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Abstract

In this paper we propose myPTutor, a general and effective approach which

uses AI planning techniques to create fully tailored learning routes, as sequences

of Learning Objects (LOs) that fit the pedagogical and students’ requirements.

myPTutor has a potential applicability to support e-learning personaliza-

tion by producing, and automatically solving, a planning model from (and

to) e-learning standards in a vast number of real scenarios, from small to

medium/large e-learning communities. Our experiments demonstrate that we

can solve scenarios with large courses and a high number of students. There-

fore, it is perfectly valid for schools, high schools and universities, especially if

they already use Moodle, on top of which we have implemented myPTutor. It is

also of practical significance for repairing unexpected discrepancies (while the

students are executing their learning routes) by using a Case-Based Planning

adaptation process that reduces the differences between the original and the

new route, thus enhancing the learning process.

Keywords: e-learning, learning route personalization, planning, plan

adaptation, case base planning

Email addresses: agarridot@dsic.upv.es (Antonio Garrido),
lluviamorales@mixteco.utm.mx (Lluvia Morales), ivan.serina@unibs.it (Ivan Serina)

Preprint submitted to Expert Systems with Applications April 22, 2016



1. Introduction

E-learning is the process of providing on-line courses on the Internet for stu-

dents so that they can study and learn from any place and computing device

(personal computer, mobile phone, tablet, etc.) by using electronic media, in-

formation, Internet technologies and platforms, such as Learning Management5

Systems (LMSs). Although e-learning has become an increasingly popular train-

ing option, it cannot rely just on the upload of contents to the Internet or the

developments of new standards. On the contrary, it needs to offer a feasible,

personalized way that facilitates and enhances the students’ learning process by

combining such contents appropriately.10

As proposed in related literature (Caputi & Garrido, 2015; Comi et al.,

2015a; Essalmi et al., 2015; Garrido & Onaindia, 2013; Garruzzo et al., 2007b;

Kurilovas et al., 2015; Rosaci & Sarne, 2010), a revolutionary key challenge of

the current century is advanced personalized learning to promote adaptivity

and fully tailoring of the e-courses. The idea is to use intelligent systems to15

construct and recommend a personalized learning route of contents that fit the

individual requirements of each student, and even the device each student is

using at that moment (Garruzzo et al., 2007a; Rosaci & Sarne, 2010).

As a motivating example, let us assume two students with different back-

ground (initial knowledge) and learning outcomes, interested in the same course.20

Obviously, under a fully personalized perspective, the LOs and their sequence

cannot be the same for both students. A different subset of LOs can be com-

bined in different ways according to the learning style, current knowledge and

learning goals of each student. For instance, one student will need a shorter

route than the other, or a particular type of contents, different to the other’s.25

Also, although in some scenarios the LOs could be the same, the learning route

to be planned will have to be different according to the specific needs. There-

fore, we require some kind of planning to select the best sequence of LOs, and

in the best order.

More precisely, rather than having a predefined flow of contents the student30
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has to follow in a course, which may be too teacher-oriented and somewhat frus-

trating for the student, we want to have an individualized sequence of contents

that is generated and accommodated to what the student needs, thus being

100% student-oriented. Achieving such a high level of individualization is not

a straightforward enterprise as it requires: i) the combination of pedagogical35

theories (Brusilovsky & Vassileva, 2003), and ii) to take into account the causal

relationships among the tasks to be done in the course (Caputi & Garrido, 2015;

Garrido et al., 2012). For instance, a given task has some prerequisites to be

held before it can be initiated (e.g. when some previous knowledge has to be ac-

quired), which means some orderings among tasks may be arbitrary but others40

are compulsory and, therefore, enforced in any individual route.

The construction of personalized routes requires an intelligent decision-making

procedure to recommend the most adequate content for each student in every

step of his/her learning process. Unfortunately, e-learning content selection is

difficult. It depends on many variables, involving learning contents, their (se-45

mantic) ontology, their degree of difficulty, the time required, how long the

course lasts, the available time each student has, the student’s preferences and

learning styles, the resources that are available, the devices to be used, and also

the level of cooperation and peer-to-peer (P2P) group formation among tutors

and students (Messina et al., 2013). As we will discuss in the related work sec-50

tion, many techniques can be applied here and, particularly, AI planning is very

valuable not only to recommend contents that fit the students’ needs, but also

to find the right order in which such contents need to be sequenced (Brusilovsky

& Vassileva, 2003; Caputi & Garrido, 2015; Castillo et al., 2010; Garrido & On-

aindia, 2010, 2013; Ullrich & Melis, 2009). After all, planning can be seen as55

an intelligent reasoning process to select the right contents and to place them

as an ordered route of executable tasks to reach certain goals subject to several

constraints.

In this paper we present an approach, named myPTutor, which takes as

an input an e-learning model described in a standard e-learning language and60

produces a PDDL (Planning Domain Definition Language) model as an output.
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In particular, it applies standard AI planning and CBP (Case Base Planning)

techniques to the generation and sequencing of e-learning routes, which are fully

tailored to the students’ profiles and necessities. Our main contributions address

the following topics:65

• Knowledge representation, in which we analyze and extract metadata in-

formation from learning contents encoded in e-learning standards, and

produce an automated compilation of standard PDDL domain+problem

files. This PDDL representation allows us to use any PDDL-compliant

planner, thus making our model planner (i.e. solver) independent.70

• Learning route personalization, not only in terms of contents but also in

terms of their sequencing. In planning terminology this means a plan,

generated by a case-based planner or any other planner.

• Content and rules datasource, as a CBP repository for planning domain+file

compilations that contains students’ learning information to be reused in75

the future. This has some resemblance to a collaborative recommenda-

tion technique, which reuses some recommendations that appear the most

similar to similar students. In myPTutor, the stored compilations are

successively analyzed by our case-based planner (Serina, 2010), which re-

trieves the best element that fits the current requirements and only adapts80

it if necessary (Fox et al., 2006).

• Learning designs development. Particularly, we provide a simple transla-

tion of the resulting sequence learning contents (plans) into another stan-

dard representation, namely learning design (IMS, 2008), that provides a

usable manifest for standard on-line learning platforms, thus closing the85

e-learning cycle.

• Extension of Moodle, a well-known and widely used LMS. We have imple-

mented a full vision that encompasses all the previous aspects on top of

Moodle, as a flexible way to make curriculum authoring easier. All in all,

our contribution shows a practical significance to help tutors and teachers90
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choose the most suitable learning route and semi-automatically adapt it

in accordance with the students’ goals and individual features.

The remaining part of the paper is structured as follows. Section 2 explores

some related work and how planning technology can be useful in e-learning.

Section 3 describes the problem and introduces the role of planning for learning95

routes personalization. In Section 4 we present our general approach in detail,

describing its structure, main elements, the e-learning-to-planning compilation

and the CBP techniques we use. In Section 5 we explain our current implemen-

tation and how it is integrated on top of Moodle. A thorough evaluation with

a large collection of experimental results is provided in Section 6. In Section100

7 we discuss the lessons learnt, and the strong and weak features of our plan-

ning approach within an e-learning setting. Finally, in Section 8 we present the

conclusions and the future work.

2. Related work and how planning can help

2.1. Related work105

There are many aspects within e-learning in literature, which are beyond

the scope of this paper. But in general, e-learning and course personalization

has been traditionally addressed from a double perspective: student’s modeling

and adaptive+dynamic courseware composition.

On the one hand, student’s modeling can be defined as the process of gath-110

ering relevant information to infer the current cognitive state of the student and

to represent it to be accessible and useful in e-learning (Chrysafiadi & Virvou,

2013). There are many approaches to construct a student’s model. For exam-

ple, the overlay model that represents the student’s knowledge level in Gaudioso

et al. (2012); statistical, data mining and machine learning techniques to under-115

stand and improve the performance of the student’s learning process (Campagni

et al., 2015; Natek & Zwilling, 2014; Pena-Ayala, 2014); cognitive theories to ex-

plain human behavior (Alepis & Virvou, 2011); fuzzy logic modeling techniques

and Bayesian networks to deal with the uncertainty of students’ diagnosing
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(Jeremic et al., 2012); and ontologies to reuse students’ models (Comi et al.,120

2015b; Clemente et al., 2011). These approaches can be used on its own or be

combined, thus building a hybrid model to personalize contents according to the

students’ needs and available resources (Kyriacou, 2008). Although our work

could effectively adopt these modeling techniques, we do not explicitly focus

on students’ modeling. We have limited our analysis to the students’ informa-125

tion necessary for automatically creating an AI planning representation. We

follow the approach described in Baldiris et al. (2007), based on Felder’s clas-

sification (Felder & Silverman, 1988) and SCORM (2004), which allows us to

enrich the standard IMS-LIP representation (IMS, 2008) and improve students’

personalization.130

On the other hand, the idea with course composition is to recommend and

personalize contents to students to ensure they complete all the activities that

an instructor deems important. Moreover, an interesting issue is to assist stu-

dents while navigating throughout the contents, and to monitor their progress

and interaction in order to dynamically adapt the contents to their specific135

requirements.

From the point of view of personalizing e-learning contents, many techniques

have been applied, such as neuronal networks, adjacency matrices, constraint

programming models, soft computing methods, integer programming, machine

learning, multi-agent approaches, swarm intelligence models and recommenda-140

tion techniques (Anaya et al., 2013; Brusilovsky & Vassileva, 2003; Comi et al.,

2015a; de Oliveira et al., 2013; Essalmi et al., 2015; Garrido et al., 2008; Idris

et al., 2009; Kurilovas et al., 2014, 2015; Martinez et al., 2004; Rosaci & Sarne,

2010). They all have in common the interest in simulating human decision-

making and recommending course contents in the form of different learning145

tasks/objects (e.g. text documents, pictures, audio, video and, in general, any

type of multimedia contents). Previous works assign contents to predefined

classes or students’ profiles while designing the adaptation rules. In de Oliveira

et al. (2013), a system that aids instructors in semi-automatic assessment is

proposed. The recommendation is treated as a multi-label classification task,150
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using the machine learning multi-label k-nearest neighbor algorithm, in which

each student’s profile is associated with one or more classes of programming ac-

tivities, with individualized activities. Similar works also use machine learning

techniques to define a recommendation decision table which warns of some prob-

lematic circumstances, and a pedagogical support system (decision tree) that155

provides a visual explanation of the recommendation suggested (Anaya et al.,

2013). Some works exploit recommendation based on each student’s profile

and his/her previous contents (content-based recommendation), whereas others

provide contents based on similar students (collaborative filtering recommenda-

tion), and even hybrid approaches that mix techniques. These recommenders160

analyze students’ behavior and characteristics to personalize contents that could

be useful to other students (Champiri et al., 2015; Park et al., 2012). But to

do this, recommenders require to track and analyze previous students’ inter-

actions. In that line, some approaches emphasize such interaction by using

effective knowledge sharing among the students (Garruzzo et al., 2007b; Rosaci165

& Sarne, 2010), thus supporting group formation methods and protocols that

promote P2P e-learning, and exploit the opinions of other students as a kind of

social recommendation (Messina et al., 2013).

From the point of view of monitoring the interaction of the students within

the e-learning system, most of the existing works propose their own intelligent170

tutoring systems with adapted presentation w.r.t. the graphical aspect, but do

not use existing LMSs.

The idea of combining both previous points of view naturally leads to a multi-

agent learning approach (Comi et al., 2015a; Garruzzo et al., 2007a,b; Messina

et al., 2013; Rosaci & Sarne, 2010). In particular, Garruzzo et al. (2007a,b)175

propose two learning systems, ISABEL and MASHA-EL, which associate to each

student a device agent to autonomously monitor the student’s behavior when

accessing e-learning Web sites. The idea of handling different students’ devices

and offer different personalization w.r.t. them is very interesting, but it makes

it necessary to explicitly model the differences in the graphical representation;180

e.g. considering the resolution of a picture, or the size of a video. Moreover,
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each site is associated with a teacher agent, and when a student visits an e-

learning site, the teacher agent collaborates with some tutor agents associated

with the student to provide useful recommendations, although the student is

the last responsible to evaluate whether the content is relevant or not (Rosaci185

& Sarne, 2010).

Despite the advances of tutoring systems for e-learning, most systems still

show some limitations: i) they do not fully use e-learning standards; or ii)

they recommend personalized contents, but not a particular learning route as a

sequence of contents to attain the student’s learning outcomes; or iii) they are190

not implemented/integrated as part of an existing LMS; or iv) they are usually

limited to a specific solver. In contrast to related systems, our approach tries to

overcome these limitations. It deals with standard e-learning metadata, which

is automatically extracted and compiled as a PDDL model. We provide the

total or partial ordered sequence of contents. It is important to note that our195

approach differs from the recommender systems’ idea in the sense that we do

not only recommend contents to be used and re-analyzed step by step, but a

fully tailored learning route to give students the opportunity to be aware of their

progress in the learning process. We also allow teachers to define compulsory

or optional goals, an extra feature in many LMSs. We use Moodle, a well-200

known and one of the most used LMSs (Caputi & Garrido, 2015). Although

we cannot directly offer personalization of the display or the device used, we

rely on Moodle for every task related to the visualization. Currently, Moodle is

evolving to allow users to make full use of their mobile devices. Finally, we do

not adopt a particular solver since we can use any PDDL-compliant planner as205

a solver.

2.2. Motivation for using planning

Metaphorically speaking, generating a personalized learning route resembles

planning closely, which is enough motivation to face e-learning via planning. In

e-learning the main elements are: i) the students’ background, ii) the learning210

goals to be attained, iii) the profile-adapted LOs with their prerequisites and
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learning outcomes, iv) the ordering relations, and v) the tailored learning route.

We can simply map these elements into planning terms, respectively, as: i)

initial state, ii) top level goals, iii) actions with preconditions and effects, iv)

causal link relations, and v) the solution plan.215

The main objective of planning is to provide a plan as a sequence of ac-

tions, without the necessity of having previous information about other students,

which is a limitation in the earlier stages of collaborative recommendation. Plan-

ning moves one step further and selects contents that fit the students’ needs and

also provides the order in which such contents need to be sequenced. In other220

words, planning is ideal for contents sequencing. Planning also deals with multi-

objective metrics, very appealing for e-learning: students (and teachers) prefer

a good learning route, in terms of time, competence, resources or cost, and not

simply yet another route. As presented in Essalmi et al. (2015), metrics are

a good support for analyzing and deciding which strategy and plan should be225

applied to improve personalization.

Our planning approach applies Case-Based Planning (CBP) techniques (Bor-

rajo et al., 2015; Serina, 2010; Spalazzi, 2001). Intuitively, a learning route

that is good for a given student will be also valid for a similar student, which

can reduce the planning burden, analogously to collaborative recommendation230

techniques. Focusing on planning algorithms, CBP takes advantage of former

problem-solving experiences by storing in a plan library previously generated

solutions that can be reused to solve similar problems in the future (Serina,

2010). This is essential in e-learning. First, teachers want to include didactic

issues that cannot be simply represented in terms of preconditions, effects and235

causal links. And when they can, they are reluctant to use complex and tedious

constructs that are unfamiliar to them. Second, if the execution of a learning

route fails it needs to be fixed. Although a new route starting from scratch

can be replanned, it does not seem to be reasonable; a route adaptation that

minimizes the differences between the original and the recalculated route seems240

more reasonable. Informally, students and teachers prefer a kind of inertia in

the learning routes, which enhances the continuity in the learning process. In
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other words, CBP techniques are ideal in this scenario for the definition, mem-

orization (of alternatives which are motivated by reasons beyond causal links

and orderings), retrieval and adaptation of learning routes to new requirements.245

3. Description of the problem

The Web is full of interoperable digital resources, known as LOs, imple-

mented in XML standards such as SCORM, IMS or LOM (IMS, 2008; LOM,

2002; SCORM, 2004). But LOs in themselves are insufficient to accommodate

the different studying styles and preferences of the students in large courses.250

The right selection and combination of LOs within these courses is the basis

for e-learning. For instance, according to pedagogical issues, a diagram is rec-

ommendable for visual students but not for verbal ones, and just the opposite

happens for a lecture. Consequently, e-learning must provide a student-centered

solution trying to offer a learning experience where the whole learning process255

of users is fully tailored to their objectives, learning styles, needs and, more

generally, to their profiles.

After generating a tailored learning route, it needs to be executed in a LMS.

This means to assist students in navigating the route, monitoring it in order

to check their progress compared with the expected and proposing an actions’260

sequence when inconsistencies are detected, i.e. a new temporal constraint,

appear. If this happens, a flexible process to make the remaining learning route

executable (by adding or removing LOs) becomes essential. And it is expected

that this process will not ignore the original students’ interests, but try to use

the original learning route again as much as possible.265

3.1. AI planning for learning personalization

The idea of personalizing learning routes to individual students’ needs and

profiles comes from the observation that the traditional mode of instruction can-

not fully satisfy the different students’ needs, especially in case of heterogeneous

classes, in presence of very different backgrounds and motivations.270

10



As previously said, different techniques have been used to ensure flexibility

within course personalization. In particular, we adopt AI planning techniques

to effectively adapt the learning route of each student to his/her constraints.

The effective integration of these techniques in LMSs is a complex task that

requires first, to provide to teachers and the students an effective access to the275

planned contents/LOs; second, to monitor the students’ learning progresses in

order to satisfy new necessities, or react to deviations from the planned learning

route and, third, to allow the teachers to supervise the whole process.

This paper addresses the personalization of learning routes from a planning

perspective, and more particularly by using a case-based planning approach280

(Serina, 2010). But before describing this approach, we first introduce some

essential background on planning.

3.2. AI planning and CBP techniques

AI planning is notoriously a very hard search problem. Its objective is to

define a plan, i.e. a partially ordered sequence of actions, that allows one or285

more agents to satisfy their goals starting for a specific initial configuration.

Each action is specified by a set of preconditions, a set of effects, a duration

and (probably) a cost. Preconditions are facts that must be true before the

action execution, whereas the effects determine how the world changes as a

consequence of the action execution. The action cost is defined in terms of a290

specific metric and is usually related to the resource consumption and action

duration.

Unfortunately, solving a planning problem is PSPACE-hard (Backstrom &

Nebel, 1995) and a number of techniques and heuristics have been proposed

in literature to effectively use AI planning in applicative contexts. Case-Based295

planning is one of such techniques, with the aim of reusing previous experiences

in order to solve similar problems in the future and efficiently manage complex

problems.

In particular, using the formalization of Liberatore (2005), we define a plan-

ning case as a tuple 〈Π0, π0〉, where Π0 corresponds to a planning problem and300
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π0 to its solution. A case-base or plan library corresponds to a set of relevant

cases encountered by the system during its life: {〈Πi, πi〉|1 ≤ i ≤ m}.

In CBP, when a new (target) problem Π must be solved, the following phases

are carried out:

1. Plan Retrieval to retrieve elements from the library similar to Π. However,305

one may also want to consider the case-base elements that are similar to

Π after their objects have been systematically renamed; this corresponds

to identifying, for each case-base element 〈Π′, π′〉 similar to Π, a matching

(or mapping) among the objects of Π′ and the objects of Π that minimize

the adaptation effort in order to reuse π′. This is extremely important in310

our context, where teachers could decide to reuse a course, or a part of

a course, that they or their colleagues have been already effectively used.

Obviously, the students will not be the same, but, if their profile, goals

and the resources available are similar to the ones in the case base, our

system will be able to propose a new high quality plan (learning route) to315

the teacher with a limited number of changes w.r.t. the one stored in the

library.

2. Plan Adaptation, which allows us to reuse the solution plan of the case-base

element most similar to Π, without repeating the whole search process but

concentrating only on the discrepancies in the input plan.320

3. Plan Revision, which allows us to monitor and execute the solution plan

π for Π and repair it if failures occur during its execution. A failure in

planning is any type of situation that makes the execution of the plan

differ from what expected (i.e. planned).

4. Plan Storage, which allows us to store 〈Π, π〉 as a new element in the325

library or simply discard it.

Moreover, as it will be better described in Section 4.3, we have adopted

plan merging techniques (Garrido et al., 2012; Yang et al., 1992) so as to reuse

parts of plans previously stored in the case base improving the efficiency of the

approach.330
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4. Our approach: myPTutor

We propose a complete approach for e-learning personalization by using AI

case-based planning, and implement it as a prototype named myPTutor1. myP-

Tutor provides a mixed-initiative architecture that allows teachers and students

to work together during the learning cycle. Figure 1 shows the overall archi-335

tecture used in myPTutor that encapsulates such a circle. The structure is

relatively simple and consists of several modules that are executed sequentially,

thus elaborating the workflow, and involving several technological issues num-

bered in Figure 1:

1. It uses standard LO repositories and modeling (authoring) tools.340

2. It makes use of compilation techniques and algorithms for students’ infor-

mation acquisition to automatically create the PDDL planning domains.

3. It applies planning and CBP solving methods for generating the plans, i.e.

the personalized learning routes.

4. It shows these learning routes on a LMS and monitors the students’345

progress when executing/navigating the course to detect discrepancies.

Next, we describe this four issues in more detail.

4.1. An (authoring) tool to define the course

Currently there a many LO repositories to create courses. But the LOs

in themselves, as isolated elements, are insufficient to generate meaningful in-350

struction (Polsani, 2003), so it is important to define efficiently how LOs are

related and for what pedagogical purposes. Several editors can be used for

modeling and defining the course, from simple editors that provide pre-defined

textual templates (e.g. RELOAD, http://www.reload.ac.uk, or eXeLearning,

http://exelearning.org, etc.) to graphical tools that allow drag&drop of vi-355

sual components (Garrido et al., 2009), thus facilitating the course definition. In

1More info in http://servergrps.dsic.upv.es/myptutor
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Figure 1: Architecture of myPTutor.

both cases, the teachers (playing the role of course designers) define the course

by creating the LOs or reusing them from available repositories.

In particular, myPTutor uses an authoring graphical planning-oriented tool,

further described in Garrido et al. (2009), which provides an easy definition of360

LOs, their relationships and profile adaptation. The aim of using a planning-

oriented tool is twofold. First, to reuse and/or define classical LOs within a

course. Second, to be able to extend these LOs with more flexible features

that are very valuable in planning technology, such as hard/soft requirements

in LOs, resource necessities (and their cost) in LOs, and metric to be optimized.365

Obviously, finding out these planning features is not always a straightforward
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task and course designers sometimes fail in providing this information. If some

information is missed we are still able to take advantage of planning technology.

But clearly, the more features are defined in the LOs, the more flexibility has

the planner to find better plans; and the initial effort pays off to enhance the370

ulterior learning process.

4.2. From e-learning to planning. A translator module for PDDL compilation

4.2.1. LO metadata information and its use in modeling courses

An instructional course is formed by a set of LOs which are interrelated

by means of causal dependencies. That is, the relationship between two LOs375

represents the precedence requirement between the two of them; in essence, one

must be executed before the other in a cause-effect way. The relationships and

the properties of the LOs rely on the metadata information defined in each LO.

Metadata specification for LOs is usually specified in an XML standard for-

mat, such as LOM (LOM, 2002). This specification has many useful entries for380

pedagogical theories, but there are only three that are key to support planning

personalization, as seen in Figure 2. First, we need the technical platform re-

quirements (number 4 in Figure 2), seen as the particular resources for the LOs.

For instance, if multimedia or specific equipment is required for that LO. Sec-

ond, the educational information about the student’s learning style, difficulty385

of the LO and its typical learning time (number 5 in Figure 2). This gives us

an idea of the necessary time to deal with this LO for a student with the pro-

file recommended for this LO. Third, the relations as the content dependencies

which comprise hierarchical structures and orderings among LOs (number 7 in

Figure 2). The hierarchical structures use the IsPartOf relationship to represent390

a complex aggregation of LOs. On the other hand, there are also three types

of ordering relationships to represent causal dependencies, which are based on

the Dublin Core Metadata Initiative (http://dublincore.org): i) Requires, ii)

IsBasedOn, and iii) References. They represent hard preconditions, both con-

junctive and disjunctive requirements (Requires and IsBasedOn, respectively)395

and soft preconditions as a recommended requirement (References).
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Figure 2: The three main elements required to support planning personalization (from

http://en.wikipedia.org/wiki/Learning object metadata). Image used under the terms

of the GNU Free Documentation License.

4.2.2. Compilation of the PDDL model

The implicit formalism behind PDDL is the separation of the domain data,

which describes the general scenario, from the problem data, which describes

the particular situation within such a scenario. Thus, a PDDL model requires400

two text files. First, the domain file that contains all the available actions for

the planner to use. Second, a complete description of the initial state and the

goals to be satisfied from that state.

myPTutor uses a knowledge engineering method, based on Garrido et al.

(2009, 2013), to automatically extract the metadata information and compile the405

set of LOs as a PDDL domain. On the other hand, the students’ characteristics

and interests are compiled as the planning problem.

The PDDL domain. The compilation of the PDDL domain is a polynomial

process that iterates all over the LOs and generates one action template (oper-

ator in PDDL terminology) per LO. A thorough description of this process is410

given in Garrido et al. (2009), but in short each operator consists of:
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• A unique name taken from the LO name/identifier.

• One parameter, the student, to support the personalization and to make

the definition of preconditions/effects more flexible.

• The duration, as the LO learning time.415

• The preconditions, to filter the students’ profile and to support the de-

pendency relations. Other elements, such as the students’ role, technical

or educational requirements can be also modeled as preconditions.

• The effects, to represent the LO outcome. Other elements, such as op-

tional expressions on rewards w.r.t. the student’s profile, resource costs420

or additional metric values can be easily included.

An example of a PDDL action for a given LO, named LO-example, is as

follows:

(:durative-action LO-example

:parameters (?s - student)425

:duration (= ?duration (LO-example-learning-time ?s))

:condition (and

(at start (not (LO-example ?s done)))

(at start (LO-ex1 ?s done))

(or430

(at start (LO-ex2 ?s done))

(at start (LO-ex3 ?s done))))

:effect (at end (LO-example ?s done)))

As can be seen, the structure of the action template for LO-example, where

the student ?s is defined as the only parameter, is simple. The duration of435

LO-example is extracted from the learning time given by its metadata infor-

mation. In this example, the preconditions include the fact of not having this

LO done (to avoid repetitions), having LO-ex1 previously done (Requires de-

pendency) and LO-ex2 or LO-ex3 done (IsBasedOn dependency). The effect
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achieved at the end of this LO is simply the fact of having LO-example done,440

with the competence it involves.

The PDDL problem. The compilation of the PDDL problem models the

initial state, the goals and, when necessary, the metric to optimize. It is created

by extracting the relevant student’s features from his/her e-portfolio. The initial

state represents the students’ learning style, initial background and previous445

knowledge, and some other information (e.g. special equipment or resource

availability). The goal represents the learning outcomes, which generally involve

to pass the entire course or a part of it, usually in terms of a set of LOs.

An example of a PDDL problem, for a given student std1, is as follows:

(:init450

;Profile and learning style

(learning-style student1 theoretical)

(performance std1 high)

;Academic trajectory on languages and availability (initial background)

(language-level spanish std1 high)455

(language-level english std1 medium)

(availability std1 much))

(:goal (and

(LO-ex1 std1 done)

(LO-ex3 std1 done)))460

(:metric minimize (total-time)) ;shortest time plan

The structure of the problem is also simple. It includes the initial information

for std1 according to his/her particular profile, i.e. learning style and perfor-

mance, the languages (s)he knows (the LO usually includes this information as

part of its educational metadata, as depicted in number 5 of Figure 2) and time465

availability. In this example, the learning outcomes require both LO-ex1 and

LO-ex3 done. Finally, we define total-time, i.e. the plan makespan, as the

criterion to be optimized by the planner.
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4.3. Solving the planning problem via CBP

Analogously to Case-Based Reasoning (CBR) (Leake, 1996), our approach470

adopts two assumptions on the nature of the world: the world is regular and the

problems the agents encounter tend to recur. Thus we assume that to similar

problems correspond similar solutions, and that new problems are likely to be

similar to problems already encountered.

Our Case-Based approach is built on top of the OAKplan system (Serina,475

2010; Bonisoli et al., 2015), which computes an appropriate mapping between

the students and the objects of the reuse candidate and the corresponding ones

of the current instance. This mapping is computed in polynomial time using

kernel functions in order to define an accurate mapping function.

The different e-learning routes that our system adopts can be generated in480

different ways; they can be imported by courses manually generated by teachers

or can be generated automatically by our case-based planner (or by any other

PDDL planner (Chen et al., 2006; Gerevini et al., 2003; Gerevini & Serina, 2010;

Richter & Westphal, 2014; Vidal, 2014)), although in this case they have to be

validated by a teacher in order to be effectively used. Moreover, since we suppose485

to store in our library only high quality e-learning routes, we have adopted

plan merging techniques (Yang et al., 1992) in order to have the possibility to

also reuse subparts of stored e-learning routes. In particular, we decompose the

solution plans into subparts and then we store these subparts in the plan library

(if they are not already present) (Garrido et al., 2012).490

In short, when a new case base element 〈Π′, π′〉 is inserted into the CB, we

try to identify the subplans of every solution plan π′ that allow us to satisfy

every single goal, or a set of interrelated goals, and that can be inserted into

the plan library to increase the competence of the library in itself (Gerevini

et al., 2013a,b; Smyth & McKenna, 2001; Tonidandel & Rillo, 2002). The sets495

of interacting goals can be easily computed considering the causal link relations

and the actions in the subplans of π′ that are in common with the different

goals.

When a teacher requests an e-learning route for a new course (step 1 of
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Figure 3: Case Base planning steps of myPTutor in more detail.

Figure 3), the system searches in the plan library a plan that already solves500

the current e-learning planning problem. Otherwise, the system tries to pro-

gressively identify (sub)plans in the plan library that can be used in order to

reach the current goals. Intuitively, this phase consists in reusing parts of the

retrieved plans to complete a new one. This way of proceeding allows teachers

to easily analyze and validate the suggested e-learning plan. In fact, they can505

avoid reconsidering the full proposed plan and simply examine the new parts of

the plan that, for example, have been introduced for satisfying new goals of the

students or changes in the resource availability.

More precisely, we first apply the standard retrieval phase of OAKplan

(Serina, 2010) in order to find the best plan π that satisfies the current goals with510

a heuristic adaptation cost significantly lower than the corresponding generation

cost (step 2 of Figure 3). Next, we progressively analyze the unsatisfied goals
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of the current problem Π (step 3 of Figure 3), trying to identify in the library a

subplan πg that can be merged with the current partial plan π (step 4 of Figure

3) in order to satisfy the selected goal g (and other unsatisfied goals if possible)515

and reduce, at the same time, the global heuristic adaptation cost2. The process

stops when all the goals and preconditions are satisfied or when there is not a

suitable plan that can be extracted from the library that satisfies the remaining

unsupported goals (step 5 of Figure 3). Obviously, if the resulting plan π still

contains discrepancies, it does not represent a solution plan; however, it can520

be used as a starting point for the Plan Adaptation phase in order to find a

solution plan for the current planning problem (step 6 of Figure 3). Thus, the

goal of the plan adaptation phase is to reuse and modify an existing input plan

in order to solve a new problem avoiding to repeat the whole search process but

concentrating only on discrepancies in the input plan.525

The goal of the Plan Revision phase is to solve failures that can happen

during the e-learning route execution (step 7 of Figure 3). In the e-learning

context, a failure is anything that prevents one student from achieving his/her

goals. There are many examples for this, such as a particular LO the student

cannot achieve (eg. a test that is failed); when the student takes too long to530

finish a LO and, consequently, fails to start/complete the next LO; or when

a temporal constraint appears and the new agenda is incompatible with the

planned LOs. The system analyzes the plan execution trace in order to identify

failures that might prevent the correct execution of the remaining part of the

plan. In such a case, the system can react repairing the failures or aborting the535

plan and restarting the whole CB process (step 8 of Figure 3). When the plan

execution ends, the corresponding plan can be saved in the library or abandoned

(step 9 of Figure 3).

Regarding the Plan Storage phase, given a plan (or a subplan) π∗ and the

corresponding goal set, we identify the goals that are required for its execution540

defining in this way a new possible case base element c∗; then we search in the

2In our tests we have considered the earliest and the latest part of π where g can be satisfied
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case base if a case-base element cj exists whose goals and initial state perfectly

match with the current goals and initial state, respectively. In this case, we have

to decide whether to insert c∗ in the case base and remove cj , or simply skip the

insertion of c∗. In our tests we have used an update policy that maintains the545

plan with the lowest number of actions, but other policies could be used as well

considering, for example, the plan qualities, their makespan, or the robustness

to exogenous events.

It is important to point out that the definition of an appropriate e-learning

route for a set of students depends on different criteria, such as pedagogical550

issues, teacher’s preferences, students’ learning styles, etc. In general, supposing

that our plan library contains good quality cases that have been accurately

generated and validated, we are not only interested in e-learning routes that

best fit the students’ requirements but also in trying to generate routes that

are structurally similar to one or more elements of the case base. This concept555

corresponds to the notion of plan stability in the AI planning context (Fox

et al., 2006; Nguyen et al., 2012), which measures the differences a process

induces between an original plan and a new plan. As previously exposed, it

is assumed that problems tend to recur; this means that with high probability

the new problem could be structurally similar, although not identical, to one560

already solved or to a subpart of it. Moreover, in our context it is fundamental

to preserve the stability of the e-learning route of each student maintaining

the LOs planned and their relative order. In particular, it could be extremely

frustrating for a student obtaining a completely different route given a slightly

change in the current state or in the goals, and this should be obviously avoided565

especially when the original LOs are still valid.

Hence, we have adopted a simple although effective notion of plan distance

(Fox et al., 2006), which is defined in terms of the number of different actions

(LOs in our context) between two different plans, i.e. the number of LOs that

appear in the first e-learning route but are not included in the subsequent, plus570

the LOs that appear in the second plan but are not found in the first one.

Supposing that the current plan is no longer valid as a consequence of a change,
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the notion of stability (Fox et al., 2006; Nguyen et al., 2012) is defined as the

distance between the actual solution plan and the original one.

4.4. From planning to e-learning and its execution within a LMS575

Once the planner has generated a plan, i.e. a learning route per student, the

sequence of LOs is transformed into a learning manifest, which can be shown and

executed in any LMS that integrates a SCORM player. Consequently, the LMS

identifies, for each student, the instructional design that must be followed by

the student under IMS-CP or SCORM specifications. The LMS is fundamental580

not only to provide the students a sequence of LOs but also to visualize the

learning plan to the teachers, who can manually modify the LOs proposed by

the planner and, finally, to validate the instructional design the students have

to perform.

The main objective of the LMS is to provide the navigation mechanisms585

within the sequence of LOs of the course to each student. In addition to this,

it is also valid to monitor the progress of the student throughout the course, as

well as to detect serious discrepancies between the current situation of its learn-

ing sequence and the situation that was originally planned to be executed so far.

These discrepancies appear due to many factors, such as a change in the pro-590

file information, the hardware of software resource availability, or the expected

execution of the LOs. These situations are automatically recovered from the

LMS database (which includes the student’s e-portfolio), as it is immediately

updated after an evaluation activity is finished and/or graded.

5. Integration with Moodle. Putting all together595

myPTutor is general enough to be compatible with any LMS and to support

any PDDL planner. As a proof of concept and to study its viability, we have

implemented it on top of Moodle (http://moodle.org). Although the technical

details for the integration with Moodle are beyond the scope of this paper,

we have implemented several extensions to allow a mixed-initiative mechanism600
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between users (students and teachers), the database, GUIs and the planning

services. These extensions allow next, both to students and teachers, to close

the cycle presented in Figure 1, which means that the plan progress is monitored

and, in case of discrepancies, the plan is adapted to the new scenario.

5.1. Extending Moodle to enhance personalized e-learning605

Moodle is a complex platform with many capabilities and utilities but, un-

fortunately, it was not originally designed to support the kind of e-learning

personalization that myPTutor provides, which limits its direct applicability.

Therefore, we have had to tune some of its modules to solve these limitations.

First, we have defined new tables in the relational database to support plan-610

ning preconditions, the students’ background (i.e. the initial state), the goals

that are compulsory for each course and those that can be optionally chosen

by each student. Second, new forms have been added to the teacher’s GUI to

define the course goals (compulsory and optional) and the initial profile required

for the students (see Figure 4-1). Similar forms have been designed for students615

to input their profile information and desired optional goals. Once this infor-

mation has been input into the system, it automatically invokes the planning

Web service to calculate a personalized learning route per student, which can

be generated from scratch or by reusing previous cases from the CBP library

(Figure 4-2).620

Finally, other forms are designed to execute and monitor the state of the

learning route. myPTutor also outputs the learning route as a Gantt chart in

Microsoft Project format (see Figure 5). From the teacher’s point of view, (s)he

can observe this chart of expected LOs and manually compare it with the already

done sequence of LOs. From the student’s point of view, this chart shows the625

schedule of the next LOs to be executed. Again, if during the student execution

of the learning route the system detects discrepancies between the expected and

real state, a message is displayed to the student, as depicted in Figure 4-2. This

message indicates the remaining LOs that cannot be executed from the current

state, and the process stops until the system performs an adaptation of the630
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Figure 4: 1): module that allows teachers to select the course, its goals, background pre-

conditions and adapt SCORMs to different students’ profiles through planning services. 2):

monitoring during the student SCORM execution. Note that the GUI is still very simple

because we are more interested in validating our approach than in having a ready-to-deploy

tool.

route. This process continues until the learning route is completed and all goals

are achieved.

5.2. Closing the e-learning cycle

As Figure 1 depicts, steps 1–3 perform the generation of a personalized

learning route. But once this route (i.e. plan) has been generated it needs to635

be uploaded to the LMS (Moodle in our case) to be used by both students and

teachers (step 4) as part of a learning manifest. The LMS identifies, for each

student, the instructional design that must be followed by the students under

the IMS-CP or SCORM specifications. This allows students to navigate and
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Figure 5: Gantt chart that shows the learning routes of three students.

execute the course.640

Moodle does not only offer the students the sequence of LOs to use, but it

also provides a simple and efficient way to monitor the progress of each student

in his/her learning route. In other words, Moodle is very useful for navigation

matters of LOs, giving information on the structure and calendar of LOs. But

it also keeps trace of the students’ progress, i.e. the LOs that a student takes.645

Also, when some tests or questionnaires are applied to evaluate the students’

comprehension of the objectives, it automatically stores their performance in

the database. This is an extremely good opportunity to monitor the progress

of the students, to check the plan execution and detect discrepancies.

Discrepancies appear during execution due to many factors (Morales et al.,650

2011), such as changes on the background/profile information, or the execu-

tion of the LOs in themselves. For instance, on the one hand, the students’

profile can be easily modified in Moodle: incrementing/decrementing their per-

formance levels according to previous evaluation tasks, improvement in their

foreign language levels, acquisition of new resources (e.g. multimedia equip-655

ment or software), etc. On the other hand, differences between the expected

state (obtained by a flawless execution of the generated plan) and the real state

(resulting from the current execution of the plan) may arise, such as when the

student does not pass a critical evaluation task, or when a LO with dependen-
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cies takes more time than initially scheduled. These situations, and others that660

can be defined in the future can be modified by the students, by the teachers or

directly updated by Moodle. In any case, this information can be automatically

recovered from the LMS database.

When discrepancies are detected, the system executes the remaining part of

the learning plan to identify if it contains flaws.If a flaw is found, it is highlighted665

to the teacher to be repaired manually or to invoke a planner to find a new plan

to fix the flaw. If it is no a flaw found, it is provided a new schedule of the LOs

that have not been achieved or provided yet.

The plan adaptation stage consists in reusing and modifying previously gen-

erated plans to solve a new problem and overcome the limitations of planning670

from scratch. But myPTutor uses the same step 3 of Figure 1 for this, in which

the entire part of the plan is provided to the CBP, thus increasing the possibili-

ties to fix the flaws with minimal modifications. The core idea here is to preserve

the learning sequence and its components initially proposed to each single stu-

dent as much as possible. In fact, it makes no sense to propose a sequence of LOs675

completely different to the previous ones and this should be avoided, because

in many cases most of the LOs that have been already executed can be reused.

After finding the plan in the library and repairing it with the plan adaptation

techniques discussed in Section 4.3, the solution plan can be inserted into the

library or discarded. When the plan execution finishes successfully, the plan is680

stored in the case base, closing the learning cycle.

6. Evaluation and experimental results

In this section we report the experimental results obtained by conducting

both a qualitative and a quantitative evaluation of the techniques proposed to

evaluate our approach. For this, we have experimented with several courses685

defined in Moodle, but in this paper we focus just on four courses:

• one medium-size Course1 with 35 LOs on Discrete Maths used in Castillo

et al. (2010);
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• one real, large-size Course2 with 90 LOs on Natural Sciences based on

http://www.profesorenlinea.cl;690

• two real, large-size courses: Course3 with 88 LOs on Metaheuristics, and

Course4 with 62 LOs on Structured Programming. Both courses are part

of the syllabus for the Bachelor’s degree in Computer Engineering of the

Universidad Tecnologica de la Mixteca (Mexico), http://www.utm.mx/

∼computacion/tabla2008.html.695

6.1. Qualitative evaluation

For this evaluation we have used the Structured Programming course (Course4 ).

All the LOs were defined by a professor with experience in this topic and fol-

lowing the course’ guidelines defined in the syllabus. We also considered three

classes of students with different profiles; in particular, different learning styles,700

different temporal requirements, as well as different knowledge on the topic and

foreign languages.

The evaluation was calculated according to several opinion questionnaires,

which were given to a group of participants (i.e. ten professors that are giving

or have given this course, and ten students that are currently enrolled in the705

course), to assess different aspects such as:

• Adequacy of the learning routes to the student’s profiles.

• Size and duration of the route w.r.t. the students’ profiles and their

previous experience in the course topics.

• The contents and structure of the learning routes, in order to maintain710

the congruence with other LOs of the course.

The evaluation was divided into two tests: Test 1 showing the participants

the original learning route for each student’s profile, and Test 2 making sig-

nificant changes in the profiles and showing professors and students the new

adapted learning routes.715
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The learning routes for Test 1 were provided by each planner (OAKplan,

lpg and sgplan63) and we took the best “quality” plan, in terms of reward.

Reward is a measure that increases when a LO that best fits with the student’s

learning style is selected to be included in his/her route, based on the weights

proposed in Baldiris et al. (2007). In particular, the planner that provided720

the best quality plans in this test was OAKplan. For Test 2, we used a new

optimization metric, which measures equally the reward and stability, by using

OAKplan and OAKplan-merge for replanning (OAKplan-merge (Garrido

et al., 2012) is our case-based approach with merging techniques, which has been

implemented on top of OAKplan (Serina, 2010)). In this test, the planners that725

provided the best results were OAKplan-merge and OAKplan, with the best

learning routes in two classes and one class of students, respectively.

After generating the learning routes, and for the qualitative evaluation, we

showed the learning routes to our participants by using a Gantt diagram that

included information about each LO, such as duration, activity type, difficulty,730

language and hardware/software requirements. The results of the questionnaires

for both tests are given in Tables 1 and 2, respectively. In Table 1 we can find

that the length in terms of LOs, duration and adaptation were considered good

for both professors and students in most of the 50% of the cases. On the

other hand, adaptation was better considered by students than by professors,735

as observed in Table 2. Also students thought the main problem of the original

learning route was the length, whereas professors thought it was more related

to the difficulty and limitations in resources and students’ performance.

All in all, professors think that before using a learning route (both the origi-

nal and, primarily, the adapted one when necessary) it has to be, at least quickly,740

checked to detect weaknesses that jeopardize students’ success with the course.

Also, most of the disadvantages found are related to the lack of variety in the

LOs for very different learning styles. Thus, creating more and better LOs is

essential. Finally, professors agree that giving just one duration to each LO is

3For a further description of these planners see http://ipc.icaps-conference.org
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Questions
Professors Students

Yes No Yes No

Are the number of LO’s appropriate for the course? 7 3 6 4

Is the duration of the sequence appropriate? 5 5 7 3

Is the adaptation of the contents to the student’s learning

style appropriate?

8 2 8 2

Table 1: Qualitative evaluation for the initial learning route for Course4 (Test 1).

Questions Professors Students

Is the new sequence similar to the

first one?

Yes No Yes No

5 5 7 3

Is it well adapted to the changes

in the student’s profile?

Yes No Yes No

8 2 9 1

What was the main reason for fail-

ing executing the original course?

Eg. difficulty of the course,

length, time constraints, learn-

ing outcomes that are difficult to

achieve, others.

Difficulty of the course.

Not enough resources or

students’ capabilities

Length

Do you consider the new

sequence better, equal or worse

than the original one?

Better Equal Worse Better Equal Worse

3 7 0 3 7 0

Table 2: Qualitative evaluation after making changes in the profiles, thus having to adapt the

original learning route used in Table 1 (Test 2).

a very imprecise task, and defining a min-max interval for the learning time745

for each LO is more recommendable, while it also helps find better quality and

more flexible learning routes. However, this means that a new way to represent

this interval in state-of-the-art planners needs to be considered.

6.2. Quantitative evaluation

This evaluation was performed in order to analyze the performance and750

scalability of the techniques proposed at the increase of the number of students

involved and the number of discrepancies w.r.t. the original learning route. The

compilation of a standard PDDL model facilitates the use of any modern planner

and, therefore, we can run many computational experiments. In particular, we

tested the effectiveness of our case-based approach with merging techniques755

(OAKplan-merge), vs. plan generation techniques when discrepancies appear
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within execution. We focus on: i) the scalability by means of the CPU time

needed to obtain (retrieve&adapt or replan) the sequences, ii) the best solutions

as regards plan quality with a better reward, and iii) the best stability obtainable

within a fixed deadline.760

Regarding Course1, we have simulated four configurations (using 20, 40, 60

and 80 groups of students, respectively), and also simulated 10 variants or ex-

ecutions per group, then we have defined 44 planning problems in total. For

Course2, we have simulated nine initial profile’ configurations (with 10, 20. . . 90

fictitious students, respectively), and defined 10 variants per configuration (plus765

one additional variant for the 90-th problem), then we have defined 100 plan-

ning problems (the 9 initial configurations plus the 91 variants). When we say

variants it means artificial changes of the student profile and/or simulations of

the LOs execution that can be positive or negative according to the performance

of the student and that may happen in an incremental way, i.e. by making some770

equipment no longer available, including new restrictions, etc.

In Course3 and Course4, we have tested a random variants creation consid-

ering up to 100 students. In fact, we have simulated ten initial student profiles

(given 10, 20. . . 100 fictitious students, respectively), and generated 9 variants

for each configuration, using in this way 100 learning routes. The variants775

are generated by randomly modifying the initial facts of the original problem.

Moreover, the number of modifications is increased systematically considering

the number of students: we allowed 4 modifications per student, applying thus

40 modifications to the initial state of planning problems with 10 students and

400 modifications of planning problems with 100 students.780

In addition to OAKplan and our case base planner OAKplan-merge, we

have made use of two state-of-the-art planning systems, lpg and sgplan6.

Tests were performed on an Intel(R) Xeon(TM) CPU E5-2620 2.00GHz with

10GB of RAM, and censored after 30 minutes. Since lpg and OAKplan use a

local search approach, the results correspond to the median value over five runs.785

In our experiments, the solution plans (i.e. the learning routes) inserted in the

case base were calculated using the best quality plans obtained by sgplan6,
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lpg or OAKplan itself on the planning problems of the initial-configuration

used to generate the relative variants.

Figure 6 illustrates the results of the different planners in order to solve our790

benchmark domains. On the left we compare OAKplan (with and without

merging techniques) vs. lpg and sgplan6 using a “complete” case-base that

contains all the base problems and the corresponding solutions (the case-base for

the merging variants contains also the selected subplans of the base problems).

Here we can observe the general good behavior of the case-based techniques,795

which are comparable in terms of CPU-time to sgplan6. The results show

that the case-based approach is in the worst case not slower than replanning,

and sometimes faster. In addition, plan retrieval techniques do not prove so

useful in case of significant changes and when establishing the route requires a

higher amount of computational resources than regenerating a new one. But,800

as Table 4 shows, the advantages in making this effort pay off as regards plan

stability.

In Figure 6-right, we analyze the behavior of OAKplan and OAKplan-

merge to study the impact of using a case base considering: i) a case base

created using only the smallest base problem (with 10 students), ii) a case base805

(“Incremental” lines) where the base problems are progressively inserted after

the corresponding variants have been evaluated (it initially contains only the

smallest base problem). In the first case, we primarily want to evaluate the

ability of the merging techniques to reuse the solutions available in the case

base at the increase of the “differences” (in terms of number of students) among810

the current situation and the elements stored in the case base. In particular,

we want to examine the scalability in terms of number of students, which is

extremely important in our context since a teacher could decide to evaluate the

effectiveness of an e-learning course considering a limited number of students

before using it for the whole class. Considering, for instance, the tests with the815

small case base and the Course2, we can observe the general good behavior of

OAKplan-merge, while OAKplan without merging techniques is able to solve

only 55 variants.
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Figure 6: CPU time in milliseconds (on a logarithmic scale) required by the different planners

to solve our benchmark domains. In the plots on the left we compare the case-based approaches

(OAKplan and OAKplan-merge) vs. replanning (lpg and sgplan6). On the right, we

compare the case-based approaches considering different input case bases.
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Regarding the tests with the incremental case base, we want to analyze the

behavior of OAKplan considering a case base that contains elements which are820

structurally not too much different w.r.t. the current situation. For example,

considering the solution of the variants with 50 students, the case base does not

contain the base problem with 50 students but it contains the base problems

with 10, 20, 30 and 40 students. Here we want to examine the situation where

a teacher has already used a course in different classes and wants to reuse the825

stored experiences in a new (slightly bigger) class. As expected, the behavior

of OAKplan-merge does not change significantly. On the contrary, the CPU-

time of OAKplan without merging techniques decreases significantly since it

can replan starting from a case base element with a slightly lower number of

students w.r.t. the current situation. Moreover, it is now able to solve all the830

variants considered.

Table 3 summarizes the experimental results for the different planners con-

sidered in terms of percentage of solved problems, average total CPU-time in

seconds and plan quality. Note that we want to maximize the total reward

of the students and so the higher the quality, the better the plan is. Here835

we can observe the general good behavior of the case-based techniques, which

is particularly evident considering the IPC scores reported between brackets.

Briefly, each planner receives a score between 0 and 1 for each problem solved.

The score is the ratio between the time/quality/distance4 value of the solu-

tion found and the time/quality/distance value of the best solution found by840

any other planner in the table. The score is summed across all problems for

a given planner; the higher the score, the better the planner is. In particular,

OAKplan is the fastest, followed by OAKplan-merge and sgplan6. Note

that the retrieval and adaptation process sometimes has an impact in the qual-

ity: the route needs to be modified to be suitable for a new configuration instead845

of being constructed from scratch. Our tests demonstrate that the quality for

the case-based approach may obtain better results than replanning, especially

4Distance values are considered in Table 4

34



Planner/Courses % Sol. Time (score) Quality (score)

OAKplan

Course1 100.0 % 2.97 (31.31) 34284.773 (43.00)

Course2 100.0 % 21.49 (90.14) 72157.200 (99.00)

Course3 91.0 % 174.42 (84.02) 130806.538 (90.00)

Course4 100.0 % 205.47 (87.14) 114094.930 (99.00)

Total 97.3 % 159.59 (294.75) 93131.189 (334.00)

OAKplan-merge

Course1 100.0 % 3.81 (29.69) 34284.773 (43.00)

Course2 100.0 % 22.92 (84.66) 72189.000 (99.00)

Course3 100.0 % 254.83 (88.55) 142099.650 (99.00)

Course4 100.0 % 118.62 (82.25) 114051.130 (99.00)

Total 100.0 % 115.71 (287.38) 99832.872 (343.00)

LPG-td

Course1 100.0 % 46.80 (23.15) 34253.409 (43.00)

Course2 39.0 % 158.66 (21.47) 31163.974 (38.00)

Course3 12.0 % 368.02 (4.95) 29485.167 (11.00)

Course4 21.0 % 161.40 (8.75) 33148.476 (20.00)

Total 33.7 % 1217.05 (60.12) 10965.863 (115.00)

SGPlan

Course1 100.0 % 1.38 (43.00) 34205.682 (43.00)

Course2 100.0 % 23.43 (88.50) 69883.500 (99.00)

Course3 30.0 % 6.55 (28.89) 47385.333 (29.00)

Course4 40.0 % 5.69 (38.95) 51018.875 (39.00)

Total 62.2 % 688.45 (202.34) 34754.608 (213.00)

Table 3: Percentage of problems solved, average CPU-time (seconds) and average Quality of

OAKplan, OAKplan-merge, sgplan6 and lpg. The corresponding IPC scores are reported

between round brackets.

in the most difficult instances. Furthermore, it is important to point out that

the plan quality obtained by lpg and sgplan6 are penalized by the low per-

centage solution rate. In fact, easy problems are characterized by low values850

of plan quality. Similarly, the solution times reported in sgplan6 for Course3

and Course4 are related to the solved problems, while in the definition of the

“Total” (average) CPU-time we have associated the time limit (1800 seconds)

to the unsolved problems.

Table 4 summarizes the experimental results for the different OAKplan con-855

figurations considered in terms of percentage of solved problems, average total

CPU-time in seconds, matching time in seconds, plan quality, plan distance and
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Planner/Courses Time Match. Quality Dist. Stab.

Sol. % (Score) Time (Score) (Score)

OAKplan

Course1 100.0 % 2.97 (39.6) 2.066 34285 (43.13) 9.9(32.8) 0.995

Course2 100.0 % 21.49 (93.0) 8.181 72157 (99.38) 54.6(82.4) 0.989

Course3 91.0 % 174.42 (85.4) 23.706 130807 (92.23) 233.9(34.8) 0.958

Course4 100.0 % 205.47 (91.9) 16.964 114095 (100.59) 251.1(36.7) 0.949

Total 97.3 % 159.59 (311.8) 14.217 93131 (338.33) 152.0 (189.7) 0.969

OAKplan-merge

Course1 100.0 % 3.81 (36.9) 2.629 34285 (43.13) 2.6(43.0) 0.998

Course2 100.0 % 22.92 (87.5) 9.736 72189 (99.35) 12.5(87.3) 0.997

Course3 100.0 % 254.83 (89.4) 76.556 142100 (101.37) 222.1(46.0) 0.963

Course4 100.0 % 118.62 (85.7) 43.565 114051 (100.61) 208.8(37.5) 0.956

Total 100.0 % 115.71 (301.4) 38.085 99833 (347.47) 129.2 (216.9) 0.975

OAKplan-small

Course1 100.0 % 24.25 (30.8) 0.569 34387 (43.01) 454.9(16.0) 0.641

Course2 55.0 % 198.33 (33.5) 0.595 41534 (56.86) 649.9(30.4) 0.582

Course3 27.0 % 483.77 (15.9) 0.821 51090 (26.17) 497.2(10.8) 0.730

Course4 31.0 % 170.68 (18.5) 0.566 45258 (30.71) 506.0(10.0) 0.681

Total 45.6 % 1050.43 (101.3) 0.621 19127 (159.75) 246.2 (70.3) 0.644

OAKplan-small-merge

Course1 100.0 % 7.80 (32.5) 2.092 34387 (43.01) 32.7(18.5) 0.982

Course2 100.0 % 64.83 (66.8) 5.168 69268 (103.84) 5.6(81.6) 0.998

Course3 85.0 % 594.14 (56.6) 38.081 127151 (85.30) 47.7(81.6) 0.986

Course4 99.0 % 316.30 (68.4) 34.349 108080 (104.38) 50.4(94.6) 0.983

Total 95.3 % 323.07 (226.8) 22.092 87057 (339.52) 32.1 (279.3) 0.988

OKplan-incr

Course1 100.0 % 3.46 (40.6) 0.844 34332 (43.06) 230.8(16.8) 0.826

Course2 100.0 % 50.72 (82.8) 5.253 70814 (101.89) 356.6(52.9) 0.864

Course3 68.0 % 346.55 (44.9) 7.268 104002 (67.70) 601.3(18.6) 0.822

Course4 100.0 % 290.93 (67.0) 8.645 115920 (99.79) 577.0(22.6) 0.842

Total 90.6 % 323.03 (238.4) 6.158 79233 (315.43) 419.7 (113.9) 0.842

OAKplan-incr-merge

Course1 100.0 % 5.96 (33.8) 2.225 34330 (43.06) 16.5(20.5) 0.989

Course2 100.0 % 33.47 (75.7) 9.921 71189 (101.46) 22.7(66.8) 0.993

Course3 100.0 % 320.24 (78.5) 94.853 142966 (100.58) 215.0(52.5) 0.964

Course4 100.0 % 150.94 (76.1) 57.077 115254 (100.48) 186.7(42.1) 0.961

Total 100.0 % 147.46 (266.7) 47.334 100150 (348.59) 125.5 (185.0) 0.975

Table 4: Percentage of problems solved, average CPU-time (seconds), average matching

Time, average Quality, average Distance and average Stability of OAKplan, OAKplan-merge,

OAKplan-small, OAKplan-small-merge, OAKplan-incr, OAKplan-incr-merge. The corre-

sponding IPC scores are reported between round brackets.
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plan stability. In particular, OAKplan is the fastest, followed by OAKplan-

merge and OAKplan-incr-merge. Note that the matching time of the “merge”

versions is significantly higher than the others since they have also to compute860

the matching with the subplans; this determines higher CPU times for the re-

trieval phase but it allows us to significantly improve the percentage of solutions

obtained, the Distance Score and the plan stability. Standard OAKplan-incr-

merge produces the best quality plans, strictly followed by OAKplan-merge,

but OAKplan-small-merge and OAKplan also perform extremely well.865

Regarding the plan distance and plan stability, we can observe the good

behavior of OAKplan-small-merge with values extremely different w.r.t. the

other planners. This is related to the merging of small subplans in order to

obtain the complete solution plan. Anyway, we can observe the general good

behavior in terms of plan distance and plan stability of the “merge” versions870

w.r.t. the others. Their distance values are obtained considering the amount of

different actions as regards the matching plan provided by the retrieval phase,

which is not necessarily obtained directly by a single solution plan stored in the

case base (as in OAKplan), but also using the different subplans (highlighted to

the teachers) obtained by the analysis of the case-based elements that best fit the875

current goals and initial state. This is highly appreciated in an e-learning setting

because both students and teachers prefer a kind of inertia in the (already

known) learning routes.

Regarding the plan distances produced by OAKplan without merging tech-

niques w.r.t. the solution of the base problems we can observe values which880

are similar to the ones obtained for replanning. This is not surprising since

the elements stored in the small and in the incremental case bases are very

different w.r.t. the new planning problems. On the contrary, the performance

of OAKplan-merge is extremely good, both in the small and incremental case

bases. However, it is important to point out that in this case the comparison in885

terms of plan distances are performed considering directly the plan provided by

the retrieval phase. It is up to the teacher to decide if (s)he wants to validate

elements that only deal with previously executed courses or also subparts of
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them.

Globally, we can observe that the use of plan merging techniques is poten-890

tially very effective in our context, allowing us to obtain efficiently new e-learning

routes which are very similar to the combination of previously executed ones

(or subparts of them). This is extremely important since it allows to highlight

the teachers the changes w.r.t. already executed learning routes, facilitating the

validation process. Furthermore, the stored plans can also contain some notes895

regarding, for example, the pedagogical motivations associated to the selection

or combination of specific LOs, annotated by the teacher during the creation of

the original learning route, or during previous executions of the learning route.

In this case, these notes can be easily re-examined by the teachers facilitating

the learning route validation process.900

7. Discussion and lessons learnt

The key lesson we have learnt is that planning technology has demonstrated

very helpful for e-learning personalization, but it must be introduced transpar-

ently to the user. Obviously, teachers and students do not want to deal with

PDDL constructs. On the contrary, they want to continue using their courses,905

LOs and LMSs with no changes. And here an automated knowledge engineering

compilation based on LOs’ metadata is very useful. But this metadata definition

is sometimes tricky. In our qualitative evaluation, professors pointed out that

this is one of the main drawbacks when defining courses by combining LOs, as

they are not always fully specified and varied enough. Consequently, this is still910

a challenging issue: to find LO repositories designed to be interoperable, thus

reducing the effort necessary to establish relations with other LOs and create

big courses.

Personalization of contents in e-learning has been addressed by other ap-

proaches, but they have some limitations w.r.t. finding the best sequence of915

contents. On the contrary, the generation of a learning route is one of the

main strengths of myPTutor. But this is not the only one. The fact of using
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AI planning techniques allows us to find an adequate sequence of contents in

an automated way. We automatically compile a PDDL planning model from

the LOs’ metadata. This standard model makes our PDDL planning approach920

solver-independent, which is a good property in any approach. In particular,

any PDDL-compliant planner can be used to solve the model and generate a

fully-tailored learning route per student. An additional advantage of our PDDL

planning approach vs. (collaborative) recommender approaches is that it does

not need to deal with previous information about other students to create the925

route. In other words, we just deal with the information of the current student.

Another strong point that we consider very useful here is the application

of case-based planning for adaptation when problems appear during execution.

Our CBP approach not only recommends personalized learning contents that

remain static during the course, but it also considers previous recommendations930

to similar students profiles that can be used when some of the profile settings

change during the learning route execution, or when a learning objective has

not been properly reached, making it necessary to include additional LOs to the

route. Loosely speaking, we use previous cases for repairing, while also trying

to improve the quality of the original route if possible. This resembles collabo-935

rative recommenders, in terms of reusing recommendations of previous similar

students. Although this resemblance is very interesting and shows very effec-

tive, it requires, first, to acquire information about past students and, second,

to store and process CBP repositories that may become large and expensive.

And these may involve some limitations.940

Our approach still has some limitations. First, the PDDL planning approach

cannot make use of what has been learnt from previous students because we

want to be able to use any planner. “What is good for past students may also

be good for a new similar student” is an idea that we can only use in the CBP

approach, when we need to adapt the plan to new requirements and keep a945

stable solution. This means our PDDL planning model does not take advantage

of social network scenarios (Comi et al., 2015a). On the contrary, the CBP

approach is effective when a significant number of learning sessions have been
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performed. In this sense, these two approaches are somewhat complementary:

the PDDL planning approach is particularly useful at the early stages of an950

e-learning course, whereas the CBP approach is more indicated after a number

of learning sessions.

Second, the integration in Moodle is not straightforward and requires a sig-

nificant amount of extra coding and changes to the database of Moodle. This

makes it difficult to use our approach as a plug&play module. This also prevents955

our approach from offering easy personalization of the display, as we depend on

Moodle’s visualization capabilities. However, this can also be seen as an advan-

tage because we will take advantage of the new developments of Moodle at low

cost.

Finally, our approach does not consider the use of an ontology by different960

teachers. In fact, the use of an ontology could significantly increase the reusabil-

ity of different LOs, as proposed in Comi et al. (2015b). This would allow us to

derive a global representation from personal ontologies of different agents, tak-

ing advantage of the multi-agent paradigm. This way, each agent might enrich

its own ontology by using semantic negotiation.965

As a final lesson, personalization of e-learning routes is important for both

educational and enterprise organizations, as it supports a lifelong learning pro-

cess. But based on our experience, students seem more enthusiastic about

personalization than teachers, who still believe in e-learning as an instructor-

centered process and want to check, even in a fast way, the learning routes that970

are automatically generated. Consequently, adopting this and other types of

personalization still raise further challenges and its horizon is not fully clear.

The possibility of directly encoding in the e-learning metadata standards all the

information related to group formation+collaboration and resource constraints

is still a hot topic, and it will increase the applicability of planning and, conse-975

quently, of our approach.
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8. Conclusions and future work

We have described a flexible approach for intelligent personalization of e-

learning routes, which combines students’ and profiles’ modeling, knowledge

representation, planning and case-based planning techniques to recommend the980

best learning route (of contents) to each student. As a proof of concept, our

approach has been integrated on top of Moodle, thus using widely approved

educational standards, such as SCORM and IMS. In Moodle we can monitor the

students’ progress and interaction in the course and use an adaptation method

to repair unexpected discrepancies, which is very interesting in large courses985

with a high number of students.

In order to check the applicability of our approach, we have run a signifi-

cant number of experiments. They show a good performance according to the

time required to calculate and re-adapt the learning route, as well as to the

satisfaction degree after this process.990

Our future work addresses four main issues. First, to extend the definition

of the LO metadata with more flexible fields, such as range-based durations,

students’ profiles and languages, etc. to help define courses more easily, thus

allowing for more flexible learning routes. Second, to enhance the concept of

plan stability to manage more complex resource and temporal constraints, such995

as those involving group participation tasks. The idea is to introduce in the

new route the “structural properties” of the original learning route modeled

as preferences that should be satisfied. Third, to extend our Web services to

provide a standard API to allow LMS-based agents to monitor changes in the

students’ profiles, thus improving the users’ interaction to represent more issues1000

about the LOs, especially for teachers. This will facilitate the evaluation of our

approach in a large number of scenarios. Fourth, to include an ontology system

to increase the reusability of different contents.
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teligencia Artificial (CAEPIA). LNAI 7023 (pp. 232–242). Springer-Verlag.

Natek, S., & Zwilling, M. (2014). Student data mining solution-knowledge

management system related to higher education institutions. Expert Systems1145

with Applications, 41 , 6400–6407.

Nguyen, T., Do, M., Gerevini, A., Serina, I., Srivastava, B., & Kambhampati,

S. (2012). Generating diverse plans to handle unknown and partially known

user preferences. Artificial Intelligence, 190 , 1–31.

Park, D., Kim, H., Choi, I., & Kim, J. (2012). A literature review and classifi-1150

cation of recommender systems research. Expert Systems with Applications,

39 , 10059–10072.

Pena-Ayala, A. (2014). Educational data mining: a survey and a data mining-

based analysis of recent works. Expert Systems with Applications, 41 , 1432–

1462.1155

Polsani, P. (2003). Use and abuse of reusable learning ob-

jects. Journal of Digital Information, 3(4). Available at

http://journals.tdl.org/jodi/article/view/89/88 (accessed April 2016).

Richter, S., & Westphal, M. (2014). The LAMA planner: Guiding cost-based

anytime planning with landmarks. CoRR, abs/1401.3839 . URL: http://1160

arxiv.org/abs/1401.3839.

Rosaci, D., & Sarne, G. (2010). Efficient personalization of e-learning activi-

ties using a multi-device decentralized recommender system. Computational

Intelligence, 26 , 121–141.

SCORM (2004). Sharable Content Object Reference Model. Available at1165

http://scorm.com (accessed April 2016).

47

http://arxiv.org/abs/1401.3839
http://arxiv.org/abs/1401.3839
http://arxiv.org/abs/1401.3839


Serina, I. (2010). Kernel functions for case-based planning. Artificial Intelli-

gence, 174 , 1369–1406.

Smyth, B., & McKenna, E. (2001). Competence models and the maintenance

problem. Computational Intelligence, 17 , 235–249.1170

Spalazzi, L. (2001). A survey on case-based planning. Artificial Intelligence

Review , 16 , 3–36.

Tonidandel, F., & Rillo, M. (2002). The FAR-OFF system: a heuristic search

case-based planning. In International Conference on Artificial Intelligence

Planning and Scheduling (AIPS) (pp. 302–311).1175

Ullrich, C., & Melis, E. (2009). Pedagogically founded courseware generation

based on HTN-planning. Expert Systems with Applications, 36 , 9319–9332.

Vidal, V. (2014). Yahsp3 and yahsp3-mt in the 8th international planning

competition. In Proceedings of the 8th International Planning Competition

(IPC-2014). Portsmouth, USA.1180

Yang, Q., Nau, D., & Hendler, J. (1992). Merging separately generated plans

with restricted interactions. Computational Intelligence, 8(4), 648–676.

48


