza-
tion of the temporal period and both the sound emission and prop-
agation (Torija et al., 2010). A hierarchical cluster analysis (HCA)
was conducted in order to group the urban locations considered
in classes as a function of the HV and MM intensity. For the de-
velopment of the classification models, four feature selection tech-
niques - CFS, Consistency-based subset evaluation (CSE), ReliefF at-
tribute evaluator (ReliefF), and minimum Redundancy Maximum
Relevance (mRMR) - and two classification algorithms - MPL and
SMO - were implemented.

2.1. Database

For the development of the classification models, a database of
508 instances was used. This database, which includes a series of
urban locations with road-traffic as dominant noise source, was
collected in the city of Granada (Spain). In each location, sound-
level recordings and data for the road-traffic, temporal and ge-
ometrical characterization were taken at the same time. Table 1
shows the set of variables considered in this research. The time
interval for the integration of the different sound parameters and
other dynamic variables was 5 min, so that this research is framed
in short-term modeling. The sound measurements were made with
a type-1 sound-level meter (2260 Observer model with sound ba-
sic analysis programme BZ7219), using a tripod and wind shield,
following international reference procedures, with the microphone
mounted away from reflecting facades at a height of 4 m above
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Table 1 The outputs of the output layer are computed as follows:
Set of variables used for the development of classification models.
!
Key Variable Type of variable Units 2 2
ze=g| > w05 —6; (2)
Input TD  Type of day (working day, Discrete - Jj=1
variables Saturday or Sunday) . . .
DP  Day period (day, evening or Discrete _ where z; is the ogtput of the Icth node in the output layer; g(-) is
night) the transfer function from the hidden to the output layer; wij is
AS  Average speed Continuous - the weight between the jth node of the hidden layer and the k-h
GR  Gradient Continuous % .02 . p
X node of the output layer; 67 is the bias value of the kth node in
NL  Number of lanes (1 to 4) Discrete - k !
TP Type of pavement (porous  Discrete _ the output layer. (Fen.g et al, 2015). In this work, all the transfer
asphalt, smooth asphalt functions were sigmoid.
or paved) ) Given a training set © = {xi,yi}f’:l,yi € R, the training error is
¢S Condition surface (good, Discrete - minimized during the training process using the mean squared er-
neither good nor bad or
bad) ror the output (z) calculated by the network and the real one (y)
SG  Street geometry (“U” type,  Discrete - as error function (E):
“L" type or free field) N
SW  Street width Continuous m 1 2
BH Buildings height Continuous m E(w) = N Z Wk —2z1) (3)
RW  Roadway width Continuous m k=1
SRD S -receptor dist. Conti . . . .
Lource receptor distance Con jnuous o where N is the number of data points. For the optimal derivation of
eq, 5 min ontinuous dB 3 X R
Lt 5 min ¢ f [31.5-10,000] Hz  Continuous dB the weights for the MLP a BP algorithm was used, which updated
Variables LV Light vehicles intensity Continuous veh/5-min the weights iteratively to minimize the error function (Kang & Cho,
used for 2014). For a comprehensive description of MLP see Haykin (1999).
obtaining
target . .. L .
categories 2.3.2. Sequential minimal optimization for support vector machine
HV  Heavy vehicles intensity Continuous veh/5-min training
MM Motorbike/Mopeds Continuous veh/5-min SVM algorithms are based on the structural risk minimization

intensity

the local ground level. From these measurements, the 5-min en-
ergy equivalent sound level (Leq 5 min) and the 5-min integrated
1/3-octave band sound levels (Lt 5 ) from 31.5 Hz to 10,000 Hz,
were calculated to be included in the input variables set.

2.2. Clustering of selected locations

A HCA was applied to the set of selected urban locations (508
instances). The clustering was made by the Ward method and the
squared Euclidean distance was the measurement unit. The input
variables were light vehicles (LV), heavy vehicles (HV) and motor-
cycles/mopeds (MM) intensities, so the clustering was performed
on the basis of the road-traffic characteristics. The determination
of the number of clusters was based on the L method (Salvador
& Chan, 2004), that finds the “knee” in a ‘number of clusters vs.
clustering evaluation metric’ graph.

2.3. Machine learning classification algorithms

2.3.1. Multi-layer perceptron

MLP is an ANN architecture widely used in classification prob-
lems. A MLP consist of three layers: the input layer (whose nodes
take input variables), the hidden layer (could have one or more
hidden layers) and the output layer. The hidden nodes compute its
output by:

n
Oj:h ZW}iXi—e} (])

i=1

where O; is the output of jth node in the hidden layer; h(.) is
the transfer function from the input to the hidden layer; w}i is the
weight between the ith node of the input layer and the jth node of
the hidden layer; 9} is the bias value of the jth node in the hidden
layer.

principle (Kang & Cho, 2014), which allow them to achieve supe-
rior generalization performance for classification problems (Burges,
1998; Vapnik, 1995, 1998).

Let a set of N training datapoints © = {xi,yl-}?’:l, where x; is
the ith input feature vector and y; € {—1, 1} is the corresponding
output class. The implementation of SVM searches the maximum
margin hyperplane w” ¢ (x) + b = 0 that separates the positive dat-
apoints from the negative datapoints. Formulating the problem as
a primal optimization, the following minimization is sought:

1
inw+CXi:§i (4)

subject to

yiw'o(x) +b) = 1§,
£>0,i=1,...,N,

where C is a penalty parameter that determines the trade-off be-
tween the training errors and the model complexity; ¢ is a non-
linear mapping from an input space into a feature space; and §&;
are the slack variables. This optimization problem is usually con-

verted to the dual form through the following quadratic program-
ming (QP) problem, which aims to maximize:
1
5 Zaiajyi}’jk(xivxj) +ZO€:‘ (5)
ij i
subject to

> ayi=0,
i
O<ao;j<Ci=1,...,N,

where «; are Lagrange multipliers and k(x;, %;) is a kernel func-
tion. The resulting decision function, after the dual QP problem is
solved, can be expressed as:

N
wo®) +b=>"oqyk(x;,x) +b

i=1

> oyik(x;, %) +b (6)

ieSV

f®)
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This decision function is expressed by only training datapoints
with only nonzero «;, which are called support vectors (SVs) (Feng
et al,, 2015; Kang & Cho, 2014). A comprehensive description of
SVM can be found in Burges (1998) and Vapnik (1995, 1998).

In order to improve the efficiency of QP, Platt (1998) proposed
SMO. SMO is a simple algorithm that decomposes the overall QP
problem into QP sub-problems similar to Osuna’s method. During
the solution of the SVM QP problem, at every step, SMO chooses
the Lagrange multipliers to jointly optimize, finds the optimal val-
ues for these multipliers, and updates the SVM to reflect the new
optimal values (see Platt, 1998 for further details).

In this work, three kernel functions were used:

Polynomial (PN):

k(x;, ;) = (x; «x; +1)P  with p =2 in this work (7)
Radial basis function (RBF):
k(x;, X)) = exp(y [|% — x;[1*) (8)
Pearson VII kernel function (PuK):
2
k(x;, ;) = 1/[1+ 2/ 11%; — %12/ 20/ —1/0) |® (9)

where y, o and w are kernel parameters in the SVM feature space
(Anifowose et al., 2015).

2.4. Feature extraction algorithms

For the selection of input variables two different approaches
have been used, (i) subset evaluation (CFS and CSE), and (ii) at-
tribute evaluation (ReliefF and mRMR).

2.4.1. Correlation-based feature-subset selection

CFS algorithm computes a metric based on the correlation be-
tween each feature and the output (relevancy) and on the corre-
lation among the features in the subset (redundancy). This metric,
which evaluates the merit of a given subset of features, is calcu-
lated as follows:
N (10)

VEk+Ek(k -1

where k is the number of features in the subset S; 7; is the average
correlation between the features in S and the target class; and 7
is the average correlation among the features in S (Hall & Smith,
1997).

Best-first algorithm (BFS) (with backward, forward and bi-
directional direction) (Dechter & Pearl, 1985) and Linear forward
selection algorithm (LFS) (Guetlein, Frank, Hall, & Karwath, 2009),
which is an extension of BFS, were used as search methods.

2.4.2. Consistency-based subset evaluation

CFE evaluates the merit of a given feature subset on the basis
of the inconsistency criterion (consistency is interpreted as zero in-
consistency). The inconsistency rate is computed as follows (Liu &
Setiono, 1996):

(i) Two instances are considered inconsistent if they match ex-
cept for their class labels.

(ii) For all the matching instances (without considering their
class labels), the inconsistency count is the number of the
instances minus the largest number of instances among dif-
ferent class labels.

(iii) The inconsistency rate is the sum of all the inconsistency
counts divided by the total number of instances.

This criterion, along with BFS and LFS as search strategies, was
implemented to find the smallest subset of features with consis-
tency equal to that of the full set of features.

2.4.3. Relief F attribute selection

ReliefF (Kononenko, 1994) is a feature selection strategy that
chooses instances randomly, and changes the weights of the fea-
ture relevance based on the nearest neighbor. Thus, for a given at-
tribute, ReliefF considers the value for the nearest instance of the
same and different class. This algorithm estimates the ability of at-
tributes to separate each pair of classes regardless of which two
classes are closest to each other.

In this work, this feature selection strategy is implemented with
a number of nearest neighbours to be considered for the attribute
estimation equal to 10, 15 and 20. For each of the three conditions,
this method was implemented with and without weighting nearest
neighbours by their distance.

2.4.4. Minimum redundancy maximum relevance attribute selection
mRMR (Ding & Peng, 2005) is a feature selection strategy that
seeks the selection of attributes under two assumptions, minimum
redundancy (minRed) and maximum relevance (MaxRel). Mini-
mum redundancy implies the selection of attributes that are mutu-
ally maximally dissimilar, so that the extracted feature subset gives
a better representation of the entire dataset. The minRed condition
can be expressed as follows:
minWi, W= 3 3" 1), ()
(N jes
where I(i, j) represents the mutual information of two features;
and |S| is the number of features. The level of discrimination be-
tween classes is measured by the relevance. The MaxRel condition
is to maximize the total relevance of all classes in S:

maxV;, V; = % Zl(h, i),

i,jeS

(12)

where h is the targeted class. Both conditions are combined in or-
der to optimize a single criterion function.
Mutual information difference criterion (MID):

max(V; — W) (13)
Mutual information quotient criterion (MIQ):
max(Vi, /W) (14)

In this work, the subsets of features derived from MaxRel, MID
and MIQ criteria were evaluated.

It should be noted that neither ReliefF nor mRMR strategies
lead to a selection of a feature subset (with a given number of fea-
tures), but they rank attributes according to a given metric. For this
reason, the number of features to be selected using these strategies
was fixed to the number of features selected by CFS and CSE tech-
niques. Table 2 summarizes all the feature extraction algorithms
implemented in each machine-learning classification technique.

2.5. Model evaluation

For the evaluation of the classification performance of the mod-
els developed, two statistic indicators were used, F-measure and
Cohen’s Kappa. The F-measure provides a way of combining recall
and prediction to get a single measure which falls between recall
and precision. Thus, the F-measure is calculated as the harmonic
mean of precision and recall and tends towards the lower of the
two (Chinchor, 1992):

Precision - Recall

F —measure=2 - ——————
Precision + Recall

(1)
Note that precision can be expressed as the ratio between the

true positives (TP) and all the cases classified as positive, and recall

represents the ratio between the TP and all the positive cases.

Please cite this article as: A.J. Torija, D.P. Ruiz, Automated classification of urban locations for environmental noise impact assessment
on the basis of road-traffic content, Expert Systems With Applications (2016), http://dx.doi.org/10.1016/j.eswa.2016.01.011

388
389
390
391
392
393
394
395
396

398
399
400

401
402
403
404
405
406
407
408

409
410
411
412

413
414
415

416

417
418
419
420
421
422
423
424
425

426

427
428
429
430
431
432
433

434
435
436


http://dx.doi.org/10.1016/j.eswa.2016.01.011

437
438
439

440
a41
442
443
444
445

JID: ESWA

[m5G;January 27, 2016;15:46]

6 AlJ. Torija, D.P. Ruiz/Expert Systems With Applications xxx (2016) xxx-Xxx

800 -

700

500 -

400 -

200

Ratio-difference between inter-cluster distance

100 4

P G G G G Gl Ul Ul G G G |
VTP T OO T T

Ol
O-ToT

0 +O=

. 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
Step

Fig. 1. Ratio difference between inter-clusters distance in the hierarchical cluster analysis performed with light vehicles, heavy vehicles and motorbikes/mopeds as input

variables.
Table 2
Description of the feature extraction algorithms implemented.
Feature Parameters Key
extraction
algorithm
CFS Best-first with backward search direction CFS_Bw
CFS Best-first with forward search direction CFS_Fw
CFS Best-first with bi-directional search direction CFS_Bi
CFS Linear forward selection algorithm CFS_LFS
CFE Best-first with backward search direction CFE_Bw
CFE Best-first with forward search direction CFE_Fw
CFE Best-first with bi-directional search direction CFE_Bi
CFE Linear forward selection algorithm CFE_LFS
ReliefF 10 nearest neighbors ReliefF_k10
ReliefF 10 nearest neighbours. Nearest neighbors
weighted by distance. ReliefF_k10w
ReliefF 15 nearest neighbors ReliefF_k15
ReliefF 15 nearest neighbors. Nearest neighbours
weighted by distance. ReliefF_k15w
ReliefF 20 nearest neighbors ReliefF_k20
ReliefF 20 nearest neighbors. Nearest neighbors
weighted by distance. ReliefF_k20w
mRMR Maximum relevance criterion
mRMR_MaxRel
mRMR Mutual information difference criterion mRMR_MID
mRMR Mutual information quotient criterion mRMR_MIQ

The kappa statistic is directly interpretable as the proportion of
agreement after chance agreement is excluded, and it is calculated
as follows (Cohen, 1960):

Po—Pe

Tpe (2/)

kappa =
where Py is the observed proportion of agreement and P. is the
proportion of agreement expected by chance.

In the development of the classification models, a training-
validation process was executed to minimize the estimation error
in the training subsets and to maximize the generalization abil-
ity (in the test subsets). In order to avoid overfitting, the parame-

Table 3

Overall and road-traffic intensity for each considered type of road vehicle. Moreover,
the average Laeq value (integration time = 5 min) for each as measured for each
cluster is shown.

Overall LV HV MM Laeq, 5 min Category
road-traffic

intensity

(veh/5-min)

27.79 22.29 (80.21) 0.32 (1.16) 5.18 (18.64) 65.62 1

75.34 61.72 (81.92) 1.87 (2.48) 11.76 (15.60) 68.49 2
200.30 160.68 (80.22) 3.73 (1.86)  35.89 (17.92) 71.81 3

88.66 34.69 (39.13)  11.77 (13.27) 42.20 (47.60) 74.74 4

*In brackets it is shown the percentage of LV, HV and MM vehicles relative to the
overall intensity.

ters related to the complexity of MLP (number of neurons in the
hidden layer, learning rate, momentum) and SMO (C parameter)
algorithms were carefully selected. Furthermore, the training pro-
cess was carried out by using a 10-fold cross-validation standard
scheme, where 10 training and 10 validation subsets were built.
In each subset, 90% of samples were used in the training phase
and the 10% of samples were used for validation. The values of the
F-measure and kappa indicators were calculated as the arithmetic
mean of the 10 validation subsets.

3. Results
3.1. Number of categories based on road-traffic content

Based on the results of the HCA, 4 categories have been iden-
tified according to the percentage of HV and MM in the evaluated
urban locations. In Fig. 1, it is seen that in the step 503 there is
a sudden increment in the value of the ratio-difference between
the inter-cluster distance, which indicates that 4 categories can be
determined. In Table 3, the value of road-traffic intensities and
the corresponding percentage can be observed. Also, as seen in
Table 3, no matter the overall road-traffic intensity, the increase
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Fig. 2. Value of the F-measure indicator (weighted average and for categories 1, 2, 3 and 4) and Kappa statistics for each machine-learning classification algorithm with the

whole set of input variables.

in the Laeq 5 min 1S driven by the increment of the HV and MM
content.

3.2. Classification performance of machine-learning algorithms
evaluated

Fig. 2 shows the performance (F-measure and Kappa statistics)
of each machine-learning algorithm implemented (MLP, SMO_PN,
SMO_RBF and SMO_PuK) in classifying the considered urban loca-
tions into the 4 categories observed. As seen in Fig. 2, using the
measured spectra (Lg 5 ) as input variables, values of average
weighted F-measure and Kappa statistics ranging from 0.76-0.81
and 0.64-0.72 are obtained. The algorithms with the best perfor-
mance are SMO_RBF and SMO_PuK, while MLP achieves the lowest
classification values.

On the other hand, with the inclusion of the environment vari-
ables mentioned in Table 1 (temporal period, road surface, loca-
tions’ geometry, circulation speed and gradient) the average value
of the F-measure indicator increases between 8% (SMO_RBF) and
15% (SMO_PN). The average value of the Kappa indicator grows be-
tween 14% (SMO_RBF and SMO_PuK) and 25% (MLP and SMO_PN).

3.3. Evaluation of the feature extraction algorithms implemented for
classification

In Table 4, the set of input variables selected by each feature
selection algorithm is presented. The input variables are ordered
by the value of the merit function in each feature selection tech-
nique. CFS algorithm selected the same subset of 13 input vari-
ables, with the 4 search methods considered. Regarding CFE al-
gorithm, with Backward and Forward direction search methods 13
input variables were selected, while Bi-directional and LFS search
methods selected subsets composed of 12 and 11 input variables,

respectively. It should be noted that, for attribute evaluation algo-
rithms (ReliefF and mRMR) a number of 13 input variables to be
selected was fixed in order to ensure comparability among feature
selection techniques.

Fig. 3 indicates that SMO algorithms outperformed MLP in clas-
sifying urban locations, regardless the feature selection technique
implemented. On average, the feature selection techniques with
the best performance are ReliefF_k10, ReliefF_k15, ReliefF_k20 and
mRMR_MIQ. The highest values for both F-measure and Kappa
statistics are achieved by SMO_PN with ReliefF_k10, ReliefF_k15,
ReliefF_k20 as feature selection techniques. Moreover, as observed
in Fig. 3, the reduction of input variables from the initial set of
40 to subsets of 11, 12 and 13 variables achieves by the feature
selection algorithms implemented does not lead to a decrease in
the classification performance. Thus, with the subset of input vari-
ables selected by the used feature selection techniques, the classi-
fication algorithms obtain values of F-measure and Kappa indica-
tors in the same order of magnitude as with the total set of input
variables, with the sole exception of CFE_Bw. Although there is not
a clear tendency, it seems that attribute evaluation algorithms al-
lows better classification performance. Table 5 shows the value of
F-measure obtained by each classification algorithm with each cat-

egory.

3.4. Statistical tests

A series of Mann-Whitney U tests were conducted to evalu-
ate the appearance of statistically significant differences among the
developed models, based on the F-measure (weighted average and
categories 1, 2, 3 and 4), and the Kappa statistics. These statisti-
cal tests were performed to assess statistically significant differ-
ences (p <0.05) among classification algorithms (Figs. 4 and 5),
and among feature selection algorithms (Figs. 6 and 7). It should
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Fig. 3. Value of the weighted average F-measure indicator and Kappa statistics for each machine-learning classification algorithm and each feature selection technique.

be noted that the models were ordered on the basis of their me-
dian value.

As shown in Fig. 4 (F-measure) and Fig. 5 (Kappa statis-
tics), SMO classification models significantly outperformed MLP
models. In Figs. 6 and 7, it is observed that the feature
algorithms with the best performance are ReliefF k15, Reli-
efF_k20, mRMR_MIQ and ReliefF_k10. As for F-measure (Fig. 6),
CFE_Bw algorithm statistically obtains the worst values, while

mMRMR_MIQ and ReliefF_k10 algorithms achieves similar val-
ues, and significantly outperformed CFE_Bw, mRMR_MaxRel and
CFS algorithms. Regarding Kappa statistics (Fig. 7), mRMR_MIQ
algorithm significantly improves CFE_Bw, mRMR_MaxRel, Reli-
efF_k10w, ReliefF_k15w and ReliefF_k20w, while ReliefF_k10 sig-
nificantly outperformed all the feature selection algorithms,
with the exception of CFE_Bi, ReliefF_k15, ReliefF_k20 and
mRMR_MIQ.
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Median | MLP | SMO_PN | SMO_RBF | SMO_PuK Median | MLP | SMO_PN | SMO_RBF | SMO_PuK
MLP " MLP 0.76
e 0.87 0 0 SMOEE 0.79 0 0
SMO_RBF 0.88 0 0 SMO_RBF 0.79 0 0
SMO_PuK 0.88 0 0 SMO_PuK 0.80 0 0

Fig. 4. Results of the Mann-Whitney U test for classification algorithms (F-
measure). 1 = statistically significant difference and 0 = not statistically significant
difference. (p < 0.05).

4. Discussion

The results obtained in this work, demonstrate that SMO mod-
els outperform MLP model in classifying the set of urban loca-
tions sampled into the corresponding category, which is based
on the composition in HV and MM. Similar findings have been
reached by several authors (Kang & Cho, 2014; Tan et al., 2012;
Torija & Ruiz, 2015; Zeng & Qiao, 2013), pointing out SVM as

Fig. 5. Results of the Mann-Whitney U test for classification algorithms (Kappa
statistics). 1 = statistically significant difference and 0 = not statistically significant
difference. (p < 0.05).

the machine-learning method with the highest classification per-
formance. SVM algorithm is based on structure risk minimization
principle whereas ANN is based on empirical risk minimization
principle. Thus, while SVM seeks to minimize the upper bound of
a generalization error, ANN aims to minimize false classification er-
ror. Due to this principle, SVM is able to fix the overfitting problem

Median

CFE_Bw 0.81
mMRMR_MaxRel | 0.86
CFS_Bw 0.86
CFS_Bi 0.86
CFS_Fw 0.86
CFS_LFS 0.86
ReliefF_k10w 0.87
Relieff_k15w 0.87
Relieff_k20w 0.87
CFE_Bi 0.87
CFE_Fw 0.87
mRMR_MID 0.88
CFE_LFS 0.88
Relieff_k15 0.88
RelieffF_k20 0.89
mRMR_MIQ 0.89
Relieff_k10 0.90

Fig. 6. Results of the Mann-Whitney U test for feature selection algorithms (F-measure). 1 = statistically significant difference and 0 = not statistically significant difference.

(p <0.05).
Median | CFE_Bw | mRMR_MaxRel | CFE_Bi | ReliefF_k10w | ReliefF_k15w | Relieff_k12w | CFE_Fw | CFS_Bw | CFS_Bi | CFS_Fw | CFS_LFS | CFE_LFS | mRMR_MID | ReliefF_k15 | ReliefF_k20 [ mRMR_MIQ | ReliefF_k10
CFE_Bw 0.70 0 0 0 0 0 0 0 0 0 0
mRMR_MaxRel 0.76 0 0 0 ) 0 0 0 0 0 0
CFE_Bi 0.77 0 0 0 0 0 0 0 0 0 0
ReliefF_k10w 0.78
Relieff_k15w 0.78
ReliefF_k12w 0.78
CFE_Fw 0.78
CFS_Bw 0.79
CFS_Bi 0.79
CFS_Fw 0.79
CFS_LFS 0.79
CFE_LFS 0.79
mRMR_MID 0.80
ReliefF_k15 0.81
ReliefF_k20 0.81
mRMR_MIQ 0.81
ReliefF_k10 0.82

Fig. 7. Results of the Mann-Whitney U test for feature selection algorithms (Kappa statistics). 1 = statistically significant difference and 0 = not statistically significant

difference. (p < 0.05).
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Table 4
Attributes selected by each feature selection algorithm implemented.
CFS_ CFS_ CFS_ CFS_ CFE_ CFE_ CFE_ CFE_ ReliefF_ ReliefF_k  ReliefF_ ReliefF_k  ReliefF_ ReliefF_ k ~ mRMR_Ma mRMR_ mRMR_
Bw Fw Bi LFS Bw Fw Bi LFS k10 10w k15 15w k20 20w XRel MID MIQ
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Table 5 § -U
Classification performance (F-measure) of each machine-learning algorithm implemented for categories 1, 2, 3 and 4. § x
Category 1 Category 2 Category 3 Category 4 3 m
MLP SMO_PN SMO_RBF SMO_PuK MLP SMO_PN SMO_RBF SMO_PuK MLP SMO_PN SMO_RBF SMO_PuK MLP SMO_PN SMO_RBF SMO_PuK § m
CFS_Bw 0.89 0.90 0.89 0.90 0.76 0.78 0.78 0.80 0.81 0.86 0.94 0.92 0.85 0.87 0.87 0.87 g
CFS_Fw 0.89 0.90 0.89 0.90 0.76 0.78 0.78 0.80 0.81 0.86 0.94 0.92 0.85 0.87 0.87 0.87 |
CFS_Bi 0.89 0.90 0.89 0.90 0.76 0.78 0.78 0.80 0.81 0.86 0.94 0.92 0.85 0.87 0.87 0.87 g
CFS_LFS 0.89 0.90 0.89 0.90 0.76 0.78 0.78 0.80 0.81 0.86 0.94 0.92 0.85 0.87 0.87 0.87
CFE_Bw 0.86 0.87 0.88 0.85 0.66 0.68 0.76 0.73 0.73 0.74 0.89 0.89 0.80 0.75 0.85 0.86
CFE_Fw 0.89 0.88 0.87 0.89 0.75 0.76 0.76 0.79 0.88 0.92 0.92 0.94 0.84 0.89 0.89 0.89
CFE_Bi 0.87 0.88 0.89 0.89 0.73 0.76 0.77 0.79 0.88 0.90 0.92 0.94 0.84 0.89 0.89 0.89
CFE_LFS 0.88 0.90 0.89 0.90 0.76 0.77 0.78 0.79 0.90 0.89 0.91 0.92 0.89 0.89 0.87 0.89
ReliefF_k10 0.90 0.91 0.90 0.90 0.79 0.83 0.81 0.82 0.91 0.93 0.94 0.94 0.88 0.92 0.90 0.91
ReliefF_k10w 0.88 0.87 0.88 0.87 0.76 0.78 0.79 0.77 0.89 0.93 0.95 0.95 0.85 0.87 0.90 0.89
ReliefF_k15 0.89 0.92 0.89 0.87 0.79 0.83 0.80 0.77 0.88 0.92 0.95 0.95 0.86 0.90 0.89 0.89
ReliefF_k15w 0.88 0.87 0.88 0.89 0.76 0.78 0.79 0.80 0.89 0.93 0.95 0.94 0.85 0.87 0.90 0.88
ReliefF_k20 0.90 0.92 0.89 0.87 0.78 0.83 0.80 0.77 0.90 0.92 0.95 0.95 0.86 0.90 0.89 0.89
ReliefF_k20w 0.88 0.87 0.88 0.89 0.76 0.78 0.79 0.80 0.89 0.93 0.95 0.94 0.85 0.87 0.90 0.88
mRMR_MaxRel 0.86 0.87 0.87 0.90 0.75 0.74 0.76 0.79 0.83 0.87 0.90 0.89 0.82 0.88 0.89 0.86
mRMR_MID 0.89 0.89 0.90 0.89 0.76 0.78 0.79 0.78 0.88 0.93 0.93 0.93 0.84 0.90 0.88 0.88

mRMR_MIQ 0.90 0.89 0.89 0.89 0.80 0.79 0.80 0.81 091 091 0.93 0.92 0.90 0.92 0.94 0.95
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inherent in ANN algorithms, and thus, achieves better classification
performance (Hur & Lim, 2005).

Regarding the feature selection techniques considered in this
work, under similar conditions in reducing the model complexity
(11-13 input variables selected), it could be stated that attribute
evaluation algorithms (ReliefF and mRMR) achieve better classifi-
cation results than subset evaluation algorithms (CFS and CFE). The
merit function of ReliefF and mRMR ensures a better search across
the whole search space, selecting the most influential attributes in
discriminating among categories and reducing redundancy. Thus,
ReliefF_k10 and mRMR_MIQ allow the best classification results,
on the basis of the two statistical indicators used (F-measure and
Kappa statistics). The subsets of input variables selected by these
two techniques are different. ReliefF_k10 selected all the environ-
ment variables included in Table 1 (with the sole exception of TD),
and Leg, 5 min and L315 pz, 5 min- As for mRMR_MIQ, besides selecting
6 temporal-, road-, and geometrical-related variables, Leg 5 min and
other 6 low-frequency-bands sound level descriptors are chosen.
However, in both cases, environmental variables have the highest
values in the merit function. These results, along with the out-
comes shown in Fig. 2, point out the set of environment variables
considered in this work as highly influential on classifying urban
locations as to HV and MM traffic content. In any case, the use
of a combination of environmental variables (Table 1) along with
Leg, 5 min and low-frequency-bands sound level descriptors as input
variables in SMO-based models achieves high performance in clas-
sifying urban locations according to the percentage of HV and MM
in circulation.

Taking in mind the above considerations, we can suggest a
whole procedure for aiding the process decision-making for envi-
ronmental noise impact assessment:

(i) Use of a sensor platform for continuous noise monitoring.
Information on the acoustical descriptors identified in this
paper should be gathered for each urban location. An anal-
ysis of the urban agglomeration should be performed in or-
der to assess the necessity of extending the noise monitor-
ing system to new urban locations.

(ii) Characterization of the urban location using the set of en-
vironment variables selected in this paper (environmental
variables (Table 1) along with Leq and low-frequency-bands
sound level descriptors)
Using information from (i) and (ii), the developed model
classifies the urban location in one of the four categories
found in this paper. We suggest applying SMO-based models
described in this paper to obtain an accurate classification.
Detection of road-traffic-noise related problems. First, the
dominant land use in the considered urban location should
be identified, i.e. residential, health and education, commer-
cial/leisure or industrial. In Table 6 it is showed the decision
matrix on the basis of the dominant land use and the urban
location category.

Corrective measures. Table 7 shows a set of proposed cor-

rective measures (Torija et al., 2012) for each urban location

category. Although some corrective measures are suggested,

a thorough analysis would be required in order to establish

the most appropriate corrective measure for each problem

detected.

(iii

—

(iv

—

(v

—

Finally, we should take into account two practical considera-
tions regarding this research and the applicability of the obtained
results:

(a) For addressing the classification of urban locations based on
road-traffic content, the model developed in this paper uses
acoustical descriptors as input data. For this reason, the sug-
gested classifier requires the absent of loud noise sources

other than road-traffic-noise. The presence of loud non road-
traffic-noise sources could lead to misleading results in the
classification process. However, this seems not to be an issue
in urban agglomerations due to the significant dominance of
road-traffic-noise in urban sound environment. On the other
hand, the classifier presented in this paper has been trained
and tested for a typical medium-sized Mediterranean city.
The application of this classification model to other type of
urban agglomeration would require the update (re-train) of
the algorithm in order to make it able to learn new urban
configurations and/or road-traffic conditions.

(b) The model presented in this paper classifies with high accu-
racy urban locations based on the road-traffic content. In the
relevant literature, there can be found several environmental
noise models (Genaro et al., 2010; Givargis & Karimi, 2010
Cammarata et al., 1995; Kumar, Nigam & Kumar, 2014; Nedic
et al., 2014; Torija & Ruiz, 2015; Torija et al., 2012) which are
aimed at estimating the sound-pressure-level from a num-
ber of input variables (mostly related to road-traffic). In this
work, the approach is different, and from a set of environ-
ment variables (for the characterization of the urban loca-
tion) and a number of acoustical descriptors (Leq, 5 min and
low-frequency-bands sound level) a given urban location is
classified in a category based on the road-traffic content.
This approach allows the user to gather information about
the dominant noise source, but also about the number of
loud events (HV and/or MM) which has been pointed out
as a key factor in explaining road-traffic-noise annoyance
(Bartels et al., 2015; Guski, 1999).

5. Conclusions

This paper examines the use of machine learning methods to
induce knowledge in expert noise monitoring systems to obtain
a reliable classification of urban areas on the basis of their traffic
content. In this context, it proposes several machine learning algo-
rithms and features selection methods adapted to this problem to
test their behavior and so suggesting the best alternatives to use it.
We have shown the viability of this concept since the application
of this classifier can offer valuable information to establish mea-
sures against road-traffic-noise.

In environmental applications, it is of great interest to design
an expert system aimed to help urban planners to classify urban
locations based on their traffic composition and consequently con-
trolling noise pollution. The circulation of heavy vehicles and mo-
torbikes/moped causes an important negative impact on the sur-
rounding environment and on the exposed population (Table 3).
In light of the results obtained in this research, the application
of machine-learning algorithms achieves high performance in the
classification of urban locations into the 4 identified categories on
the basis of their content in heavy vehicles and motorbikes/moped.
In reference to the best classification algorithms for this problem,
although MLP-based models provide good classification results,
they were significantly outperformed by the SMO-based classifica-
tion models (p < 0.05). Moreover, with the same number of input
variables selected, attribute evaluation algorithms obtained bet-
ter classification performances than subset evaluation algorithms.
Thus, the subsets of input variables selected by two ReliefF and
mRMR feature selection algorithms (ReliefF_k10 and mRMR_MIQ)
reach the highest classification performances (weighted average F-
measure around 0.88-0.89, and Kappa statistics around 0.82-0.83).

In addition, the set of environment variables considered in this
work has been identified as a key factor in the classification of ur-
ban location according to traffic content. Along with these envi-
ronment variables, the low-frequency sound levels and the Leq de-
scriptor are found as influential variables to be considered in this
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Table 6
Decision matrix for action against road-traffic-noise.
Land use Category 1 Category 2 Category 3 Category 4
Residential Corrective measures only with Corrective measures only with Corrective measures Corrective measures

complaints from the population
Corrective measures only with
complaints from the public

Health and Education

complaints from the population
Corrective measures

Corrective measures Corrective measures

Commercial/Leisure No action Corrective measures only with Corrective measures only with Corrective measures
complaints from the public complaints from the public
Industrial No action No action Corrective measures only if legal Corrective measures only if
standards exceeded legal standards exceeded
Table 7

Set of corrective measures suggested for each urban location category based on
road-traffic content.

Urban location Corrective measures

category

1 - Development of urban mobility plans.

- Pedestrianization of urban locations.

- Promoting non-motorized mobility.

2 - Development of urban mobility plans.

- Pedestrianization of urban locations.

- Promoting non-motorized mobility.

- Encourage public transport use.

3 - Fostering the replacement of light vehicles by
hybrid/electric cars.

- Promoting non-motorized mobility.

- Development of urban mobility plans.

- Encourage public transport use.

- Setting more restrictive speed limits.

4 - Development of urban mobility plans.

- Encourage public transport use.

- Promoting the replacement of urban buses fleet by
hybrid/electric vehicles.

- Prohibition or restriction of traffic of heavy vehicles.

- Design and planning of new routes for heavy vehicles.

- Inclusion of a thorough inspection of acoustic emission
within the regular technical inspections programs for
motorised vehicles.

- Identification (and banning if considered) of motorized
vehicles which exceed established acoustic emission
limits.

- Minimization of slopes in urban roads.

classification problem. Therefore, in terms of the applicability of
the presented classification models, there is a need, not only for
a description of the sound environment, but also an appropriate
characterization of the environment (temporal period, road condi-
tions, speed, and geometry of the locations). With the use of such
input variables higher performance in the classification based on
traffic content is achieved.

Since the obtained classification results are promising, this
work suggests a whole procedure in the discussion section to help
urban planners to face this problem. Based on the content in heavy
vehicles and motorbikes and the other environmental input vari-
ables, the implementation of the model developed in this research
allows an accurate automatic classification of the urban locations.
In a second stage, the information provided by the implementa-
tion of the developed classifier can be used to establish actions to
address road-traffic-noise-related problems in urban environments,
and thus, reduce both the exposure sound levels and the reported
people annoyance.
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