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Abstract

Autoregressive (AR) models are of commonly utilized feature types in Electroencephalogram 

(EEG) studies due to offering better resolution, smoother spectra and being applicable to short 

segments of data. Identifying correct AR’s modeling order is an open challenge. Lower model 

orders poorly represent the signal while higher orders increase noise. Conventional methods for 

estimating modeling order includes Akaike Information Criterion (AIC), Bayesian Information 

Criterion (BIC) and Final Prediction Error (FPE). This article assesses the hypothesis that 

appropriate mixture of multiple AR orders is likely to better represent the true signal compared to 

any single order. Better spectral representation of underlying EEG patterns can increase utility of 

AR features in Brain Computer Interface (BCI) systems by increasing timely & correctly 

responsiveness of such systems to operator’s thoughts. Two mechanisms of Evolutionary-based 

fusion and Ensemble-based mixture are utilized for identifying such appropriate mixture of 

modeling orders. The classification performance of the resultant AR-mixtures are assessed against 

several conventional methods utilized by the community including 1) A well-known set of 

commonly used orders suggested by the literature, 2) conventional order estimation approaches 

(e.g., AIC, BIC and FPE), 3) blind mixture of AR features originated from a range of well-known 

orders. Five datasets from BCI competition III that contain 2, 3 and 4 motor imagery tasks are 

considered for the assessment. The results indicate superiority of Ensemble-based modeling order 

mixture and evolutionary-based order fusion methods within all datasets.
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1. Introduction

Autoregressive (AR) models have established their value in a broad range of applications in 

digital spectral analysis. AR models ability in terms of handling short segments of data, 

offering better frequency resolution and smooth power spectra are advantageous in 

comparison to Discrete Fourier Transform (DFT) and Fast Fourier Transform (FFT) 

(Palaniappan, 2006b). The inherent computational efficiency of AR models is of advantage 

compared with alternatives such as Moving Average (MA) and Autoregressive Moving 

Average (ARMA) (Ning Bronzino, 1990). Accurate modeling order settings results in 

accurate representation of the underlying signal. Low modeling orders are known to be poor 

representatives of the signal properties while high modeling orders are likely to represent 

noise resulting in unreliable representation of the signal.

The recorded Electroencephalogram (EEG) reflects the unified action of many cortical areas 

and is further smeared by volume conduction of the signal in the brain, thus the activity at 

any one scalp electrode reflects the mixture of many spatially and temporally overlapping 

patterns of the brain activity. This acknowledges the argument that any representation of 

such pattern that favors a single aspect against the rest is likely to be incomplete 

representation of the underlying patterns. In light of AR-based EEG feature representation, 

this issue is indicative that any AR feature representation of an EEG signal that is originated 

from a fixed modeling order is only reflective of a sub-group of the underlying patterns that 

the EEG recording contains. Therefore, the conventional AR order estimation methods such 

as Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC) and Final 

Prediction Error (FPE) will tend to identify that order by capturing the strongest underlying 

pattern in the EEG (in their view) irrespective to the completeness of the resultant pattern 

and its implication in terms of pattern classification. Although the idea of representing an 

EEG spectrum with AR features of more than one AR-order is novel within EEG and signal 

processing community, an equivalent (in some degree) study been conducted in statistical 

analysis of non-linear time series by Chun Shan Wong (2000) in which mixture of k 

stationary or non-stationary AR components are used. The study is focused on sub-selection 

of AR components for better representing the non-linear time series rather than identifying 

multiple AR-order candidates. AIC and BIC are considered for order estimation in the study. 

Authors claimed advantages such as “more full range of shape changing predictive 
distribution and the ability to handle cycle and conditional heteroscedasticity in the time 
series” (Chun Shan Wong, 2000). Authors also acknowledged the utility of mixture of AR 

models in handling conditional heteroscedastisity in their discussions (Chun Shan Wong, 

2000).

Current study challenges the conventional operation of AR-order estimation in EEG-based 

BCI studies by assessing following hypothesis:

Hypothesis

Adequate mixture of AR features derived from various AR modeling orders is a better 

representative of the underlying signal compared with any AR-based representation that is 

derived from a single modeling order.
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In the context of expert systems in general and Brain Computer Interfacing (BCI) in specific, 

proving this hypothesis provides the opportunity of extracting more veridical spectral 

patterns from EEG recordings that are more distinguishable from each other and are better 

representatives of the performed tasks by participants. Given the vast application of AR 

coefficients in BCI studies, such improvement can lead to the generation of systems that are 

much more responsive to the ongoing changes in the spectral information of participating 

subjects and are more accurate in terms of identifying the intention of their users.

In order to assess the hypothesis the study proposes two mechanisms for automatically 

identifying the correct mixture of AR modeling orders. These mechanisms are as follows:

1. Evolutionary-based fusion of AR features obtained from a collection of modeling 

orders (ranging between 2 to 30).

2. Ensemble-based modeling order mixture.

Three sets of experiments addressing different conventional methodologies for selecting AR-

order are considered in order to provide base-line performance for evaluating the feasibility 

of the Evolutionary-based and Ensemble-based mechanisms proposed in this study. These 

conventional methodologies are as follows:

• Investigator’s intuition: It is a common practice in EEG community to choose 

the modeling order based on suggestion’s made by the literature on similar 

experimental conditions or to use the researcher’s intuitions. Reported effective 

AR-orders in EEG spectrum analysis includes 2, 4 , 6, 8, 10, 16 and 30.

• Conventional estimation approaches: The most commonly considered order 

estimation methods includes Akaike Information Criterion (AIC), Bayesian 

Information Criterion (BIC) and Final Prediction Error (FPE) Vedavathi et al. 

(2014); Peiyang et al. (2015); Eriolu Gnay (2010); Kotkatvuorirnberg (2016); 

Wang et al. (2010); Dirgenali Kara (2006).

• Blind Mixture of AR features obtained from a collection of well-known 

modeling orders (ranging between 2 to 30) as proposed by Fitzgibbon (2007).

Five well-known datasets from BCI competition III that contain 2, 3 and 4 class problems 

(motor imagery tasks) are employed for assessment of the considered approaches.

The outline of the study is as follows. A brief introduction to Autoregressive analysis and its 

recent applications in single trial EEG studies are presented in Section 2. Section 3 

introduces the approaches that are being used in the study. Section 4 presents datasets, data 

restructuring, and preprocessing approaches utilized in the study. Experimental results are 

discussed in Section 5. Sections 6 and 7 presents discussion and conclusion respectively.

2. Background

2.1. Autoregressive (AR) analysis

Autoregressive (AR) method can be considered as a linear filter that can be used for analysis 

of signals that are corrupted by white noise. Xu Song (2008) introduced following equation 

for AR:
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(1)

In here, p is the AR order, x(n) is the input signal and n refers to sample point. ap(i) is the 

AR coefficient and ε is the white noise. The purpose is to estimate AR coefficients. Even 

though AR is computationally efficient and its simplicity is its advantage compared to other 

techniques, the model order (p) plays a major role in the accuracy of the resulting features. 

In AR model, the use of a high p value provides spurious peaks while a low p value results 

in smooth spectrum (Xu Song, 2008). introduced following methods for estimating the 

modeling order, i) Akaike Information Criterion (AIC), ii) Final Prediction Error (FPE), iii) 

Minimum Description Length (MDL), vi) Criterion Autoregressive Transform (CAT), v) 

Hannan and Quinn (HQ), and vi) Residual variance (RV). Between these methods, AIC, BIC 

and FPE are common to be used in EEG studies.

Inoue et al. (2003) investigated the use of AR method in single trial motor imagery tasks. 

The study showed over 90% classification performance in right and left motor imagery 

tasks. Kus et al. (2006) employed a short time directed transform function (STDF1) based on 

AR model to distinguish actual and imaginary finger movement from each other. The study 

reported the im- pact of finger movement and imagination on beta and gamma frequency 

bands. Kus et al. (2006) demonstrated that beta and gamma rhythms have different 

synchronization properties (in a motor control task, an increase in gamma may be 

accompanied with decrease in beta frequency band). They also found out that gamma 

rhythm has a high contribution in imagery activities. Nagata et al. (2006) employed AR for 

feature extraction in a motor imagery problem based on distinguishing three tasks. In their 

study, EOG and EMG signals are used to detect and remove artifacts. Tsoi et al. investigated 

the combination of AR as feature extractor and Multilayer Perceptrons (MLP) as classifier in 

EEG classification problem (Tsoi et al., 1993). Wolpaw et al. (2000) proposed the use of 

spatial filter with AR method for BCI studies that contain components/activities that their 

motion needs to be controlled by participants (focusing on sensorimotor rhythms, beta and 

mu). The proposed spatial filter is considered in a way to match the user’s β and μ rhythms. 

Wolpow considered AR as a better choice compared to FFT for short time segments due to 

its ability to provide higher resolution.

As mentioned earlier, identifying optimal modeling order of AR features has a direct impact 

on how well the AR features represent the performed tasks by participants. Jansen et al. 

(1981) claimed model order of 10 as the optimal modeling order for EEG. Vaz et al. (1987) 

identified AR-order 5 as the optimal estimate when working with rhythmic and 

non-”featureless background” EEG. Krusienski et al. (2006) argued that the criteria 

considered in Sensory Motor Rhythms (SMR) -based BCI studies by literature does not 

necessarily result in optimal AR modeling order estimation. That is, Krusienski et al. 

suggested that in order to control BCI system, both the rhythmic and “featureless 

1STDF is a modified version of Direct Transform Function (DTF) that operates based on the ensemble averaging paradigm by 
calculating the estimation of windowed data with respect to the existent of multiple realization of the process (Kus et al., 2006).
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background” components of the EEG need to be captured by AR spectral estimation. The 

study confirmed this argument by comparing the performance of AIC with fixed modeling 

orders of 6, 10, 16 and r2. Krusienski et al. concluded that higher model orders are expected 

to generate more accurate spectral estimation when working with SMR-BCI systems. Engin 

et al. (2001) suggested that the model order p has direct relation with sampling rate of EEG. 

They stated that “the order estimation for the data with lower sampling frequency results in 

lower orders” (Engin et al., 2001). The study investigated this issue with 5s EEG data 

sampled at 50Hz and 100Hz and considered model orders in the range of 1 to 25. 

Palaniappan Raveendran (2001) investigated feasibility of various conventional model 

estimation approaches including Akaike Information Criterion, Final Prediction Error, 

Residual Variance, Minimum Description Length, Criterion Autoregressive Transfer and 

Hannan-Quinn in addition to modeling order 6. Fuzzy ARTMAP neural network is 

employed for evaluating the performance. The study failed to identify a clear performance 

advantage across these methods when a dataset with multiple subjects is used. That is, 

neither of the conventional approaches performed consistently across subjects (Palaniappan 

Raveendran, 2001).

2.2. Applications of AR on EEG studies: survey of the state-of-the-art

Autoregressive models have many applications in EEG signal analysis varying from 

estimation of spectral characteristics of EEG signal to artifact rejection and stationary signal 

discrimination. This section covers a range of recently published articles that features the 

application of AR in EEG analysis.

Peiyang et al. (2015) proposed a modified autoregressive model for power spectrum analysis 

of the resting state EEG signal in the presence of artifacts and outliers. The study proposed 

the use of Lp norm (p ≤ 1) in stead of conventional L2 norm configuration introduced by 

Yule-Walker2. P300 evoked potential responses to oddball paradigm from P3 electrode is 

used for assessing the feasibility of the approach. 4 to 20 outliers are randomly injected to 

the first 4s of the recording. The feasibility of the Lp-norm AR is assessed on the basis of its 

ability to fit the artifactual data with different degrees of outliers in which it managed to 

outperform both Yule-Walker and Burg AR methods.

Camilleri et al. (2015b) proposed a semi-supervised autoregressive switching multiple model 

(AR-SMM) for segmentation of EEG data in a BCI study. The study used a single model in 

the beginning (one labeled instance) and segmented the EEG data whenever detected a new 

model that did not fit to the characteristics of the previously identified segments. Total of 22 

trials of eye-close and eye-open over O2 channel from a single participant is considered in 

the study.

Vijayan et al. (2015) investigated AR modeling in an EEG-based emotion recognition and 

classification study. The novelty of this approach lied within the use of statistical measures 

as a weighting system on AR features. DEAP benchmark emotion based EEG database is 

utilized. The database contained 4 emotional states recorded from 32 electrodes with 32 

2L2-norm-based methods are known to be effective in representing spatially extended sources while L1-norm-based approaches are 
known to better estimate focal and sparse sources (Liu et al., 2015)
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participants. The procedure considered in the study is based on fitting a higher order 

autoregressive model to the extracted Shannon-Entropy features and using a support vector 

machine (SVM) for classifying the resulting models. Yule-Walker AR coefficient estimation 

is used. The exact modeling order used in the study is not specified.

Shahabi Moghimi (2016) used multivariate AR (MVAR) modeling for extracting the 

connectivity patterns between EEG electrodes under different frequency bands in a music 

study. The study is focused on the emotional responses of 19 participants to a set of Iranian 

and classical music. The correlation between inter and intera regional connectivity and the 

assessments of musical selections are considered. An SVM is used for classifying the two 

conditions of joyful and neutral. Ar-order is set to 6 based on the estimation gained from 

AIC.

Pippa et al. (2015) proposed a new approach for automatic estimation of correct modeling 

order of AR features in an epileptic seizure detection study. Combinations of statistical 

features and regression analysis are used for identifying the optimal AR-order. Recordings 

from 10 epileptic participants are used for assessing the feasibility of the approach. The 

results indicated mean absolute error of 4 units in estimation of optimal AR-order. The 

authors argued that the difference between AR coefficients of neighboring AR-orders are 

negligible and the 4 unit estimation error is likely to be within the acceptable estimation 

range.

Yonghui et al. (2015) used combinations of autoregressive features extracted from phase 

space and Linear Discriminant Analysis (LDA) in an EEG classification study. Graze 2003 

and Graze 2005 datasets are considered for evaluating the performance. AR-order is set on 

the basis of multiple runs of repeated 10- fold cross validations on which different AR-

orders are evaluated and the best consistently performing of all evaluated AR-orders (on 

each subject) is later on utilized on the phase data. Although the procedure some what 

guaranties finding the best fitting single AR-order for the task, it is computationally 

expensive despite the fact that the estimation of AR features is a relatively low computation 

task. The results identified AR orders of 8 and 5 for EEG data of various participants.

Abo-Zahhad et al. (2015) introduced a human authentication approach on the basis of using 

the mixture of EEG and eye-blinks recordings. Combinations of AR features and time 

delineation of eye blinks are used as a fused feature set with an LDA classifier. The 

evaluation of the approach is done using EEG recordings of 31 subjects performing 3 tasks 

of relaxation, visual stimulation, and eye-blinking. AR coefficients are estimated using Burg 

algorithm. The modeling order is set to 50 based on investigator’s intuition and later 

systematic sub-selection is conducted in order to cut out the none or less contributing higher 

order AR coefficients

Kayikcioglu et al. (2015) investigated implications of AR features on classifications of sleep 

and wake stages. Authors set the AR-order to 22 based on their intuition. Zhao et al. (2011) 

applied AIC for estimating optimal AR-order in an EEG classification study aiming to 

identify mental fatigue in drivers’ signals. The study extracted MVAR features from EEG 
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recordings of 10 drivers and used combinations of kernel-based principle component 

analysis (as feature decomposition) and SVM as classifier.

Ligeois et al. (2015) utilized the information in low rank structure of MVAR models in 

synthetic and real-world neuro-imaging datasets and used alternating direction method of 

multipliers (ADMM) to handle MVAR’s model’s spars plus low-rank graphical problem. 

First order AR is considered in the study (AR(1)). Camilleri et al. (2015a) investigated 

implication of AR coefficients in segmentation and classification of EEG-based BCI signals. 

The study considered a range of AR-orders between 2 to 10 and identified modeling order 6 

as the optimal value for the study. Li et al. (2016) considered AR modeling in non-stationary 

EEG analysis of time-frequency domain. Time-varying AR modeling that utilizes radial base 

functions is used by authors and Particle Swarm Optimization (PSO) is employed to identify 

the optimal parameters of the RBF kernels while AR order estimation is performed using 

FPE method. Loukas et al. (2015) investigate the utility of AR modeling in graph-based 

signal filtering. Distributed AR with moving average is proposed in the study and the 

feasibility of the method is assessed on time varying signals. AR-order estimation is based 

on combination of using first and arbitrary order ARs.

(Karahan et al., 2015) studied multi-modal brain image fusion for parsing the brain 

structures that reflect human cognitive processes and brain structural and regional 

connectivity. A high-dimensional MVAR is employed to search for the influence fields. The 

chosen influence fields by MVAR represent spatial maps highlighting the degree of 

influence of one region on others. BIC is used for order estimation but the exact order 

utilized by the study is not specified. Liu et al. (2015) considered adaptive source imaging 

via processing spatio-temporal information of patch source. MVAR is utilized for describing 

the patch sources’ spatio-temporal dynamics. AR-order estimation mechanism is not 

specified.

Hsu (2015) studied multi-feature classification of EEG-based BCI recordings of 2 motor 

imagery tasks. Several features including adaptive AR model, amplitude modulation, 

spectral power and asymmetry ratio and wavelet fuzzy approximate entropy are considered. 

A modified PSO is used for feature selection and SVM is employed for feature 

classification. Rubega et al. (2016) investigated EEG signal coherence in type 1 diabetes 

patients. MVAR models are used for computing information Partial Directed Coherence 

(iPDC) function and 3 and 2 sets of electrode clusters are considered on theta and alpha 

frequency bands respectively. AIC is employed for estimating the optimal ARorder. Shaw 

Routray (2015) presented the estimation of neural connectivity of EEG recordings during 

meditation. Time-varying MVAR models are used for investigating the connectivity estimate 

of time varying Granger Causality. AIC is employed for estimating the optimal modeling 

order of MVAR.

Wu et al. (2015) utilized AR in a study focused on spectral analysis of cortical EEG 

recordings of a rat-based epileptic seizure. AR is used for extraction of power spectra 

features. AR-order estimation mechanism is not specified. Rotondi et al. (2016) investigated 

the utility of AR models in EEG connectivity via Partial Directed Coherence (PDC) in a 

childhood absence epilepsy study. MVAR is used for measuring connectivity within 
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frequency domain. AIC is utilized to estimate the optimal AR-order. Fang et al. (2015) 

studied implications of phase based feature classification on EEG-based BCI system. the 

study utilized AR coefficients for phase space reconstruction in time delay embedding. AR 

modeling order is estimated through a 10-fold cross validation over a modeling orders in the 

range of 5 to 8.

Table 1 provides an overview on the most recent uses of AR features in brain signal analysis 

studies with a focus on the order estimation methods and AR-orders utilized in the studies.

As evident from the set of recently published papers discussed in this section and the 

information reported in table 1, it is a common practice to either use conventional order 

estimation methods especially AIC or choose the ARorder based on the investigators’ 

intuition from a range of AR modeling orders (p ∊ [2, 30]). To the best of our knowledge, 

the idea of identifying the optimal mixture of AR modeling orders rather than finding a 

single AR-order has never been studied by either EEG or BCI communities. In fact, 

(Fitzgibbon, 2007) is the only study which considered the contribution of more than one 

AR-order in its spectral pattern representation. The study included a range of well-known 

AR-orders that been suggested by the community and concatenated the resultant coefficients 

to generate its spectral feature vector.

3. Methods and Materials

Considering that the aim of this study is to assess the hypothesis of any set of AR features 

that only represent a single modeling order is likely to provide poorer representation of the 

underlying patterns in comparison to an adequate mixture of AR features with varying 

modeling orders, several approaches for model order estimation including fixed (modeling 

orders in the range of 2 to 30), Conventional estimation methods (AIC, BIC and FPE), and 

mixture of modeling order features (concatenation, Evolutionary fusion and ensemble 

mixture) are to be considered and assessed in this study. In order to address issues raised in 

(Krusienski et al., 2006) (higher model orders are expected to generate more accurate 

spectral estimation when working with SMR-BCI systems), (Engin et al., 2001) (order 

estimation gets influenced by sampling rate of recordings), and (Palaniappan Raveendran, 

2001) (the modeling orders estimated by conventional methods are subject dependent) , 5 

datasets from BCI competition III, containing Sensory Motor Rhythms (2, 3, and 4 classes) 

with several subjects are employed. All datasets are resampled to 250Hz (lowest sampling 

rate between datasets).

3.1. AR modeling order estimation methods suggested in literature (baseline)

3.1.1. Using well-known modeling orders and investigator’s intuitions (Jansen 
et al., 1981; Krusienski et al., 2006)—In this study Matlab implementation of AR is 

utilized considering fixed modeling orders of 2, 4, 6, 8, 10, 16 and 30. Figure 1 illustrates 

the procedure used for measuring classification performance of autoregressive features using 

various modeling orders.

3.1.2. Conventional order estimation methods (Palaniappan, 2006a)
(Palaniappan Raveendran, 2001)(Krusienski et al., 2006)—ACI, BIC, and FPE are 
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three conventional approaches commonly employed in EEG studies for estimating modeling 

order of autoregressive method. The diagram flow for this category is similar to what is 

presented in Figure 1. First, a small portion of EEG data (10% of the samples randomly 

selected) are used for estimation of AR-order with conventional modeling order estimation 

methods. Afterwards, the AR coefficients are extracted and the classification performance is 

assessed within a repeated 10-fold cross validation scheme.

3.1.3. Concatenated modeling orders (Fitzgibbon, 2007)—Figure 2 illustrates the 

procedure used for measuring classification performance of autoregressive features using a 

concatenated feature vector. In this approach, first, seven separate feature vectors for each 

modeling order (AR modeling order(n), n ∊ {2, 4, 6, 8, 10, 16, 30}) are generated and later 

these feature vectors are concatenated together to shape the mixed vector. Using a repetitive 

10-fold cross validation scheme and an Extreme Learning Machine (ELM) (Huang et al., 

2011a, b; Liang et al., 2006; Huang et al., 2006; Zhu et al., 2005; Tang Han, 2009) as a 

classifier, the feasibility of concatenated feature vector is assessed.

3.2. Novelty and contribution of the current study

The main novelty of the current study lies within the idea of considering more than one 

modeling order for extraction of spectral features in a EEG single trial classification study. It 

is a common practice to employ conventional order estimation methods such as AIC, BIC 

and FPE or to use the investigators’ intuition to set the AR’s modeling order. Given the 

complex nature of EEG recordings that contains the brain activity of multiple sources that 

are captured over time from specific locations on the scalp, the main hypothesis of this study 

is that any set of AR features that only reflects a single modeling order is likely to only 

capture partial information from the existing spectral patterns in the signal. To the best of 

our knowledge no other study has targeted the optimal mixing of more than one AR-order 

before. Two mechanisms are proposed in this study to find the optimal mixture of AR-

orders. These two mechanisms feature evolutionary-based and ensemble-based mixture 

algorithms.

3.2.1. Evolutionary based mixture of AR features with various modeling orders
—Figure 3 illustrates the procedure considered for measuring classification performance of 

evolutionary-based fusion of autoregressive features with various modeling orders. In this 

approach, a repeated 10-fold cross validation scheme is utilized that generates 3 sets of 

training, validation and testing in each fold. Within each fold of the cross validation, an 

evolutionary technique is utilized to identify the best combinations of modeling orders. The 

classification performance on training and validation sets is used to guide the evolution. The 

final fittest solution is reassessed with the unseen testing set. Similar to previous approaches, 

ELM is utilized as the classifier.

Evolutionary based fusion utilizes following steps:

1. Initialization: generate a random population of binary strings with length of 7 

(e.g., “0001101”). Each cell in the string represents an specific modeling order. 

In each member of the population, cells with value of 0 and 1 are to represent 
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inclusion and omittion of associated AR features originated from the associated 

modeling orders in the final mixture respectively.

2. Evaluation: Feature vectors of AR modeling orders representing activated cells in 

each member of the population are to be concatenated and the resulting mixed 

vector to be passed to the classifier for assessing the feasibility of the mixture.

3. Repeat following sub-steps until the stopping criteria is achieved

a. update the population

b. evaluate the population

4. Report the best performing member of the population

Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) are the two evolutionary 

methods considered in this study.

Genetic Algorithm (GA) is introduced by John Holland in 1975 and it is based on the 

biological principal of natural selection. Here the most successful members of the population 

for a given task survive and those not suited will perish. In GA, each member of the 

population is referred to as a chromosome, and each chromosome represents a possible 

solution for the problem at hand. The algorithm utilizes a fitness function in order to 

evaluate the feasibility of the chromosomes. GA updates its population and evolves 

chromosomes towards regions of the search space within which better possible solutions can 

be found using processes/operators such as selection, crossover, reproduction and mutation 

(Bonabeau et al., 1999; Grefenstette, 1990; Holland, 1992).

Particle Swarm Optimization (PSO) is an evolutionary algorithm inspired by animals’ 

social behaviors (e.g. fish schooling and bird flocking). Introduced by Kennedy and Eberhart 

in 1995, this algorithm employs members of the population, referred to as particles, within 

processes such as generation, evaluation and reproduction/update in order to find a solution 

(Kennedy Eberhart, 1995). In PSO, each particle’s position in the search space is represented 

by a position X. PSO evolve its solutions towards better regions of the search space by 

updating the particle’s position in the search space using a velocity V. The best solution 

found by each particle is referred to as personal best (PBest) and the best performing particle 

found by the whole swarm is referred to as global best (GBest). In PSO, particles update 

their velocities using the following equations:

(2)
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In equation 2, Vi,j(t) represents the velocity in iteration t. i and j represent the particle’s 

index and the dimension in the search space respectively. c1 and c2 represent the acceleration 

coefficients of cognitive (Ci,j) and social (Si,j) components respectively. r1,j and r2,j are 

random values in the range of [0,1] while w is the inertia weight that controls the influence 

of the last velocity in the updated version.

The equation for updating the particles is as follows:

(3)

PBesti,j and GBesti,j represent the best solution found by the particle and the best overall 

solution found by the swarm. A detailed discussion on variations of evolutionary methods 

and their performances can be found in (Ab Wahab et al., 2015).

3.2.2. Ensemble-based mixture of AR modeling orders—Figure 4 illustrates the 

procedure used for identifying the best mixture of AR modeling orders using an ensemble 

learning approach. First, the EEG data is divided to training, validation and testing sets using 

a repetitive 10-fold crossvalidation scheme. Later, seven ELM classifiers are utilized in order 

to construct the ensemble. Each ELM in the ensemble is only trained, validated and tested 

with AR features of an specific modeling order. The D operator in the ensemble diagram is 

representative of decision aggregation operator. Summation and weighted summation are the 

two decision aggregation operators considered in this study. In the wighted summation 

method, the performance achieved from validation set with each classifier in the ensemble is 

utilized as the weight.

4. Data and Preprocessing

In this study, 5 datasets containing motor imagery of two, three and four limbs are 

employed. These datasets are obtained from BCI competition III (Blanchard Blankertz, 

2004; Schlogl et al., 2004). The detail information about these datasets is presented in table 

2.

4.1. Restructuring the Data

Since the comparison of results between these datasets is one of the objectives of the study, 

they are restructured to a common framework containing:

• The data acquired during the time that subject was performing a cognitive task 

(denoted as ’task’ in datasets).

• The data acquired outside of the time specified for performing motor imagery 

tasks during the instructions, blank screen, inter-trial and so on (denoted as ’non-
task’ in datasets). The task period in all datasets is labeled appropriately in a way 

to represent the performed motor imagery tasks. In this study, only the task 

period is used for the purpose of feature extraction and classification.

• The EEG epochs representing the ‘task’ periods are divided to 0.5s non-

overlapping intervals (sub-epochs) in order to increase the number of subsequent 
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training samples in addition to provide consistency between the datasets. The 

choice of 0.5s sub-epoch size as the basis of the study is made since this is the 

shortest epoch size that exists within the datasets utilized. In addition, in previous 

findings, using a sub-set of these datasets this window size was shown to be the 

shortest window size appropriate (Atyabi et al., 2012a, b).

• No electrode selection/reduction procedure is performed despite the 

inconsistency across datasets in terms of number of electrodes utilized. This 

decision is made on the basis of previous studies with a sub-set of these datasets 

in which evolutionary based electrode and feature selection methods revealed 

that in weaker subjects (classification performance wise) the brain regions 

associated with sub-set of electrodes that best captures the tasks performed are 

within frontal brain regions rather than areas associated with motor imagery 

tasks. This is indicative of inconsistency across subjects’ performances and lack 

of appropriate control mechanisms preventing subjects from generating 

misleading and to some extent meaningless EEG data during the recording 

sessions (Atyabi et al., 2012c).

4.2. Preprocessing

To provide consistency across datasets the epoched task period data is resampled at 250Hz 

(the smallest sample rate existing across datasets used in the study). This step is utilized in 

order to cancel possible effect of sample rate on overall classification performance of AR 

features as suggested by Engin, Engin et al. (2001). In addition, in order to eliminate the 

possible influence of different electrode referencing mechanisms across datasets, Common 

Average Referencing (CAR) is performed on all datasets. The final preprocessing step 

includes demeaning the epoched task periods in order to eliminate drifts and offsets from 

datasets.

4.2.1. Re-referencing the data using Common Average Reference (CAR)—To 

provide consistency between datasets, CAR is performed by subtracting the average signal 

from all electrodes using the following equation. EEG data of each subject in each dataset is 

treated separately.

(4)

where  is CAR of electrode i (i=1,…,n). Vi represents the electrode i’s original signal 

before being commonly averaged.

4.2.2. Demeaning (D)—Demeaning is performed to remove the possible constant offset 

and drifts from the EEG data using following equation.

Atyabi et al. Page 12

Expert Syst Appl. Author manuscript; available in PMC 2017 December 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(5)

where  is demeaned version of epoch i (i=1,…,k). Epoch is considered as the duration of 

time within which the subject performed the task. In here, the demeaning formulation is 

applied to 0.5s sub-epochs.

4.3. Performance Measures

Various performance measures derived from a contingency (confusion) matrix are used for 

evaluation of classifiers. It is noteworthy that commonly used single measures of 

performance derived from a confusion matrix (such as accuracy, precision, and recall) are 

influenced by bias in sample size and class distribution. Bookmaker Informedness 
introduced by Powers (2003) addresses the problem by taking into the account the difference 

between the correct/ incorrect informed decisions and uninformed (random) choices. The 

Bookmaker Informedness (Sensitivity+Specificity−1) provides a measure between −1 and 

+ 1 with + 1 representing perfectly correct performance, −1 indicating perversely incorrect 

response and 0 representing chance level. Being normalized and unbiased makes Bookmaker 
Informedness suitable for assessing the performance of classifiers and for comparison 

purposes. By contrast, Accuracy and F-measure have non-zero, data prevalence and 

classifier bias-dependent chance levels and cannot be compared meaningfully. Kappa is a 

more general family of chance corrected measure but apart from Informedness these all have 

dependencies on the label bias of the classifiers and are also not comparable across 

classifiers and datasets (Powers, 2012).Bookmaker Informedness is considered as main 

performance metric in this study. In order to provide better understanding of the results 

accuracy is considered as an alternative performance metrics and its results are also reported 

in the study.

In all experiments within this study, 10 × 10 Cross-Validation (CV) is conducted resulting in 

three sets of training, validation and testing with 0.9, 0.05, and 0.05 ratios.

4.4. Pattern Classification

Despite the reasonable classification performance that can be obtained by Back-propagation 

multilayer feedforward neural networks, these learning algorithms are relatively slow, get 

stuck in local minima, and their activation functions need to be differentiable (Zhu et al., 

2005).

The Extreme Learning Machine (ELM) is a special type of single-hidden-layer feedforward 

neural network that reduces the required training time in the network by substituting the 

required training/learning phase for connecting the input layer to the hidden layer by 

providing random connections (weights) (Huang et al., 2011a, b; Liang et al., 2006; Huang 

et al., 2006; Zhu et al., 2005; Tang Han, 2009). The fast learning capability of the ELM and 

its lower computational expense compared with alternative classifiers such as support vector 

machine and single-layer/multi-layer neural network makes it suitable for a EEG signal 
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classification study. This is with the understanding of drawbacks such as i) its tendency 

towards over-fitting and ii) not being immune to outliers due to not considering 

heteroskedasticity (Deng, 2009).

In this study, Sigmoid ELM with 80 hidden nodes are considered. The number of hidden 

nodes in ELM is set based on previous studies with the BCI competition III datasets (Atyabi 

et al., 2012c, 2013). Ad-hoc experimentations (results not presented in here) with higher and 

lower number of hidden nodes within these datasets showed no significant difference, with 

the chosen setting achieving slightly better average performance.

5. Results

In this study several approaches for identifying suitable AR modeling order are considered. 

These approaches are as follows:

1. Commonly investigated fixed AR modeling orders of 2, 4, 6, 8, 10, 16 and 30

2. Conventional order estimation approaches (e.g., AIC, BIC and FPE)

3. Concatenation of a range of modeling orders explored in the study

4. Evolutionary-based fusion of AR features originating from various modeling 

orders

5. Ensemble-based mixture of AR features originating from various modeling 

orders

With respect to conventional AR-order estimation methods (AIC, BIC, and FPE), the details 

of their minimum values and their associated modeling orders are presented in Table 3. It is 

noteworthy that except with AA and IVB subjects in which the value estimated with FPE as 

AR-order is much lower than the other two approaches (AIC and BIC), no other 

considerable difference is observed within the estimated AR-orders between these 

conventional methods.

The results achieved from all AR-order estimation and mixture mechanisms considered in 

this study are presented in Figures 5, 6, and 7. The results are categorized based on the 

number of classes considered in the datasets rather than their originating dataset. The 

Figures represent average classification performance (e.g., Bookmaker Informedness and 

Accuracy) with a Sigmoid ELM with 80 nodes on the testing set (considering a 10×10 cross-

validation scheme).

5.1. Two Motor imagery Class Problem (IVa and IVb datasets)

In this section, average classification performance achieved on a sub-group of subjects that 

only performed two motor imagery tasks are presented in Figure 5. These subjects include 

all participants in IVa (AA, AL, AV, AW and AY) and IVb (IVB) datasets. Fixed modeling 

orders are presented with their modeling order values while concatenated method is 

represented as ALL in the Figure. Following observations are made from the results reported 

in Figure 5.
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• Fixed modeling order p ∊ {2, 4, 6, 8, 10, 16, 30}: the results across the subjects 

indicate the superiority of higher modeling orders (16 and 30) in comparison to 

the lower modeling orders. This is with the exception of subject AA in IVa 

dataset in which modeling order 10 performed slightly better than others.

• Conventional estimation methods (AIC, BIC, and FPE): these approaches failed 

to outperform the best performing fixed modeling orders across all subjects. 

These methods also failed to outperform classification performance achieved by 

the ALL feature vector as well. The exception is subject IVB in which 

conventional methods performed slightly better than ALL. It should be noted that 

performance differences between these methods and best performing fixed 

modeling orders and ALL feature vector are marginal and non-significant. In 

addition, no tangible performance difference was observed across AIC, BIC, and 

FPE’s average classification performance with exception of AA and IVB 

subjects in which AIC and BIC performed slightly better than FPE.

• The ALL technique failed to outperform higher modeling orders (16 and 30) in 

weak (AA and AV), normal (AW and AY) and strong (IVB and AL) subjects.

• GA-based and PSO-based feature type fusion approaches performed as well or 

better than fixed modeling orders, the ALL feature vector, and the summation 

ensemble in all subjects.

• Weighted summation ensemble approach illustrated competitive results to the 

GA and PSO approaches in all subjects except with the weak subjects (AA and 

AV) in which this method outperformed all others.

5.2. Three Motor imagery Class Problem (IVc and V datasets)

In this section, average classification performance achieved on a sub-group of subjects that 

only performed three motor imagery tasks are considered and presented in Figure 6. These 

subjects include all participants in IVc (IVC) and V (V1, V2 and V3) datasets. Similar to 

Figure 5, fixed modeling orders are presented with their modeling order values and 

concatenation method is represented as ALL in the Figure. Following observations are made 

from the results illustrated in Figure 6.

• Fixed modeling order p ∊ {2, 4, 6, 8, 10, 16, 30}: the results across the subjects 

indicate the superiority of modeling orders 8 and 10. This is contradictory to the 

previous findings in 2 class datasets in which other higher orders are competitive 

or even achieved better average classification performances. This pattern is 

observed across all subjects within dataset V which contained 3 very strong 

subjects while in dataset IVc which contained a weak subject the higher 

modeling orders (16 and 30) slightly performed better than all other lower 

modeling orders.

• Conventional estimation methods (AIC, BIC, and FPE) performed as well as 

higher modeling orders (16 and 30) in the weaker subject (e.g., IVC). The 

conventional approaches performed similarly to the highest modeling order in 

the remaining subjects in this category (V1, V2, and V3) as well but they failed 
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to outperform the best performing fixed modeling orders (8, and 10) in these 

subjects. In addition, considerable performance differences are observed between 

the ALL and the conventional approaches on V3 in which AIC, BIC, and FPE 

been less successful. These methods performed better than ALL on subject V1 

and V2 however the difference of the mean classification performance is in order 

of 5% and likely to be non-significant.

• The ALL technique failed to outperform best performing modeling orders (e.g. 8 

and 10) in subject V1 and V2. However, this approach performed better than all 

other fixed modeling orders in subject IVC and V3. This method outperformed 

all other techniques in subject V3.

• GA-based and PSO-based fusion approaches performed better than any fixed 

modeling order, the ALL feature vector, conventional estimation techniques, and 

the summation ensemble in subjects IVC and V1. GA performed poorly on 

subject V2 but PSO managed to outperform all other methods on this subject. 

GA outperformed PSO and all other approaches on subject V3 with the 

exception of ALL method which is the best performing technique in this subject.

• No obvious advantage is observed over summation and weighted summation 

ensemble approaches within either of subjects with exception of IVC in which 

weighted summation ensemble outperformed all other modeling methods.

5.3. Four Motor imagery Class Problem (IIIa dataset)

In this section, average classification performance achieved on a sub-group of subjects that 

performed four motor imagery tasks are considered. The results are presented in Figure 7. 

These subjects include all participants in IIIa (k3b, k4b and l1b) dataset. The method 

labeling utilized in this Figure is similar to Figures 5 and 6. Following observations are 

made from the results:

• Fixed modeling order p ∊ {2, 4, 6, 8, 10, 16, 30}: the results indicate the 

superiority of modeling orders of 16 and 30 with exception of subject L1B in 

which model order 30 is the best fixed modeling order. Unlike 2 and 3 class 

problems in which clear performance improvement is observed when modeling 

order is increased, in two weaker subjects within this category (K6b and L1b), 

lower modeling orders illustrated some advantages. In subject L1B, AR model 

orders of 4 and 6 performed better than higher modeling orders of 8, 10 and 16 

and in subject K6B, AR model order of 4 performed closely to model orders of 

8, 10 and 16.

• Conventional estimation methods (AIC, BIC, and FPE) are outperformed with 

AR modeling order 30 in L1B subject while they performed similar to modeling 

order 30 in K3B and K6B. These techniques performed better than all lower 

modeling orders across subjects. These methods performed inconsistently against 

the ALL technique. That is, AIC, BIC, and FPE outperformed ALL classification 

performance on K6B while ALL performed better on L1B. It should be noted 

that the performance differences between these methods and ALL is in order of 

0.1% and considered to be neglect-able.
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• The ALL technique failed to outperform best performing modeling order (e.g. 

30) across all subjects. This is with understanding that the performance 

difference between ALL and the best performing fixed modeling order is 

dismissable across all subjects.

• GA and PSO-based fusion approaches performed better than or on pare with 

fixed modeling orders, the ALL technique, and the summation ensemble across 

all subjects and also outperformed the weighted summation ensemble-based 

mechanism on subject K3B.

• Weighted summation ensemble performed better than all other methods on 

subjects K6B and L1B (weaker subjects) while it is out-performed by PSO and 

GA on stronger subject (K3B).

Previous sections discussed the performances achieved with methods considered in the study 

on the basis of variations in tasks performed by subjects rather than considering cross n-class 

problem and strengths of subjects. In order to gain better understanding of the achievements, 

the findings are reassessed on the basis of 3 categories of datasets, number of motor imagery 

classes performed by subjects, and the classification strength of subjects. The last category is 

considered in order to also investigate the lack of performance consistency across AR 

modeling order estimation approaches in the presence of multiple subjects with varying EEG 

performance claimed by Palaniappan Raveendran (2001). Although bookmaker 

informedness is considered as the primary performance measurement metrics due to being 

normalized and unbiased, average accuracy results are also presented in following section. 

This is with the understanding that since the measured accuracy on 2, 3, and 4 class 

problems are not directly comparable with each other, first these values are rescaled to a 

common n-class problem (n=4 in here) and later the average value is calculated. That is, all 

2-class and 3-class accuracy results are multiplied by 0.5 and 0.75 respectively prior to 

estimating the mean value.

5.4. Category 1: Datasets

Average classification performances of the approaches considered in the study are presented 

in table 4. The results are reported in the order of dataset complexity in terms of the number 

of motor imagery classes performed by subjects. The results indicate that weighted sum 

ensemble approach outperforms all other methods across all datasets. This performance is 

closely followed by PSO and GA.

Considering experiments with modeling orders in the range of 2 and 30 and the condition 

referred to as All (concatenation of all AR modeling orders), in most datasets, modeling 

order of 30 and All are the best performing approaches. This is with the exception of dataset 

V in which AR model order 8 is the best performing method.

5.5. Category 2: n Class problem

Table 5 represents the average performance across subjects and databases. The results are 

presented on the basis of the number of motor imagery classes performed by subjects in each 

dataset. The results indicate that weighted sum ensemble approach outperforms all other 
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methods across all datasets. This performance is closely followed by PSO and GA. The 

results indicate slight advantage for PSO over GA across all n-class problems.

Considering experiments with modeling orders in the range of 2 and 30 and the condition 

referred to as All, across all datasets, modeling order 30 outperformed other approaches in 2 

and 4 class problems. Modeling orders 8 and 10 performed better than other methods in the 

3 class problem.

Conventional estimation methods performed as well as or close to the best fixed modeling 

orders across all n-class problems with FPE consistently reporting better average 

classification performance in comparison to AIC and BIC methods.

5.6. Category 3: Subject EEG pattern classification strength

In this category, average performance achieved by subjects are presented on the basis of 

subjects’ classification strengths. The subjects’ taxonomies considered in here are strong, 

normal, and weak. These categories are selected intuitively by considering all subjects who 

achieved average classification performance above 0.3 bookmaker informedness as strong (6 

subjects across datasets), in the range of 0.2 and 0.3 bookmaker informedness as normal (2 

subjects across datasets) and any subject having average bookmaker informedness lower 

than 0.2 as weak (5 subjects across datasets). It should be noted that the results presented in 

table 6 are averaged across subjects regardless of their originating datasets and the number 

of motor imagery classes performed by them.

Looking at the experiments with modeling orders in the range of 2 and 30 and the condition 

referred to as All, in all subject categories, All failed to outperform best performing fixed 

modeling orders. Condition with modeling order 30 performed favorably within weak and 

normal subject categories while modeling order 16 performed better in the strong category.

Similar to previous categories, FPE achieved better average performance in comparison with 

AIC, BIC, and All. FPE outperformed the best performing fixed modeling order in weak and 

normal category but it is outperformed by the best performing fixed modeling order in the 

strong category (p= 16).

Weighted summation ensemble method performed dominantly on weak subject category 

while it shared success with PSO-based fusion on normal category and been out-performed 

by this method on strong category. GA-based fusion is the second best performing method 

across all categories in this table.

A detailed statistical analysis of the results is conducted and presented in the supplement. 

The overall results indicated lack of significant differences between PSO-based fusion and 

weighted summation ensemble methods while statistical significances are observed between 

these methods and other approaches considered in this study.
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6. Discussion

6.1. Fixed and Conventional modeling order estimation methods

The results achieved with variations of fixed modeling orders and conventional estimation 

methods indicate inconsistency in the achieved performance across subjects. Evidences of 

this are observed in subjects involved in 2-class (Figures 5), 3-class (Figure 6) and 4-class 

(Figure 7) problems. That is, although inconsistency in results across subjects of different 

datasets performing similar number of motor imagery tasks can be interpreted as the effect 

of utilizing different experimental setups, equipments or types of motor imagery tasks, 

however, no consistent performance is observed across subjects of the same dataset which 

confirms lack of consistency across subjects as reported by Palaniappan Raveendran (2001). 

That is, neither of the studied AR-orders been consistently the best performing order across 

subjects and the winning fixed AR-order varied across subjects. Such inconsistency is also 

observed across datasets, subject’s EEG strength, and n-class problems as reported in tables 

4, 5 and 6.

The results with conventional estimation methods confirms Palaniappan Raveendran (2001) 

findings in terms of lacking a clear and tangible advantage across such estimation methods. 

That is, in terms of classification performance, no significant difference is observed between 

AIC, BIC and FPE methods (neither across datasets nor n-class problems as presented in 

previous section).

The results partially confirmed Krusienski et al. (2006) findings in terms of favoring higher 

AR modeling orders. In the sense of modeling order estimation, this is with the exception of 

FPE that in two occasions (with subjects AA and IVB) choose to utilize lower AR-orders 

(19 and 4 respectively). In the sense of classification performance, although this is 

confirmed in all subjects in dataset IIIa (4-class problem) and most subjects in datasets IVa 

and IVb (2 class problems) and dataset IVc (3 class problem), a clear disadvantage is 

observed within all subjects in dataset V (3 class problem) in which modeling orders of 8 

and 10 scroed a better classification performance (on average).

6.2. AR modeling order selection results with GA and PSO

Tables 7, 8 and 9 present the most commonly selected modeling orders by either GA or PSO 

methods on the datasets utilized in the study. The results are presented on the basis of 

average length of best performing population member of each evolutionary method across 

100 folds in the 10 repetition of the 10-fold cross validation scheme utilized in the study. In 

order to gain better understanding of various modeling orders’ contributions in the achieved 

performance, collections of breakdowns are offered based on subjects’ strength and overall 

contributions within the n-class problems.

In datasets with 2-class problems (IVb and IVa presented in table 7), a variation in the 

chosen AR modeling orders is observed across both GA and PSO with regards to the 

subjects’ strengths. For example, both GA and PSO neglected 30 in weak subjects while 

GA, unlike PSO, also ignored 2 for both weak subjects. Both approaches considered 8 in 

their final combined feature vectors for both weak subjects. Unlike weak subjects, GA and 

PSO utilized 30 in their final products for both normal subjects. GA and PSO reported a 
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disagreement on the use of 8 on this category while GA also hesitated to included 16 in its 

solutions for neither of the normal subjects. It is noteworthy that PSO consistently included 

6 and 10 in its solutions for all variations of subjects’ strength within datasets with 2-class 

problem. In addition, it is noticeable that PSO considered a larger variations of AR modeling 

orders within its solutions. While GA considered more contributions, on average, from 

higher modeling orders (e.g., 10, 16 and 30) in its final solutions, PSO retained a fair 

balance between the contributions of higher and lower (e.g., 2, 4 and 6) modeling orders.

From the results attained with 3-class problems (IVc and V presented in table 8), a 

noticeable difference in the chosen modeling orders is observed. That is, for example, in 

IVC subject, while GA only considered a handpick of modeling orders in its solutions, PSO 

included all modeling orders but 30. Both PSO and GA agreed on omitting 2, 4 and 30 when 

dealing with subject V1 and they also agreed on the use of 8 and 10 on subject V2 with PSO 

also including 4 in its solutions. It is noticeable that both approaches are in agreement on not 

utilizing 30 in either of solutions for subjects within 3-class problem while GA also ignored 

4 in this category. Similar to 2-class problem, PSO considered a wider range of modeling 

orders in its solutions while GA preferred 8, 10 and 16 in most cases. In addition, PSO 

favored 8 in all its solutions within this category. Both GA and PSO are in agreement to 

utilize 8 when they are dealing with strong subjects in this category.

The results from 4-class problem (reported in table 9) once more highlighted the difference 

in the choices made by these two algorithms. That is, while PSO consistently utilized 

modeling orders of 2, 4, 6 and 8 in its solutions for both weak and strong subjects, GA 

preferred to use different arrangements. It is noticeable that when dealing with the strong 

subject (K3B), GA and PSO considered a similar range of AR-orders in the solutions with 

exception of GA neglecting 4 in addition to 10 while PSO only ignored the second and 

utilized all other AR-orders in its solution. Another major difference is observed with in 

subject K6B in which GA favored higher modeling orders (8-30) while PSO mostly focused 

on lower modeling orders (2-10).

7. Conclusion

Autoregressive (AR) is one of the commonly employed feature types in EEG single trial 

studies. Despite known advantageous of AR such as having low computation cost, better 

spectral resolution, smooth spectra and being applicable to short segments of data, 

identifying AR’s model order is an important step that influences its performance in EEG 

analysis and classification. Low and high model orders are likely to represent poor signal 

representation and noise & inaccuracy respectively. The study hypothesized that an adequate 

mixture of AR features derived from various AR modeling orders is a better representative 

of the underlying signal compared with any fixed modeling order. This hypothesis was 

assessed using two mechanisms for identifying adequate mixture of AR modeling orders. 

These mechanisms included i) classifier mixture in the form of Ensemble Learning 

architecture and ii) Evolutionary based fusion of features originating from a range of 

modeling orders. The feasibility of these mechanisms were assessed against three sets of 

commonly employed approaches such as i) Fixed AR-orders that reported adequate results 

in similar studies (AR-orders of 2 ,4 ,6, 8, 10, 16 and 30 were used in here), ii) blind mixture 
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of a set of well-known modeling orders and iii) conventional modeling order estimation 

algorithms (e.g., AIC, BIC and FPE). The feasibility of these approaches were assessed on 

the basis of their classification performance on five datasets from BCI competition III that 

contained 2, 3 and 4 motor imagery tasks. The results were investigated based on the 

averaged classification performance of the methods on each subject in each dataset. In 

addition, three categories were considered to provide better understanding of the 

achievements. These categories were i) the performance across datasets, ii) the performance 

across considered n-class problems, and iii) the performance across subjects’ EEG pattern 

classification strengths.

Table 10 provides an overview of the best performing algorithms within all categories 

considered in this study. The results indicated superiority of Ensemble-based approach when 

weighted summation operator was utilized to aggregate the results from classifiers in the 

ensemble. In addition, the results highlighted feasibility of evolutionary-based fusion 

methods within all datasets. Considering the contributing subject strength in the sense of 

EEG classification performance, between all methods considered in the study, PSO-based 

fusion technique reported better performance under strong group while weighted summation 

ensemble method performed well under the weak and normal subjects. This is with the 

understanding that no statistical significant difference been observed between these two 

methods.

The consistent superior performances achieved by the PSO-fusion and the weighted 

ensemble techniques across all variations considered in the study (nclass problem, subject 

strength, and datasets) can be explained by their ability to include multiple representations 

of spectral patterns originating from different AR-orders which better captures the 

underlying pattern of the performed tasks by subjects while other methods (AIC,BIC,FPE 

and AR models of fixed orders) favored one representative pattern over the rest which likely 

resulted in distortion or ill-representation of the activities performed. In addition, owing to 

their learning capabilities, PSO-fusion and weighted ensemble methods prevented inclusion 

of AR-orders that poorly represented the subjects’ intentions while ALL approach blindly 

concatenated all AR-orders which degraded its performance.

These findings approved the initial hypothesis and suggested weighted ensemble and PSO-

based fusion as two candidates for identifying the adequate mixture of modeling orders.

7.1. Contributions of the study

Following contributions can be considered for the study:

• Two new mechanisms for automatically identifying the optimal mixture of AR 

features with varying modeling orders are proposed by the study.

• Assessment of the hypothesis is done on five publicly available datasets which 

captures important aspects such as i) replicate-ability of the study, ii) 

applicability of the proposed methodology to different EEG recording setups, 

protocols, and experimental paradigms and iii) robustness of the mechanisms 

proposed against a wide range of participating subjects in EEG and BCI studies.

Atyabi et al. Page 21

Expert Syst Appl. Author manuscript; available in PMC 2017 December 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



• Comparison of the performance achieved with the mechanisms proposed against 

the three set of well-known AR-order identification and estimation approaches 

that are commonly utilized by BCI and EEG communities in similar studies. The 

inclusion of conventional order estimation methods such as FPE, AIC, and BIC 

in addition to covering a range of well-studied modeling orders by BCI 

community leaves minimum doubt on the superiority of the novel idea of 

utilizing optimal mixture of AR features with varying modeling orders.

To the best of our knowledge, the idea of identifying the optimal mixture of AR modeling 

orders rather than finding the optimal unique AR-order never been entertained by either 

EEG or BCI communities.

7.2. Limitations of the study

The limitations of the current findings are as follows:

• The current study only captures the application of AR features in single trial 

EEG classification. Albeit the idea of identifying optimal mixture of modeling 

orders is being proven promising, however, this can not be extended to other 

applications of AR in digital signal processing such as artifact rejection, general 

power spectral analysis, and its other possible applications.

• Within the context of real-time BCI systems, it should be noted that although 

PSO-based fusion method performed well under the assessed datasets, however, 

the computational intensiveness of PSO algorithm which lies within its inherent 

dependency to governing a high population of learning particles makes it less 

favorable. Under such circumstances, the Ensemble-based mixture mechanism 

seems to be more appropriate since it mainly relies on fast learning classification 

algorithms such as ELM.

• Authors advise caution against substituting the ELM algorithm with stronger 

learners such as SVM specially if a real-time BCI system is the targeting 

application. As mentioned in section 4.1, the choice of using ELM with only 80 

hidden nodes is made due to its fast learning capability. Although using higher 

number of hidden nodes or replacing the algorithm with more efficient learners 

such as multi-layer perceptron, random forest, or SVM can improve the overall 

classification performance of the Ensemble, it would be with major negative 

impact on learning time of the Ensemble.

7.3. Future Work

Possible future directions of the current study are as follows:

• The main future direction of the current study is application of the proposed 

automatic mixture of AR modeling orders in the context of spectral analysis of 

EEG signals of patients suffering from Autism Spectrum Disorder (ASD). To the 

best of our knowledge, AR features are rarely (if ever) considered as biomarkers 

in ASD studies. The post-process nature of such study allows inclusion of 

evolutionary-based fusion methods in the mix which provides better opportunity 

in terms of identifying strong and generalizable mixture of AR modeling orders 
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that best distinguish the two groups of ASD and TD (typically developing) 

participants.

• It is desirable to assess the main hypothesis of this study in wider spectral 

analysis applications in image segmentation (Sarkar et al., 2016), multispectral 

image classification (Li et al., 2011) and spectral clustering (nkaya, 2015),

• As stated in the limitations, the application of evolutionary-based fusion of AR-

orders is limited to post-processing stages. This limitation been revoked in 

similar studies using transfer learning (Atyabi et al., 2013). However, the study 

been only conducted on FFT features. The extent within which the transfer 

learning can be applied to spectral features and the suitability of subject 

inclusion/exclusion criteria discussed in (Atyabi et al., 2013) are not clear yet 

and requires more investigation. As of interest is to identify an AR-order mixture 

that can cover a high range of BCI paradigms while supporting variations in 

recording protocols and participating subjects. This can be achieved by 

heterogeneous transfer learning which is rarely considered by EEG or Data 

Science communities due to its high level of theoretical complexities.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Two methods for mixing AR features for EEG signal classification are 

proposed

• Evolutionary and ensemble learning methods are considered

• The results are assessed against a set of conventional order estimation 

methods

• The feasibilities are investigated using several BCI competition datasets

• Adequacy of Ensemble-based mixture and EA-based fusion methods are 

shown
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Figure 1. 
Diagram flow of assessing classification performance of AR features with various modeling 

orders.
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Figure 2. 
Diagram flow of assessing classification performance of AR features with concatenation 

method. The ‘+’ sign represent simple vector concatenation.
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Figure 3. 
Diagram flow of assessing classification performance of evolutionary-based mixture of AR 

features.
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Figure 4. 
Diagram flow of assessing classification performance of Ensemble-based mixture of AR 

modeling orders. ‘D’ operator represent decision aggregation operator.
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Figure 5. 
Average bookmaker performance achieved with subjects performing two motor imagery 

tasks. Error bars are representing standard errors. Average accuracies and their associated 

standard errors are presented as additional texts on the bars. SEns and WSEns represent 

summation and weighted summation ensembles.
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Figure 6. 
Average bookmaker performance achieved with subjects performing three motor imagery 

tasks. Error bars are representing standard errors. Average accuracies and their associated 

standard errors are presented as additional texts on the bars. SEns and WSEns represent 

summation and weighted summation ensembles.
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Figure 7. 
Average bookmaker performance achieved with subjects performing four motor imagery 

tasks. Error bars are representing standard errors. Average accuracies and their associated 

standard errors are presented as additional texts on the bars. SEns and WSEns represent 

summation and weighted summation ensembles.
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Table 1

Current trends in autoregressive-based studies

Reference Scope of study AR-order and the order estimation
method

Peiyang et al. (2015) Power spectrum analysis of the resting state EEG
signal in the presence of artifacts and outliers

Lp norm (p ≤ 1)

Camilleri et al. (2015b) Segmentation of EEG data in a BCI study Semi-supervised model learning

Shahabi Moghimi (2016) Connectivity patterns of EEG electrodes under
emotional responses to a set of Iranian and clas-
sical music

p=6, AIC

Pippa et al. (2015) Epileptic seizure detection Combinations of statistical features and
regression analysis resulting in upto 4
unita estimation error

Yonghui et al. (2015) EEG Phase analysis and classification p=8 for Graze 2003 dataset and subject
O3 from Graze 2005, p=5 for subjects S4
and X11 from Graze 2005. Repeated 10-
fold cross validation

Abo-Zahhad et al. (2015) Human authentication based on the mixture of
EEG and eye-blinks recordings

p= 50, investigator’s intuition

Kayikcioglu et al. (2015) Classifications of sleep and wake stages p=22, investigator’s intuition.

Zhao et al. (2011) EEG classification p=3, AIC

(Ligeois et al., 2015) Neuro-imaging p=1, investigator’s intuition.

(Camilleri et al., 2015a) Segmentation and classification in EEG-based
BCI

p=6 after evaluating a range of 2–10

(Li et al., 2016) Non-stationary EEG analysis in time-frequency
domain

p=15 for seizure EEG signal and p=9 for
healthy participants, FPE

(Loukas et al., 2015) Graph based signal filtering Combinations of p=1 and p= arbitrary
value are used as orders in time and
graph domains respectively.

(Karahan et al., 2015) Multi-modal brain image fusion for parsing the
brain structures that reflect human cognitive pro-
cesses and brain structural and regional connec-
tivity

p=not specified, BIC

(Liu et al., 2015) Adaptive source imaging via processing spatio-
temporal information of patch source

Recursive penalized least squares proce-
dure is used for model estimation

(Rubega et al., 2016) Investigation of EEG coherence in type 1 diabetes
patients

p= 9 and 10, AIC

(Shaw Routray, 2015) estimation of neural connectivity of EEG record-
ings during meditation

p=10, AIC

(Wu et al., 2015) Spectral analysis of cortical EEG recordings in a
rat-based epileptic seizure study

not specified.

(Rotondi et al., 2016) Investigation of EEG connectivity via partial
directed coherence (PDC) childhood absence
epilepsy

p=not specified, AIC

(Fang et al., 2015) Implications of phase based feature classification
on EEG-based BCI system

p ∈[5,8], 10-fold cross validation
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Table 5

Average classification performance(bookmaker informedness and accuracy) across subjects in the order of n-

class problems. The best performing approach is identified using a bold font.

AR modelling
order value

2 Class Problem
(IVb & IVa)

3 Class Problem
(IVc & V)

4 Class Problem
(IIIa)

2 0.041343 & 0.26% 0.19309 & 0.35% 0.088289 & 0.31%

4 0.050743 & 0.26% 0.30542 & 0.4% 0.11641 & 0.33%

6 0.10209 & 0.28% 0.36352 & 0.43% 0.12204 & 0.34%

8 0.14964 & 0.29% 0.39087 & 0.44% 0.12963 & 0.34%

10 0.16183 & 0.29% 0.39387 & 0.44% 0.13303 & 0.35%

16 0.19524 & 0.3% 0.38841 & 0.44% 0.15592 & 0.36%

30 0.2207 & 0.31% 0.36323 & 0.43% 0.19042 & 0.39%

All 0.21381 & 0.3% 0.35759 & 0.43% 0.18423 & 0.38%

AIC 0.2138 & 0.3% 0.35512 & 0.43% 0.18382 & 0.38%

BIC 0.199 & 0.3% 0.3613 & 0.43% 0.17591 & 0.38%

FPE 0.21384 & 0.3% 0.39058 & 0.44% 0.18587 & 0.38%

GA-Fusion 0.23161 & 0.31% 0.39894 & 0.45% 0.19592 & 0.39%

PSO-Fusion 0.23454 & 0.31% 0.43214 & 0.46% 0.19858 & 0.39%

S-Ensemble 0.17811 & 0.29% 0.41327 & 0.45% 0.15685 & 0.36%

WS-Ensemble 0.25429 & 0.31% 0.45785 & 0.47% 0.21234 & 0.4%
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Table 6

Average classification performance (bookmaker informedness and accuracy) across subjects in the order of 

subject task performance strength. The best performing approach is identified using a bold font.

AR modeling
order value

Weak Subjects
mean of bookmaker
<0.2
AA, AV, IVC, K6B,
L1B

Normal Subject
mean of bookmaker ∈
[0.2, 0.3)
AW, AY

Strong Subject
mean of book-
maker ≥0.3
IVB, AL, V1, V2,
V3, K3B

2 0.013319 & 0.26% 0.16057 & 0.29% 0.22923 & 0.37%

4 0.038444 & 0.27% 0.14214 & 0.29% 0.34703 & 0.42%

6 0.046299 & 0.28% 0.12407 & 0.28% 0.42973 & 0.46%

8 0.052346 & 0.28% 0.17364 & 0.29% 0.46469 & 0.47%

10 0.068795 & 0.28% 0.1705 & 0.29% 0.46879 & 0.47%

16 0.071936 & 0.29% 0.16971 & 0.29% 0.48407 & 0.48%

30 0.090505 & 0.3% 0.21071 & 0.3% 0.4625 & 0.47%

All 0.085475 & 0.29% 0.20571 & 0.3% 0.45622 & 0.47%

AIC 0.082858 & 0.29% 0.20571 & 0.3% 0.4578 & 0.47%

BIC 0.079915 & 0.29% 0.207 & 0.3% 0.45559 & 0.47%

FPE 0.093548 & 0.3% 0.21129 & 0.3% 0.47655 & 0.48%

GA-Fusion 0.10828 & 0.3% 0.22871 & 0.31% 0.49871 & 0.49%

PSO-Fusion 0.11164 & 0.31% 0.2305 & 0.31% 0.52249 & 0.5%

S-Ensemble 0.070363 & 0.29% 0.19579 & 0.3% 0.49333 & 0.48%

WS-Ensemble 0.16902 & 0.33% 0.23471 & 0.31% 0.51973 & 0.49%
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Table 10

Overview of the best performing algorithms in the study.

Category Best performing 2nd best performing 3rd best performing

n-class problem

2 Class Problem WS-Ensemble PSO GA

3 Class Problem WS-Ensemble PSO GA

4 Class Problem WS-Ensemble PSO GA

Datasets

IIIa WS-Ensemble PSO GA

IVa WS-Ensemble GA PSO

IVb WS-Ensemble PSO AR-order 30

IVc WS-Ensemble PSO FPE

V WS-Ensemble PSO S-Ensemble

Subjects’ Classification Strengths

Week
mean bookmaker < 0.2

Normal
mean bookmaker ∈ [0.2, 0.3)

Strong
mean bookmaker ≥ 0.3

WS-Ensemble PSO GA

WS-Ensemble PSO GA

PSO WS-Ensemble GA
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