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a b s t r a c t

Urban and road planners must take right decisions related to urban traffic management and control-

ling noise pollution. Their assessments and resolutions have important consequences on the annoyance

of population exposed to road-traffic-noise and controlling other environmental pollutants (e.g. NOx or

ultrafine particles emitted by heavy vehicles). One of the key decisions is the selection of which noise

control actions should be taken in sensitive areas (residential or hospital areas, school areas etc), that

could include costly measures such as reducing the overall traffic, banning or reducing traffic of heavy

vehicles, inspection of motorbikes sound emission, etc. For an efficient decision-making in noise control

actions, it is critical to classify a given location in a sensitive area according to the different prevailing

traffic conditions.

This paper outlines an expert system aimed to help urban planners to classify urban locations based

on their traffic composition. To induce knowledge into the system, several machine learning algorithms

are used, based on multi-layer Perceptron and support vector machines with sequential minimal opti-

mization. As input variables for these algorithms, a combination of environment variables was used. For

the development of the classification models, four feature selection techniques, i.e., two subset evalu-

ation (correlation-based feature-subset selection and consistency-based subset evaluation) and two at-

tribute evaluation (ReliefF and minimum redundancy maximum relevance) were implemented to reduce

the models’ complexity. The overall procedure was tested on a full database collected in the city of

Granada (Spain), which includes urban locations with road-traffic as dominant noise source. Among all

the possibilities tested, support vector machines based models achieves the better results in classifying

the considered urban locations into the 4 categories observed, with values of average weighted F-measure

and Kappa statistics (used as indicators) up to 0.9 and 0.8. Regarding the feature selection techniques,

attribute evaluation algorithms (ReliefF and mRMR) achieve better classification results than subset eval-

uation algorithms in reducing the model complexity, and so relevant environmental variables are chosen

for the proposed procedure. Results show that these tools can be used for addressing a prompt assess-

ment of potential road-traffic-noise related problems, as well as for gathering information in order to

take more well-founded actions against urban road-traffic noise.

© 2016 Published by Elsevier Ltd.

1. Introduction1

1.1. Urban road-traffic and noise2

Road-traffic is known to be one of the main sources of pollu-3

tion in urban environments (Nedic, Despotovic, Cvetanovic, Despo-4

tovic, & Babic, 2014). In many European urban areas, the road-5
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traffic has been found as the predominant source of noise and 6

most airborne pollutants (Can et al., 2011b). Both noise and air 7

pollution are major environmental stressors that may lead to im- 8

portant psychological or physiological effects (Foraster et al., 2011). 9

In terms of environmental noise, the influence of road-traffic-noise 10

on human health has been analyzed by several studies (Babisch, 11

2006; Babisch et al., 2013; Brink, 2011; Caciari et al., 2013; Fyhri 12

& Klaboe, 2009; Ising & Krupa, 2004; Muzet, 2007; Pirrera, De 13

Valck, & Cluydts, 2010), which pointed out the road-traffic-noise 14

not only as the most annoying noise source in urban environments 15

(Calixto, Diniz, & Zannin, 2003), but also as a concern for public 16
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health and environmental welfare (Kassomenos, Vogiatzis, & Bento17

Coelho, 2014). Furthermore, road-traffic-noise influences property18

prices in urban areas (Blanco & Flindell, 2011).19

An important aspect to be considered is the composition of the20

road-traffic. The appearance of heavy vehicles and powered two21

wheelers (motorbikes and mopeds) in traffic lead to higher noise22

levels and reported annoyance (Braun, Walsh, Homer, & Chuter,23

2013; Paviotti & Vogiatzis, 2012). Moreover, these road vehicles24

have been found as the most prevalent noticed-sound-events (NSE)25

in urban environments (Torija, Ruiz, Alba-Fernandez, & Ramos-26

Ridao, 2012). Under the assumption that sound has to be notice-27

able in order for it to contribute to an overall impression of annoy-28

ance, the NSE is a crucial factor to be considered for the evaluation29

of road-traffic-noise annoyance (De Coensel et al., 2009). Therefore,30

a tool for the identification of NSE might be used for the elabora-31

tion of action plans against environmental noise in urban environ-32

ments.33

Due to the good correlations found between noise levels and34

traffic intensity, some authors have approached the estimation of35

traffic parameters from recorded sound levels (Can et al., 2011a;36

Torija & Ruiz, 2012). Thus, for instance, Torija and Ruiz (2012) de-37

veloped a series of classifiers to detect the urban scenarios where38

the percentage of heavy vehicles or motorcycles/mopeds is greater39

than a given threshold.40

1.2. Applications of machine learning in environmental noise41

modeling42

Machine learning algorithms have been widely applied to real-43

world environmental applications. As two of the most applied ma-44

chine learning methods, artificial neural network (ANN) and sup-45

port vector machine (SVM) are powerful algorithms for classifica-46

tion and regression problems. Thus, ANN- and SVM-based models47

have been developed in research fields such as, air pollution (Hájek48

& Olej, 2012), geology (Anifowose, Labadin, & Abdulraheem, 2015;49

Feng, Zhang, Zhang, & Wen, 2015), hydrology (Cho et al., 2014;50

Lafdani, Nia, & Ahmadi, 2013; Tan, Yan, Gao, & Yang, 2012; Xu &51

Liu, 2013), meteorology (Mercer, Dyer, & Zhang, 2013; Wu, Long, &52

Liu, 2015), renewable energy (Ekici, 2014; Gnana Sheela & Deepa,53

2013; Mena, Rodríguez, Castilla & Arahal, 2014; Yadav & Chandel,54

2014; Yadav, Malik, & Chandel, 2014; Yaïci & Entchev, 2014; Zheng55

& Qiao, 2013), or transportation (Jiang, Zhang, & Chen, 2014; Li et56

al., 2014; Ma, Tao, Wang, Yu, & Wang, 2015; Zhu, Cao, & Zhu, 2014).57

Regarding noise related applications, several authors have used

Q3

58

ANN algorithms to develop prediction models. Thus, Givargis and59

Karimi (2010) presented a multi-layer Perceptron (MLP) model60

which uses 5 input variables (hourly traffic flow, percentage of61

heavy vehicles, hourly mean traffic speed, gradient and angle of62

view) for the estimation of hourly A-weighted sound pressure level63

(LAeq, 1 h) in roads in Tehran at distances under 4 m from the near-64

side carriageway edge. In this work no significant difference was65

detected between the performance of the developed neural net-66

work and a calibrated version of the CORTN model (UK Calculation67

of Road Traffic Noise). Kumar, Nigam, and Kumar (2014) applied68

a multi-layer feed forward back propagation (BP) neural network,69

trained by Levenberg–Marquardt (L–M) algorithm, to develop an70

ANN model for predicting highway traffic noise. This model ac-71

curately estimated the 10 percentile exceeded sound level (LA10)72

and the LAeq descriptor by accounting the input parameters found73

as more relevant to Indian highway traffic conditions (traffic vol-74

ume, heavy vehicle percentage and average vehicle speed). Nedic75

et al. (2014) used 5 input variables (number of light motor ve-76

hicles, number of medium trucks, number of heavy trucks, num-77

ber of buses and the average traffic flow speed) for the develop-78

ment of an ANN model for LAeq prediction in Serbian roads, which79

outperformed some classical noise prediction models. In order to80

assess road-traffic-noise in urban environments, Cammarata, Cava- 81

lieri, and Fichera (1995), using data collected with typical features 82

of commercial, residential and industrial area, and with number of 83

cars, number of motorcycles, number of trucks, average height of 84

the buildings and width of the road as input variables, proposed 85

a two cascading level neural architecture, where at the first level 86

a learning vector quantification (LVQ) network filters the data dis- 87

carding all the wrong measurements, while at the second level the 88

BP algorithm predicts the sound pressure level (LAeq) in urban en- 89

vironments. Genaro et al. (2010) included 25 input variables, which 90

were found as the whole variable set used by all the traditional 91

noise prediction models evaluated. In this work, a MLP model was 92

implemented to predict LAeq descriptor using data samples from 93

the city of Granada (Spain). Also, a principal component analysis 94

(PCA) was used to simplify the model (up to 11 input variables). 95

This model outperformed the traditional noise prediction models. 96

Torija, Ruiz, and Ramos-Ridao (2012), using a set of variables for 97

the characterization of sound emission and propagation (20 in- 98

put variables) and 821 samples collected in urban environments 99

(Granada, Spain), developed an ANN model (trained by Levenberg– 100

Marquardt variant with Bayesian regulation back-propagation al- 101

gorithm) for the estimation of the LAeq descriptor, but also the 102

estimation of parameters related to the temporal structure and 103

spectral composition of urban sound environments (L31.5–125 Hz, 104

L160–1600 Hz, L2–10 kHz, TSLV and CF). Moreover, a reduction of the 105

input variables (up to 14) based on the analysis of the correla- 106

tion coefficients and the distribution of the test residuals were per- 107

formed. 108

Other applications of ANN in the acoustics field have been 109

related to classification issues. Sánchez-Pérez, Sánchez-Fernández, 110

Suárez-Guerra, and Carbajal-Hernández (2013) developed a model 111

for aircraft classification with an identification performance above 112

85%. This model was based on the take-off noise signal segmen- 113

tation (four segments) in time. Once extracted the different air- 114

craft noise patterns, by using Linear Predictive Coding (LPC), the 115

classification was addressed with the implementation of four par- 116

allel MLP (one for each segment). Moreover, a wrapper feature 117

selection method was used for reducing the computational cost. 118

Márquez-Molina, Sánchez-Fernández, Suárez-Guerra, and Sánchez- 119

Pérez (2014) developed an aircraft take-off noises classification 120

model. For the obtaining of the input variables, a feature extraction 121

process of aircraft take-off signals was conducted through a 1/24 122

octave analysis and Mel frequency cepstral coefficients (MFCC), and 123

the classification model was made by using two parallel feed for- 124

ward neural networks (FFNN), achieving a total effectiveness of 125

83%. Torija and Ruiz (2012) performed an analysis to identify the 126

1/3-octave bands most influential on road-traffic intensity. Based 127

on the gathered information, a series of MLP-based model were 128

developed for the estimation of the overall road-traffic intensity 129

and for the detection of conditions with percentage of heavy ve- 130

hicles or motorbikes/mopeds larger than the usual values. 131

Although SVM algorithms have not been as extensively used in 132

noise-related issues as ANN, some interesting applications could be 133

highlighted. Barkana and Uzkent (2011) presented two stages clas- 134

sification method for the automatic recognition of environmental 135

noises, where first, a feature extraction based on the pitch range 136

was conducted, and second, SVM and k-means algorithms as clas- 137

sification techniques were trained on the extracted features. SVM 138

classifier outperformed k-means by about 7%. Based on a previous 139

study (Torija, Ruiz, & Ramos-Ridao, 2013) on the differentiation 140

of urban soundscapes as a function of 14 acoustical descriptors 141

and 15 semantic differential scales, Torija, Ruiz, and Ramos-Ridao 142

(2014) implemented two techniques, SVM and SVM trained using 143

sequential minimal optimization algorithm (SMO), for the develop- 144

ment of a model for the classification of urban soundscapes (using 145

the same 14 acoustical descriptors as input variables). According to 146
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the results showed, SMO model (91.3% of instances correctly clas-147

sified) outperformed SVM. Finally, in Torija and Ruiz (2015) is pre-148

sented a comparative analysis of the performance of multiple lin-149

ear regression (MLR), MLP, SMO and Gaussian processes for regres-150

sion (GPR) algorithms in the estimation of LAeq in urban environ-151

ments. Also, the performance of two feature-selection techniques,152

correlation-based feature-subset selection (CFS) and wrapper for153

feature-subset selection (WFS), and the data reduction technique154

PCA is evaluated. The use of WFS along with either SMO or GPR155

provided the best LAeq estimation. On the other hand, approaches156

based on fuzzy logic have been widely used for developing expert157

systems for assessing noise pollution (Zaheeruddin, 2006, 2008).158

1.3. Objective and interest of this work159

Information and communications technologies (ITCs) are now160

available to local authorities for addressing an effective manage-161

ment of urban environments aimed at improving the quality of life162

of the population. Sensor platforms allow the continuous monitor-163

ing of urban noise via inexpensive and highly accurate devices.164

The objective of this paper is to exploit these data recorded165

by noise monitoring systems already available to city planners, to166

search for an automated procedure for the classification of urban167

locations according to their content in heavy vehicles and motor-168

bikes/mopeds, which can be extended to a more comprehensive169

expert system for selecting noise control actions. With this auto-170

mated classification, it can be suggested a whole procedure to en-171

vironmental impact assessment of urban noise, as is proposed in172

this paper.173

Given this objective, rules and decisions (knowledge base) are174

implemented in an automated procedure for classifying urban lo-175

cations based on their traffic composition using machine learning176

algorithms to induce knowledge to an expert system. As a result of177

this research, along with a set of environmental variables selected178

for the characterization of the urban location, the proposed proce-179

dure uses a number of noise recorded metrics as input variables.180

Thus, once integrated in an expert noise monitoring system, it will181

allow an automatic classification of urban locations on the basis182

of their traffic content. For this procedure, several possibilities are183

suggested and tested in this work, such as several different ma-184

chine learning classification algorithms or features selection tech-185

niques to select the most efficient ones and the selection of input186

variables.187

Unlike the previous approaches briefly summarised in the pre-188

ceding subsection, the developed classifier was aimed at classifying189

urban locations based on the content in heavy vehicles and motor-190

bikes/mopeds using a set of environment variables (temporal pe-191

riod, road conditions, speed, and geometry of the locations) along192

with energy-equivalent sound level and 1/3-octave bands sound193

levels as input variables. Thus, from data gathered by noise mon-194
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This paper is organized as follows. In Section 2 the method- 211

ology of this research is shown. In this section the fundamentals 212

of a set of machine learning algorithms models suggested for the 213

classification of urban locations according to their percentage of 214

heavy vehicles (HV) and motorbikes/mopeds (MM) in urban traffic 215

are described and adapted for the context of the problem issued 216

here. Four feature selection techniques are also implemented for 217

the development of the classification models. For the evaluation of 218

the classification performance of the developed models, two statis- 219

tic indicators were used, F-measure and Cohen’s Kappa, and their 220

practical implementation and interpretation is commented. Next, 221

in Section 3, the different algorithms and methods were evalu- 222

ated to suggest a final suggested procedure for classification. To 223

accomplish this, we use a wide noise database measured in the 224

city of Granada (Spain) previously tested in many studies. Thus, 225

in this section it is firstly tested the classification performance 226

of machine-learning algorithms based on the indicators defined 227

in the previous section. In a second stage different combinations 228

of classification algorithms and feature extraction techniques were 229

implemented and tested. Finally in this section several statistical 230

tests were used to evaluate the appearance of statistically signif- 231

icant differences among the developed models, based on the F- 232

measure and the Kappa statistics. Taking into account these re- 233

sults, in Section 4 is given a discussion on the results obtained 234

and it is suggested the ‘optimal’ structure (high accuracy and min- 235

imum computational/operational cost) for the developed classifi- 236

cation model, as well as the suggested set of input variables to 237

be used. From this discussion, a whole procedure is suggested for 238

environmental noise impact assessment to help urban planners in 239

this task. Finally some conclusions are driven in Section 5 to show 240

the potential uses of the outlined procedure. 241

2. Methodology 242

As an application of machine learning algorithms to environ- 243

mental modeling, in this paper a series of models were developed 244

for the classification of urban locations according to their percent- 245

age of heavy vehicles (HV) and motorbikes/mopeds (MM) in traf- 246

fic. These models were built on the basis of a series of recorded 247

sound parameters and environment variables for the characteriza- 248

tion of the temporal period and both the sound emission and prop- 249

agation (Torija et al., 2010). A hierarchical cluster analysis (HCA) 250

was conducted in order to group the urban locations considered 251

in classes as a function of the HV and MM intensity. For the de- 252

velopment of the classification models, four feature selection tech- 253

niques – CFS, Consistency-based subset evaluation (CSE), ReliefF at- 254

tribute evaluator (ReliefF), and minimum Redundancy Maximum 255

Relevance (mRMR) – and two classification algorithms – MPL and 256

SMO – were implemented. 257
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toring systems the developed classifier will identify urban sce-

arios with high number of loud events in traffic. Information on

umber and source of loud events is a helpful knowledge in order

o assess environmental noise impact and to define corrective mea-

ures. The number of loud events has been found to play an impor-

ant role in explaining road-traffic-noise annoyance (Bartels, Márki,
Müller, 2015; Guski, 1999), so that the classification model pre-

ented in this paper might be used for addressing more effective

ctions in order to reduce noise impact in urban environments.

With the suggested procedure, city-planners can effectively

now if a given location in a sensitive area (e.g. residential or hos-

ital area) can be classified as dominated by motorbikes, heavy

raffic, light traffic or several mixed traffic conditions. From this

lassification, they can adopt actions for timely and efficient con-

rolling noise pollution and urban traffic management (Uzkent,

arkana, & Yang, 2011).
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.1. Database

For the development of the classification models, a database of

08 instances was used. This database, which includes a series of

rban locations with road-traffic as dominant noise source, was

ollected in the city of Granada (Spain). In each location, sound-

evel recordings and data for the road-traffic, temporal and ge-

metrical characterization were taken at the same time. Table 1

hows the set of variables considered in this research. The time

nterval for the integration of the different sound parameters and
ther dynamic variables was 5 min, so that this research is framed 267

n short-term modeling. The sound measurements were made with 268

type-1 sound-level meter (2260 Observer model with sound ba- 269

ic analysis programme BZ7219), using a tripod and wind shield, 270

ollowing international reference procedures, with the microphone 271

ounted away from reflecting facades at a height of 4 m above 272

n of urban locations for environmental noise impact assessment
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Table 1

Set of variables used for the development of classification models.

Key Variable Type of variable Units

Input

variables

TD Type of day (working day,

Saturday or Sunday)

Discrete –

DP Day period (day, evening or

night)

Discrete –

AS Average speed Continuous –

GR Gradient Continuous %

NL Number of lanes (1 to 4) Discrete –

TP Type of pavement (porous

asphalt, smooth asphalt

or paved)

Discrete –

CS Condition surface (good,

neither good nor bad or

bad)

Discrete –

SG Street geometry (“U” type,

“L” type or free field)

Discrete –

SW Street width Continuous m

BH Buildings height Continuous m

RW Roadway width Continuous m

SRD Source–receptor distance Continuous m

Leq, 5 min Continuous dB

Lf, 5 min : f [31.5–10,000] Hz Continuous dB

Variables

used for

obtaining

target

categories

LV Light vehicles intensity Continuous veh/5-min

HV Heavy vehicles intensity Continuous veh/5-min

MM Motorbike/Mopeds

intensity

Continuous veh/5-min

the local ground level. From these measurements, the 5-min en-

ergy equivalent sound level (Leq, 5 min) and the 5-min integrated

1/3-octave band sound levels (Lf, 5 min) from 31.5 Hz to 10,000 Hz,

were calculated to be included in the input variables set.

2.2. Clustering of selected locations

A HCA was applied to the set of selected urban locations (508

instances). The clustering was made by the Ward method and the

squared Euclidean distance was the measurement unit. The input

variables were light vehicles (LV), heavy vehicles (HV) and motor-

cycles/mopeds (MM) intensities, so the clustering was performed

on the basis of the road-traffic characteristics. The determination

of the number of clusters was based on the L method (Salvador

& Chan, 2004), that finds the “knee” in a ‘number of clusters vs.

clustering evaluation metric’ graph.

2.3. Machine learning classification algorithms

2.3.1. Multi-layer perceptron

MLP is an ANN architecture widely used in classification prob-

lems. A MLP consist of three layers: the input layer (whose nodes

take input variables), the hidden layer (could have one or more

hidden layers) and the output layer. The hidden nodes compute its

output by:

Oj = h

(
n∑

i=1

w1
jixi − θ1

j

)
(1)

where O j is the output of jth node in the hidden layer; h(·) is

the transfer function from the input to the hidden layer; w1
ji

is the

weight between the ith node of the input layer and the jth node of

the hidden layer; θ1
j

is the bias value of the jth node in the hidden

layer.
Please cite this article as: A.J. Torija, D.P. Ruiz, Automated classificatio
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The outputs of the output layer are computed as follows:

k = g

(
l∑

j=1

w2
k jO j − θ2

k

)
(2)

here zk is the output of the kth node in the output layer; g(·) is

he transfer function from the hidden to the output layer; w2
k j

is

he weight between the jth node of the hidden layer and the k-h

ode of the output layer; θ2
k

is the bias value of the kth node in

he output layer (Feng et al., 2015). In this work, all the transfer

unctions were sigmoid.

Given a training set D = {xi, yi}N
i=1

, yi ∈ R, the training error is

inimized during the training process using the mean squared er-

or the output (z) calculated by the network and the real one (y)

s error function (E):

(w) = 1

N

N∑
k=1

(yk − zk)
2

(3)

here N is the number of data points. For the optimal derivation of

he weights for the MLP a BP algorithm was used, which updated

he weights iteratively to minimize the error function (Kang & Cho,

014). For a comprehensive description of MLP see Haykin (1999).

.3.2. Sequential minimal optimization for support vector machine

raining

SVM algorithms are based on the structural risk minimization

rinciple (Kang & Cho, 2014), which allow them to achieve supe-

ior generalization performance for classification problems (Burges,

998; Vapnik, 1995, 1998).

Let a set of N training datapoints D = {xi, yi}N
i=1

, where xi is

he ith input feature vector and yi ∈ {−1, 1} is the corresponding

utput class. The implementation of SVM searches the maximum

argin hyperplane wT ϕ(x) + b = 0 that separates the positive dat-

points from the negative datapoints. Formulating the problem as

primal optimization, the following minimization is sought:

1

2
wT w + C

∑
i

ξi (4)

ubject to

i(wTϕ(xi) + b) ≥ 1 − ξi,

i ≥ 0, i = 1, . . . , N,

here C is a penalty parameter that determines the trade-off be-

ween the training errors and the model complexity; ϕ is a non-

inear mapping from an input space into a feature space; and ξi

re the slack variables. This optimization problem is usually con-

erted to the dual form through the following quadratic program-

ing (QP) problem, which aims to maximize:

1

2

∑
i j

αiα jyiy jk(xi, x j) +
∑

i

αi (5)

ubject to

i

αiyi = 0,

≤ αi ≤ C, i = 1, . . . , N,

here αi are Lagrange multipliers and k(xi, x j) is a kernel func-

ion. The resulting decision function, after the dual QP problem is

olved, can be expressed as:

f (x) = wTϕ(x) + b =
N∑

i=1

∝iyik(xi, x) + b

=
∑

∝ y k(x , x) + b (6)
i∈SV

i i i

n of urban locations for environmental noise impact assessment
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This decision function is expressed by only training datapoints

ith only nonzero ∝i, which are called support vectors (SVs) (Feng

t al., 2015; Kang & Cho, 2014). A comprehensive description of

VM can be found in Burges (1998) and Vapnik (1995, 1998).

In order to improve the efficiency of QP, Platt (1998) proposed

MO. SMO is a simple algorithm that decomposes the overall QP

roblem into QP sub-problems similar to Osuna’s method. During

he solution of the SVM QP problem, at every step, SMO chooses

he Lagrange multipliers to jointly optimize, finds the optimal val-

es for these multipliers, and updates the SVM to reflect the new

ptimal values (see Platt, 1998 for further details).

In this work, three kernel functions were used:

Polynomial (PN):

(xi, xj) = (xi ∗ xj + 1)p with p = 2 in this work (7)

Radial basis function (RBF):

(xi, xj) = exp(γ ‖xi − xj‖2) (8)

Pearson VII kernel function (PuK):

(xi, xj) = 1/[1 + (2
√‖xi − xj‖2

√
2(1/ω) − 1/σ )

2

]ω (9)

here γ , σ and ω are kernel parameters in the SVM feature space

Anifowose et al., 2015).

.4. Feature extraction algorithms

For the selection of input variables two different approaches

ave been used, (i) subset evaluation (CFS and CSE), and (ii) at-

ribute evaluation (ReliefF and mRMR).

.4.1. Correlation-based feature-subset selection

CFS algorithm computes a metric based on the correlation be-

ween each feature and the output (relevancy) and on the corre-

ation among the features in the subset (redundancy). This metric,

hich evaluates the merit of a given subset of features, is calcu-

ated as follows:

S = krci√
k + k(k − 1)rii′

(10)

here k is the number of features in the subset S; rci is the average

orrelation between the features in S and the target class; and rii′
s the average correlation among the features in S (Hall & Smith,

997).

Best-first algorithm (BFS) (with backward, forward and bi-

irectional direction) (Dechter & Pearl, 1985) and Linear forward

election algorithm (LFS) (Guetlein, Frank, Hall, & Karwath, 2009),

hich is an extension of BFS, were used as search methods.

.4.2. Consistency-based subset evaluation

CFE evaluates the merit of a given feature subset on the basis

f the inconsistency criterion (consistency is interpreted as zero in-

onsistency). The inconsistency rate is computed as follows (Liu &

etiono, 1996):

(i) Two instances are considered inconsistent if they match ex-

cept for their class labels.

(ii) For all the matching instances (without considering their

class labels), the inconsistency count is the number of the

instances minus the largest number of instances among dif-

ferent class labels.

(iii) The inconsistency rate is the sum of all the inconsistency

counts divided by the total number of instances.

This criterion, along with BFS and LFS as search strategies, was

mplemented to find the smallest subset of features with consis-

ency equal to that of the full set of features.
Please cite this article as: A.J. Torija, D.P. Ruiz, Automated classificatio
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.4.3. Relief F attribute selection

ReliefF (Kononenko, 1994) is a feature selection strategy that

hooses instances randomly, and changes the weights of the fea-

ure relevance based on the nearest neighbor. Thus, for a given at-

ribute, ReliefF considers the value for the nearest instance of the

ame and different class. This algorithm estimates the ability of at-

ributes to separate each pair of classes regardless of which two

lasses are closest to each other.

In this work, this feature selection strategy is implemented with

number of nearest neighbours to be considered for the attribute

stimation equal to 10, 15 and 20. For each of the three conditions,

his method was implemented with and without weighting nearest

eighbours by their distance.

.4.4. Minimum redundancy maximum relevance attribute selection

mRMR (Ding & Peng, 2005) is a feature selection strategy that

eeks the selection of attributes under two assumptions, minimum

edundancy (minRed) and maximum relevance (MaxRel). Mini-

um redundancy implies the selection of attributes that are mutu-

lly maximally dissimilar, so that the extracted feature subset gives

better representation of the entire dataset. The minRed condition

an be expressed as follows:

inWI, WI = 1

|S|2

∑
i, j∈S

I(i, j), (11)

here I(i, j) represents the mutual information of two features;

nd |S| is the number of features. The level of discrimination be-

ween classes is measured by the relevance. The MaxRel condition

s to maximize the total relevance of all classes in S:

axVI, VI = 1

|S|
∑
i, j∈S

I(h, i), (12)

here h is the targeted class. Both conditions are combined in or-

er to optimize a single criterion function.

Mutual information difference criterion (MID):

ax(VI − WI) (13)

Mutual information quotient criterion (MIQ):

ax(VI, /WI) (14)

In this work, the subsets of features derived from MaxRel, MID

nd MIQ criteria were evaluated.

It should be noted that neither ReliefF nor mRMR strategies

ead to a selection of a feature subset (with a given number of fea-

ures), but they rank attributes according to a given metric. For this

eason, the number of features to be selected using these strategies

as fixed to the number of features selected by CFS and CSE tech-

iques. Table 2 summarizes all the feature extraction algorithms

mplemented in each machine-learning classification technique.

.5. Model evaluation

For the evaluation of the classification performance of the mod-

ls developed, two statistic indicators were used, F-measure and

ohen’s Kappa. The F-measure provides a way of combining recall

nd prediction to get a single measure which falls between recall

nd precision. Thus, the F-measure is calculated as the harmonic

ean of precision and recall and tends towards the lower of the

wo (Chinchor, 1992):

− measure = 2 · Precision · Recall

Precision + Recall
(1′)

Note that precision can be expressed as the ratio between the

rue positives (TP) and all the cases classified as positive, and recall

epresents the ratio between the TP and all the positive cases.
n of urban locations for environmental noise impact assessment
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Fig. 1. Ratio difference between inter-clusters distance in the hierarchical cluster analys

variables.
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Description of the feature extraction algorithms implemented.

Feature

extraction

algorithm

Parameters Key

CFS Best-first with backward search direction CFS_Bw

CFS Best-first with forward search direction CFS_Fw

CFS Best-first with bi-directional search direction CFS_Bi

CFS Linear forward selection algorithm CFS_LFS

CFE Best-first with backward search direction CFE_Bw

CFE Best-first with forward search direction CFE_Fw

CFE Best-first with bi-directional search direction CFE_Bi

CFE Linear forward selection algorithm CFE_LFS

ReliefF 10 nearest neighbors ReliefF_k10

ReliefF 10 nearest neighbours. Nearest neighbors

weighted by distance. ReliefF_k10w

ReliefF 15 nearest neighbors ReliefF_k15

ReliefF 15 nearest neighbors. Nearest neighbours

weighted by distance. ReliefF_k15w

ReliefF 20 nearest neighbors ReliefF_k20

ReliefF 20 nearest neighbors. Nearest neighbors

weighted by distance. ReliefF_k20w

mRMR Maximum relevance criterion

mRMR_MaxR

mRMR Mutual information difference criterion mRMR_MID

mRMR Mutual information quotient criterion mRMR_MIQ

The kappa statistic is directly interpretable as the proportion of

agreement after chance agreement is excluded, and it is calculated

as follows (Cohen, 1960):

kappa = P0 − Pe

1 − Pe
(2′)

where P0 is the observed proportion of agreement and Pe is the

proportion of agreement expected by chance.

In the development of the classification models, a training-

validation process was executed to minimize the estimation error

in the training subsets and to maximize the generalization abil-

ity (in the test subsets). In order to avoid overfitting, the parame-
Please cite this article as: A.J. Torija, D.P. Ruiz, Automated classificatio
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is performed with light vehicles, heavy vehicles and motorbikes/mopeds as input

able 3

verall and road-traffic intensity for each considered type of road vehicle. Moreover,

he average LAeq value (integration time = 5 min) for each as measured for each

luster is shown.

Overall

road-traffic

intensity

(veh/5-min)

LV HV MM LAeq, 5 min Category

27.79 22.29 (80.21) 0.32 (1.16) 5.18 (18.64) 65.62 1

75.34 61.72 (81.92) 1.87 (2.48) 11.76 (15.60) 68.49 2

200.30 160.68 (80.22) 3.73 (1.86) 35.89 (17.92) 71.81 3

88.66 34.69 (39.13) 11.77 (13.27) 42.20 (47.60) 74.74 4

In brackets it is shown the percentage of LV, HV and MM vehicles relative to the

verall intensity.

ers related to the complexity of MLP (number of neurons in the

idden layer, learning rate, momentum) and SMO (C parameter)

lgorithms were carefully selected. Furthermore, the training pro-

ess was carried out by using a 10-fold cross-validation standard

cheme, where 10 training and 10 validation subsets were built.

n each subset, 90% of samples were used in the training phase

nd the 10% of samples were used for validation. The values of the

-measure and kappa indicators were calculated as the arithmetic

ean of the 10 validation subsets.

. Results

.1. Number of categories based on road-traffic content

Based on the results of the HCA, 4 categories have been iden-

ified according to the percentage of HV and MM in the evaluated

rban locations. In Fig. 1, it is seen that in the step 503 there is

sudden increment in the value of the ratio-difference between

he inter-cluster distance, which indicates that 4 categories can be

etermined. In Table 3, the value of road-traffic intensities and

he corresponding percentage can be observed. Also, as seen in

able 3, no matter the overall road-traffic intensity, the increase
n of urban locations for environmental noise impact assessment
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ig. 2. Value of the F-measure indicator (weighted average and for categories 1, 2,

hole set of input variables.

n the LAeq, 5 min is driven by the increment of the HV and MM

ontent.

.2. Classification performance of machine-learning algorithms

valuated

Fig. 2 shows the performance (F-measure and Kappa statistics)

f each machine-learning algorithm implemented (MLP, SMO_PN,

MO_RBF and SMO_PuK) in classifying the considered urban loca-

ions into the 4 categories observed. As seen in Fig. 2, using the

easured spectra (Lf, 5 min) as input variables, values of average

eighted F-measure and Kappa statistics ranging from 0.76–0.81

nd 0.64–0.72 are obtained. The algorithms with the best perfor-

ance are SMO_RBF and SMO_PuK, while MLP achieves the lowest

lassification values.

On the other hand, with the inclusion of the environment vari-

bles mentioned in Table 1 (temporal period, road surface, loca-

ions’ geometry, circulation speed and gradient) the average value

f the F-measure indicator increases between 8% (SMO_RBF) and

5% (SMO_PN). The average value of the Kappa indicator grows be-

ween 14% (SMO_RBF and SMO_PuK) and 25% (MLP and SMO_PN).

.3. Evaluation of the feature extraction algorithms implemented for

lassification

In Table 4, the set of input variables selected by each feature

election algorithm is presented. The input variables are ordered

y the value of the merit function in each feature selection tech-

ique. CFS algorithm selected the same subset of 13 input vari-

bles, with the 4 search methods considered. Regarding CFE al-

orithm, with Backward and Forward direction search methods 13

nput variables were selected, while Bi-directional and LFS search

ethods selected subsets composed of 12 and 11 input variables,
Please cite this article as: A.J. Torija, D.P. Ruiz, Automated classificatio
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4) and Kappa statistics for each machine-learning classification algorithm with the

espectively. It should be noted that, for attribute evaluation algo-

ithms (ReliefF and mRMR) a number of 13 input variables to be

elected was fixed in order to ensure comparability among feature

election techniques.

Fig. 3 indicates that SMO algorithms outperformed MLP in clas-

ifying urban locations, regardless the feature selection technique

mplemented. On average, the feature selection techniques with

he best performance are ReliefF_k10, ReliefF_k15, ReliefF_k20 and

RMR_MIQ. The highest values for both F-measure and Kappa

tatistics are achieved by SMO_PN with ReliefF_k10, ReliefF_k15,

eliefF_k20 as feature selection techniques. Moreover, as observed

n Fig. 3, the reduction of input variables from the initial set of

0 to subsets of 11, 12 and 13 variables achieves by the feature

election algorithms implemented does not lead to a decrease in

he classification performance. Thus, with the subset of input vari-

bles selected by the used feature selection techniques, the classi-

cation algorithms obtain values of F-measure and Kappa indica-

ors in the same order of magnitude as with the total set of input

ariables, with the sole exception of CFE_Bw. Although there is not

clear tendency, it seems that attribute evaluation algorithms al-

ows better classification performance. Table 5 shows the value of

-measure obtained by each classification algorithm with each cat-

gory.

.4. Statistical tests

A series of Mann–Whitney U tests were conducted to evalu-

te the appearance of statistically significant differences among the

eveloped models, based on the F-measure (weighted average and

ategories 1, 2, 3 and 4), and the Kappa statistics. These statisti-

al tests were performed to assess statistically significant differ-

nces (p ≤ 0.05) among classification algorithms (Figs. 4 and 5),

nd among feature selection algorithms (Figs. 6 and 7). It should
n of urban locations for environmental noise impact assessment
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Fig. 3. Value of the weighted average F-measure indicator and Kappa statistics fo

be noted that the models were ordered on the basis of their me-

dian value.

As shown in Fig. 4 (F-measure) and Fig. 5 (Kappa statis-

tics), SMO classification models significantly outperformed MLP

models. In Figs. 6 and 7, it is observed that the feature

algorithms with the best performance are ReliefF_k15, Reli-

efF_k20, mRMR_MIQ and ReliefF_k10. As for F-measure (Fig. 6),

CFE_Bw algorithm statistically obtains the worst values, while
Please cite this article as: A.J. Torija, D.P. Ruiz, Automated classificatio

on the basis of road-traffic content, Expert Systems With Applications
machine-learning classification algorithm and each feature selection technique.

RMR_MIQ and ReliefF_k10 algorithms achieves similar val-

es, and significantly outperformed CFE_Bw, mRMR_MaxRel and

FS algorithms. Regarding Kappa statistics (Fig. 7), mRMR_MIQ

lgorithm significantly improves CFE_Bw, mRMR_MaxRel, Reli-

fF_k10w, ReliefF_k15w and ReliefF_k20w, while ReliefF_k10 sig-

ificantly outperformed all the feature selection algorithms,

ith the exception of CFE_Bi, ReliefF_k15, ReliefF_k20 and

RMR_MIQ.
n of urban locations for environmental noise impact assessment
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Fig. 4. Results of the Mann–Whitney U test for classification algorithms (F-

measure). 1 = statistically significant difference and 0 = not statistically significant

difference. (p ≤ 0.05).

4. Discussion541

The results obtained in this work, demonstrate that SMO mod-542

els outperform MLP model in classifying the set of urban loca-543

tions sampled into the corresponding category, which is based544

on the composition in HV and MM. Similar findings have been545

reached by several authors (Kang & Cho, 2014; Tan et al., 2012;546

Torija & Ruiz, 2015; Zeng & Qiao, 2013), pointing out SVM as547

Fig. 5. Results of the Mann–Whitney U test for classification algorithms (Kappa

statistics). 1 = statistically significant difference and 0 = not statistically significant

difference. (p ≤ 0.05).

the machine-learning method with the highest classification per- 548

formance. SVM algorithm is based on structure risk minimization 549

principle whereas ANN is based on empirical risk minimization 550

principle. Thus, while SVM seeks to minimize the upper bound of 551

a generalization error, ANN aims to minimize false classification er- 552

ror. Due to this principle, SVM is able to fix the overfitting problem 553

F ure). 1

(

F pa sta

d

ig. 6. Results of the Mann–Whitney U test for feature selection algorithms (F-meas

p ≤ 0.05).

ig. 7. Results of the Mann–Whitney U test for feature selection algorithms (Kap

ifference. (p ≤ 0.05).
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= statistically significant difference and 0 = not statistically significant difference.

tistics). 1 = statistically significant difference and 0 = not statistically significant
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Table 4

Attributes selected by each feature selection algorithm implemented.

CFS_ CFS_ CFS_ CFS_ CFE_ CFE_ CFE_ CFE_ ReliefF_ ReliefF_k ReliefF_ ReliefF_k ReliefF_ ReliefF_k mRMR_Ma mRMR_ mRMR_

Bw Fw Bi LFS Bw Fw Bi LFS k10 10w k15 15w k20 20w xRel MID MIQ

AS AS AS AS SRD AS AS GR NL NL NL NL NL NL NL NL DP

NL NL NL NL L40 Hz, 5 min RW RW RW RW AS RW AS RW AS RW TP GR

SW SW SW SW L63 Hz, 5 min Leq, 5 min Leq, 5 min Leq, 5 min AS CS SW CS SW CS Leq, 5 min RW NL

RW RW RW RW L160 Hz, 5 min L40 Hz, 5 min L40 Hz, 5 min L40 Hz, 5 min SW SG SRD SG SRD SG L80 Hz, 5 min SRD TP

SRD SRD SRD SRD L200 Hz, 5 min L50 Hz, 5 min L50 Hz, 5 min L125 Hz, 5 min SG BH SG BH SG BH L100 Hz, 5 min Leq, 5 min SW

Leq, 5 min Leq, 5 min Leq, 5 min Leq, 5 min L250 Hz, 5 min L125 Hz, 5 min L125 Hz, 5 min L160 Hz, 5 min BH RW AS RW AS RW L125 Hz, 5 min L31.5 Hz, 5 min RW

L31.5 Hz, 5 min L31.5 Hz, 5 min L31.5 Hz, 5 min L31.5 Hz, 5 min L1.25 kHz, 5 min L160 Hz, 5 min L160 Hz, 5 min L250 Hz, 5 min SRD DP BH DP CS DP L160 Hz, 5 min L40 Hz, 5 min Leq, 5 min

L63 Hz, 5 min L63 Hz, 5 min L63 Hz, 5 min L63 Hz, 5 min L2kHz, 5min L250 Hz, 5 min L250 Hz, 5 min L500 Hz, 5 min CS SW CS SW BH SW L200 Hz, 5 min L63 Hz, 5 min L31.5 Hz, 5 min

L80 Hz, 5 min L80 Hz, 5 min L80 Hz, 5 min L80 Hz, 5 min L3.15 kHz, 5 min L315 Hz, 5 min L800 Hz, 5 min L1.6 kHz, 5 min TP SRD TP SRD TP SRD L250 Hz, 5 min L80 Hz, 5 min L40 Hz, 5 min

L125 Hz, 5 min L125 Hz, 5 min L125 Hz, 5 min L125 Hz, 5 min L5 kHz, 5 min L800 Hz, 5 min L2.5 kHz, 5 min L2.5 kHz, 5 min DP TP DP TP L315 Hz, 5 min TP L315 Hz, 5 min L125 Hz, 5 min L80 Hz, 5 min

L200 Hz, 5 min L200 Hz, 5 min L200 Hz, 5 min L200 Hz, 5 min L6.3 kHz, 5 min L2.5 kHz, 5 min L4 kHz, 5 min L10 kHz, 5 min GR GR L315 Hz, 5 min GR Leq, 5 min GR L400 Hz, 5 min L200 Hz, 5 min L125 Hz, 5 min

L250 Hz, 5 min L250 Hz, 5 min L250 Hz, 5 min L250 Hz, 5 min L8 kHz, 5 min L4 kHz, 5 min L10 kHz, 5 min - Leq, 5 min L31.5 Hz, 5 min Leq, 5 min L31.5 Hz, 5 min L200 Hz, 5 min L31.5 Hz, 5 min L500 Hz, 5 min L250 Hz, 5 min L200 Hz, 5 min

L315 Hz, 5 min L315 Hz, 5 min L315 Hz, 5 min L315 Hz, 5 min L10 kHz, 5 min L10 kHz, 5 min - - L315 Hz, 5 min L63 Hz, 5 min L200 Hz, 5 min L63 Hz, 5 min DP L63 Hz, 5 min L630 Hz, 5 min L400 Hz, 5 min L400 Hz, 5 min

Table 5

Classification performance (F-measure) of each machine-learning algorithm implemented for categories 1, 2, 3 and 4.

Category 1 Category 2 Category 3 Category 4

MLP SMO_PN SMO_RBF SMO_PuK MLP SMO_PN SMO_RBF SMO_PuK MLP SMO_PN SMO_RBF SMO_PuK MLP SMO_PN SMO_RBF SMO_PuK

CFS_Bw 0.89 0.90 0.89 0.90 0.76 0.78 0.78 0.80 0.81 0.86 0.94 0.92 0.85 0.87 0.87 0.87

CFS_Fw 0.89 0.90 0.89 0.90 0.76 0.78 0.78 0.80 0.81 0.86 0.94 0.92 0.85 0.87 0.87 0.87

CFS_Bi 0.89 0.90 0.89 0.90 0.76 0.78 0.78 0.80 0.81 0.86 0.94 0.92 0.85 0.87 0.87 0.87

CFS_LFS 0.89 0.90 0.89 0.90 0.76 0.78 0.78 0.80 0.81 0.86 0.94 0.92 0.85 0.87 0.87 0.87

CFE_Bw 0.86 0.87 0.88 0.85 0.66 0.68 0.76 0.73 0.73 0.74 0.89 0.89 0.80 0.75 0.85 0.86

CFE_Fw 0.89 0.88 0.87 0.89 0.75 0.76 0.76 0.79 0.88 0.92 0.92 0.94 0.84 0.89 0.89 0.89

CFE_Bi 0.87 0.88 0.89 0.89 0.73 0.76 0.77 0.79 0.88 0.90 0.92 0.94 0.84 0.89 0.89 0.89

CFE_LFS 0.88 0.90 0.89 0.90 0.76 0.77 0.78 0.79 0.90 0.89 0.91 0.92 0.89 0.89 0.87 0.89

ReliefF_k10 0.90 0.91 0.90 0.90 0.79 0.83 0.81 0.82 0.91 0.93 0.94 0.94 0.88 0.92 0.90 0.91

ReliefF_k10w 0.88 0.87 0.88 0.87 0.76 0.78 0.79 0.77 0.89 0.93 0.95 0.95 0.85 0.87 0.90 0.89

ReliefF_k15 0.89 0.92 0.89 0.87 0.79 0.83 0.80 0.77 0.88 0.92 0.95 0.95 0.86 0.90 0.89 0.89
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ReliefF_k20w 0.88 0.87 0.88 0.89 0.76 0.78 0.79 0.80 0.89 0.93 0.95 0.94 0.85 0.87 0.90 0.88

mRMR_MaxRel 0.86 0.87 0.87 0.90 0.75 0.74 0.76 0.79 0.83 0.87 0.90 0.89 0.82 0.88 0.89 0.86

mRMR_MID 0.89 0.89 0.90 0.89 0.76 0.78 0.79 0.78 0.88 0.93 0.93 0.93 0.84 0.90 0.88 0.88

mRMR_MIQ 0.90 0.89 0.89 0.89 0.80 0.79 0.80 0.81 0.91 0.91 0.93 0.92 0.90 0.92 0.94 0.95
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inherent in ANN algorithms, and thus, achieves better classification554

performance (Hur & Lim, 2005).555

Regarding the feature selection techniques considered in this556

work, under similar conditions in reducing the model complexity557

(11–13 input variables selected), it could be stated that attribute558

evaluation algorithms (ReliefF and mRMR) achieve better classifi-559

cation results than subset evaluation algorithms (CFS and CFE). The560

merit function of ReliefF and mRMR ensures a better search across561

the whole search space, selecting the most influential attributes in562

discriminating among categories and reducing redundancy. Thus,563

ReliefF_k10 and mRMR_MIQ allow the best classification results,564

on the basis of the two statistical indicators used (F-measure and565

Kappa statistics). The subsets of input variables selected by these566

two techniques are different. ReliefF_k10 selected all the environ-567

m568
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617

other than road-traffic-noise. The presence of loud non road- 618

traffic-noise sources could lead to misleading results in the 619

classification process. However, this seems not to be an issue 620

in urban agglomerations due to the significant dominance of 621

road-traffic-noise in urban sound environment. On the other 622

hand, the classifier presented in this paper has been trained 623

and tested for a typical medium-sized Mediterranean city. 624

The application of this classification model to other type of 625

urban agglomeration would require the update (re-train) of 626

the algorithm in order to make it able to learn new urban 627

configurations and/or road-traffic conditions. 628

(b) The model presented in this paper classifies with high accu- 629

racy urban locations based on the road-traffic content. In the 630

relevant literature, there can be found several environmental 631

noise models (Genaro et al., 2010; Givargis & Karimi, 2010 632

Cammarata et al., 1995; Kumar, Nigam & Kumar, 2014; Nedic 633

634

635

636

637

638
ent variables included in Table 1 (with the sole exception of TD),

nd Leq, 5 min and L315 Hz, 5 min. As for mRMR_MIQ, besides selecting

temporal-, road-, and geometrical-related variables, Leq, 5 min and

ther 6 low-frequency-bands sound level descriptors are chosen.

owever, in both cases, environmental variables have the highest

alues in the merit function. These results, along with the out-

omes shown in Fig. 2, point out the set of environment variables
onsidered in this work as highly influential on classifying urban

ocations as to HV and MM traffic content. In any case, the use

f a combination of environmental variables (Table 1) along with

eq, 5 min and low-frequency-bands sound level descriptors as input

ariables in SMO-based models achieves high performance in clas-

ifying urban locations according to the percentage of HV and MM

n circulation.

Taking in mind the above considerations, we can suggest a

hole procedure for aiding the process decision-making for envi-

onmental noise impact assessment:

(i) Use of a sensor platform for continuous noise monitoring.

Information on the acoustical descriptors identified in this

paper should be gathered for each urban location. An anal-

ysis of the urban agglomeration should be performed in or-

der to assess the necessity of extending the noise monitor-

ing system to new urban locations.

(ii) Characterization of the urban location using the set of en-

vironment variables selected in this paper (environmental

variables (Table 1) along with Leq and low-frequency-bands

sound level descriptors)

(iii) Using information from (i) and (ii), the developed model

classifies the urban location in one of the four categories

found in this paper. We suggest applying SMO-based models

described in this paper to obtain an accurate classification.

(iv) Detection of road-traffic-noise related problems. First, the

dominant land use in the considered urban location should

be identified, i.e. residential, health and education, commer-

cial/leisure or industrial. In Table 6 it is showed the decision

matrix on the basis of the dominant land use and the urban

location category.

(v) Corrective measures. Table 7 shows a set of proposed cor-

rective measures (Torija et al., 2012) for each urban location

category. Although some corrective measures are suggested,

a thorough analysis would be required in order to establish

the most appropriate corrective measure for each problem

detected.

Finally, we should take into account two practical considera-

ions regarding this research and the applicability of the obtained

esults:

(a) For addressing the classification of urban locations based on

road-traffic content, the model developed in this paper uses

acoustical descriptors as input data. For this reason, the sug-

gested classifier requires the absent of loud noise sources
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et al., 2014; Torija & Ruiz, 2015; Torija et al., 2012) which are

aimed at estimating the sound-pressure-level from a num-

ber of input variables (mostly related to road-traffic). In this

work, the approach is different, and from a set of environ-

ment variables (for the characterization of the urban loca-
tion) and a number of acoustical descriptors (Leq, 5 min and 639

low-frequency-bands sound level) a given urban location is 640

classified in a category based on the road-traffic content. 641

This approach allows the user to gather information about 642

the dominant noise source, but also about the number of 643

loud events (HV and/or MM) which has been pointed out 644

as a key factor in explaining road-traffic-noise annoyance 645

(Bartels et al., 2015; Guski, 1999). 646

. Conclusions 647

This paper examines the use of machine learning methods to 648

nduce knowledge in expert noise monitoring systems to obtain 649

reliable classification of urban areas on the basis of their traffic 650

ontent. In this context, it proposes several machine learning algo- 651

ithms and features selection methods adapted to this problem to 652

est their behavior and so suggesting the best alternatives to use it. 653

e have shown the viability of this concept since the application 654

f this classifier can offer valuable information to establish mea- 655

ures against road-traffic-noise. 656

In environmental applications, it is of great interest to design 657

n expert system aimed to help urban planners to classify urban 658

ocations based on their traffic composition and consequently con- 659

rolling noise pollution. The circulation of heavy vehicles and mo- 660

orbikes/moped causes an important negative impact on the sur- 661

ounding environment and on the exposed population (Table 3). 662

n light of the results obtained in this research, the application 663

f machine-learning algorithms achieves high performance in the 664

lassification of urban locations into the 4 identified categories on 665

he basis of their content in heavy vehicles and motorbikes/moped. 666

n reference to the best classification algorithms for this problem, 667

lthough MLP-based models provide good classification results, 668

hey were significantly outperformed by the SMO-based classifica- 669

ion models (p ≤ 0.05). Moreover, with the same number of input 670

ariables selected, attribute evaluation algorithms obtained bet- 671

er classification performances than subset evaluation algorithms. 672

hus, the subsets of input variables selected by two ReliefF and 673

RMR feature selection algorithms (ReliefF_k10 and mRMR_MIQ) 674

each the highest classification performances (weighted average F- 675

easure around 0.88–0.89, and Kappa statistics around 0.82–0.83). 676

In addition, the set of environment variables considered in this 677

ork has been identified as a key factor in the classification of ur- 678

an location according to traffic content. Along with these envi- 679

onment variables, the low-frequency sound levels and the Leq de- 680

criptor are found as influential variables to be considered in this 681

n of urban locations for environmental noise impact assessment

(2016), http://dx.doi.org/10.1016/j.eswa.2016.01.011
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Table 6

Decision matrix for action against road-traffic-noise.

Land use Category 1 Category 2 Category 3 Category 4

Residential Corrective measures only with

complaints from the population

Corrective measures only with

complaints from the population

Corrective measures Corrective measures

Health and Education Corrective measures only with

complaints from the public

Corrective measures Corrective measures Corrective measures

Commercial/Leisure No action Corrective measures only with

complaints from the public

Corrective measures only with

complaints from the public

Corrective measures

Industrial No action No action Corrective measures only if legal

standards exceeded

Corrective measures only if

legal standards exceeded

Table 7

Set of corrective measures suggested for each urban location category based on

road-traffic content.

Urban location

category

Corrective measures

1 - Development of urban mobility plans.

- Pedestrianization of urban locations.

- Promoting non-motorized mobility.

2 - Development of urban mobility plans.

- Pedestrianization of urban locations.

- Promoting non-motorized mobility.

- Encourage public transport use.

3 - Fostering the replacement of light vehicles by

hybrid/electric cars.

- Promoting non-motorized mobility.

- Development of urban mobility plans.

- Encourage public transport use.

- Setting more restrictive speed limits.

4 - Development of urban mobility plans.

- Encourage public transport use.

- Promoting the replacement of urban buses fleet by

hybrid/electric vehicles.

- Prohibition or restriction of traffic of heavy vehicles.

- Design and planning of new routes for heavy vehicles.

- Inclusion of a thorough inspection of acoustic emission

within the regular technical inspections programs for

motorised vehicles.

- Identification (and banning if considered) of motorized

vehicles which exceed established acoustic emission

limits.

- Minimization of slopes in urban roads.

classification problem. Therefore, in terms of the applicability of682

the presented classification models, there is a need, not only for683

a description of the sound environment, but also an appropriate684

characterization of the environment (temporal period, road condi-685

tions, speed, and geometry of the locations). With the use of such686

input variables higher performance in the classification based on687

traffic content is achieved.688

Since the obtained classification results are promising, this689

work suggests a whole procedure in the discussion section to help690

urban planners to face this problem. Based on the content in heavy691

vehicles and motorbikes and the other environmental input vari-692

ables, the implementation of the model developed in this research693

allows an accurate automatic classification of the urban locations.694

In a second stage, the information provided by the implementa-695

tion of the developed classifier can be used to establish actions to696

address road-traffic-noise-related problems in urban environments,697

and thus, reduce both the exposure sound levels and the reported698

people annoyance.699
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