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Abstract

Systems for aggregating illustrations require a function for automatically distinguishing illustrations from photographs
as they crawl the network to collect images. A previous attempt to implement this functionality by designing basic
features that were deemed useful for classification achieved an accuracy of only about 58 %. On the other hand,
Deep Learning methods had been successful in computer vision tasks, and convolutional neural networks (CNNs) had
performed good at extracting such useful image features automatically. We evaluated alternative methods to implement
this classification functionality with focus on Deep Learning methods. As the result of experiments, the method that fine-
tuned deep convolutional neural network (DCNN) acquired 96.8% accuracy, outperforming the other models including
the custom CNN models that were trained from scratch. We conclude that DCNN with fine-tuning is the best method
for implementing a function for automatically distinguishing illustrations from photographs.
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1. Introduction

Illustrations are available on a number of websites such
as Pixiv and deviantART, but users need to move among
such sites to locate desired illustrations. One solution is to
create a system that automatically aggregates illustrations
from such websites and recommends them to the user, as
shown in Figure 1. Such a system would need to be able
to distinguish illustrations from other types of images, in-
cluding photographs. Several groups have investigated the
ways to distinguish paintings or computer graphics from
photographs, but most of these efforts included the use of
‘hand-made’ features to perform the classification, mean-
ing that those features had to be selected or designed by
human experts rather than by machine expert systems. A
recent advance has been the use of deep learning to auto-
mate feature extraction for several domains. In particular,
methods that use a convolutional neural network (CNN)
model have achieved state-of-the-art results in computer
vision tasks. Methods using a CNN model have also shown
good performance in image style classification as well when
pre-trained models are sufficiently fine-tuned.
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The purpose of our research is to design a function for
distinguishing illustrations from photographs in the target
illustration aggregation system. This functionality could
also be used when the system crawls the network, collect-
ing illustrations by using the APIs of other image aggre-
gation websites. Among the various genres of illustrations
(such as line drawings, paintings, and 3D graphics), here
we focus on images of paintings.

2. Related work

The problem of classifying photographs and other types
of non-photographic images including paintings and com-
puter graphics images has been explored by several groups.
Athitsos et al. (1997) were the first to address the problem
of finding images on the web that have a specific type like
clip art. They used several metrics, including a color his-
togram, to distinguish photographs from graphics. Cutzu
et al. (2003) proposed using handcrafted features given
to a neural network to distinguish paintings from pho-
tographs. They achieved accuracy greater than 90% for
a large set of images. Distinguishing various kinds of digi-
tal images is similar to classifying image styles in that both
use high-level features. Karayev et al. (2013) presented a
method that uses a convolutional neural network to clas-
sify image styles such as painting drawing styles. For the
WikiPaintings dataset, which has 20 classes per art style,
their classifier achieved 70% to 90% accuracy. Gatys et al.
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Figure 1: Overview of the target system. In this paper we design the detection process of the system.

(2015) used the VGG-network to classify and reconstruct
the drawing styles of paintings.

3. Handcrafted features

We identified two features that could be useful for clas-
sification. First, we observed that many illustrations have
dark outlines around objects or characters while natural
images usually do not. We call this feature “outline de-
tection.” We also observed that the colors in illustrations
tend not to change in a small region while those in even
a very small region of a photograph do tend to change.
We call this feature “color intensity.” Each feature deter-
mines whether the input image is an illustration based on
a hyperparameter threshould. We have developed two al-
gorithms for extracting each feature.

3.1. Outline detection

The algorithm for outline detection first detects the
edges of the objects in the input image by applying a Sobel
filter:

Gx =

−1 0 +1
−2 0 +2
−1 0 +1

∗A,Gy =

−1 −2 −1
0 0 0
+1 +2 +1

∗A, (1)

where A is the source image, and “*” is a convolution
operator. Gx and Gy are images, and the final output of
this operation is computed by combining them as follows:

G(x, y) =

√
Gx(x, y)

2
+Gy(x, y)

2
(2)

where G(x, y) is an arbitrary pixel in the output image.
The algorithm then binarizes the output image using

Otsu’s method (Otsu (1979)) so that darker colors are con-
verted to black and lighter colors are converted to white.
The image output by this process is labeled S1. Next, it
takes the original input image again and detects regions
that have colors close to black. The CIELAB color space
(Connolly and Fliess (1997)) is used to detect the colors
that are close to black. Their lightness values are checked
to see if they are lower than the threshold. If the distance
between a pixel and black is less than threshold θ, the pixel
is considered to be black. The image output by this pro-
cess is labeled S2. Finally, images S1, S2 are compared,
and the number of matching pixels is determined. The
input image is classified as an illustration if the number is
above the hyperparameter threshold. Example of images
S1 and S2 are shown in Figure 2.

Figure 2: Example of outline detection. Top left image is original
input. Top right image (S1) was obtained by applying a Sobel filter
and Otsu’s method. Bottom image (S2) was obtained by detecting
the color black.
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Figure 3: Example of the window when the size is three.



3.2. Color intensity

The algorithm for color intensity considers a small win-
dow in the input image that has an odd size such as 3× 3
and compares the distances between the center pixel ai
and the marginal pixels aj . An example of the window is
illustrated in Figure 3. The neighborhood of a pixel i is
denoted by σ(i), and the marginal pixels are denoted by
aj ∈ σ(i). The sum of the distances is given by

di =
∑

j∈σ(i)

min
i

|ai − aj | (3)

The value of di is added to another variable D as the win-
dow slides across the input image. The value that divides
the sum by the number of pixels N in the image is used
for the classification.

D =

∑N
j di

N
(4)

We expect D to be small for illustration images, and larger
for real world images.

4. Deep Learning

Bengio (2009) called neural networks that have many
hidden layers a “deep architecture.” Training deep neural
networks is difficult due to their tendency to have many
local optima. Nair and Hinton (2010) addressed this prob-
lem by pre-training the deep model. This method is called
“greedy layerwise training.” In this method, each layer is
considered to be a restricted Boltzmann machine. This
method is performed as pre-training. Training with su-
pervised learning and backpropagation is then carried out
as for normal neural networks. This second stage of learn-
ing is called “fine-tuning.”

4.1. Batch normalization (BN)

Several methods have been proposed for training deep
networks. Srivastava et al. (2014) proposed using a method
called Dropout that disconnects neurons randomly dur-
ing training to alleviate overfitting. Ioffe and Szegedy
(2015) developed a BN algorithm that addresses the in-
ternal covariate shift problem by normalizing layer inputs
for each mini-batch. Each activation of a mini-batch is
transformed so that it has a zero mean and unit vari-
ance during stochastic gradient descent (SGD) training,
and learned offset and scale factors are applied.

4.2. Convolutional neural networks (CNNs)

Convolutional neural networks (Lecun et al. (1998))
have been proven to be successful at solving computer vi-
sion tasks. The basic ideas of CNNs were originally de-
scribed by Fukushima (1980). He derived his concept from
the work of Hubel and Wiesel (1968). CNNs automatically
extract useful features from input images by repeatedly
applying convolutions and subsampling operations. The

“local receptive fields” structure in a convolution layer dif-
fers from that in a traditional multi-layer perceptron layer,
where each neuron is connected to another neuron in the
previous layer. In a convolution layer, each neuron is con-
nected to a part of the neurons in the previous layer. This
enables CNNs to recognize patterns that have different co-
ordinates in input images.

4.3. Deep Convolutional Neural Network

CNNs that have a deep architecture are called “deep
convolutional neural networks (DCNNs).” Here we call
CNNs that have three or more convolution layers “DC-
NNs.” DCNNs have achieved much success in the com-
puter vision field including in the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC). There are sev-
eral models for deep network architectures, such as the
AlexNet model (Krizhevsky et al. (2012)) shown in Fig-
ure 4, GoogLeNet (Szegedy et al. (2015)), and VGG-Net
(Simonyan and Zisserman (2014)). We evaluated AlexNet-
based architectures.

4.4. Transfer learning

The early layers of a DCNN that is trained with a
large dataset can extract generic features, as shown by
Zeiler and Fergus (2013) and Donahue et al. (2013), so we
use methods that fine-tune a pre-trained model. We used
an AlexNet architecture trained on the ImageNet dataset
(Deng et al. (2009)) as the pre-trained model. The net-
work architecture used for fine-tuning is shown in Table
1. As our dataset was relatively small (20,000 images)
compared to the ImageNet dataset, we hypothesized that
fine-tuning the last layer of the AlexNet rather than the
earlier layers would improve performance. We fine-tuned
the FC7 layer of the AlexNet and initialized the FC8 layer
to enable training from scratch for binary classification.

5. Benchmarked Algorithms

5.1. Handcrafted features

We used the two features described in Section 3 to
benchmark the outline detection and color intensity al-
gorithms. The both method is applied with a threshould
to determine whether the input is an illustration.

5.2. Color histograms

Chapelle et al. (1999) proposed using a color histogram-
based support vector machine (SVM) for image classifica-
tion. This approach uses the hue, saturation, and value
(HSV) color space and fixes the number of bins per color
component to 16. The dimension of each histogram is
163 = 4096. We also tested red-green-blue (RGB) color
space based histograms for comparison purposes in our
experiments.



Figure 4: Network architecture of AlexNet model (Krizhevsky et al. (2012)).

Table 1: Network architecture of AlexNet.

Layer Channels / Nodes Filter size Pooling size Stride
1 96 11 3 4
2 256 5 3 1
3 384 3 N/A 1
4 384 3 N/A 1
5 256 3 3 1
6 4096 N/A N/A N/A
7 4096 N/A N/A N/A
8 2 N/A N/A N/A

5.3. Bag of words (BoW)

The bag of words (BoW) method considers images as
sets of local features and uses the histogram of local fea-
tures as the feature of images. One of the simplest methods
is the one Csurka et al. (2004) proposed. They used the
scale-invariant feature transform (SIFT) as a local feature
and used an SVM as a classifier. The BoW method has
several variants, such as the ones that use latent Dirichlet
allocation (LDA), and spatial pyramid matching, and it
has six steps:

1. Select images for creating vocabulary, and generate
interest points for all training images.

2. Represent interest points using local-level features
like the SIFT local feature.

3. Form vocabulary using a clustering algorithm such
as K-means clustering.

4. Generate intermediate-level representations such as
histograms for each image with vocabulary.

5. Train a classifier on the intermediate feature vectors.

6. For predicting, apply the trained classifier to the ex-
tracted BoW feature vector of the target image.

We used the SIFT feature for local-level features and an
SVM with the radial basis function kernel for the classifier.

5.4. Deep Learning

We evaluated Krizhevsky et al.’s AlexNet and customized
CNN/DCNNmodels with different numbers of convolution
layers to compare accuracy and training time. The cus-
tomized models have two fully connected layers and one

softmax layer. They were trained using two types of algo-
rithms: one that used fine-tuning and one that is trained
from scratch. The AlexNet was trained using both al-
gorithms while the customized models were trained using
only the second algorithm. The customized CNN/DCNN
models were also trained using BN to improve their per-
formance. The original AlexNet with the Dropout was
compared with one that had BN layers. Table 1 lists the
specifications for the convolution and fully connected lay-
ers. The softmax classifier, which uses the cross-entropy
loss (Bishop (1995)), is configured as the last layer.

In the pre-processing, the images were resized to a fixed
resolution of 256 × 256. In the fine-tuned model, they
were randomly cropped to 227×227 for data augmentation
purposes.

6. Datasets

We constructed two datasets for use in evaluating the
models. Example images are shown in Figure 5.

6.1. Illustrations-Photographs dataset

One dataset consisted simply of 10,000 illustrations
and 10,000 general photographs. The illustrations were
randomly taken from anime-pictures.net and consisted of
characters drawn in various styles. The photographs were
randomly taken from the Flickr30k dataset (Young et al.
(2014)).
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Figure 5: Example images used for evaluation. Those in first row
are everyday images taken from Flickr30k dataset, those in second
row are costume images taken from Flickr, and those in third row
are illustrations taken from anime-pictures.net.

6.2. Illustrations-Cosplays dataset

The second dataset consisted of 10,000 anime illustra-
tions and 10,000 costume images. To collect natural im-
ages that were similar to the illustrations, images of people
in costume were taken from Flickr using keywords such as
“cosplay” and “cosplayer” using Flickr ’s search API.

7. Experimental setups

We evaluated model performance over the two datasets.
Each dataset was split into 15,000 training images and
5,000 test images.

7.1. Illustration-Photographs dataset

We first evaluated the handcrafted features and DCNN
with fine-tuning on the illustrations-photographs dataset.
The Caffe (Jia et al. (2014)) was used to implement the
DCNN model. We used SGD for fine-tuning. The hyper-
parameter settings used for SGD are shown in Table 2.

7.2. Illustrations-Costume images dataset

We next evaluated all models on the illustrations-costume
images dataset. We fine-tuned the DCNN model using the
same settings as for the first dataset and trained the cus-
tomize models using the AdaDelta adaptive learning rate
method (Zeiler (2012)) to shorten the training time. The

Table 2: Hyperparameters used for SGD

Parameter Value
base lr 0.0005
lr policy step

momentum 0.9
weight decay 0.0005

gamma 0.1
batch size 16

Table 3: Hyperparameters used for AdaDelta

Parameter Value
decay 0.9

batch size 32

hyperparameter settings used for AdaDelta are shown in
Table 3. We used Caffe to fine-tune the DCNN model
and used the Nervana Systems’ deep learning framework
“neon,” which has a BN implementation, for the customized
CNN/DCNN models. The settings used for the convolu-
tion layers and fully connected layers in the customized
networks are shown in Table 4. As neon’s back-end is im-
plemented in a nondeterministic way, we used the average
for five experiments.

8. Results

8.1. Illustrations-Photographs dataset

The results for the illustrations-photographs dataset
are shown in Figure 6. The fine-tuned DCNNmodel achieved
substantially higher accuracy (96.8%) after 20,000 itera-
tions than either the outline detection or color intensity
models, which used handcrafted features.

8.2. Illustrations-Costume images dataset

The results for the illustrations-costume images dataset
are listed in Table 5. The training loss curves for the
fine-tuned DCNN model and some of the CNN models are
shown in Figures 9 and 11 to 14. The validation accuracies
for the corresponding models are also shown in Figures 10
and 15 to 18.

The DCNN model had the highest accuracy (96.8%)
after 50 epochs of training, and the CNN models that had
more than two convolution layers outperformed the other
models. The training loss curve and the validation accu-
racy curve for the DCNN model are shown in Figures 9
and 10. The model using the RGB histogram and SVM
achieved 84.2% accuracy while the BoW model had the
lowest accuracy.

The AlexNet model with BN converged at around 20-
30 epochs while the training curve of the AlexNet model
without BN became unstable after 20-40 epochs (Figures
13 and 14). The training loss for the fine-tuned DCNN
model also converged at around 20-30 epochs.



Table 4: Network architecture used in our custom models.

Layer Channels / Nodes Filter size Pooling size Stride
1 64 2 N/A 2
2 128 3 2 2
3 256 3 2 2
4 512 3 2 2
5 1024 3 2 2
6 512 N/A N/A N/A
7 512 N/A N/A N/A
8 2 N/A N/A N/A

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

DCNN (fine-tuned)

Color intensity

Outline detection

0.968

0.650

0.454

Accuracy

Figure 6: Results for illustrations-photographs dataset.

Table 5: Results for all models on the Illustrations-Costume images
dataset

Model Accuracy
Color intensity 0.577

Outline detection 0.437
Color histogram (RGB) + SVM 0.842
Color histogram (HSV) + SVM 0.499
Bag of Words (SIFT + SVM) 0.500

1-layer CNN 0.863
2-layer CNN 0.908
3-layer CNN 0.892
4-layer CNN 0.911
5-layer CNN 0.930

AlexNet (without BN) 0.832
AlexNet (with BN) 0.920
AlexNet (fine-tuned) 0.968

Among the CNN models, the ones with more convo-
lution layers tended to have higher accuracy and a longer
training time. The training loss curves for the 1-layer and
5-layer CNN models are shown in Figures 11 and 12. The
model with five convolution layers had the best accuracy
(93.0%) of the customized models.

The results for the CNN models are shown in Figures
7 and 8. The training time is the time it took the model
to finish 100 epochs in the training.

9. Discussion

Our finding that the models using handcrafted features
performed worse than the other models (Figure 6 and Ta-
ble 5) suggests that these features are not useful for dis-
tinguishing illustrations from photographs. Using the out-
line detection feature produced particularly poor results,
apparently because many illustrations, especially photo-
realistic illustrations, do not have dark outline colors. Us-
ing the color intensity feature produced slightly better re-
sults, but still lower than most of the other models. This
indicates that natural images do not have as much “scat-
tered” coloring at the pixel level as we expected.

For the illustrations-costume dataset, using the RGB
histogram model produced much better results than the
BoW model. Since the BoW model uses SIFT, which does
not include any color-related information, this finding in-
dicates that recognizing color patterns is essential for dis-
tinguishing illustrations from natural images. The results
plotted in Figure 7 show that networks with more layers
perform better. We believe that CNN models that have
more layers are better able to extract hierarchical patterns
from images. The finding that the 5-layer CNN model out-
performed the AlexNet model indicates that it is also pos-
sible that the number of filters in a convolution layer is an
important factor in performance. The AlexNet model had
fewer filters than the 5-layer CNN model while the cus-
tomized models had more filters in the later layers (Table
4).
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Figure 7: Accuracy of CNN models on illustrations-photographs dataset.
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Figure 8: Training time of the customized models on illustrations-photographs dataset.



Figure 9: Traning loss curve of fine-tuned DCNN.
Figure 10: Validation accuracy curve of fine-tuned
DCNN.

Figure 11: Training loss curve of 1-layer CNN. Figure 12: Training loss curve of 5-layer CNN.

Figure 13: Training loss curve of AlexNet(with BN). Figure 14: Training loss curve of AlexNet(without BN).

Figure 15: Validation accuracy of 1-layer CNN. Figure 16: Validation accuracy of 5-layer CNN.



Figure 17: Validation accuracy of AlexNet(with BN). Figure 18: Validation accuracy of AlexNet(without BN).

10. Conclusion

We found that the DCNN model trained using fine-
tuning was the most effective of the evaluated models.
Its high accuracy and reasonable training time make the
DCNN model with fine-tuning appropriate for implement-
ing the illustration aggregation function in our target sys-
tem.

Future work may include expanding the datasets so
that the system can handle a wider variety of image types
such as sketches and 3D graphics images. Also, it may be
possible to use the results of this work to study a more gen-
eral version of this task (applying deep learning models to
the general paintings-photographs classification problem,
etc.). Finally, it may be interesting to try improving the
performance further by tuning the number of feature maps
or adjusting the number of fully connected layers.
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