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a b s t r a c t 

The detection of very similar patterns in a time series, commonly called motifs, has received contin- 

uous and increasing attention from diverse scientific communities. In particular, recent approaches 

for discovering similar motifs of different lengths have been proposed. In this work, we show that 

such variable-length similarity-based motifs cannot be directly compared, and hence ranked, by their 

normalized dissimilarities. Specifically, we find that length-normalized motif dissimilarities still have 

intrinsic dependencies on the motif length, and that lowest dissimilarities are particularly affected by 

this dependency. Moreover, we find that such dependencies are generally non-linear and change with the 

considered data set and dissimilarity measure. Based on these findings, we propose a solution to rank 

(previously obtained) motifs of different lengths and measure their significance. This solution relies on a 

compact but accurate model of the dissimilarity space, using a beta distribution with three parameters 

that depend on the motif length in a non-linear way. We believe the incomparability of variable-length 

dissimilarities could have an impact beyond the field of time series, and that similar modeling strategies 

as the one used here could be of help in a more broad context and in diverse application scenarios. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

With the generalized use of smartphones and the increasing 

adoption of wearable devices, the information sources available for 

decision support systems and expert systems has changed dras- 

tically. In particular, the application of such information sources 

to healthcare ( Dolgin, 2014; Menshawya, Benharrefb, & Serhani, 

2015 ) or living assistance to elder people ( Chernbumroong, Cang, 

Atkins, & Yu, 2013 ) is becoming a fertile research area. One of the 

primary data types generated by the aforementioned devices are 

time series, and one of the first challenges to effectively process 

the huge amount of information they provide is the detection of 

repetitive patterns, commonly called motifs. Because expert sys- 

tems have to deal with a diversity of activities to be monitored 

(e.g., the different living activities considered by Chernbumroong 

et al. (2013) or the detection of a variety of time-spanning events 

( Guralnik & Srivastana, 1999 )), they have to consider and compare 
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repeated patterns or motifs of different lengths. In this article, we 

uncover some problems that arise when comparing motifs of dif- 

ferent lengths and propose a principled methodology to do so. 

In the literature, two formal definitions of a time series mo- 

tif coexist. The first one is based on the notion of frequency ( Lin, 

Keogh, Lonardi, & Patel, 2002 ): a pattern is interesting if it has 

a significant amount of repetitions. The second one is based on 

the notion of similarity ( Mueen, Keogh, Zhu, Cash, & Westover, 

2009 ): a pattern is interesting if its occurrences are identical or 

too similar to happen at random. Both definitions are complemen- 

tary, as a strikingly similar pattern does not necessarily need to be 

frequent, nor a frequent pattern does necessarily need to include 

extremely similar ones. Hence, algorithms exploiting both notions 

independently have received continuous and increasing attention 

( Bankó & Abonyi, 2015; Chiu, Keogh, & Lonardi, 2003; Mueen, 

2013; Mueen et al., 2009; Tanaka, Iwamoto, & Uehara, 2005; Tang 

& Liao, 2008; Yingchareonthawornchai, Sivaraks, Rakthanmanon, 

& Ratanamahatana, 2013 ). Notice, however, that a notion of fre- 

quency necessarily implies a notion of similarity and vice versa, 

although these relationships may not be explicit nor straightfor- 

ward to devise. 

Under a frequency-based definition, the ranking of the motifs 

found in a time series is trivial. The most important motif is the 
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one with the highest count, the second most important motif is 

the one with the second highest count, and so on. Moreover, we 

can assess the statistical significance of frequency-based motifs by 

comparing observed and expected counts under a null model re- 

flecting some basic characteristics of the time series. This has been 

exploited by Castro and Azevedo (2011) , who leverage work from 

the bioinformatics community to derive a motif’s significance. 

Using a similarity-based definition, motif ranking also looks 

straightforward. Given a single (usually pre-specified) motif length, 

the most important motif pair is the one with the lowest dissim- 

ilarity, the second most important pair is the one with the sec- 

ond lowest dissimilarity, and so on (equivalently for highest sim- 

ilarity). However, if we have motif pairs of different lengths, we 

cannot directly compare dissimilarities or distances, as these typi- 

cally depend on the length of the given segments. In these cases, 

researchers rely on two different strategies. On the one hand, there 

is the option to compute a ranking for every motif length of inter- 

est, possibly removing covering motifs (e.g., Mueen, 2013 ). Conse- 

quently, we have as many orderings as lengths being considered, 

and the choice for the most important motif depends on the user. 

On the other hand, there is the possibility to normalize the dis- 

similarity measure by the length of the motif, or to use a mea- 

sure that already incorporates some notion of normalization 

1 (e.g., 

Yingchareonthawornchai et al., 2013) . For instance, one can divide 

the Euclidean distance by the square root of the length, or con- 

sider the Pearson’s correlation measure. In terms of motif signifi- 

cance, similarity-based approaches are much less developed than 

frequency-based ones. In fact, to the best of our knowledge, this 

topic has not been considered yet. 

In this work, we show an important and overlooked aspect 

of variable-length similarity-based motifs: that they cannot be 

directly compared, and hence ranked, using common motif dis- 

similarity measures and their corresponding length normalization. 

Using a variety of statistical tools, we illustrate that normalized 

motif dissimilarities exhibit intrinsic dependencies with respect 

to the motif length, and that these particularly affect the lowest 

dissimilarities of each length. Moreover, we find that such de- 

pendencies are generally non-linear (they do not have a linear 

relationship with the length of the motif), and that they change 

with the considered measure and data set. These aspects are quan- 

tified using a combination of 8 common dissimilarity measures 

and 9 different publicly-available time series data sets. To further 

facilitate the assessment and reproducibility of our work, we make 

all results and code available online. 

Given the aforementioned problems, and as a further contribu- 

tion, we propose a solution to compare motifs of different lengths 

and, at the same time, derive a measure of their significance. The 

proposed solution consists of a compact model of the motif dis- 

similarity space, using a beta distribution whose parameters non- 

linearly depend on the length of the motif. We find this model 

leads to a reasonable fit for the majority of the considered lengths, 

measures, and data sets. Importantly, the cumulative distribution 

function (CDF) of the proposed model can wrap the motif dissimi- 

larity function, hence directly yielding a p -value for each motif pair 

that can be used for ranking and significance assessment inside a 

given motif discovery algorithm. 

The remainder of the article is structured as follows. Before 

delving into the description of our findings and the proposed 

methodology, we first present the considered data sets and dis- 

similarity measures, as well as our motif sampling strategy and 

1 All dissimilarities considered in this paper are normalized by the length of the 

motif (sometimes we will additionally employ the terms “normalized” or “length- 

normalized” to further clarify this aspect). The reader should not confuse these 

terms with the typical z-normalization between time series or other possible nor- 

malization strategies (see also Section 2.2 ). 

all available reproducibility resources ( Section 2 ). We then start 

by analyzing the problem of comparing motifs of different lengths 

( Section 3 ). Next, we introduce the proposed modeling strategy 

( Section 4 ). Finally, we conclude by summarizing our work and 

highlighting some future directions ( Section 5 ). 

2. Materials and methods 

2.1. Time series data sets 

To demonstrate that our results are not biased with regard to 

the data source, we consider 9 different publicly-available time se- 

ries ( Serrà & Arcos, 2016 ) of varying length, coming from distinct 

domains: (1) DowJones – the daily closing values of the Dow Jones 

industrial average ( Williamson, 2012 ); (2) CarCount – the num- 

ber of cars measured for the Glendale on ramp for the 101 North 

freeway in Los Angeles, CA, USA ( Ihler, Hutchins, & Smyth, 2006 ); 

(3) Insect – the electrical penetration graph of a beet leafhopper 2 

( Mueen et al., 2009 ); (4) EEG – a one hour electroencephalogram 

from a single channel in a sleeping patient 3 ( Mueen et al., 2009 ); 

(5) FieldRecording – the spectral centroid of a field recording 4 

(we used the mean of the stereo channels and the spectral cen- 

troid linear frequency plugin from Sonic Visualizer 5 ); (6) Wind –

the wind speed registered in the buoy of Rincon del San Jose 6 , 

TX, USA. (7) Power – the electric power consumption of an in- 

dividual household 

7 ( Bache & Lichman, 2013 ); (8) EOG – an elec- 

trooculogram tracking the eye movements of a sleeping patient 8 

( Goldberger et al., 20 0 0 ); and (9) RandomWalk – a random walk 

time series, artificially generated using z i +1 = z i + η and z 1 = 0 , 

where η is a Gaussian random number with zero mean and unit 

variance. 

2.2. Dissimilarity measurement 

To demonstrate that our results are not biased with re- 

gard to the similarity measurement, we consider 8 different and 

commonly-used time series dissimilarity measures (see Serrà and 

Arcos, 2014 , and references therein): (1) Euc – Euclidean distance 

normalized by the square root of the number of time series seg- 

ment samples; (2) sqEuc – squared Euclidean distance normalized 

by the number of time series segment samples; (3) Corr – Pear- 

son’s correlation between time series segments; (4) Cos – cosine 

dissimilarity between segments; (5) DTW – dynamic time warping 

with path-accumulated normalization weights and a ±5% corridor 

window; (6) EDR – edit distance with real penalty, normalized by 

the alignment path length; (7) TWED – time-warped edit distance 

normalized by the alignment path length; and (8) MDL – mini- 

mum description length as in Rakthanmanon, Keogh, Lonardi, and 

Evans (2011) , with an added constant to force d ≥ 0. All dissimilar- 

ities were computed between z-normalized non-overlapping time 

series segments. 

2.3. Motif sampling 

We here employ the formal definition of similarity-based time 

series motifs by Mueen et al. (2009) and consider a random selec- 

tion of possible motif candidates. A motif candidate is defined by 

2 http://www.cs.ucr.edu/ ∼mueen/MK . 
3 http://www.cs.ucr.edu/ ∼mueen/OnlineMotif . 
4 http://www.freesound.org/people/JeffWojo/sounds/121250 . 
5 http://www.sonicvisualiser.org . 
6 http://lighthouse.tamucc.edu/pq . 
7 http://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+ 

consumption . 
8 http://www.cs.ucr.edu/ ∼mueen/DAME . 

http://www.cs.ucr.edu/~mueen/MK
http://www.cs.ucr.edu/~mueen/OnlineMotif
http://www.freesound.org/people/JeffWojo/sounds/121250
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http://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption
http://www.cs.ucr.edu/~mueen/DAME
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Fig. 1. Lowest 10 dissimilarities d for each segment length w considering all possi- 

ble non-overlapping segments from a section of the EEG data set: w ∈ [5, 100] (left) 

and w ∈ [40 0, 50 0] (right). Importantly, notice that length-normalized Euclidean 

distance is used (see main text and also Section 2.2 ). 

two starting points i and j and a motif length w . To obtain mo- 

tif candidates, we sample the motif space. We take n = 20 0 0 motif 

samples for each possible w uniformly at random, and explicitly 

avoid trivial matches corresponding to short-time delayed versions 

of the same pattern ( Chiu et al., 2003 ). That is, given a motif length 

w , we randomly generate the start of the segments that will form 

the motif, i, j ∈ [1 , N − w ] , N being the time series length, such that 

| i − j| > w . If not stated otherwise, in the following experiments 

we consider w min = 5 and w max = 500 , i.e., w ∈ [5, 500]. Thus, in 

total, every experiment is based on 20 0 0 × 496 samples. 

2.4. Additional results, code, and data availability 

Apart from the main results presented here (for instance in 

Figs. 4 and 9 ), we make all raw results available at our web page 9 . 

Additional summary tables reporting specific values for each data 

set and measure combination and the code used to run the exper- 

iments are also available at the same web page. The data sets are 

all available from the original sources or mirrored 

10 by Serrà and 

Arcos (2016) . 

3. Comparing motif dissimilarities 

3.1. Motivating examples 

To understand the issues that arise when comparing variable- 

length motif dissimilarities, we first take a look at some examples. 

Let’s consider a randomly-chosen contiguous segment of 10,0 0 0 

samples from the EEG data set ( Section 2.1 ). We then compute the 

length-normalized Euclidean distance d ( Section 2.2 ) between all 

possible non-overlapping pairs of segments of length w ∈ [5, 100], 

and take the lowest 10 dissimilarities d for each w . What we ob- 

serve is a clear trend of increasing d with w ( Fig. 1 , left). Given 

this trend, how can we automatically determine the most impor- 

tant motif using a similarity-based definition? To make it more ex- 

plicit, let’s assume that the best motif at length w 1 = 30 scores a 

length-normalized distance of d 1 = 0 . 202 and that the best motif 

at length w 2 = 40 scores a length-normalized distance d 2 = 0 . 219 . 

Based on what we have seen ( Fig. 1 , left), which one should we 

prefer? Notice that, furthermore, both motifs could overlap. Would 

we prefer motif 2, an extension of motif 1, even if the length- 

normalized dissimilarity is not as low as the one of motif 1? How 

can we choose in an objective and informed way? This are the 

9 http://www.iiia.csic.es/ ∼jserra/motifranking . 
10 http://www.iiia.csic.es/ ∼jserra/swarmmotif . 

Fig. 2. Normalized histogram of length-normalized Euclidean distances using n = 

20 0 0 dissimilarity samples for each w ∈ [5, 500] and the full EEG data set. 

Fig. 3. Quantiles for a sample of length-normalized dissimilarities using dynamic 

time warping (DTW) and the Wind data set. From top to bottom, the quantiles 

correspond to 0.5, 0.25, 0.1, 0.05, and 0.01. 

kind of situations this work deals with. However, we first need to 

demonstrate that such situation is systematically occurring, inde- 

pendently of the data source and the dissimilarity measurement. 

Re-taking our motivating example ( Fig. 1 ), we could argue that 

the observed trend is due to the short length of the segments ( w 

∈ [5, 100]). However, if we repeat the calculations for w ∈ [400, 

500], another trend appears ( Fig. 1 , right). Notice the change in 

the dissimilarity values, which is more than 4 times larger ( Fig. 1 , 

vertical axes). Such a difference is difficult to attribute to the effect 

of some characteristic timescales. Instead, it looks as a property 

resulting of the combination of both time series and dissimilarity 

measurement. 

The aforementioned trends are clearly observable by a simple 

uniform random sampling of the motif dissimilarity space. If, for 

each w ∈ [ w min , w max ], we select n non-overlapping segment pairs 

at random and compute their length-normalized Euclidean dis- 

tance, we can reproduce the same phenomenon ( Fig. 2 ). The plot- 

ted histogram gives us an indication that the empirical distribution 

of d changes with w . As w increases, the mode of the distribution 

seems to be more or less stable, but the tails (i.e., the non-central 

parts of the distribution) are visibly different, specially the lower 

one. 

With further analysis, we confirm that the observed phe- 

nomenon is not unique of the EEG data set nor of the normal- 

ized Euclidean distance. In fact, if we consider other data sources 

and dissimilarities with their corresponding length normalization 

( Section 2.2 ), we can easily obtain more radical examples of the 

same phenomenon (see, for instance, Fig. 3 ). In this example, we 

can compute the statistical significance of the slopes of the plot- 

ted quantiles, obtained via ordinary least squares, for w ∈ [300, 

500]. The highest p -value we obtain is p = 1 . 93 · 10 −15 , which cor- 

responds to the slope of the median. Thus, we see that even the 

median can show a statistically significant trend for relatively large 

w . Fig. 3 also depicts a non-linear dependency of the computed 

quantiles with respect to w . We can also observe that such de- 

pendency is different than the one seen in Fig. 2 . Clear differ- 

ences are observable even if we fix the data source and change the 

http://www.iiia.csic.es/~jserra/motifranking
http://www.iiia.csic.es/~jserra/swarmmotif
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Fig. 4. Matrices comparing distribution differences between all possible pairwise 

comparisons in w : ε (left) and p KS (right). The samples come from using correlation 

and the CarCount data set. The color code goes from 0 (white) to 0.1 and 1 (black), 

respectively. 

dissimilarity measurement. This also suggests that the observed 

behaviors are not due, to a large extent, to the effect of some char- 

acteristic timescales of the time series. 

3.2. Quantitative evaluation 

To quantify the incomparability of d with respect to w in a 

more formal and rigorous way, we employ two basic measures of 

the difference between distributions. First, we consider the global 

disagreement between empirical CDFs. We quantify it using 

ε = 

1 

k 

k ∑ 

i =1 

| F i − G i | , 

where k is an arbitrarily chosen bin resolution and F and G corre- 

spond to the two empirical CDFs being compared. Notice that ε is 

conceptually similar to the total variation distance between prob- 

ability distributions ( Levin, Peres, & Wilmer, 2009 ). Nonetheless, 

since we use CDFs and take the average, ε ∈ [0, 1] gives a rapid 

and intuitive idea of the average difference between distributions. 

The bin resolution for all experiments reported here corresponds to 

k = 100 equally-spaced bins between the minimum and the maxi- 

mum of each sample for each w . 

As we are interested in the best motifs, we need to pay special 

attention to the lower tails of the dissimilarity distributions (i.e., 

the lowest sample values of each w ). Hence, we consider a second 

measure based on just the lowest quartile of the empirical sample. 

Specifically, we consider the well-known Kolmogorov-Smirnov (KS) 

test ( Massey, 1951 ) and its associated p -value, which we denote 

by p KS . The KS test is a non-parametric test of the equality of 

continuous, one-dimensional probability distributions. It can be 

used to compare a sample with a reference probability distribution 

or to compare two samples. In our case, we compare the first 

quartile of the two samples to assess whether they significantly 

differ or not. The p KS value thus denotes the probability of ob- 

serving a difference equal to or more extreme that the actually 

observed among the 25% smallest sampled dissimilarities of the 

two distributions. 

Computing ε and p KS for all possible pairwise comparisons of 

samples in w yields two matrices that can be post-processed in 

order to aggregate the information for each data set and dissim- 

ilarity measure ( Fig. 4 ). If, for a given data set and measure, we 

take statistics of the diagonals of these matrices, we obtain an 

assessment of the distribution differences as a function of w � = 

| w i − w j | , the absolute difference between two motif lengths w i 

and w j . Specifically, for a given w �, we compute the median and 

the median absolute deviation of ε and p KS . Aggregating these re- 

sults for all possible combinations of data set and dissimilarity 

Fig. 5. Median (line) and median absolute deviation (patches) for ε (left) and p KS 

(right), displayed as a function of w � . Results computed from aggregating all data 

sets and measures (see text). 

Fig. 6. Incomparability of distributions: median values for ε (top) and p KS (bottom) 

for w � = 100 and every studied combination of data set and dissimilarity measure. 

There are a total of 9 × 8 = 72 such combinations ( Sections 2.1 and 2.2 ). Vertical 

lines separate data set blocks: DowJones (DJ), CarCount (CC), Insect (I), EEG (EEG), 

FieldRecording (FR), Wind (W), Power (P), EOG (EOG), and RandomWalk (RW). 

measure 11 gives us an idea of the expected differences when com- 

paring two distributions separated by w � ( Fig. 5 ). For instance, if 

we compare a motif pair of length w i = 150 with a motif pair of 

length w j = 190 ( w � = 40 ), we can expect an average CDF error ε
≈ 0.01 and a p KS ≈ 0.03 ( Fig. 5 ). The former tells us that, on aver- 

age, there will be a difference between CDFs of one per cent. The 

latter tells us that the tails of the distributions are hardly compa- 

rable, given that p KS is systematically lower than the significance 

threshold of 0.05. Thus, in general, we see that comparing motifs 

whose lengths differ by more than 40 samples is hardly justifiable. 

Let’s take w � = 100 and analyze the results for individual com- 

binations of data set and measure ( Fig. 6 ). We observe that nearly 

all distribution differences ε are above 0.01 and that almost no 

combination passes the KS test at a significance level of p KS > 

0.05. However, there is one notable exception: the last 8 combi- 

nations, which correspond to the RandomWalk data ( Fig. 6 , right). 

Several dissimilarity measures on this data set achieve acceptable 

p KS values while keeping ε ≈ 0.01. This is to be expected, and tells 

us that, for the case of artificially generated random Gaussian data 

( Section 2.1 ), length-normalized motif dissimilarities tend to com- 

parable, even across very different lengths. Apart from the Ran- 

domWalk data, the first 8 combinations, which correspond to the 

11 The raw results can be found in the online results document (see Section 2.4 ). 

Please refer to it for further detail. 
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Fig. 7. Examples of an empirical PDF (top) and CDF (bottom) and their estimated 

fits. The sample comes from taking the length-normalized Euclidean distance and 

the Insect data set with w = 460 . Here, our procedure estimates α = 9 . 37 , β = 

3 . 03 , and m = 1 . 93 . 

DowJones data, seem to achieve larger p KS values than the rest 

( Fig. 6 , left). This is interesting, as in economics the random walk 

hypothesis has been used to model share prices and other factors 

for a long time ( Malkiel, 1973 ). 

4. Modeling motif dissimilarities 

4.1. Main idea 

To overcome the drawbacks described in the previous section, 

we now propose a procedure to model the dissimilarity space. Our 

aim is to produce a good and compact model of the empirical dis- 

similarity distributions for each w from a given combination of 

data set and dissimilarity measure. The main idea behind our mod- 

eling strategy is to achieve a ‘normalization’ of the dissimilarity 

space. We want to transform the dissimilarity space into a uniform 

probability space in which given motifs of different lengths can be 

compared in a meaningful way 12 . 

In Section 3 , we have seen that, for two length-normalized dis- 

similarities d i and d j obtained from w i and w j , respectively, the re- 

lation d i < d j does not necessarily imply that d j should be ranked 

after d i . Our observation is that, by considering an estimated CDF 

for each w , we can mix motifs of different lengths and meaning- 

fully compare them. For instance, if P w 

( D ≤ d ) denotes the esti- 

mated CDF of the dissimilarities for a fixed w , then P w i 
(D ≤ d i ) < 

P w j 
(D ≤ d j ) implies that d j should indeed be ranked after d i . We 

will further develop this idea, and specially the way to estimate 

P w 

, in the next sections. In the end, we plan to substitute a given 

dissimilarity d by d ′ = P w 

(D ≤ d) . 

4.2. Preliminary analysis 

An illustration of the empirical probability distribution function 

(PDF) for dissimilarities with fixed w is shown in Fig. 7 . Observe 

that a Gaussian model could initially appear as a reasonable 

model. However, this is not so. The Gaussian model is a good 

model for the central part of an empirical distribution, but it has 

12 Note that we do not claim that the combination of data set and dissimilarity 

measure yields a particular expression nor that the proposed model corresponds to 

such expression. 

the limitation that the kurtosis is always zero. Hence, in general, 

it does not correctly model the observed tails. Contrastingly, the 

similarity-based motif discovery task requires to get accurate 

estimations at the tails of such distributions. In fact, we are 

only interested in the smallest existing dissimilarities (the most 

relevant motifs). Thus, our modeling task requires a good model 

for the tails. In particular, it requires a model with a good fit in 

the left, lowest dissimilarity tail. 

Extreme value theory (EVT) is focused on accurately modeling 

the tail of an empirical distribution ( Beirlant, Goegebeur, Teugels, 

& Segers, 2004 ). In EVT, such tails are classified by a real num- 

ber, called the tail index. In summary, there are two approaches 

to estimate the tail index: analyzing the empirical distribution of 

block minimums, and analyzing the empirical tail distribution. In 

any case, using models for tails requires the existence of an opti- 

mal threshold defining the starting point of the tail ( Coles, 2001 ). 

In practice, one must verify that the sample size is large enough 

to accommodate a sub-sample of the tail of the distribution. In 

pre-analysis, we considered the Euclidean and DTW measures and 

confirmed that this property holds for all data sets and w . For 

each combination of measure, data, and w we tried, the estima- 

tion of the optimal threshold provided an estimation of the tail in- 

dex inside the confidence interval for the tail index obtained with 

the analysis of block minimums ( del Castillo & Serra, 2015 ). Thus, 

we found the considered data fulfilled the aforementioned require- 

ment. 

Obviously, the left tail distribution of the computed dissimilar- 

ities has a bounded range, since d ≥ 0. That is called a short tail, 

and it corresponds to a negative value of the tail index. Therefore, 

the distributions considered as models for the lowest dissimilari- 

ties have to contain short tails. Since both tail distributions showed 

this behavior, we consider the simplest model to fit two-side short 

tails ( Beirlant et al., 2004 ): the beta distribution. Besides the tails, 

we also observed that the behavior in the central part of the beta 

distribution was very similar to the behavior in the central part 

of most of the empirical distributions obtained for the considered 

cases. Thus, in addition to being a theoretically plausible model, 

the beta distribution was found to visually correspond to the em- 

pirical data. 

4.3. Model fit 

The beta distribution typically depends on two shape parame- 

ters, each of them corresponding to the tail index of each side. The 

extreme value for close-to-zero dissimilarity is zero, but in the case 

of the maximum, we have seen it depends on the original data set 

and w . Therefore, we consider the three-parameter beta distribu- 

tion 

P (d) = 

1 

mB (α, β) 

(
d 

m 

)α−1 (
1 − d 

m 

)β−1 

, (1) 

where α, β > 0 are the so-called shape parameters, m is a scale 

parameter, and B ( α, β) is the beta function. Eq. 1 is defined for 0 

≤ d ≤ m . For values of d outside this range, P (d) = 0 . 

We start by fitting one beta distribution for each w . We 

do so by employing the maximum likelihood. Given n normal- 

ized dissimilarities d = d 1 , . . . d n computed from a uniform ran- 

dom sampling of all possible non-overlapping segments of length 

w ( Section 2.3 ), we can calculate the log-likelihood 

ln (L (α, β, m | d)) = (α − 1) 
n ∑ 

i =1 

ln (d i ) 

+(β − 1) 
n ∑ 

i =1 

ln (m − d i ) − n ln (B (α, β)) 

−n (α + β − 1) ln (m ) . (2) 
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Fig. 8. Example of the estimated parameters α (top), β (middle), and m (bottom) 

for each w . The fitted rational functions are also displayed. The samples come from 

using the cosine dissimilarity and the Power data set. 

From here, we have to find the values of α, β , and m that maxi- 

mize Eq. 2 . To do so, we choose a particle swarm optimizer ( Poli, 

Kennedy, & Blackwell, 2007 ). 

Particle swarm optimization (PSO) is a well-known population- 

based stochastic approach for solving continuous and discrete op- 

timization problems. PSO makes few or no assumptions about the 

problem being optimized, does not require it to be differentiable, 

can search very large spaces of candidate solutions, and can be ap- 

plied to problems that are irregular, incomplete, noisy, dynamic, 

etc. (see Poli et al., 2007; Parsopoulos and Vrahatis, 2010 , and ref- 

erences therein). We here use the canonical PSO algorithm ( Poli 

et al., 2007 ), with 25 particles and a local best configuration, and 

run 300 iterations. Further details can be found in the provided 

code ( Section 2.4 ). The motivation for using PSO comes from our 

experience in optimization problems. However, we believe that 

more classical optimization algorithms would yield comparable, 

if not identical results. Essentially, any suitable optimization pro- 

cedure available in typical scientific programming environments 

could do. The only constrains it needs to handle are α, β > 0 and 

m > max( d ). To facilitate the search, we additionally force m < 

2.1max( d ). 

If we repeat the previous procedure for all w ∈ [ w min , w max ], we 

end with three series of parameters: one for α, one for β , and one 

for m ( Fig. 8 ). This can represent a huge number of parameters for 

our model ( 3 × (w max − w min + 1) ). However, as we have seen in 

Section 3.2 , close distributions with w � < 40 are objectively simi- 

lar, and this similarity increases as w � decreases. Because of this, 

the estimated parameters exhibit a continuity in w ( Fig. 8 ). We 

can exploit this continuity to fulfill two desirable objectives at the 

same time: reducing the number of parameters of our model, and 

removing some of the potential noise introduced in the sampling 

and/or the fitting procedure. This brings us to the next important 

step. 

Given the three parameter series for α, β , and m , we fit a 

curve to each of them by using rational functions, i.e., the ratio of 

two polynomial functions ( Ghosh & Rao, 1996 ). A rational function 

model is a generalization of the polynomial model, as the former 

contains the latter as a subset. Rational function models provide 

several advantages over polynomial models while still having 

a moderately simple form ( Ghosh & Rao, 1996 ). In particular, 

they are relatively easy to fit, take on an extremely wide range 

of shapes, and have very good interpolatory and extrapolatory 

properties. Thus, the three parameter beta distribution accounting 

for the full range of w becomes 

P w 

(d) = 

1 

m w 

B (αw 

, βw 

) 

(
d 

m w 

)αw −1 (
1 − d 

m w 

)βw −1 

, 

where 

αw 

= Q α(w ) /R α(w ) , (3) 

βw 

= Q β (w ) /R β (w ) , (4) 

m w 

= Q m 

(w ) /R m 

(w ) , (5) 

and Q z and R z correspond to polynomials of degrees u z and v z , 

respectively, such that 

Q z (w ) = 

u z ∑ 

i =0 

q z i w 

i (6) 

and 

R z (w ) = 1 + 

v z ∑ 

i =1 

r z i w 

i . (7) 

To fit the rational functions, we employ the default implemen- 

tation of the Levenberg-Marquardt algorithm (LMA; Gill & Murray, 

1978 ) available in the Matlab’s curve fitting toolbox 13 . However, as 

with the case of PSO, we believe that any other suitable curve fit- 

ting or optimization algorithm could be used with very similar or 

identical results. The motivation for using the LMA is its improved 

robustness over the typical Gauss–Newton algorithm ( Gill & Mur- 

ray, 1978 ). We recursively compute the fits for all pairwise com- 

binations of u z = 1 , 2 , 3 and v z = 0 , 1 , 2 , 3 , and take the one that 

yields the lowest Akaike information criterion ( Burnham & Ander- 

son, 2002 ). For further details about this fitting procedure, we refer 

the interested reader to the provided code ( Section 2.4 ). 

The final model P w 

is parameterized by the rational functions 

αw 

, βw 

, and m w 

. Hence, it consists of u α + 1 , v α , u β + 1 , v β , 

u m 

+ 1 , and v m 

coefficients. From the values of u z and v z consid- 

ered above, we see that the total number of model coefficients 

ranges from 6 ( 3 × (2 + 0) ) to 21 ( 3 × (4 + 3) ). A model with 6 

to 21 coefficients can be considered a compact model given the 

size and complexity of the dissimilarity spaces we are dealing with 

( Section 3 ), which comprise w max − w min + 1 different lengths or 

individual empirical distributions. 

4.4. Model usage 

As mentioned, our end goal is to ‘normalize’ the dissimilarity 

space with respect to variations in w . To do so, we just need to 

compute αw 

, βw 

, and m w 

following Eqs. 3–7 and consider the CDF 

of the proposed model, 

P w 

(D ≤ d) = 

B 

(
d 

m w 
;αw 

, βw 

)
B ( αw 

, βw 

) 
, (8) 

where B ( x ; α, β) is the incomplete beta function, a generalization 

of the beta function. The incomplete beta function can be effi- 

ciently calculated using functions that are commonly included in 

13 http://www.mathworks.com/products/curvefitting . 

http://www.mathworks.com/products/curvefitting
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Fig. 9. Model accuracy: median values for ε (top) and p KS (bottom) for w � = 100 

and every studied combination of data set and dissimilarity measure. There are a 

total of 9 × 8 = 72 such combinations ( Sections 2.1 and 2.2 ). Vertical lines separate 

data set blocks: DowJones (DJ), CarCount (CC), Insect (I), EEG (EEG), FieldRecord- 

ing (FR), Wind (W), Power (P), EOG (EOG), and RandomWalk (RW). 

spreadsheet or programming systems ( Press, Teukolsky, Vetterling, 

& Flannery, 2007 ). 

Because P w 

( D ≤ d ) is only defined for 0 ≤ d ≤ m w 

, we propose 

the new dissimilarity measure d ′ for ranking and comparing motifs 

of different lengths under the same conditions: 

d ′ = 

⎧ ⎨ 

⎩ 

0 if d < 0 , 

P w 

(D ≤ d) if 0 ≤ d ≤ m w 

, 

1 otherwise . 

(9) 

Note that the case of d < 0 is impossible for most dissimilarity 

measures since typically d ≥ 0. Moreover, if d took negative val- 

ues, we could always apply any suitable transformation to make 

it strictly positive (e.g., e d ). The case of d > m w 

might happen in 

practice, as our estimation of the maximum d for each w could be 

inaccurate or underestimating the true maximum (if this exists). 

However, this latter case is of little interest in motif discovery, as 

it corresponds to extremely dissimilar segment pairs. Thus, with- 

out compromising the accuracy of the task, we can tolerate some 

error and consider these motifs to form a tie in the last positions 

of the ranking ( d ′ = 1 for all of them). 

The new dissimilarity measure d ′ is a wrapper of d , and can 

be inserted in any motif discovery algorithm once P w 

has been 

estimated (offline or prior to the execution of the algorithm). 

Furthermore, d ′ is easily interpretable, as it corresponds to the 

probability of seeing a dissimilarity equal to or smaller than d . 

This gives us a raw idea of the significance of the motif with 

respect to the dissimilarity space. In the next two paragraphs, we 

exemplify and give more detail on the method’s usage. 

Suppose that, as practitioners, we are interested in finding sim- 

ilar patterns or motifs in the EEG time series of Figs. 2 and 10 and 

that we are interested in the temporal range that goes from w ∈ 

[10 0, 20 0] samples. When we consider the Euclidean distance and 

extract motifs at the considered lengths, we can easily find rep- 

etitions at w = 100 whose distance is around 0.5 and repetitions 

at w = 200 whose distance is around 1.2, and we do not know 

which motif to prefer (this is analogous to our motivating exam- 

ple of Section 3.1 ). Therefore we run the our algorithm, sample the 

Euclidean dissimilarity space of w ∈ [10 0, 20 0], and fit a beta dis- 

tribution ( Eq. 1 ) for every w following the proposed methodology. 

Fig. 10. Fitted model for length-normalized Euclidean distances sampled from the 

EEG data set (compare with Fig. 2 ). 

We end up with a model of the dissimilarity space that depends 

only on w ( Eqs. 8 and 9 ). All parameters m w 

, αw 

, and βw 

have been 

estimated. In the case we had motif candidates for all lengths, we 

only need to recalculate the new dissimilarity measure d ′ using the 

previously obtained dissimilarities d at every w . In the case we did 

not have a list of candidate motifs for each length, we may include 

Eqs. 8 and 9 into the dissimilarity computation function and re-run 

the motif finding algorithm. In both cases, since the value of d ′ is 

bounded between 0 and 1, we as practitioners have a clear idea of 

the probability of observing a dissimilarity equal to or smaller than 

d in that w . 

4.5. Model validation 

To measure the quality of the model fit P w 

, we resort to the 

measures introduced in Section 3.2 : ε, the global disagreement be- 

tween empirical CDFs, and p KS , the p -value of the KS test on the 

lowest quartile of the samples. The only difference is that, here, the 

p KS value is not the result of a two-sample test, but the result of a 

goodness of fit test for the plausibility of our proposed model given 

the available samples (we adapt the bootstrap generative proce- 

dure described by Clauset, Shalizi, and Newman (2009) for power- 

law models to the current model). If we compute ε and p KS for 

all considered measures and data sets, we see that the fitted mod- 

els generally provide a good agreement with the data ( Fig. 9 ). In 

general, ε is never above 0.02 and rarely above 0.01. The p KS value 

is often above 0.05, what indicates that we cannot reject the null 

hypothesis of the tail samples coming from the fitted distribution 

tail. The DowJones and the CarCount data sets achieve relatively 

low p KS values, but ε is always below 0.02. The median and me- 

dian absolute deviation for the aggregation of all combinations 14 

are ε = 0 . 006 ± 0 . 002 and p KS = 0 . 10 ± 0 . 09 . Overall, we can con- 

sider a reasonably good fit is reached for the majority of cases. We 

can visually confirm the agreement of our model and the empiri- 

cal data by comparing the resultant PDFs against the empirical his- 

tograms obtained for each combination (compare, for instance, the 

obtained model in Fig. 10 with our motivating example of Fig. 2 ). 

5. Conclusion 

In recent years, expert systems built around time series-based 

methods have been enthusiastically adopted in engineering appli- 

cations, thanks to their ease of use and effectiveness ( Bankó & 

Abonyi, 2015 ). One of the first challenges of an expert system deal- 

ing with time series is recognizing repeated events or sequences, 

here called motifs. And a great part of this challenge implies work- 

ing at different temporal resolutions or motif lengths, which arise 

naturally because of different interest scales (e.g., Guralnik & Sri- 

vastana, 1999; Chernbumroong et al., 2013 ) or because of some 

14 The raw results are available online (see Section 2.4 ). 
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concept drift (e.g., Abad, Gomes, & Menasalvas, 2016 ). Hence, com- 

paring and ranking motifs of different lengths is becoming a pri- 

mary task to be solved by current and future expert systems. 

The main contribution of the present work is to show that 

time series motif dissimilarities of different lengths are not directly 

comparable, and thus cannot be ranked. Through both motivating 

examples and formal quantitative analysis, we have shown (1) that 

length-normalized motif dissimilarities have non-linear dependen- 

cies with the motif length, (2) that these dependencies change 

with the data set and the dissimilarity measure, and (3) that they 

particularly affect the lowest dissimilarities, which are precisely 

the focus of interest of any similarity-based motif discovery algo- 

rithm. Another contribution of the present work is a solution to 

tackle the aforementioned problems. This consists of a compact 

model of the dissimilarity space that allows comparing motifs of 

different lengths and assessing their significance with respect to 

the overall dissimilarity distribution. Such model is motivated by 

extreme value theory, and is based on a three-parameter beta dis- 

tribution. We propose a procedure to fit those three parameters 

while taking into account the local continuity and the non-linearity 

of the motif dissimilarity space. 

In this article, we have not explicitly dealt with motif pairs con- 

sisting of segments of different length. Instead, we have assumed 

the same length for the pair of segments forming a motif pair. This 

assumption is well motivated, as practically all existing motif dis- 

covery algorithms operate under such constraint (e.g., Lin et al., 

20 02 ; Chiu et al., 20 03; Tanaka et al., 2005; Mueen et al., 2009; 

Castro and Azevedo, 2011; Mueen, 2013 ; Yingchareonthawornchai 

et al., 2013) . It is also motivated for the case where we are inter- 

ested in pairs of segments of different length, as the most common 

way to compute the dissimilarity between such segments is by re- 

sampling them to have the same length. That is extensively used 

for Euclidean distance or correlation ( Yankov, Keogh, Medina, Chiu, 

& Zordan, 2007 ). For measures explicitly handling segments of dif- 

ferent length, this is also one of the most recommended practices. 

For instance, it has been shown that a brute-force up-sampling 

to the largest segment length yields equivalent or slightly bet- 

ter results for classification tasks using DTW ( Ratanamahatana & 

Keogh, 2004 ). Nonetheless, we acknowledge that the proposed ap- 

proach could have some limitations in certain domains or applica- 

tions where segment up-sampling was not appropriate. In prelim- 

inary analysis, we performed a number of experiments with DTW, 

ERD, and TWED dissimilarities while considering segments of dif- 

ferent lengths. The results showed that a similar situation as with 

same length segments was taking place. We believe that a solution 

coming from the techniques exposed in the present paper could 

also deal with the extended case of different lengths. However, we 

leave the rigorous study of such solution for future work. 

It is difficult to assess the potential impact of the present find- 

ings in other contexts. However, we have the impression that a 

similar phenomenon could happen when comparing feature vec- 

tors or quantitative descriptions of different sizes, even if these 

are not time series or segments. It would be interesting to analyze 

what happens with clustering or classification tasks with variable- 

length instances, and in particular with clustering or classifica- 

tion approaches based on dissimilarity measurements. The scarce 

literature on the topic we have found typically relies domain- 

specific knowledge (e.g., McHardy, García Martín, Tsirigos, Hugen- 

holtz, and Rigoutsos, 2007) or makes a number of assumptions 

on the nature of the data (e.g., Porikli, 2004) . The model and 

the methodology proposed here are domain-agnostic and make 

very few assumptions. Thus, we believe they could be good candi- 

dates to be considered in situations or applications where variable- 

length instance similarities need to be compared. 
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