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Abstract: 

 
This paper is concerned with applications of a dual Neural Network (NN) and Support Vector 

Machine (SVM) to prediction and analysis of beta barrel transmembrane proteins. The 

prediction and analysis of beta barrel proteins usually offer a host of challenges to the research 

community, because of their low presence in genomes. Current beta barrel prediction 

methodologies present intermittent misclassifications resulting in mismatch in the number of 

membrane spanning regions within amino-acid sequences.  

To address the problem, this research embarks upon a NN technique and its comparison with 

hybrid-two-level NN-SVM methodology to classify inter-class and intra-class transitions to 

predict the number and range of beta membrane spanning regions. The methodology utilizes a 

sliding-window-based feature extraction to train two different class transitions entitled 

symmetric and asymmetric models. In symmetric modelling, the NN and SVM frameworks 

train for sliding window over the same intra-class areas such as inner-to-inner, 

membrane(beta)-to-membrane and outer-to-outer. In contrast, the asymmetric transition trains 

a NN-SVM classifier for inter-class transition such as outer-to-membrane (beta) and membrane 

(beta)-to-inner, inner-to-membrane and membrane-to-outer. For the NN and NN-SVM to 

generate robust outcomes, the prediction methodologies are analysed by jack-knife tests and 

single protein tests. The computer simulation results demonstrate a significant impact and a 

superior performance of NN-SVM tests with a 5 residue overlap for signal protein over NN 
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with and without redundant proteins for prediction of transmembrane beta barrel spanning 

regions. 

Keywords: Beta barrel prediction, protein analysis, Neural Networks, Support Vector Machine. 

1 Introduction  
 

Integral membrane proteins are a type of transmembrane proteins that are permanently attached 

to the membrane. According to their tertiary structure, they can be divided into alpha-helical 

and beta-barrel proteins (Rangwala and Karypis, 2010). The structural properties of alpha helix 

transmembrane domains are well established including the amino acid composition, spatial 

interaction between helical spaces and helical bundle packing (Russell and Cohn, 2012). For 

transmembrane beta-barrels, the integral protein segments are known to occur in outer 

membranes of bacteria, mitochondria and chloroplasts (Neupert and Lill, 1992). Beta barrel 

structures are known to be characterised by the number of anti-parallel beta strands and by the 

number representing the angle of inclination of the beta strands against the barrel axis. The 

structural information of beta-barrel membrane proteins lag behind alpha helical structures. For 

instance, in helical membrane proteins, the folding and assembly of transmembrane segments 

can be identified via computational analysis of sequential motifs (Kall, Krogh and 

Sonnhammer, 2004). For beta barrels, very little information is available for sequence motifs 

or their role in protein stability maintenance and function (Stillman, 1995; Arai, Ikeda and 

Shimizu, 2003). 

Recent research has revealed the versatility and ever-presence of beta barrel proteins with the 

distribution spanning on many families of bacteria as well as eukaryotes. The outer membrane 

proteins of bacteria make transmembrane beta-barrels with evenly occurring beta strands 

ranging from 8 to 22 and a sheer number of 8 to 24 existing as monomers or oligomers (Neupert 

and Lill, 1992; Bagos, Liakopoulos, Spyropoulos and Hamodrakas, 2004; Bagos, Liakopoulos 
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and Hamodrakas, 2005). There is a wide range of functions of beta barrel membrane proteins 

including transport of active ions, passive intake of nutrients, membrane anchoring, membrane-

bound enzyme identification as well as providing defence against attacking proteins. 

Furthermore, research is concentrated on the folding process in membranes, underlying 

crystallisation, limited structural diversity observation and various channel engineering 

options. 

Various types of stable transmembrane beta sheets are limited by the non-polar core of the bi-

layer membrane. All proteins form structural folds that are almost cylindrical around the bi-

layer and expose the mainly non-polar side chains to the transmembrane. This criterion is 

satisfied only by the beta sheet structure in which the beta transmembrane strands are laterally 

hydrogen bonded in a cylindrical fashion (Fariselli, Finelli, Rossi, Amico, Zauli, Martelli and 

Casadio, 2005). 

Due to the underlying infrastructure, a beta barrel protein consists of a beta sheet that twists 

and surrounds in a closed coil form where the first strand forms a hydrogen bond to the last. 

An estimated 2 – 3 % of gram-negative bacteria proteins contain beta barrel encoding. 

Currently, there are less than 20 known 3D beta barrel structures whereas the genomic 

databases contain thousands of beta proteins belonging to dozens of beta families. Schulz (2000 

and 2002) states a set of rules to identify the structural features of all known beta barrel 

structures. 

Despite having structural differences, the composition of the lipid-exposed surface in beta 

barrel proteins is similar to its helical counterparts. The transmembrane bi-layers generally 

contain an abundance of phenylalanine, tyrosine, tryptophan, valine and leucine whereas the 

polar and charged residues are predominantly excluded. The bi-layer interface contains a large 

presence of aromatic residues which makes about 40% of the lipid-exposed amino-acids. 
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According to Protein Data bank of Transmembrane Proteins (PDBTM), as of 2nd Oct 2015, the 

database of protein structures currently contains 113251 proteins in the Protein Data Bank 

(PDB) web portals. Out of this, only 2599 are transmembrane domains with just 321 containing 

beta barrel sheets (the Institute of Enzymology, 2015). The low presence of beta-barrels 

presents a substantial challenge to currently existing artificial intelligence prediction 

algorithms such as NNs. Lack of non-redundant data further reduces the size of data available 

for training by reducing the number of non-redundant proteins obtained by Cluster Database at 

High Identity with Tolerance (CD-HIT) algorithm at 40% cut-off to be only 54. CD-HIT takes 

a protein sequence database as input and produces a set of 'non-redundant' representative 

sequences as output (Li and Godzik, 2006).  

A number of researchers have developed beta-barrel identification algorithms using either 

composition or graph theory or evolutionary couplings (Wimley, 2001; Tran, Chassignet, 

Sheikh and Steyaert, 2012; Hayat, Sander, Elofsson and Marks, 2014; Hayat, Sander, Marks 

and Elofsson, 2015). Other researchers used various machine learning techniques, such as 

Hidden Markov Model (HMM),  Bayesian networks, Genetic Algorithm (GA) and SVM 

(Bigelow, Petrey, Liu, Przybylski and Rost, 2004; Taylor, Toseland, Attwood and Flower, 

2006; Zou, Wang, Wang and Hu, 2010; Singh, Goodman, Walter, Helms and Hayat, 2011; 

Hayat and Elofsson, 2012) to prediction analysis of beta barrel. The prediction methodologies 

lack in terms of intermittent misclassifications that result in mismatch in the number of 

membrane spanning regions within amino-acid sequences and therefore the prediction of beta 

barrel proteins generally poses a range of challenges to the research community.  

One of the most encouraging results that has been obtained in applications of machine learning 

techniques to transmembrane proteins was, the application of SVM-GA to alpha helices where 

the overall outcomes were published in 2013 (Kazemian, White, Palmer-Brown and Yusuf, 

2013). Through a future research, a hybrid NN and fuzzy logic technique entitled Adaptive 

http://bioinformatics.oxfordjournals.org/search?author1=Sikander+Hayat&sortspec=date&submit=Submit
http://bioinformatics.oxfordjournals.org/search?author1=Arne+Elofsson&sortspec=date&submit=Submit
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Neural Fuzzy Inference System was also applied to predict and analyse membrane helices in 

amino acid sequences which produced a comparable results to using SVM-GA (Kazemian and 

Yusuf, 2014). In general, SVM is known to model problems with a smaller sample size. This 

makes the SVM an appropriate technique for beta-barrel prediction problems where the 

modelling is undermined by problems of a smaller database. Furthermore, Levenberg-

Marquardt algorithm is perceived as one of the most effective method for training NN. The 

Levenberg-Marquardt training algorithm is fast, but it is generally more demanding in terms 

of memory. This paper consequently applies a new hybrid-two-level cascaded NN-SVM 

methodology to beta barrel prediction. The methodology utilizes generic feed-forward NNs 

and SVM with a sliding-window-based feature extraction to train two different class transitions 

namely termed as symmetric and asymmetric models. Levenberg-Marquardt algorithm is 

utilised as a training method for NN. The methodology initially modelled two unique aspects 

of the sliding window operation in a hybrid operation including the modelling of same class 

modelling such as inside-to-inside as well as the inter-class transition when the middle residue 

of the sliding window moved from one class to another. The overall performance was evaluated 

over single protein sequences by pasting and feeding whole sequences to the modelling routine 

as well as via jack-knife-based testing where each protein was evaluated against a model 

trained over the remaining dataset. The underlying notion is to generate two different neural 

outputs to be combined using a weighted classification integration technique. The scores 𝛿𝐴
𝑖  and 

𝛿𝑆
𝑖  thus obtained for sliding window instance 𝑖 for the asymmetric and symmetric models 

respectively are combined based upon their weighted proximity to the respective outputs to 

obtain a combined transmembrane score for each amino-acid residue to belong to membrane 

or non-transmembrane classes.  

Section 2 describes beta barrel feature extraction and two examples of intra-class and inter-

class sliding windows. Section 3 outlines a dual model neural architecture for the 
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transmembrane and non-transmembrane classifications, Levenberg-Marquardt sliding window 

training, and NN prediction results analysis for intra-class and inter-class for amino-acid 

prediction. Section 4 explains the SVM technique for the dual transmembrane and non-

transmembrane classifications. This section continues discussing the NN results for 

comparison with NN-SVM results for jack-knife and signal protein tests. Finally, section 5 

concludes the overall outcome for the prediction of beta barrel transmembrane protein.  

2 Prediction of beta-barrel using intra-class and inter-class 

sliding windows 
 

The beta-barrel prediction problem is generally divided into three unique domains (Reynolds 

and Kall, Riffle, Bilmes, 2008): 

1. Discrimination of a protein sequence to actually contain transmembrane (TM) segments 

2. The prediction of TM beta-barrel segments 

3. Detection of number of membrane spanning regions 

The first problem addresses a dual classification scenario, which is not addressed in this paper. 

The second point states a problem where prediction is to ascertain TM beta-barrel segments 

present within an amino-acid sequence. The final part models an algorithm’s ability to 

accurately identify number of membrane spanning regions detected in part 2.  

2.1 Feature extraction 
 

The feature extraction technique for both NN and SVM-based classification differs according 

to the objectives of classification. This document reports two different feature extraction 

techniques to model two aspects of sliding window operation on a membrane protein sequence. 

Figure 1 shows an example for the symmetrical sliding window using SVM feature extraction 

technique with a window size of 30 residue, with the residues distributed evenly both upstream 
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and downstream of the sliding window. The extraction technique models same-state transitions 

so that the window moves in only outer (O), Transmembrane (B) or inner (I) protein segments. 

For example, the technique extracts a sequence of features with each sample belonging to +15 

to +15 length sliding window from left to right in outer (O) protein segments. The figure 

demonstrates a single training instance extraction from the amino-acid sequence of the E.coli 

outer membrane enzyme PagP (PDB accession no. 1mm4) shown in Figure 3. 

Symmetric modelling mechanism for Beta-barrel bearing sequence 1mm4 (Chain A) 
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Figure 1: SVM-based feature extraction using symmetrical intra-class sliding window.  

 

Figure 2 shows an asymmetric sliding window of feature extraction based on propensity-based 

values. For example, the technique extracts a sequence of features with each sample belonging 

to -3 to +15 length sliding window from left to right. In another example, the technique extracts 

a sequence of features with each sample from -15 to +3 length sliding window. Figure 2 

demonstrates a single training instance extraction from the PagP amino-acid sequence shown 

in Figure 3. The feature values outlined in Figure 1 and Figure 2 are fed to a regular kernel-

based system to classify each test sliding window to assign a classification of 0 to 1 for non-

transmembrane and beta-barrel segments. 
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Asymmetric modelling mechanism for Beta-barrel bearing sequence 1mm4 (Chain A) 
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Figure 2: SVM-based feature extraction using asymmetrical inter-class sliding window.  

 

 

Figure 3: Structure of E.coli outer membrane enzyme PagP (PDB accession no. 1mm4), which comprises 10% 

helical (1 helix; 18 residues) and 44% beta sheet (10 strands; 76 residues) structural elements. 

 

3 Dual model neural architecture for the TM-NTM 

classification 
 

A conventional neural architecture with a back-propagation algorithm known as multi-layer 

feed-forward network is used in this research. In a multi-layer architecture, each neuron is fed 

with R inputs and each input is weighted with an appropriate w. The sum of weighted inputs 

and bias acts as the input to the transfer function where the most commonly used transfer 

function is the “Log Sigmoid” function (Hagan, Demuth, Beale and De Jesús, 2014). As the 

http://www.amazon.co.uk/Martin-T-Hagan/e/B001KE7YAO/ref=dp_byline_cont_book_1
http://www.amazon.co.uk/s/ref=dp_byline_sr_book_2?ie=UTF8&field-author=Howard+B+Demuth&search-alias=books-uk&text=Howard+B+Demuth&sort=relevancerank


9 
 

feed-forward networks tend to have one or more layers of sigmoid neurons, this study’s 

architecture initially contains a single hidden layer architecture followed by an output layer of 

linear neurons representing different topological classes in a protein sequence. The two-layer 

feed-forward architecture takes multiple instances of a sliding window as an input feature fed 

to the input neurons against a set of target vectors with each output value representing the 

amino-acid present at the middle of the sliding window. The objective is to predict each amino-

acid residue within an amino-acid protein sequence to belong to various topological classes 

including beta-barrel transmembrane segments, inside and outside sequence locations. 

3.1 Levenberg-Marquardt sliding window training for a dual-layer NN 

in amino-acid protein prediction 

 

The methodology employs two unique training algorithms termed as the “scaled conjugate” 

and the “Levenberg-Marquardt” algorithms. The initial method is relatively slow but memory 

efficient and can therefore be used to analyse complex functions. The later algorithm of 

Levenberg-Marquardt is faster, but it is generally more demanding in terms of memory. 

However, the Levenberg-Marquardt is used as the ultimate method to evaluate the efficiency 

of the underlying neural models (Yu and Wilamowski, 2010). 

The Levenberg-Marquardt method employs search direction solution of a linear set of 

equations as follows: 

(𝐽(𝑥𝑘)𝑇. 𝐽(𝑥𝑘) + 𝜆𝑘𝐼)𝑑𝑘 = (−𝐽(𝑥𝑘)𝑇 . 𝐹(𝑥𝑘))                                                                      (1) 

Where 𝐽 stands for Jacobian matrix, function of 𝑥𝑘 the input vector, and I is the identity matrix. 

In the above equation, the direction 𝑑𝑘 is similar to Gauss-Newton method if 𝜆𝑘 = 0. For 𝜆𝑘 →

∞, 𝑑𝑘 approaches the steepest descent direction with the magnitude approaching zero implying 

the principle that for a reasonably large 𝜆𝑘, the term 𝐹(𝑥𝑘 + 𝑑𝑘) < 𝐹(𝑥𝑘) is true. The 
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variable 𝜆𝑘 can therefore be regulated to ensure decline of the second order terms are 

encountered that generally tend to restrict the efficiency of Gauss-Newton method. The 

Levenberg-Marquardt equation therefore utilizes a hybrid search direction methodology 

between Gauss-Newton and steepest descent direction.  

 

Levenberg-Marquardt algorithm is considered the most efficient method for training artificial 

NN though its computational complexity and difficulty is marred by difficulties in calculating 

Hessian matrices, matrix inversion and region computation (Yu and Wilamowski, 2010). 

Therefore, similar to quasi-Newton methods, the Levenberg-Marquardt algorithm achieves a 

second order training speed without the computation of Hessian matrix. The matrix is later 

approximated once the performance function forms the sum of squares typical to regular feed-

forward network training as follows: 

𝐻 = 𝐽𝑇 . 𝐽                                                                                                                                (2) 

The gradient can be obtained as: 

𝑔 = 𝐽𝑇 . 𝑒                                                                                                                                (3) 

The Jacobian matrix contains the first derivatives of neural feedback errors from the network 

weights and biases, whereas 𝑒 is a network error vector. The approximation used to calculate 

the Hessian matrix is given as follows: 

𝑦𝑖+1 = 𝑦𝑖 − [𝐽𝑇𝐽 + 𝜇𝐼]−1𝐽𝑇𝑒                                                                                                (4) 

Where for 𝜇 → ∞ it becomes a gradient-descent equation with a small step size. The value of 

𝜇 is increased or decreased based upon after each successful or tentative step in order to reduce 

or increase the performance function respectively. The application of Levenberg-Marquardt 

training compared to Scaled Conjugate method is presented in the next section. 
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3.2 Intra-class and Inter-class sliding window for a dual layer NN in 

beta barrel regions prediction.  

 

For the current objective of prediction of beta-barrel proteins, the defined NN has a single 

input, hidden and output layer. The feature extraction methodology elaborated in Section 2 

exhibits a feature sliding window of 30 residue length that encodes each input amino acid 

sequence and the identification is performed on the structural state of the central residue in the 

window. Each residue position is encoded via standard propensity-based encoding. The input 

layer consists of two unique modelling representations termed as intra-class and inter-class 

modelling given below: 

 Intra-class: Those instances of the sliding window are stored in a sliding window training 

matrix where the current middle window residue 𝑖 and 𝑖 + 1 position belong to the same 

class i.e. outside (1), Membrane (B) or inside (2); please refer to Figure 1. The output layer 

therefore consists of three units represented by 11, BB and 22 for the three different intra-

class transitions respectively. The output coding is a digit value of 10 for ‘class 11’, 20 for 

‘class BB’ and 30 for ‘class 22’. 

 Inter-class: Only those instances are stored in a sliding window training matrix where the 

current middle window residue 𝑖 and 𝑖 + 1 position belong to different classes; please refer 

to Figure 2. The output layer therefore represents units as 1B, B1, 2B and B2 for four 

different inter-class transitions, encoded via 10, 20, 30 and 40 digital values respectively. 

Thus, the input layer R = 30 X 1 input units representing 30 residues in the sliding window 

with each containing a single propensity encoding. Once the input and target matrices are 

obtained for the non-redundant dataset, the encoding is fed into the network shown in Figure 4 

for training. As discussed earlier, the problem of secondary protein structure prediction can be 

taken as a pattern recognition problem. The network is trained to recognise the associated class 
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of the central residue based upon the residues observed in the particular sliding window 

instance. 

 

Figure 4: Architectural framework of a 30 input single hidden layer neural network for dual-model (intra-class 

and inter-class) beta barrel classification. 

 

The NN to be trained for this problem uses the Levenberg-Marquardt training algorithm as 

discussed earlier. In each training cycle, the training sequences are presence via the sliding 

window operation discussed above that is one residue at a time. Each unit in the hidden layer 

transforms the signal value obtained from the input layer via a log-sigmoid transfer function in 

order to produce an output signal between zero and one, thus simulating neuron firing. During 

the process, the weights are adjusted in order to adjust/minimise the error values between each 

unit’s observed output and the actual output specified in the target matrix. In order to prevent 

an over-fitting of the problem and to generalise to new circumstances, an early stopping method 

is used to divide the data into training for gradient computation, testing and validation datasets. 

3.3 Neural Network results analysis 

As discussed, the feature sets for two training cases in neural architecture were trained using a 

dual layer feed-forward NN based on back propagation algorithm. The data used was divided 

into 70, 15, 15 percent sets for training, testing and validation respectively over data obtained 

from a sliding window size of 30 residues with 15 residues distributed evenly on both the sides 
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of the window. Before simulating the proposed NNs system, tuning of each of these neural 

models are considered, such as: 

1. Increasing the number of training feature vectors: With beta barrel class containing a 

comparatively lower number of instances, this step can only be performed with alpha 

helical databases. 

 

2. The number of input values can be increased by adjusting the size of the sliding window. 

Computer simulation results demonstrate that a sliding window size of 30 residues with 15 

residues distributed evenly on both the sides of the window provide best outcomes.  

 

3. Increasing the number of neurons can also result in an increased accuracy though this also 

increases the risk of data over-fitting. 

 

Table 1 shows the training, testing and validation analysis using a Levenberg-Marquardt 

training using randomised data division and a mean square error (MSE) based performance 

comparison. MSE is a risk function, corresponding to the anticipated value of the squared error 

loss. The sampling data are 6566 samples for training, 1407 samples for validation and 1407 

samples for testing, a total of 9380 samples. The lower MSE values are generally due to the 

fact that inner-inner and outer-outer sliding window feature sets are substantially similar to 

each other. This is because the amino acid residues are either in the outside or inside or within 

membrane layers of protein sequences. The lower number of asymmetric test sets is primarily 

due to the lesser number of inter-class transitions within any training dataset, which produces 

a slightly higher MSE for asymmetric inter-class than symmetric intra-class, as there are not 

many beta-barrel proteins. It is also worth mentioning that NNs usually work better and 

produce smaller errors using more datasets. 
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Table 1: Data samples and relevant mean square values obtained for each sliding window-based feature input 

using a dual layer feed-forward network for both asymmetric and symmetric models.  

 Symmetric 

Hidden 

neurons:  

 

MSE Asymmetric 

Hidden neurons:  
MSE 

Training 6566 0.452 496 0.776 

Validation 1407 0.471 106 0.699 

Testing 1407 0.493 106 0.875 

 

The regression outcome for the symmetric and asymmetric datasets for NN training is shown 

in Figure 5 and Figure 6 respectively. In Figures 5 and 6, the variables that are predicting are 

referred to as Outputs and the variables that the predictions are based on are called Targets. 

Linear regression consists of finding the best-fitting straight regression line through the points. 

The vertical data (lines) from the points to the regression line represent the errors of predictions. 

The closer each data point to the regression line is, its error of prediction is smaller. In equation 

5, the Output y-axis constitutes a gradient multiply by Target x-axis plus the point of 

intersection of the regression line with the y-axis (Montgomery, Peck and Vining 2012).  

Output = Gradient * Target + Intersection point with y-axis                                  (5) 
 

In Figure 5 the regression outcome for symmetric NNs training produces smaller errors than 

Figure 6 for asymmetrical NNs. The results of Table 1 MSE and Figures 5 & 6 are all consistent 

and produce very similar outcomes, reinforcing the prediction accuracies of NNs in prediction 

of beta-barrel amino acid proteins.  

http://www.amazon.co.uk/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=Douglas+C.+Montgomery&search-alias=books-uk&text=Douglas+C.+Montgomery&sort=relevancerank
http://www.amazon.co.uk/s/ref=dp_byline_sr_book_2?ie=UTF8&field-author=Elizabeth+A.+Peck&search-alias=books-uk&text=Elizabeth+A.+Peck&sort=relevancerank
http://www.amazon.co.uk/s/ref=dp_byline_sr_book_3?ie=UTF8&field-author=G.+Geoffrey+Vining&search-alias=books-uk&text=G.+Geoffrey+Vining&sort=relevancerank
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Figure 5: Regression outcome for symmetric NN training. 
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Figure 6: Regression outcome for asymmetric NN training. 

 

This research further uses confusion matrices to analyse results of the proposed NNs technique. 

In machine learning, a confusion matrix is a table layout that facilitates visualization of the 

performance of an algorithm. A confusion matrix makes it easy to ascertain if the proposed 

model is confusing two classes that is mislabelling one as another. The following confusion 

matrix was obtained with a separate set of data compared to that shown in Table 1. The data 

size obtained was larger (9823 samples) than 9380 samples evaluated in Table 1. In Figure 7, 

the diagonal cells show the number of correctly identified residues for each structural class, 
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outside, beta-barrel and inner. The off-diagonal cells represent misclassification for each group, 

for example, beta-barrel segment identified as inner non-transmembrane segment. Figure 7 

shows overall low miss-classification rates shown as Targets – Outputs axes 2-1, 3-1, 1-2, 3-

2,1-3 and 2-3. The overall accuracy shown in the lower right corner value with a highest overall 

value of validation data at 39.8%. The figure 60.2% in the validation confusion matrix and 

other training and testing confusion matrices are the sum of all diagonally correctly identified 

residues for each structural class, outside, beta-barrel and inner. It must be noted that the 

accuracy shown here only models a single (inter-class) model within the methodology, as 

identification of beta-barrel transmembrane protein is the overall objective of this research. 

 

The overall accuracies are shown in Figures 8 and 9 with a weighted sum obtained over a 

logical AND operation performed over 𝛿𝐴 and 𝛿𝑆 scores. The scores  𝛿𝐴 and 𝛿𝑆 thus obtained 

for the sliding window for the asymmetric and symmetric models respectively and they are 

combined based upon their weighted proximity to the respective outputs to obtain an overall 

transmembrane score for each amino-acid residue to belong to membrane or non-

transmembrane classes. 
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Figure 7: Confusion matrices of asymmetric dataset for training, test and validation datasets with low false 

positive and false negative rates. 
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Figure 8: Transmembrane asymmetric 𝛿𝐴 red or broken dotted waveform and symmetric 𝛿𝑆 blue waveform 

scores with a weighted classification perform a normalised AND operation for 𝛿𝐴 and 𝛿𝑆 scores which are 

shown with thin violet line and the actual beta-barrel outcome in green colour underneath. The test was 

performed over a beta-barrel amino acid sequence of BtuB from E.coli (PDB accession no. 1ujw, chain A). 

 

 

Figure 9: Non-transmembrane symmetric and asymmetric (𝛿𝐴 and 𝛿𝑆) scores tests performed over a negative 

amino acid sequence of colicin E2, a helical protein that binds to BtuB (PDB accession no. 1ujw, chain B). 
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4 Comparison of NN with NN-SVM for transmembrane and 

non-transmembrane calcifications.   
 

4.1  Support Vector Machine technique 

As discussed earlier, this research focuses on a cascaded (two-stage NN-SVM) to identify beta 

barrel segments within amino acid proteins. SVM has previously been used for the prediction 

of transmembrane segments to predict the presence of helical segments in transmembrane 

proteins (Kazemian, White, Palmer-Brown and Yusuf, 2013).  The application of SVM in SP 

topological prediction has largely been focussed on differentiating N-terminal SPs from alpha-

helical segments (Kazemian, Yusuf and White, 2014) primarily due to the fact that both the 

segments share a number of traits including their underlying hydrophobic nature. 

In general, SVM are known to outperform or match identification accuracy for most 

benchmarking problems (Yuan, Mattick and Teasdale, 2004). Furthermore, contrary to NNs, 

SVM are known to excellently model problems with a smaller sample size. This makes this 

methodology an ideal technique for beta-barrel and signal peptide prediction problems where 

the modelling is undermined by problems of a smaller database or uneven class sample 

distribution, respectively (Yuan, Davis, Zhang and Teasdale, 2003). 

As explained earlier, SVM is used to address the issue of beta-barrel identification. However, 

the modelling is largely limited to dual outcomes due to the underlying nature of the SVM 

classifier. The problem in transmembrane prediction is generally addressed as a two-class 

problem to differentiate protein segments containing beta barrel (or alpha-helices) from regular 

non-transmembrane segments. This topological identification plays a crucial role in helical and 

barrel protein prediction and a correction classification at this stage is very likely to improve 

the overall accuracy of transmembrane region prediction. To supplement and extend the ability 

of SVM for larger number of classes, this section reports a cascaded SVM methodology where 
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the technique utilises two different feature sets based on symmetric (intra-class) and 

asymmetric (inter-class) sliding window operations, as discussed above. 

The extracted features are shown in Figure 1 and Figure 2 where the transmembrane class 

feature vector is extracted under two sliding window sizes for symmetric and asymmetric 

modelling. For symmetric modelling the window size is -15/+15, refer to Figure 1. For the 

asymmetric modelling with Outer (O) to Beta (B) transition, the sliding window size is -3/+15 

whereas for Beta to Inner (I) case the window size is -15/+3 as shown in Figure 2. The outcomes 

of these two models are later hybridised to obtain a more accurate topological prediction. The 

samples for this two class problem are described by the feature vector 𝑥𝑖 where 𝑖 = 1, 2, … , 𝑁 

where N is +30 with corresponding labels 𝑦𝑖𝜖{+1, 0}, 𝑋𝑖𝜖 𝑅𝑑. This study represents 

transmembrane protein (TM) class as +1 and non-transmembrane (NTM) class as 0. To predict 

the two class representations, SVM scheme maps and constructs a hyperplane in a high-

dimensional space, which can be used to separate NTM from TM. A good separation generally 

is attained by the hyperplane that has the biggest margin, since the higher the margin the lower 

the generalization error of the classifier (Kazemian, Yusuf and White, 2014).  

Supposing the hyperplane separates the two class representations of NTM and TM. The points 

𝑋 lying on the hyperplane satisfy 𝑔. 𝑋 + 𝑏 = 0, where 𝑔 is regarded as the normal to the 

hyperplane and 
|𝑏|

‖𝑔‖⁄  is the perpendicular distance from the line to the origin, ‖𝑔‖ is 

regarded as the Euclidean norm of 𝑔. Let’s assume 𝑓+ and 𝑓− to be the shortest distances 

separating the two class samples {+1 𝑎𝑛𝑑 0} respectively. For this problem, a margin is 

formulated as a separation and the largest margin is required by the support vector algorithm. 

The equations (6) and (7) are utilised for the training data with the following constraints: 

𝑿𝒊. 𝒈 + 𝒃 ≥ 𝟏 𝒇𝒐𝒓 𝒚𝒊 = 𝟏 (𝒇+; 𝑻𝑴)                                                                                    (6) 

𝑋𝑖. 𝑔 + 𝑏 ≤ 0 𝑓𝑜𝑟 𝑦𝑖 = 0 (𝑓−; 𝑁𝑇𝑀)                                                                        (7)  



22 
 

Considering (6) and (7), the points 𝐻1: 𝑋𝑖. 𝑔 + 𝑏 = 1 and 𝐻2: 𝑋𝑖. 𝑔 + 𝑏 = 0 lie on the 

hyperplane with normal 𝑔 and the perpendicular distance from the origin to be 

|−1 − 𝑏|/2. ‖𝑔‖. Therefore, 𝑓+ = 𝑓− = 1
2. ‖𝑔‖⁄  with a margin to be 1

‖𝑔‖⁄ , where b is zero. 

Consequently, based on the above equations, the objective is to ascertain a hyperplane for a 

two-class problem by maximising the margin and minimising ‖𝑔‖ (Steinwart and Christmann, 

2008). 

4.2 Analysis of NN and NN-SVM Results  

 

In order to generate robust outcomes, a prediction methodology is evaluated by either of these 

conventional techniques, re-substitution test, independent data set test, jack-knife test, cross-

validation or self-consistency based test. Jack-knife based testing is deemed most objective for 

any prediction methodologies involving large datasets with possible outliers (Abdi and 

Williams, 2010; Sawyer, 2005). The jack-knife or ‘leave one out’ testing is a cross-validation 

technique initially proposed by Quenouille (1949) to estimate the bias of an estimator. The 

jack-knife testing is an iterative process. To begin with, the parameter is estimated from the 

sampled dataset. Then each fold is in turn left out from the sample and the parameter of interest 

is estimated from the reminder of the dataset and finally the average of these tests is calculated. 

Therefore this methodology was used where each protein was set aside for testing and the 

model was trained using the remaining proteins belonging to the non-redundant protein set 

obtained from PDBTM website. This research uses jack-knife as a benchmark to compare the 

results with single protein tests. The underlying XML files contain all entries from the PDB 

database, TM as well as NTM proteins. The non-redundant protein set is obtained by the 

PDBTM server using the CD-HIT algorithm (Li and Godzik, 2006) with word size 2, 40% 

similarity measure and protein sequence length longer than 30. CD-HIT is an extensively used 
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program for clustering protein secondary structures. CD-HIT is fast and enables reducing the 

computational processes in many sequence analysis tasks.  

 

Table 2 demonstrates four unique outcomes of beta-barrel prediction for membrane spanning 

region (Jack knife), membrane spanning region (single protein tests), membrane prediction 

with 5 residue overlap (jack-knife), membrane prediction with 5 residue overlap (single protein 

tests) using NN. Membrane spanning region for single protein tests performs better than 

membrane spanning region for Jack knife tests with overall averaging results of 94.1625% and 

85.904% respectively using NN. Furthermore, membrane prediction with 5 residue overlap for 

single protein tests produces better overall results than membrane prediction with 5 residue 

overlap for jack-knife tests with average of 94.4735% and 92.635% respectively.  
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Table 2: A combination of 20 beta barrel non-redundant outcomes. 

 
Type Protein Membrane 

Spanning 
Region 
(Jack knife)  
NN 

Membrane 
Spanning 
Region 
(Single protein 
tests) 
NN 

Membrane 
prediction  
(5 residue 
overlap) 
(Jack-
knife) 
NN 

Membrane prediction  
(5 residue overlap) 
(Single protein tests) 
NN 

1 Beta 1a0s_P 91.92 89.94 93.75 92.99 

2 Beta 3a2r_X 79.73 95.86 95.8 96.04 

3 Beta 3aeh_A 79.91 92.93 91.82 92.15 

4 Beta 3bry_A 75.89 95.85 91.73 95.99 

5 Beta 3csl_A 86.82 96.73 91.78 94.02 

6 Beta 3dwn_A 95.76 91.81 86.95 91.96 

7 Beta 3dwo_X 93.94 93.77 89.97 94.04 

8 Beta 1e54_A 85.75 91.86 88.99 93.15 

9 Beta 3efm_A 92.8 95.9 95.84 96.95 

10 Beta 3emn_X 89.93 93.81 90.78 90.98 

11 Beta 3emo_C 88.94 93.83 95.9 97.98 

12 Beta 2erv_A 88.96 92.9 94.79 98.02 

13 Beta 2f1c_X 73.92 96.81 95.76 92.95 

14 Beta 1fep_A 74.71 95.74 86.72 92.00 

15 Beta 3fhh_A 93.78 90.86 93.88 91.01 

16 Beta 3fid_A 84.94 94.95 96.83 93.06 

17 Beta 1fw2_A 83.91 95.98 94.9 98.16 

18 Beta 2grx_A 85.74 90.89 95.73 93.12 

19 Beta 2guf_A 84.78 95.84 88.93 96.94 

20 Beta 1h6s_1 85.95 96.99 91.85 97.96 

Average 85.904 94.1625 92.635 94.4735 

 

The results of Table 2 using NN are compared with the proposed NN-SVM technique in Table 

3. NN-SVM based topological prediction accuracy is shown in Table 3 with jack-knife 

demonstrating a comparatively reliable overall accuracy. Jack-knife testing was used as a 

benchmark to compare with single protein testing and the results are outlined in Table 3. Table 

3 provides results for 194 redundant and 54 non-redundant proteins for NN and hybrid NN-

SVM simulations for non-residue overlap and 5 residue overlap. In all cases outlined in Table 

3, hybrid NN-SVM performs better than NN applications for prediction of beta barrel. The 

results reveal that single protein tests perform better than jack-knife. Furthermore, with 5 
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residue overlap the results of the computer simulations are better. In general, the best results 

are obtained for NN-SVM with 5 residue overlap for signal protein tests with and without 

redundant proteins. This demonstrates that the overall performance for single protein sequences 

is higher as compared with jack-knife-based testing which result in a more reliable measure of 

protein evaluation.  

Table 3: Global proteins TM prediction accuracy with relevant outcomes based on Jack-knife based testing 

(Total proteins: 194). 

Type (Percentage 
accuracy) 

Membrane 
Spanning 
Region 
(Jack knife)  
NN / NN-SVM 

Membrane 
Spanning 
Region 
(Single protein tests) 
NN / NN-SVM 

Membrane 
prediction  
(5 residue 
overlap) 
(Jack-knife) 
NN / NN-SVM 

Membrane 
prediction  
(5 residue 
overlap) 
(Single protein 
tests) 
NN / NN-SVM 

Non redundant 

(Total proteins: 54) 

 

85.90 86.65 94.16 94.51 92.63 93.55 94.47 94.58 

Redundant 

(Total proteins: 194) 

88.76 89.45 95.28 97.85 94.65 96.5 96.31 97.96 

 

The hybridised outcomes are further elaborated in Figure 10 for E.coli OmpF porin (PDB 

accession no. 1gfm, chain A) with a length of 340 amino acids, which shows the comparison 

of the asymmetric SVM model outcome (red  ─) and asymmetric NN score (blue  ▬) with the 

actual membrane segments shown by yellow (• • • •) segments. The cross-point of both SVM 

and NN demonstrate the strong potential of inter-class transitions when used to predict 

transmembrane regions. As stated before inter-class or asymmetric transitions such as outer-

to-membrane (beta), membrane (beta)-to-inner, inner-to-membrane and membrane-to-outer 

are, when the middle residue of the sliding window moved from one class to another predicting 

beta barrel regions. SVM and NN graphs of Figure 10 are further superimposed to graphically 

show the hybrid scoring of NN-SVM in Figure 11. Moreover, an instant of a sliding window 
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is outlined in Figure 12 to demonstrate how NN-SVM outcomes are selected for prediction of 

transmembrane protein. Figure 12 is an instant of inter-class and intra-class and its comparison 

with the actual beta barrel segment using NN-SVM techniques. 

  

 

Figure 10: Protein 1gfm (Chain A) - Comparison of asymmetric SVM model outcome (red  ─) and asymmetric 

NN score (blue  ▬) with the actual membrane segments shown by yellow (• • • •) segments. The hybrid NN-

SVM score is shown in Figure 11. 
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Figure 11: Asymmetric hybrid NN-SVM score is shown in red and actual output is shown in blue. 

 

 

Figure 12 – An instant of inter-class and intra-class and its comparison with actual outcome. 

 

The introduction section presents the review of historical background and compares many 

machine learning techniques for beta barrel prediction research and discusses why NN-SVM 

methodology is a next step forward in this endeavour. To be able to discuss the strengths and 

weaknesses of the proposed research, one needs to fundamentally analyse what are the 

0

0.2

0.4

0.6

0.8

1

1.2

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

TM
 m

e
m

b
e

rs
h

ip
 s

co
re

Inter-class and intra-class scores using NN-SVM

Inter-class scores

Intra-class scores

Actual Outcome



28 
 

requirements to develop a useful prediction technique. To develop a useful prediction method 

for a biological system (Chou, 2011), one needs to propose a robust algorithm for the 

prediction, select a valid benchmark dataset to train and test the model, and use appropriate 

cross-validation tests to critically appraise the expected accuracy of the prediction model. The 

strengths of the research is that the above criteria are fully implemented for the prediction of 

beta barrel transmembrane proteins with very encouraging results. This research proposes new 

requirements criteria using a sliding-window feature extraction to train two different class 

transitions called symmetric and asymmetric models to classify intra-class and inter-class 

transitions for the prediction of number and range of beta membrane spanning regions. As 

described throughout the paper, the research proposes NN and NN-SVM two robust machine 

learning algorithms and the well-known jack-knife testing as a benchmark to compare the 

results with single protein testing to critically evaluate the accuracy of the prediction models. 

The weakness of the paper is that the research in this area is not complete and the prediction 

accuracies may be further improved by using other techniques. For example, the research could 

be taken further in two different ways. Firstly, other machine learning techniques could be 

utilised to increase the prediction accuracy as outlined in the conclusion section below, and 

secondly, the prediction analysis of the protein topology, such as, intra-cellular, membrane 

spanning and extra-cellular could be researched upon to predict beta barrel topologies in amino 

acid sequences. 

5 Conclusion 

Research in beta barrel prediction analysis has many medical applications such as, production 

of novel drugs, addressing nutritional disorders for iron deficiency anaemia, cancer resistance 

genes, developing new antibiotics, study of neurotransmitter in the central and peripheral 

nervous system, and metabolic diseases associated with obesity, like diabetes, heart disease and 
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cholesterol. This research utilises two new approaches NN and NN-SVM to prediction analysis 

of beta barrel transmembrane protein. The overall performance was evaluated over single 

protein sequences by feeding and pasting the whole sequences to the modelling routine and 

also utilising jack-knife-based testing. The accuracy were later combined and it was observed 

that the overall accuracy was higher for individual proteins as compared with jack-knife-based 

testing which reflected a more reliable measurement of protein evaluation.     

For 54 non-redundant protein data, NN-SVM technique performed better than NN for 

prediction of membrane spanning regions. For single protein tests NN-SVM produced an 

overall accuracy of 94.51% and for jack-knife tests the average accuracy was 86.65% for 

prediction of membrane spanning regions. For 194 redundant protein data, NN-SVM also 

produced better results than NN for prediction of membrane spanning regions and the result 

were higher for single protein tests as opposed to jack-knife tests with 97.85% and 89.45% 

accuracies respectively. Membrane prediction with 5 residue overlap using NN-SVM 

technique resulted in improved outcome than NN and generated better overall accuracies for 

single protein tests than jack-knife tests with 94.11% and 93.55% respectively for non-

redundant protein. Furthermore, the overall accuracy of NN-SVM technique with 5 residue 

overlap for single protein tests for membrane prediction was high at 97.96% for 194 redundant 

protein data, which is an outstanding achievement over the comparable research by TMM-

HMM and PredTMR. 

Further research will need to be carried out for the prediction accuracy of beta barrel 

transmembrane proteins, by using many other beta barrel amino acid sequences and some other 

machine learning techniques such as spiking NNs and deep learning. The prediction analysis 

of the protein topology, such as intra-cellular, membrane spanning and extra-cellular are 

understudied and also require improvements. Therefore, various machine learning techniques 
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such as SVM, NNs, spiking NNs and deep learning could also be applied to prediction of the 

protein topologies. 
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barrel proteins (Rangwala and Karypis, 2010).” 
 

Reviewer   #1:   (1p4L) "Beta-barrel membrane proteins generally occur in special membranes" - 
what do you mean by "special membrane"? 

Response to reviewer #1: 
‘Special’ is a mistake. I have now re-written the sentence. The sentence is also outlined below: 
“For transmembrane beta-barrels, the integral protein segments are known to occur in outer 
membranes of bacteria, mitochondria and chloroplasts (Neupert and Lill, 1992)”. Thank you. 
 

Reviewer   #1:   (5p6L) In my opinion, authors should first define the acronym PDBTM as the Protein 
Data Bank of Transmembrane Proteins (PDBTM); and PDB as Protein Data Bank (PDB). As they appear 
for the first time in the text.  

Response to reviewer #1: 
Both PDBTM and PDB acronyms have been defined. Thank you. 
 

Reviewer   #1:   (6p5L) again, acronyms are not defined when they first appear in the text….. 
"HMM" …."GA". I have also noticed that there is a confusing use of acronyms, as already defined 
acronyms are then not used in the text anymore (e.g. Section 3.3-1p5L- where NN now becomes 
Neural Network again). I just find this a bit confusing. Although, action is not required from the 
authors. 

Response to reviewer #1: 



35 
 

Both HMM and GA acronyms have been defined. Thank you. 
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Reviewer   #1:   - SECTION 3: Subsection 3.1 
(2p3L): Every parameter in Equation (1) (and the following equations) needs to be clearly identified 
(i.e. what is J? what is xk? etc.)  

Response to reviewer #1: 
𝐽, 𝑥𝑘 and I parameters have been defined. Thank you. 

 
Reviewer   #1:  - SECTION 4: Subsection 4.1 
(4p9L) In the text is stated: "This study represents non-transmembrane protein (TM) class as +1 and 
transmembrane (NTM) class as 0." I think it should be: "represents non-transmembrane protein (NTM) 
and transmembrane (TM)". 

Response to reviewer #1: 
The mistake has been rectified and it now reads: “This study represents transmembrane protein (TM) 
class as +1 and non-transmembrane (NTM) class as 0”. Thank you. 
 

Reviewer   #1:   Subsection 4.2: (1p16L) CD-Hit was already defined in the introduction (p5). 

Response to reviewer #1: 
The definition has been taken out. Thank you. 
 

Reviewer   #1:   (2p4L) NN was already defined in the abstract. 

Response to reviewer #1: 
The definition has been taken out. Thank you. 

 
Reviewer   #1:   - SECTION 5:  
Did you think about future work to be done in this research? Have you considered using spiking neural 
networks? 

Response to reviewer #1: 
The answer is yes and the following paragraph has been newly added to section 5. 
“Further research will need to be carried out for the prediction accuracy of beta barrel transmembrane 
proteins, by using many other beta barrel amino acid sequences and some other machine learning 
techniques such as spiking NNs and deep learning. The prediction analysis of the protein topology, 
such as intra-cellular, membrane spanning and extra-cellular are understudied and also require 
improvements. Therefore, various machine learning techniques such as SVM, NNs, spiking NNs and 
deep learning could also be applied to prediction of the protein topologies.”.  

 
Reviewer   #2:    
- Even though the article is interesting in its current format, some aspects should be improved for 
possible publication and for a better understanding by the readers. 
Response to reviewer #2: 
Thank you.  
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Reviewer   #2:   - The authors should give the readers some concrete information to get them excited 
about their work. The current abstract only describes the general purposes of the article. It should 
also include the article's main (1) impact and (2) significance on expert and intelligent systems. 

Response to reviewer #2: 
To add excitement to the abstract, the paragraphs have been rearranged. The overall four objectives 
of the two paragraphs are:  
(i) To introduce the research area. This is in the first paragraph. 
(ii) To explain the problem in this area of research needs addressing. This is in the first paragraph. 
(iii) To outline the solution that is proposed for this research problem. In other words, the precise 
methodology that is used. This is in the second paragraph. 
(iv) To present the overall computer simulation results. This is in the second paragraph and new words 
such as significant impact and superior performance have been used to mention to the reader that 
SVM-NN technique provides a significant impact on the beta barrel prediction analysis.  
 

Reviewer   #2:   - Please give a frank account of the strengths and weaknesses of the proposed 
research method. This should include theoretical comparison to other approaches in the field.   

Response to reviewer #2: 
A comprehensive theoretical comparison to other approaches in this field has been discussed in detail 
in the Introduction section, which describes the historical evolution of the beta barrel prediction using 
various machine learning techniques.  
A frank account of the strengths and weaknesses of the proposed research has been outlined in a new 
paragraph at the bottom of section 4.2. The paragraph is also outlined here: 
“The introduction section presents the review of historical background and compares many machine 
learning techniques for beta barrel prediction research and discusses why NN-SVM methodology is a 
next step forward in this endeavour. To be able to discuss the strengths and weaknesses of the 
proposed research, one needs to fundamentally analyse what are the requirements to develop a 
useful prediction technique. To develop a useful prediction method for a biological system (Chou, 
2011), one needs to propose a robust algorithm for the prediction, select a valid benchmark dataset 
to train and test the model, and use appropriate cross-validation tests to critically appraise the 
expected accuracy of the prediction model. The strengths of the research is that the above criteria are 
fully implemented for the prediction of beta barrel transmembrane proteins with very encouraging 
results. This research proposes new requirements criteria using a sliding-window feature extraction 
to train two different class transitions called symmetric and asymmetric models to classify intra-class 
and inter-class transitions for the prediction of number and range of beta membrane spanning 
regions. As described throughout the paper, the research proposes NN and NN-SVM two robust 
machine learning algorithms and the well-known jack-knife testing as a benchmark to compare the 
results with single protein testing to critically evaluate the accuracy of the prediction models. The 
weakness of the paper is that the research in this area is not complete and the prediction accuracies 
may be further improved by using other techniques. For example, the research could be taken further 
in two different ways. Firstly, other machine learning techniques could be utilised to increase the 
prediction accuracy as outlined in the Conclusion section below, and secondly, the prediction analysis 
of the protein topology, such as, intra-cellular, membrane spanning and extra-cellular could be 
researched upon to predict beta barrel topologies in amino acid sequences.”. 
 

Reviewer   #2:   - Moreover, I believe that it will make this paper stronger if the authors present 
managerial insights based on their experimental outcomes. 

Response to reviewer #2: 
At Intelligent Systems Research Centre, we have been applying AI techniques to transmembrane 
proteins prediction since 2003. There have been many methodologies that we have been pursuing to 
improve the prediction results of transmembrane proteins, which will be out of the scope of this 
paper, if we try to outline those. However, In the Introduction section, in the penultimate paragraph, 
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the starting paragraph has been expanded to provide some insights to the choice of NN-SVM 
technique based on the experimental results of the last three papers in this area. The added sentences 
and the whole paragraph will provide a good back ground to managerial insides based on the 
experimental outcomes. The added sentences to the paragraph are also outlined below:  
“One of the most encouraging results that has been obtained in applications of machine learning 
techniques to transmembrane proteins was, the application of SVM-GA to alpha helices where the 
overall outcomes were published in 2013 (Kazemian, White, Palmer-Brown and Yusuf, 2013). Through 
a future research, a hybrid NN and fuzzy logic technique entitled Adaptive Neural Fuzzy Inference 
System was also applied to predict and analyse membrane helices in amino acid sequences which 
produced a comparable results to using SVM-GA (Kazemian and Yusuf, 2014). In general, SVM is known 
to model problems with a smaller sample size. This makes the SVM an appropriate technique for beta-
barrel prediction problems where the modelling is undermined by problems of a smaller database. 
Furthermore, Levenberg-Marquardt algorithm is perceived as one of the most effective method for 
training NN. The Levenberg-Marquardt training algorithm is fast, but it is generally more demanding 
in terms of memory. .........................................”.  

 
Reviewer   #2:   - Finally, There are no real insightful conclusions drawn from the study and no 
suggestions for practical use of the results. Therefore, the conclusion section should be totally 
rewritten in order to: 
a) discuss research contributions in Expert and Intelligent Systems and indicate practical advantages 
(in at least one separate paragraph),  

Response to reviewer #2: 
a) The practical advantages to biology are highlighted at the beginning of the first paragraph of the 
Conclusion. The research contributions in Expert and Intelligent Systems are discussed in the first 
paragraph and continued into the second paragraph for in depth analysis. 

 
Reviewer   #2:   b) discuss research limitations (at least one separate paragraph), and 

Response to reviewer #2: 
b) Research limitations are outlined in paragraph two of the Conclusion by discussing the percentage 
accuracies of prediction of beta barrels in amino acid sequences. Needless to say that since the 
accuracies are not 100%, then, there are limitations in the research.   
 

Reviewer   #2:   c) supply 4-5 solid and insightful future research suggestions in Expert and Intelligent 
Systems (in at least one separate paragraph) for the ESWA community. No bullets should be used in 
your conclusion section.  
Response to reviewer #2: 
c) Paragraph three in the Conclusion outlines some suggestions for further research for the ESWA 
community. Initially, it recommends two other machine learning techniques spiking NNs and deep 
learning to be applied to beta barrel transmembrane protein to increase the prediction accuracy. 
Then, the paragraph mentions that a very close area related to this research called ‘protein topology’ 
such as intra-cellular, membrane spanning and extra-cellular is understudied and could be further 
researched. Finally, it recommends that machines learning techniques such as SVM, NNs, spiking NNs 
and deep learning could be applied to protein topology.   

 
Reviewer   #2:   - If the paper is resubmitted as a significantly reworked piece of work, offering a 
proper view with clear Point-to-Point responses on what is the novelty and significantly improving the 
evaluation, then I can imagine a more positive second evaluation. 

Response to reviewer #2: 
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The paper is resubmitted as a significantly revised piece of work addressing all the recommendations 
made by both reviewers, providing clear Point-to-Point answers as outlined above and emphasising 
on the novelty and evaluation of the research. Please refer to the Point-to-Point responses to the 
reviewers’ comments above and the paper itself.  

 


