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Abstract

Non-emergency Patient Transport Services (PTS) are provided by ambu-

lance companies for patients who do not require urgent and emergency trans-

port. These patients require transport to or from a health facility like a hospital,

but due to clinical requirements are unable to use private or public transport.

This task is performed nowadays mainly by human operators, spending a high

amount of time and resources to obtain solutions that are suboptimal in most

cases. To overcome this limitation, in this paper we present NURA (Non-

Urgent transport Routing Algorithm), a novel algorithm aimed at ambulance

route planning. In particular, NURA relies on a genetic algorithm to explore the

solution space, and it includes a scheduling algorithm to generate detailed routes

for ambulances. Experimental results show that NURA is able to outperform

human experts in several real scenarios, reducing the time spent by patients in

ambulances during non-emergency transportations, increasing ambulance usage,

while saving time and money for ambulance companies.

Keywords: Genetic Algorithms; Intelligent Transportation Systems;

Non-emergency Patient Transport Services.

1. Introduction

Route planning is a classic problem with remarkable importance in multi-

ple environments, with a wide range of applications in the fields of Intelligent
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Transportation Systems (Liu, 2002; Fontanelli et al., 2010; Di Lecce and Am-

ato, 2011), autonomous robotics (Latombe, 1991; Makhal et al., 2012), aerospace

environments (Hui et al., 2008; Tulum et al., 2009) and military guidance and

navigation systems (Zafar et al., 2006; Lei et al., 2010; Ruuben and Kreison,

2013).

An important application of route planning involves determining optimal

routes for ambulances in both emergency and non-emergency transport services.

Specifically, the Non-emergency Patient Transport Services (PTS) are provided

by ambulance companies for patients who do not require emergency transport.

These patients require transport to or from a health facility like a hospital, but

due to clinical requirements are unable to use private or public transport.

Computing optimal routes for ambulances is a non-trivial problem that de-

pends on the number and characteristics of the available ambulances, as well as

their location. Several incompatibilities may arise due to the limited number of

positions available in each ambulance, the equipment included, or depending on

the legislation related to patient transport and minimum service conditions in

each country. The main objective in this environment is, in general, to reduce

the amount of time a patient spends in an ambulance which could be negative

for their comfort and produce additional related health problems.

The Non-emergency Patient Transport Services Route Planning problem

could be defined as the determination of the daily schedule for each available

ambulance indicating the stops to be performed during the day, including the

estimated time for the ambulance to arrive to each point of the route, and

the patients that should be get on or off the ambulance at the stop. Most

companies perform the service assignment by means of experts that are aware

of the limitations of the system and the constraints that should be addressed in

order to have a feasible solution, which is often a suboptimal one since human

experts are not able to test enough combinations in an adequate time. The

main planning unit in this problem is called service, which includes any single

transportation of patients to or from a health center or a home address. For

example, a return trip of a patient from his home to a hospital for a medical
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check would require two services: transferring the patient to the hospital, and

another transportation to bring him home.

To solve the limitations of traditional systems, in this paper we propose the

Non-Urgent transport Routing Algorithm (NURA), a route planning algorithm

for non-emergency patient transport based on two main components: (i) an

evolutionary algorithm (specifically, a genetic algorithm) to assign the services

to be completed during a day to the set of available ambulances, and (ii) a

scheduling algorithm based on solutions provided by human experts that, given

the assigned services to a specific ambulance, determines the schedule for that

ambulance including the times when the ambulance should pass through each

point of the route, and ensures that the schedule provided is feasible.

Evolutionary Algorithms imitate the principles of natural evolution as a

method to solve parameter optimization problems. They have been successfully

used to solve various types of optimization problems (Greenwood et al., 1995),

since they provide an optimal solution without checking all the possible solu-

tions, reducing the execution time drastically. In this work, we compared the

results obtained by our proposal with real planning obtained by human experts

working in an existing ambulance company, and proved how our algorithm is

able to provide better solutions, saving the time required by the experts.

This paper is organized as follows: Section 2 reviews the related work regard-

ing non-emergency medical transport and the Vehicle Routing Problem (VRP).

In Section 3 we present NURA, our proposed Non-Urgent transport Routing

Algorithm which allows automatically obtaining a complete schedule for each

available ambulance including all the stops to perform during the day. Section

4 introduces the structure and main parameters of the Genetic Algorithm (GA)

used to explore the solution space. Section 5 presents the scheduling algorithm

used to evaluate each solution. Section 6 shows the obtained results compared

to those generated by human experts. Finally, Section 7 concludes this paper.
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2. Related Work

In this section, we are going to deal with some some approaches that are

similar to the one we are introducing in this paper. This section is divided into

two subsections: In the first one, we are going to mention how non-emergency

medical transport has been faced by several authors when applied to different

medical services around the world. In particular, we focus in the main problems

that have been addressed in this field. In the second subsection we are going

to review some approaches regarding the Vehicle Routing Problem (VRP) that

use genetic algorithms, apart from medical transport issues.

2.1. Approaches for non-emergency medical transport

Non-emergency medical transport has been faced from different points of

view, giving importance to different issues each time. The first thing to have in

mind is that non-emergency medical transport has to be faced separately from

emergency medical transport. For example, Huggins and Shugg (2008) made

clear this need, and explained how non-emergency medical transport started to

be treated in a separate way from the emergency one in a specific case. Also,

authors remarked that the non-emergency sector would grow in size and the

scope of practice would change as the population ages, and health needs change.

Despite such studies, specific non-emergency medical transportation services are

not often found, so novel approaches are appearing in the last years, such as the

one by Safaei (2011). The specific approach mentioned in that paper, however,

did not provide details about vehicle routing problems when carrying out the

patients’ transport.

Further studies have analyzed the quality and safety issues that have to

be taken into account when dealing with non-emergency patient transport, for

instance the one by Hains et al. (2011). As this paper states, quality and safety

issues relating to non-emergency patient transport services have rarely been

discussed compared to the transport of emergency patients. Therefore, authors

identified communication, efficiency and appropriateness as the key factors that

4



are advanced as impacting on the quality and safety of non-emergency transport

services. Lastly, it is worth noting that vehicular networks are having a great

importance recently, and of course, they are being used in patient transport

situations. However, they are mostly found in emergency transport, as stated

by Lee et al. (2014). In this paper, the literature is searched for suggested

methods for assisting emergency vehicles, and evaluations are used simulations

to evaluate them.

Thus, from this review we can conclude that non-emergency medical trans-

port is a relevant field, which should be treated in a separate way from the

emergency one, as it owns some very specific features. Non-emergency medical

transport should be made as efficient as possible so that medical care is given

properly to patients who make use of such service.

2.2. Genetic algorithms applied to the Vehicle Routing Problem

Genetic algorithms (GAs) have found usefulness in several problems in which

a complex solution must be found in a wide range of options. The Vehicle

Routing Problem (VRP) is one of such problems. The basic Vehicle Routing

Problem consists of a number of customers, each requiring a specified weight

of goods to be delivered (Baker and Ayechew, 2003). Vehicles dispatched from

a single depot must deliver the goods required, and then return to the depot.

Thus, medical transport can be seen as a specific application of the VRP where

patients are being transported to medical centers, instead of goods to customers.

In particular, Baker and Ayechew (2003) considered the application of a ge-

netic algorithm to the VRP and compared it to both tabu search and simulated

annealing, which are the two techniques that have usually been used to solve

the VRP. In their paper, authors show that genetic algorithms are an effective

approach to solve the basic VRP, although they give more value to genetic al-

gorithms as a means of diversifying the exploration of the solution space rather

than being the only way of solving the problem. This is one of several approaches

that apply genetic algorithm to the VRP. Another remarkable one is the ap-

proach proposed by Prins (2004), in which the author tried to develop some
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effective metaheuristics for hard combinatorial optimization problems faced in

vehicle routing. Thus, he presented a hybrid genetic algorithm for the VRP able

to compete with powerful tabu search algorithms in terms of average solution

cost.

There are also some approaches that focused on solving some variations of

the VRP, such as the VRP modified with additional time constraints. More

specifically, Hwang (2002) tried to improve a genetic algorithm in order to solve

such a problem. Thus, the author found that the proposed model could be

potentially efficient and useful in certain conditions. More recently, Pisinger

and Ropke (2007) tried to give a solution to such problems by defining a unified

heuristic. In this work, authors conclude that a mixture of good and less good

heuristics lead to better solutions than using good heuristics solely.

According to this, we consider that the Vehicle Routing Problem adapted

to medical transport issues is a problem that can be solved by means of genetic

algorithms or similar approaches. Therefore, in the following sections we are

going to explain how we have addressed the problem of non-emergency medical

transport. Our solution, namely NURA, consists of a route planning algorithm

for non-emergency patient transport. In particular, NURA uses a genetic algo-

rithm to assign the services to the set of available ambulances, and provides a

scheduling algorithm that, given the assigned services to a specific ambulance,

determines its schedule.

3. NURA: Non-Urgent transport Routing Algorithm

So far, genetic algorithms have been applied to different fields and appli-

cations. In particular, we previously proposed an approach focused on traffic

accidents urgent sanitary resource allocation based on multi-objective genetic

algorithms (Fogue et al., 2013), and a system able to reduce the emergency ser-

vices arrival time by using vehicular communications and Evolution Strategies

(Barrachina et al., 2014).

In this work, we propose theNon-Urgent transport Routing Algorithm (NURA),
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a route planning algorithm for non-emergency patient transport that is able to

allocate non-urgent medical transport services to a set of ambulances available.

In particular, NURA uses a genetic algorithm to assign the services, and it also

determines the schedule of ambulances ensuring the feasibility of the solution

provided.

The main goal of our system consists on obtaining a complete schedule for

each available ambulance including all the stops to perform during the day,

indicating the estimated time of arrival and the patients that should be picked

up or left at each stop.

Determining the route for the ambulances can be divided into two sub-

problems, easing their solving separately:

1. Assigning a set of services to each ambulance, achieving a complete cov-

erage of the services to perform during the day, that is, each service is

assigned to exactly one of the ambulances available that day.

2. Determining the daily schedule for each ambulance taking into account the

previous assignment. It is possible to find wrong or unfeasible distributions

of services, mainly due to the time necessary to travel from one point to

the next of the route, and the time constraints to complete the services.

These issues must be considered and avoided during the design of the

algorithm.

3.1. Input Data

Our proposed system requires data from three sources as input to compute

the necessary routes:

• Set of services to complete during the day. Each service represents the

transport of individual patients, either from their homes to the corre-

sponding health center, or the opposite trip. The essential information

that should be provided for each service includes: (i) initial and final ad-

dress of the service, (ii) time of the day when the service should have

finished, and (iii) transport features of the involved patient, i.e., whether
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the patients are able to walk on their own, or they need wheelchairs or

stretchers. These issues are critical to correctly allocate patients in each

ambulance.

• Available ambulances. These data include the resources available during

the day to complete the assistance routes and they will limit the possible

solutions of the problem. Additionally, each ambulance is characterized by

the number of seats reserved for patients able to walk, seats for patients on

wheelchairs, the presence or absence of stretchers in the ambulance, and

the presence of additional staff occupying seats. The available schedule of

the ambulance is also required to compute the routes.

• Ambulance bases. They represent the places where the ambulances start

and finish their work shifts (i.e., their headquarters). The information

about their location is necessary to determine the initial and final time of

ambulance use, as well as the total distance traveled by each ambulance,

and hence, the total cost of the assistance operation.

3.2. Algorithm Structure

Following the division of the problem into two sub-problems, the algorithm

is divided into two main modules:

1. Service assignment to ambulances. The distribution of services to the dif-

ferent available ambulances is a problem with high computational cost.

As an example, given a day with 80 services to complete using 5 available

ambulances (supposing that we could assign each service to any of the

ambulances), it makes a total of 580 possible combinations, i.e., 8.27 · 1055

possibilities. A simple “brute force” algorithm computing and checking

10,000 combinations per second would require 2.62 ·1044 years to generate

all the possibilities. Obviously, this is not feasible and only a subset of

the combinations can be checked in an acceptable time. As the search

process must be guided by an algorithm that avoids generating inade-
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quate solutions, focusing on those providing positive results, we chose an

evolutionary algorithm to fulfill these objectives.

2. Generation of ambulance daily schedules. Once the services are distributed,

the route for each ambulance must be computed and its feasibility checked.

The subsystem in charge of this part relies on on an algorithm based on

actual information from previously generated routes provided by human

experts working on the ambulance company. Our algorithm sorts the stops

to minimize waiting times, while ensuring the services being assisted on

time. The travel time between stops must be determined using a geo-

graphic routes generation system, e.g., Google Maps API (Gibin et al.,

2008; Svennerberg, 2010), to determine whether the intermediate points

can be reached in the required time.

It is worth noting that both sub-systems are not independent, since they

need the information provided by each other. The genetic algorithm provides

the scheduling algorithm with the potential assignment of services to each am-

bulance, and the scheduling algorithm provides information about the feasibility

and optimality of the assignment that will be later used by the genetic algorithm

to compute the fitness function of a given individual.

Figure 1 shows the structure of the system, including a module in charge of

the data acquisition required for the algorithm, which could be obtained from

a database or files adequately structured.

4. Service Assignment: Genetic Algorithm

Genetic algorithms are a sub-set of evolutionary algorithms, which are based

on Darwinian theories of evolution. Given a population formed by individuals,

natural selection due to the limited resources and environmental pressure in-

crease the level of adaption of the individuals to their environment, i.e., the

fittest individuals are able to survive and transfer their beneficial features to

their offspring. The new individuals will compete again in the environment.
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Figure 1: Structure of the NURA algorithm.

These individuals are formed by: (i) their external properties affecting their fit-

ness or phenotype, and (ii) a set of genes codifying the corresponding phenotype

or genotype (Mester and Bräysy, 2005).

Evolutionary algorithms belong to the category of search-and-test. In order

to determine the level of adaptation of the individuals, also called fitness, an

evaluation function estimating the quality of the solution is used. Here, fitness

refers to a measure of profit, utility, or goodness to be maximized while exploring

the solution space.

The evolutionary process depends on two operators: crossover and muta-

tion. The recombination or crossover operator combines two or more genotypes

(parents) to form new genotypes (offspring). Individuals with higher values of

fitness are more likely to be selected as parents, allowing their offspring to in-

herit their genes. To increase diversity in the population, the mutation operator

is in charge of introducing random changes in the chromosomes. The probabil-

ity of change in a gene is usually very small to avoid excessive changes in the

offspring that could move the individual away from the area that it is currently

exploring, and it allows exploring new areas of the solution state space avoiding

local optima.
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There are different variants of evolutionary algorithms, such as genetic algo-

rithms, evolution strategies, evolutionary programming, and genetic program-

ming. In the problem of assigning services to ambulances, the final solution will

determine which ambulance is in charge of each service. That is, each possible

solution can be represented by a vector representing the resources, and indicat-

ing which ambulance will take care of the service. Since the number of available

ambulances is finite, and taking into account that GAs represent candidate so-

lutions as strings over a defined alphabet, it makes them the most appropriate

type of algorithm for our problem.

Evolutionary algorithms are able to obtain solutions with a decent quality

in environments where little or none experience is available. However, in prac-

tice they are frequently applied to problems in which a considerable amount

of experience and knowledge is available, and introducing heuristic methods

usually improve the performance of the search process. Hybrid algorithms com-

bining evolution and heuristics are based in the idea of “memes” (Dawkins,

1976), which are units of cultural transmission transmitted through interper-

sonal communication, making these hybrid approached often known as Memetic

Algorithms (Moscato, 1989).

4.1. Parameter Definition for the Genetic Algorithm

Genetic algorithms require defining a series of components to determine their

functioning and performance, and many of them are dependent on the problem

to solve. In our case, we must adapt the general parameters of genetic algorithms

to the ambulance routing problem.

• Representation of individuals:

Individuals representing a solution of the problem must be coded into the

genetic algorithm; in particular, their genotypes, phenotypes, and the link be-

tween them. The phenotype for the ambulance scheduling problem consists on

the assignment of services to each ambulance. Each individual, i.e., possible

solution, is represented in the population by using a vector of characters where
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Figure 2: Example of representation of individuals in the genetic algorithm used in NURA.

each position is associated with one of the services to be performed during the

day, and the value of the vector represents the ambulance in charge of the cor-

responding service. Due to the limited number of available ambulances, the

possible symbols for each gene are finite, thus allowing the use of genetic algo-

rithms in this scope. This representation allows the most efficient crossover and

mutation, since varying the assignment of a given service only requires modify-

ing the associated position in the genotype vector. Obtaining the set of services

for an ambulance can be determined by searching all the positions in the vector

in which the code of the ambulance appears. Figure 2 shows an example of

assignment using a set of seven services and three available ambulances.

• Evaluation function:

The Solutions to be the parents of new generations are selected depending

on their fitness values. The main objective of our system is to maximize the

quality of the service provided to the patients, which can be represented by

the reduction of time spent by the patients in the ambulances. We define the
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waiting time (WT ) for a patient on a service depending on the destination of

the service:

• If the destination of the service is a health facility for the treatment of the

patient, the waiting time is computed as the difference between the time

of the appointment and the time when patient is estimated to be picked

up.

• If the destination of the service is a home address after the treatment, the

waiting time is computed as the difference between the estimated time

when the appointment ends and the time when patient is estimated to be

left home.

We can define the fitness function as the average waiting time for all the

services to be performed during the day. Equation 1 shows the computation

performed to determine the fitness of an individual (ind) formed by N services

labeled as si:

Fitness(ind) =
100

∑
N

i=1
WT (si)

N
+ 1

(1)

Therefore, the fitness value for a theoretical perfect individual without any

waiting time would be 100, whereas lower values represent more unsuitable

solutions to the problem.

• Population:

The population contains the candidate individuals corresponding with solu-

tions during a generation. In genetic algorithms, populations usually contain

a fixed number of individuals, because the benefits of varying the number of

individuals are merely spatial (Affenzeller et al., 2007). The speed of the al-

gorithm is affected by the size of the population, since small populations allow

higher speeds but produce premature convergence of the solutions (Koljonen

and Alander, 2006).

• Parent selection:
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Figure 3: Example of 1-point crossover operator.

During the parent selection process, the individuals of the population are

tested to determine which of them should transmit their genes to the next gen-

eration of individuals. In NURA, this phase is performed through tournament

selection in which k random individuals in the population are chosen for each

possible father, and the best of them all becomes father of the next generation.

• Crossover operator:

The recombination or crossover operator joins the information of the parents

in one or more offspring individuals. This operator is n-ary, even if only two

parents are frequently combined. NURA makes use of the classical operator of

1-point crossover as it is the default version for this type of algorithms. Given

two parent genotypes, a cutoff point is chosen and the offspring genes take

values from the first parent before the point, and from the second parent after

the point, as shown in Figure 3.

• Mutation operator:

The mutation operator introduces diversity in the population, and it is tra-

ditionally defined as the change probability for a single gene. NURA uses a

probability of 0.05, i.e., one change for every 20 genes on average. Mutation

also takes into account the requirements of the patient to avoid assigning the

corresponding service to ambulances without the necessary equipment, for ex-

ample, if the transport must be performed using a stretcher and the ambulance

does not include at least one.

• Survival selection:
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Determining the individuals that should form the population in the new

generation is not a trivial process. It is usual to use generational replacement,

where the new offspring completely replaces the individuals from last gener-

ation. However, NURA uses a steady-state scheme where only a fraction of

the individuals are replaced (those with the lowest fitness values) to ensure the

best values obtained so far survive in future generations. In our approach, the

fraction of individuals replaced in each generation is set to 50%.

4.2. Constraint Handling

In most engineering problems, not all the possible solutions of a problem

are feasible due to limited resources or other constraints. Hence, using only the

fitness value of two solutions is not enough to compare them, and new techniques

should be used to compensate this limitation. An interesting approach (Deb

et al., 2002) makes use of the constraint-dominance concept, where a solution i

is fitter than (dominates) another solution j if any of these conditions is true:

1. Solution i is feasible, while solution j is not.

2. Both solutions are unfeasible, but solution i presents less violation to the

feasibility condition.

3. Both solutions are feasible, but solution i dominates over j.

Using this approach, we can compare feasible and unfeasible solutions during

the search process. In NURA, a solution is considered unfeasible if one of the

following conditions is fulfilled:

• One of the services assigned cannot be completed due to inability of the

ambulance to arrive on time to the health center. Ambulances with too

many services assigned may be unable to complete the trip on time, due

to long routes or being too far away in the moment they are needed. A

good example is found if an ambulance has more services assigned for a

trip than its actual capacity, hence the ambulance would make two trips in

order to complete them all with the subsequent loss of time. The feasibility

violation of an individual is obtained as the total delay time for all the
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patients, computed as the difference between the time when the patient

should arrive and the moment when he/she actually arrives.

• The duration of a patient’s trip exceeds more than 1 hour the time required

to reach its destination in a direct trip. That is, the additional stops added

to a trip to pick up or leave a patient should not delay another patient’s

trip more than 1 hour. This condition follows the Spanish legislation

regarding non-urgent patient transport (Ministerio de Sanidad, Servicios

Sociales e Igualdad (Spain), 2012).

4.3. Hybridization in NURA

Hybrid or memetic algorithms make use of local search in evolutionary algo-

rithms to reduce the level of randomness in the search process, adding knowledge

about the problem to improve the efficiency of the search. In our case, local

search is used to increase the quality of the solutions found when the search

process has achieved almost feasible solutions. When more than 90% of the

services included in the solution are assigned to suitable ambulances, the lo-

cal search focuses in the rest of services, trying all the possible ambulances for

them. Generating neighboring solutions to the problem at hand can be simple

using gene modification, since the new solution only differs from the original

one in one gene: a service is assigned to a different ambulance. The local search

process will finish when the first better solution is found in the vicinity, or when

there are no more neighbors left to explore.

Table 1 contains a summary of the values selected for the different parameters

of the genetic algorithm proposed in NURA.

5. Schedule Generation Algorithm

Obtaining the fitness value for a particular solution requires knowledge of

the average travel time per patient, which can only be obtained if the daily

scheduling of each ambulance is known. This is done by knowing the character-

istics of the particular ambulances and the services that are assigned to them for
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Table 1: Parameter Values of the Genetic Algorithm used in NURA

Parameter Value

Representation of individuals One gene for each service to complete

Evaluation function Average patient waiting time [0..100]

Population Fixed size

Parent selection Tournament selection size k

Crossover operator 1-point crossover

Mutation operator Probabilistic bit-flipping

Survival selection 50% steady-state

Constraint Handling Constraint dominance comparison

Hybridization Local search in 90% feasible solutions

the day. The genetic algorithm assigns a subset of services to each ambulance,

and then a method to determine the schedule of each ambulance is required to

compute necessary metrics such as the patients’ waiting time and the usage of

the ambulances.

In NURA, the ambulance scheduling process is based on the real procedure

followed by human experts in an actual ambulance company. The process fol-

lowed for planning consists of a series of steps until all services are distributed

in ambulance trips:

1. Step 1: Sort. The services are sorted according to the time of day. In the

case of services in which the destination is a hospital, the time to consider

is the time when the patient should arrive to the health facility (arrival

time). If the service represents a transfer to the patient’s home, the arrival

time is not as important as the departure time, since more time waiting

in a hospital for an available ambulance would reduce the quality of the

service.

2. Step 2: Group. Once the services are sorted, they must be grouped into

trips. The trips determined by the experts have their destination in the
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same city, even if the health facility is not the same. Ambulance trips

should contain a number of patients not exceeding the capacity of the am-

bulance, but also minimizing the length of the itinerary and ensuring that

the arrival time is not compromised by picking up additional passengers.

Hence, all the combinations of the candidate services are considered to

find the most adequate groups of services for the given ambulance.

3. Step 3: Time scheduling: After the groups of patients for a trip are ob-

tained, the specific stops for a trip and the corresponding times are com-

puted. The reference for trips with hospitals as destination are determined

by the earliest arrival time of the patients transferred, since none of them

should arrive later than their appointment. However, if the destinations

are patients’ homes, the departure time of the ambulance is set as the

latest of the times when the appointments of the patients are estimated to

finish. The times are computed taking into account: (i) the travel time of

the ambulance between locations, (ii) the time needed to pick up or leave

each patient in their homes, set as 5 minutes on average, (iii) the time

needed to pick up or leave the patients in a hospital and their transfer to

the appropriate area of the health facility, set as 10 minutes on average.

These steps are shown in Figure 4 using a small set of services. Once the

time scheduling is finished, it is easy to determine if a solution is feasible or not:

if the ambulance is not able to reach some destination in time, if would delay all

the system and thus it would be considered unfeasible. This information is used

by the genetic algorithm to evaluate the solutions and guide the search process.

6. Experimental Results

In this section we evaluate the performance achieved with the NURA algo-

rithm in different scenarios obtained from a real ambulance company. First of

all, we will study the influence of several parameters in the efficiency of the ge-

netic algorithm, in order to justify the values selected and presented in previous
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(a) (b)

(c)

(d)

Figure 4: Schedule generation algorithm: (a) services assigned to the ambulance, (b) services

after the sort step, (c) services after the group step, and (d) final result after the time schedule

step.

19



Figure 5: Region of Huesca in Spain.

sections. Secondly, we will compare the solutions generated using NURA with

those computed by human experts working in the ambulance company.

Several scenarios with different amounts of ambulances and services were

used to evaluate NURA, showing a similar trend in all of them. Therefore, we

selected three of them representing different conditions to illustrate the perfor-

mance of the algorithm. These scenarios include real services from the region

of Huesca, Spain (see Figure 5), provided by the ambulance company with data

about the services to be performed during the day, the ambulances available and

the solution generated by experts. The characteristics of the three scenarios are

shown in Table 2, including:

• Total number of services to complete.

– Number of services carrying patients from a home address to a health

facility (HA → HF ).

– Number of services carrying patients from a health facility to a home

address (HF → HA).
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Table 2: Scenarios used to Evaluate the Performance of NURA.

Scenario Services Ambulances

Scenario 1

38 services 4 ambulances

19 srv. HA → HF 2 × amb. 4-2-0

19 srv. HF → HA 2 × amb. 3-2-0

14 ×

Scenario 2

52 services 6 ambulances

28 srv. HA → HF 4 × amb. 3-2-0

24 srv. HF → HA 2 × amb. 3-2-1

11 × 1 ×

Scenario 3

94 services 10 ambulances

49 srv. HA → HF 2 × amb. 4-2-0

45 srv. HF → HA 5 × amb. 3-2-0

25 × 1 × 3 × amb. 3-2-1

– Number of services requiring wheelchairs and stretchers.

• Total number of ambulances available.

– Configuration of each ambulance. The configurations differ among

each other depending on the number of seats, number of wheelchairs

allowed, and number of stretchers included in the ambulance. The

ambulance company works mainly with three different configura-

tions, as shown in Figure 6: (i) ambulances 4-2-0 (4 seats and 2

wheelchairs), (ii) ambulances 3-2-0 (3 seats and 2 wheelchairs), and

(iii) ambulances 3-2-1 (3 seats, 2 wheelchairs, and 1 stretcher).

6.1. Influence of Parameters in Algorithm Efficiency

The efficiency of genetic algorithms noticeably relies on the selection of con-

figuration parameters. We tested the effect of three different parameters to

21



(a) (b)

(c)

Figure 6: Different configurations of ambulances depending on the number of seats,

wheelchairs, and stretchers: (a) ambulance 4-2-0, (b) ambulance 3-2-0, and (c) ambulance

4-2-1.

generate Figures 7, 8, and 9, which include the fitness values of the best indi-

vidual in each generation, averaged using the data from 15 executions. These

results are obtained using a fixed configuration and varying only one of the pa-

rameters to appreciate its influence in Scenario 3 (the most complex one). The

basic configuration is shown in Table 3.

The results obtained show the effect of varying the following parameters:

• Number of individuals in the population. Increasing the number of indi-

viduals allows searching a bigger portion of the search space, at the cost

of increasing the computation time. We tested three different values for

this parameter: 50, 100, and 200 individuals. Results in Figure 7 show

that higher values increase the convergence speed of the population and

the probability of obtaining feasible solutions. Since the time required to

finish the computation is acceptable (90 seconds for 200 individuals, com-

pared to 50 seconds for 100 individuals and 30 seconds for 50 individuals),

the highest value is selected, i.e., 200 individuals.
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Table 3: Configuration parameters for the genetic algorithm.

Parameter Value

Number of individuals 200 individuals

Crossover 1-point crossover

Crossover rate 90%

Parent selection type Tournament selection

Tournament size k = 5

Mutation Random bit-flipping

Mutation rate 0.05

Survivor selection Steady-state model

Generational gap 50%
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Figure 7: Evolution of the fitness value of the best individual when varying the number of

individuals in the population.
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Figure 8: Evolution of the fitness value of the best individual when varying the tournament

size during parent selection.

• Tournament size in parent selection. The parent selection phase is re-

sponsible of selecting the most adequate parents to generate the offspring,

but it could maintain enough diversity to avoid premature convergence

towards local optima. Tournament size (k) determines how many individ-

uals are used to select each parent; using low values reduces the probability

of selecting good parents and slows the search process, whereas high val-

ues makes the offspring too similar with each other. Figure 8 shows how

the lowest value of k = 2 provides good solutions but the search process

develops too slowly, and the value of k = 10 accelerates the search but

reduces the quality of the solutions found. The best trade-off between

speed and quality of solutions is obtained when k = 5.

• Mutation rate. Mutation is the mechanism used to maintain the diversity

in the population; without it, the individuals would soon converge to

the closest optima, which are often local optima. As shown in Figure 9,

selecting low values of mutation rate around 0.01 makes the search process

advance very fast towards the final solution, but at the cost of finding
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Figure 9: Evolution of the fitness value of the best individual when varying the mutation rate

of the offspring.

suboptimal points. Higher values are necessary, but values higher than 0.1

makes the solutions move too far away from the area currently exploring,

slowing the overall process. The best value tested for the mutation rate is

0.05, providing enough speed to achieve good solutions with an adequate

quality.

6.2. Performance Evaluation

We compared the results of NURA with the solutions found by the human

experts of the ambulance company in the scenarios evaluated. Two metrics were

tested: (i) the average waiting time of all the patients with services associated

during the day, obtained as the time spent in the ambulance since the time they

are picked up until they arrive to their destination; and (ii) the average usage of

ambulances measured in percentage, computed as the fraction of the time the

ambulances are in transit.

All the results included in this section represent an average of over 15 exe-

cutions, obtaining for all of them a confidence degree 99%.
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Figure 10: Average waiting time for patients in the solution found by human experts and

NURA.

Figure 10 shows the results regarding average waiting time when comparing

both the human experts and NURA solutions. It is noticeable how Scenario 2 is

the one that presents higher average waiting time even if it is not the one with

the highest amount of services and ambulances and the number of services per

ambulance is the lowest (9.5 services/ambulance in Scenario 1, 8.7 in Scenario

2, and 9.4 in Scenario 3), mainly due to the complicated location of the patients

which requires longer trips. NURA is able to outperform human experts in the

three selected scenarios, showing remarkable performance in scenarios with low,

medium and high number of services and ambulances involved.

Regarding ambulance usage, as shown in Figure 11, NURA makes a better

use of the available ambulances, reducing the inactive periods of the ambulances

in all the scenarios tested. This could help determining the optimal amount of

ambulances needed for a given set of services to be completed during the day,

thereby reducing the total cost of the operation.

Table 4 summarizes the information contained in the previous figures. As it

can be observed, the reduction in patient waiting time is about 10% in average,
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Figure 11: Average ambulance usage in the solution found by human experts and NURA.

reaching up to 13% in Scenario 1. The improvement is even higher in terms of

ambulance usage, with almost 30% increased usage in Scenario 2 allowing the

reduction of waiting time detected. This would reduce the incommodity of the

patients during transportation, improving the perception of the users towards

the service provided.

7. Conclusions

Non-emergency patient transport is a rapidly growing area, especially due

to demographic changes in today’s society. However, specific non-emergency

medical transportation services are not often found, as they are mainly focused

on emergency medical transport.

In this paper we presented NURA, a novel algorithm to generate Non-

Emergency Patient Transport routes with the aim of reducing the time spent

by the patients in the ambulances. Existing ambulance companies make use of

human experts to generate these routes; however, this task is time-consuming

and the solutions found are in most of cases suboptimal due to the reduced
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Table 4: Performance comparison.

Scenario
Patient waiting time Ambulance usage

Human experts NURA Human experts NURA

1 42 min.
36.40 min.

70.98%
77.59%

(-13.33%) (+9.31%)

2 84 min.
78.00 min.

64.29%
83.16%

(-7.14%) (+29.35%)

3 67 min.
60.67 min.

66.14%
81.44%

(-9.45%) (+23.13%)

number of possibilities that can be explored in a reasonable time. NURA copes

with these deficiencies using a genetic algorithm to guide the search process

in the solution space, and a scheduling algorithm able to generate the specific

planning for an ambulance given a set of assigned services.

Evolutionary algorithms are able to obtain suitable solutions in a reason-

able time in environments where little or none experience is available. In the

field of non-emergency patient transport, the number of possible solutions in-

creases exponentially with the size of the problem; hence, a mechanism able to

efficiently explore huge parts of the search space while avoiding local optima

is needed. Evolutionary algorithms, and specifically genetic algorithms, fulfill

these requirements. NURA additionally includes hybridization using heuristics

to further improve the performance of the search process.

In addition, unlike NURA, most approaches focusing on emergency medical

transport have not been tested against human experts doing this task in ambu-

lance companies. The results obtained when comparing the solutions found by

human experts and NURA under the same conditions show that our proposal

is able to reduce the wait time of patients during their transport up to 13.33%,

while increasing the ambulance usage up to 29.35% in the selected scenarios.
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Hence, the approach followed combining genetic algorithms with an schedule

generation algorithm is able to provide more efficient routes in less time than

human experts, with the consequent increase in productivity and optimization

of resource usage.

We are planning to further enhance NURA using a multi-objective genetic

algorithm taking into account more possible outcomes of the solution, including

total cost of the operation and distance traveled by the ambulances. In addition,

the scheduling algorithm could be improved increasing the flexibility of the

ambulance trips, allowing multiple stops at health facilities in each trip.
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