
Recognition of Pen-based Music Notation with
Finite-State Machines

Jorge Calvo-Zaragozaa,∗, Jose Oncinaa

aDepartamento de Lenguajes y Sistemas InformÃąticos, Universidad de Alicante, Carretera
San Vicente del Raspeig s/n, 03690 Alicante, Spain

Abstract

This work presents a data-driven statistical approach with which to recognize

pen-based music compositions. Unlike previous works, no assumption is made

as regards the handwriting notation, but the system is able to adapt to any

kind of style obtained from training data. The series of strokes received as

input is mapped onto a stochastic representation, which is combined with a

formal language that describes musical symbols in terms of stroke primitives.

A Probabilistic Finite-State Automaton is then obtained, which defines proba-

bilities over the set of musical sequences. This model is eventually crossed with

a semantic language to avoid sequences that do not make musical sense. Fi-

nally, a decoding strategy is applied in order to output a hypothesis concerning

the musical sequence actually written. Comprehensive experimentation with

several decoding algorithms, stroke similarity measures and probability density

estimators are tested and evaluated following different metrics of interest to

both user-dependent and user-independent scenarios. The results demonstrate

that it is possible to learn the handwriting music style, obtaining competitive

performances in each case considered.

Keywords: Pen-based Recognition, Optical Music Recognition, Finite-State

Machines

∗Corresponding author: Tel.: +349-65-903772; Fax: +349-65-909326
Email addresses: jcalvo@dlsi.ua.es (Jorge Calvo-Zaragoza), oncina@ua.es (Jose

Oncina)

Preprint submitted to Expert Systems With Applications October 19, 2016

Usuario
Texto escrito a máquina
This is a previous version of the article published in Expert Systems with Applications. 2017, 72: 395-406. doi:10.1016/j.eswa.2016.10.041

http://dx.doi.org/10.1016/j.eswa.2016.10.041

1. Introduction

Despite several efforts to develop light and friendly software for music score

edition, many composers still prefer to express their new musical compositions

using a pen and paper. Once the artistic process is over, however, they re-

sort to this kind of tools to transcribe the musical content into some kind of5

machine-readable format. Although this process is not always mandatory, it

entails several benefits such as an easier storage, organization, distribution or

reproduction of the music scores.

One profitable way in which to perform the whole process is by means of

a pen-based music notation recognition system. These systems make use of an10

electronic pen, with which music symbols are drawn on a digital surface. The

system collects user strokes and then processes them to recognize the composi-

tion. The goal is to present the score actually written to the user in the desired

format. It should be noted that this task can be considered very similar to the

Optical Character Recognition (OCR) task, for which pen-based research has15

been widely carried out (Plamondon & Srihari, 2000; Mondal et al., 2009; Liu

et al., 2013). Nevertheless, the complexity of musical notation in comparison to

text leads to the need for specific developments (Bainbridge & Bell, 2001).

One straightforward approach that can be used to solve the task stated

above is that of resorting to Optical Music Recognition (OMR) systems, whose20

purpose is to understand music scores from their image. That is, an image

can be generated from pen strokes in order to make it pass through a conven-

tional image-based system (offline recognition). Nevertheless, the performance

of OMR systems is far from optimal, especially in the case of handwritten no-

tation (Rebelo et al., 2012). Note that the main intention of a pen-based score25

composition system is to provide musicians with an interface that is as friendly

as possible. The musicians should, therefore, be able to compose without hav-

ing to pay attention to whether or not their handwriting is perfect. However,

imperfect handwriting makes it even more difficult than usual to recognize the

notation.30

2

Fortunately, pen-based (or online) recognition provides new features that

make the task very different to the offline case, some of which include:

- Staff lines: a staff is composed of five parallel lines, on which musical

symbols are placed at different heights depending on their pitch. Staff-

line detection and removal usually entails an obstacle that most offline35

OMR systems must overcome (Dalitz et al., 2008), since symbol detection

and recognition are based on the accuracy of this step. Nevertheless, in

a pen-based system the problem is insignificant because the lines in the

staff are handled by the system itself and can be removed effortlessly.

- Segmentation: the input of a pen-based system is naturally segmented40

by pen strokes. Each stroke is easily detected by pen-down and pen-up

actions over the digital surface. This makes it possible to avoid a lot of

potential mistakes that may be caused by a bad segmentation in OMR

systems.

- Online data: drawing symbols in the pen-based scenario produces a time45

signal of coordinates indicating the path followed by the pen. Although

the image of the score can be rebuilt from the strokes, online data is

available to be used during recognition. It is known that this dynamic

information is valuable for shape recognition (Kim & Sin, 2014).

All of the above features should lead to the development of specific pen-50

based algorithms that are able to improve the performance of current offline

OMR systems.

This work proposes an approach with which to solve the problems involved

in this task by using finite-state machines and dissimilarity measures between

strokes. For a given input, the combination of these artifacts is able to produce55

a probabilistic model that defines the probability of each possible musical se-

quence. The use of decoding algorithms (for instance, searching for the most

probable sequence) provides a hypothesis regarding the sequence actually writ-

ten.

3

The use of finite-state machines makes it possible to build a system based60

on machine learning, signifying that the recognition is adaptable to any kind

of handwriting style as long as training data is provided. Furthermore, these

models establish an elegant statistical framework to solve the task, which is

also supported by the vast background research conducted on finite-state ma-

chines (Mohri et al., 2002). It will be shown that this framework enables the65

easy incorporation of domain information — such as the fact that strokes are

single independent units that can be grouped under the same label — and se-

mantic constraints. Unlike that which occurs with similar frameworks such as

hidden Markov models, this information prevents the use of pruning methods

that may involve a loss of recognition accuracy and representativity (Rabiner,70

1989).

The remainder of the paper is structured as follows: Section 2 presents some

work related to pen-based music recognition; Section 3 provides details on the

construction of the probabilistic model; Section 4 describes the experimentation

carried out and the results obtained, and finally, Section 5 shows the main75

conclusions drawn and discusses some future work.

2. Background

Notwithstanding the benefits provided by pen-based music recognition sys-

tems for the composition of music, little attention has been paid to their devel-

opment.80

The first systems for the online recognition of musical scores were based on

the use of simple gestures. This is the case of the Presto system, developed by

Anstice et al. (1996), which received as input short gestures that were generally

mnemonic of the actual symbols they represented. These gestures were pro-

cessed and translated into the actual musical symbols. The system was further85

improved in a later work (Ng et al., 1998), including new capabilities based on

a usability analysis of the previous approach. Poláček et al. (2009) developed a

similar idea for use in low-resolution displays. These authors’ alphabet consisted

4

of gestures that were similar to conventional music notation, yet restricted to a

more simple notation style. The main drawback of these approaches was that90

they did not provide a natural interface to musicians, who had to learn a new

way of writing music.

More recently, many works have dealt with the problem of recognizing pen-

based isolated musical symbols. George (2003) used the images generated by the

digital pen to learn an Artificial Neural Network with which to recognize sym-95

bols. Her experimentation comprised 4 188 music symbols spread over 20 types

of musical symbols from 25 different users. Although she completely ignored

the time-signal information provided by the e-pen, she was able to obtain an

accuracy of around 80 %. Lee et al. (2010b) proposed the use of hidden Markov

models for the recognition of some of the most common musical symbols using100

different features of the shape drawn by the pen. The work was further extended

in (Lee et al., 2010a), which considered other recognition schemes such as Naive

Bayes or Markov models. These authors’ results showed a virtually optimal per-

formance. The conclusions drawn are, unfortunately, difficult to generalize since

the experimentation only involved 400 samples, spread over 8 classes of symbols,105

from a single user. Calvo-Zaragoza & Oncina (2014), meanwhile, presented a

free dataset of 15 200 pen-based music symbols written by 100 different musi-

cians, comprising 32 different music symbols. In addition to the dataset, they

included an experimental baseline study taking into account several recognition

algorithms. Their results reported that the time-signal information provided by110

the e-pen is able to outperform those classifiers that focus only on the shape

drawn.

Nevertheless, while the recognition of isolated symbols might be of interest,

the actual focus of this work is on the recognition of pen-based music sequences,

which comprises a very different (and actually more difficult) challenge, and far115

fewer attempts have been made to deal with this issue.

Miyao & Maruyama (2004, 2007) proposed a system based on predefined

stroke primitives (such as note-heads, lines, dots, etc.). The combination of the

time-series data and image features were employed to recognize strokes using

5

Support Vector Machines. Once the strokes had been classified, musical symbols120

were reconstructed following a heuristic approach that made use of a set of fixed

restrictive rules in order to convert strokes into music symbols. The recognition

rates were about 98 and 99 % for strokes and music symbols, respectively. In

spite of this performance, the approach did not enable users to write naturally,

since the set of construction rules was very restrictive.125

Macé et al. (2005) proposed a generic approach for pen-based document

recognition applied to music scores. This approach consisted of three modules:

a stroke recognizer, a definition of the spatial structure of the document and

a pen-based interaction framework. The recognition of the strokes was based

on Neural Networks. The spatial structure of the document was modeled by130

means of ad-hoc Context-free Grammars, that took into account chronological

and spatial information to define how and where strokes were expected by the

system. This meant that any handwriting style that did not fulfill these con-

straints was not properly recognized. The interactivity framework allowed the

user to validate or reject any output of the recognizer. Although no information135

regarding recognition rates was provided, the system was expected to recognize

notes, accidentals, clefs, rests and barlines.

To the best of our knowledge, and supported by relevant reviews such as

those by Rebelo et al. (2012) or Fornés & Sánchez (2014), no further research

on the pen-based music recognition task has been carried out. As discussed140

above, the solutions proposed to date are not satisfactory from a user point of

view since the only way in which to recognize symbols is by following the rules

proposed by each system. These solutions have, therefore, forced users to adapt

to the system style when what should be pursued is precisely the opposite.

All of the above reasons signify that there is still a need to develop an145

appropriate pen-based editing system for music scores. The main goals are to

provide an ergonomic interface, which is indeed fulfilled with the use of the e-

pen, and to provide an adaptive behavior that will allow musicians to use their

own personal handwriting style. It is important to note that this question is

not trivial. As an example, Table 1 shows some musical symbols written by150

6

different musicians, in which a great variability can be observed. This implies

that recognition must be guided by a learning process that will allow the system

to know how musicians are going to write their music, instead of resorting to

hand-crafted heuristics.

Table 1: Some musical symbols written by different musicians.

Label Symbol
Musician

1

Musician

2

Musician

3

Musician

4

C-Clef

Eighth Note

Sixteenth

Rest

Our proposal follows a stroke-based approach, that is, we consider a finite set155

of stroke primitives. We then use labeled data to learn a language that describes

musical symbols obtained from isolated stroke primitives. The strokes received

as input are mapped onto the probability of representing each of the primitives

considered. In addition, we use a semantic model that describes which musical

sequences are formally acceptable.160

This knowledge is eventually merged into a finite-state machine (Hopcroft,

1979), since it represents a natural and compact means to express and combine

all the information available. Furthermore, these machines represent a well-

known established framework, since similar approaches have previously been

proposed for speech and text recognition (Mohri et al., 2005).165

Once the finite-state machine has been built, a hypothesis about the musical

7

sequence actually written can be provided following a decoding strategy. An in-

depth description of how to build such a model is provided in the following

section.

3. Pen-Based Music Recognition with Finite-State Machines170

This section describes our approach for the recognition of handwritten mu-

sical sequences written with an e-pen.

In this work it is assumed that a training set with samples of how isolated

musical symbols are written by users is available. This corpus might be ob-

tained by either asking the user to go through a training phase before using the175

tool or by using an existing dataset (such as that mentioned in the previous

section). This will make it possible to define a set of construction rules from

stroke primitives to musical symbols.

The probability of each input stroke representing each possible stroke primi-

tive will be computed. This estimation, along with the construction rules defined180

in the training phase, will be used to obtain a probabilistic machine that is able

to give a probability to each of the possible musical sequences. Nevertheless,

given the formal system in which music is framed, it is known that there are

several sequences of musical symbols that do not make sense. A semantic model

will therefore be used to tune this probabilistic machine in order to avoid those185

sequences that are not well-formed.

Finally, several decoding strategies will be applied to provide a hypothesis

that will be considered as a solution to the problem involved in this task.

3.1. Symbol generation from stroke primitives

The input to the system consists of the set of time-ordered strokes drawn190

by the user. Each symbol may be written with either one single stroke or with

several. For instance, a Half Note (˘ “) can be a white note head followed by a

stem (Fig. 1a), or only the half note primitive if the symbol is written with a

single stroke (Fig. 1b). If symbols are to be recognized from this kind of input,

it is necessary to know how each musical symbol can be written from strokes.195

8

(a) Two strokes (b) One stroke

Figure 1: Half Note written with different sets of strokes.

Owing to the stroke feature space, it is very unlikely that equal strokes

will be written more than once, and using this dataset to learn may therefore

be useless. Nevertheless, if similar strokes are grouped under the same label,

the complexity of this process is reduced, which additionally allows a higher

generalization. Since our main intention is to avoid predefined heuristics, the200

decision as to how to group strokes under the same label must be made according

to the training set. This will be explained in greater depth when describing the

training stage (Section 3.3).

Once strokes have been assigned a primitive label, musical symbols can be

defined from sequences of stroke primitives. Let us denote Σ = {σ1, . . . , σ|Σ|} as205

the set of musical symbols and Π = {π1, . . . , π|Π|} as the set of stroke primitives

(possible labels assigned to a stroke). Table 2 illustrates an example of a dataset

of musical symbols, in which strokes are also labeled. In this case, Σ = { ˘ “, ¯ }
and Π = {st, wh, hn}.

A set of construction rules R = {(σ, (πi1 , . . . , πin)) : σ ∈ Σ, πij ∈ Π}|R|i=1210

can be obtained from the dataset of labeled musical symbols followed by their

labeled sequence of strokes. That is, sequences of stroke primitives describing

how specific musical symbols can be written. For instance, the dataset shown

previously would be represented using the following set of rules:

(¯ , wn)

(˘ “ , hn)

(˘ “ , st wn)

(1)

It should be stressed that it is possible to find the same musical symbol215

9

Table 2: Example of a dataset of pen-based musical symbols with labeled strokes.

Stroke Primitives (Π)

stem (st) white note-head (wn) half note (hn)

Musical Symbols (Σ)

Whole Note (¯) Half Note (˘ “)

defined many times by the same sequence of stroke primitives. However, some

stroke sequences are more likely to describe a musical symbol than others. For

example, it might be more common for the Half Note (˘ “) to be written with

two strokes (head plus stem) than with just one. It is, therefore, interesting to

consider a prior probability for each rule in R. The prior probability of a rule220

(σ, π̄) ∈ Rσ will be denoted with p(π̄|σ). These probabilities will be estimated

during the training stage.

Moreover, depending on the stroke labeling, it is possible that some music

symbols might be defined by the same sequence of primitives. For example, if a

user draws thin note-heads, the Half Note (˘ “) and the Quarter Note (ˇ “) might225

be defined with the same strokes primitives: a stem plus a thin note-head.

However, we will consider the use of a semantic language model so that the

probability of each symbol will be different depending on its semantic meaning.

3.2. Input processing

The following lines describe how to build a finite-state machine that defines230

probabilities over the musical sequences that are permitted given a set of strokes

10

received. This machine will be conditioned by both the input and the construc-

tion rules presented in the previous section, in addition to a formal language

that restricts the machine to sequences that fulfill grammatical constraints.

3.2.1. Probability estimation235

The input to the system is provided by a sequence of strokes s̄ = (s1, . . . , s|s̄|),

in which each stroke is defined by an ordered sequence of 2D coordinates.

The first step involved in recognizing this input is knowing which types of

strokes have actually been written. Since this process is not error-free, one way

in which to approach it is by computing the probability of each received stroke240

being each stroke primitive considered.

Although several means can be employed to compute probabilities from la-

beled data, our estimation will be governed by dissimilarity functions between

strokes. We denote this dissimilarity as d(·, ·). Our choice is justified by the fact

that the stroke labeling is directed by a dissimilarity function. Furthermore,245

this paradigm is particularly suitable for interactive scenarios like that found in

our task, as the simple addition of new prototypes to the training set is sufficient

for incremental learning, whereas the size of the dataset can be controlled by

dissimilarity-based data reduction algorithms (García et al., 2015).

In order to estimate a probability from a given dissimilarity, two different250

strategies are considered: Parzen Window and Nearest Neighbor.

- Parzen Window (Parzen, 1962) is a non-parametric technique used to es-

timate probability density functions from training samples. Given a series

of samples x1, x2, . . . , xn from an unknown distribution p, an estimated

density p̂ in a point x following Parzen Window method is255

p̂(x) =
1

n

n∑
i=1

1

h
ϕ

(
d(x, xi)

h

)
(2)

The term ϕ refers to the window function, a symmetric function that

integrates to one. The parameter h, called the bandwidth of the window,

should be defined according to the volume of the region considered.

11

One of the main issues of the Parzen Window estimation is the choice

of the window function ϕ. In practice, a standard Gaussian kernel is260

commonly assumed:

ϕ(u) =
1√
2π
e−

1
2u

2

(3)

- Nearest Neighbor: the problem of choosing the adequate window function

ϕ can be avoided by considering only the nearest sample of the training

data. This is called Nearest Neighbor estimation (Duda et al., 2001).

Given a series of samples x1, x2, . . . , xn from an unknown density function265

p, a common estimation for a point x becomes

p̂(x) =
1

minni=1 d(x, xi)
(4)

Note that a dissimilarity function between strokes is needed to make use of

the previous probability density function estimators. The digital surface col-

lects the strokes at a fixed sampling rate, signifying that each one may contain

a variable number of 2D points. Several functions for the measurement of dis-270

similarity can be applied to this kind of data. Those considered in this work

include:

• Dynamic Time Warping (DTW) (Sakoe & Chiba, 1990): a technique used

to measure the dissimilarity between two time signals which may be of

different duration. This technique was first used in speech recognition,275

although its use has been extended to other fields (Hartmann & Link,

2010; Kim et al., 2014).

• Edit distance with Freeman Chain Code (FCC): the sequence of points

representing a stroke is converted into a string using a codification based

on Freeman Chain Codes (Freeman, 1961). The common Edit distance280

(Levenshtein, 1966) between strings is then applied.

12

• Normalized Stroke (NS): the whole set of points of the stroke is normalized

to a sequence of n points by means of an equally resampling technique. A

stroke is therefore characterized by an n-dimensional feature vector of 2D

coordinates. Given two vectors of this kind, an accumulated Euclidean285

distance between the points of the sequences can be computed.

• Edit distance for Consecutive Points (CP) (Rico-Juan & Iñesta, 2006):

an extension of the edit distance for its use with sequences of consecutive

points.

It should be noted that these functions take into account the direction of the290

strokes. That is, a stroke written inversely represents a different object despite

having the same shape. Although this can be seen as a drawback, treating

these strokes differently is, in most cases, known to be beneficial (Connell &

Jain, 2001).

Each combination of probability estimation and dissimilarity functions will295

be evaluated empirically. Our intention is to both measure the robustness of

our approach to these two elements and study the most appropriate choice for

this task.

3.2.2. Building a Probabilistic Automaton

At this point, both the probability of each stroke being each stroke primitive300

and the musical symbol construction rules from stroke primitives are known.

This knowledge can be merged to obtain a machine that defines the probability

of sequences of musical symbols.

The machine to be built is a Probabilistic Finite-State Automaton (Pfa). A

Pfa is a generative device for which there are a number of possible definitions305

(Paz, 1971; Vidal et al., 2005).

Definition 1. A Probabilistic Finite-State Transducer (Pfa) is a tuple A =

〈Σ, Q, I,F, δ), where:

- Σ is the alphabet;

13

- Q ={q1,. . . , q|Q|} is a finite set of states;310

- I : Q→ R ∩ [0, 1] (initial probabilities);

- F : Q→ R ∩ [0, 1] (final probabilities);

- δ : Q×Σ×Q→ R∩[0, 1] is the complete transition function; δ(q, a, q′) = 0

can be interpreted as “no transition from q to q′ labeled with a”.

I, δ and F are functions such that:315

∑
q∈Q

I(q) = 1, (5)

and ∀q ∈ Q,

F(q) +
∑

a∈Σ, q′∈Q
δ(q, a, q′) = 1. (6)

Given x ∈ Σ∗, an accepting x-path is a sequence γ = qi0a1qi1a2 . . . anqin in

which x = a1 · · · an, ai ∈ Σ and δ(qij−1
, aj , qij) 6= 0, ∀j such that 1 ≤ j ≤ n.

Let ΓA(x) be the set of all paths accepting x. The probability of the path γ is

defined as PrA(γ) = I(qi0) ·
∏n
j=1 δ(qij−1 , aj , qij) · F(qin) and the probability of

the sequence x is obtained by obtaining the sum of the probabilities of all the320

paths in ΓA(x).

Our Pfa is constructed as described in Algorithm 1. The machine generates

as many states as there are strokes in the input plus 1. The ith state represents

the fact that every stroke from the first until the (i − 1)th has been processed

(state 0 means that no stroke has yet been processed). This is why the only325

initial state is the first and the only final state is the last. For each state, the set

of construction rules is queried and a new edge is created for every single rule.

The length of each edge corresponds to the number of stroke primitives that

contain the rule it represents. The label for the edge is given by the musical

symbol of the rule. Note that those edges that would end beyond the last state330

will be discarded. Finally, the probability of these edges is given by both the

product of the probability of the strokes being the primitives of the rule and

14

∅/0 s1/0 s2/1

1 p(hn| ˘ “) p(hn|s1)/ ˘ “ p(hn| ˘ “) p(hn|s2)/ ˘ “

p(st wh| ˘ “) p(st|s1)p(wh|s2)/ ˘ “

p(wn| ¯) p(wh|s1)/ ¯ p(wh| ¯) p(wh|s2)/ ¯

Figure 2: Example of Pfa generated from an input of two strokes and the set of construction

rules defined in Eq. 1. An arrow toward a state represents its initial probability (omitted when

0). Text inside states represents the last stroke processed and the probability of stopping. Text

over edges represents the probability of the transition and its label.

the prior probability of the rule itself. The calculation of these probabilities was

shown above, and it is therefore assumed that they are available when running

Algorithm 1.335

Data: s̄ = (s1, . . . , s|s̄|), R = {(σ, (πi1 , . . . , πin)) : σ ∈ Σ, πij ∈ Π}|R|

Result: (Q,Σ, I,F, δ) : Pfa

Q← {q0, . . . , q|s̄|}

I(q0)← 1

F(q|s̄|)← 1

forall the qi ∈ Q do

forall the (σ, (πi1 . . . πin)) ∈ R do

if i+ n ≤ |s̄| then

δ(qi, σ, qi+n)← p(π1 . . . πn|σ)
∏n
k=0 p(πk+1|si+k)

end

end

end
Algorithm 1: Building a Pfa from an input sequence and the set of symbol

construction rules.

Figure 2 shows an example of Pfa given an input sequence s̄ = s1s2 and the

set of construction rules in Eq. 1. Although this is not the case, different paths

may have the same probability depending on the set of rules.

15

3.2.3. Avoiding sequences that are not well-formed

The machine obtained in the previous section is able to define a probability340

for every sequence in Σ∗. However, it is clear that not all these sequences are

grammatically correct. Hence, the next step is to ensure that only well-formed

sequences have a non-null probability of being produced.

It is assumed that well-formed musical sequences can be defined by means

of a regular language. It is thus possible to build a Deterministic Finite-State345

Automaton that only accepts those sequences that fulfill the constraints of the

music.

Definition 2. A Deterministic Finite-State Automaton (Dfa) is a tuple D =

(Q,Σ, δ, q0, F) where:

- Q is the set of states;350

- Σ is the alphabet;

- δ : Q× Σ→ Q is the transition function;

- q0 is the initial state;

- F ⊆ Q is the set of accepting states.

A sequence σ̄ ∈ Σ∗ is accepted by the Dfa if, and only if, δ∗(q0, σ̂) ∈ F .355

Let us once again consider a small alphabet of musical symbols Σ = { ˘ “, ¯ }.
Figure 3 shows a toy Dfa which only accepts sequences that begin with a Half

note (˘ “). Note that this language does not make any sense musically, but is

used here as an easy example to guide the explanation.

The semantic information provided by the Dfa can be merged with the360

previous Pfa. Our goal is to change the probabilities so that sequences that

do not belong to the language are nullified (zero probability). This machine is

generated by computing the intersection of the Dfa and the Pfa. The output

of this intersection is a new probabilistic machine for which sequences that do

not belong to the language end in a non-final state, ie., a state with a stop365

probability that is equal to 0.

16

q0start

q1

q2
¯

˘ “

˘ “, ¯

˘ “, ¯

Figure 3: An example of Dfa that accepts only sequences whose first symbol is a Half note.

Double circle indicates a final state.

The intersection between these machines can be obtained computationally

by following Algorithm 2. Given a Pfa A and a Dfa D, we obtain a new Pfa

B. This new machine has QA × QD states. We denote each of these states

using a pair (qa, qd). The first element indicates the state of A, while the second370

indicates the state of D that the new state represents. The initial probabilities

of B are equal to those in A for every state that also represents an initial state

in D. Otherwise, probabilities are equal to 0. Similarly, the final probabilities

of B are equal to those in A as long as the state is also in the set of final states

of D. Finally, the probability from a state (qa, qd) to (qa′ , qd′) with a symbol375

σ is equal to the transition from qa to qa′ in A with this symbol as long as a

transition from qd to qd′ with σ is allowed in D. A post-processing step may

normalize the new Pfa, thus enabling it to fulfill the conditions stated in Def. 1.

An example of this intersection is shown in Fig. 4. Unattainable states have

been omitted for the sake of clarity. It should be stressed that the path (¯ , ˘ “)380

now has the same probability as before, but the final probability of the sequence

is 0 owing to the null stop probability of state (s2, q2). Useless paths could be

removed to reduce the complexity of the machine generated.

3.3. Decoding strategies

At this point, our model is able to assign a probability to each valid sequence385

of musical symbols. The last step is to apply some kind of decoding strategy

in order to output a hypothesis concerning the input sequence of strokes. The

possibility of approaching this stage following different strategies is another

17

Data: A = (QA,Σ, IA,FA, δA) : Pfa, D = (QD,Σ, δD, qD0 , FD) : Dfa

Result: B = (QB,Σ, IB,FB, δB) : Pfa

QB ← QA ×QD
forall the qb = (qa, qd) ∈ QB : qd = qD0

do

IB(qb)← IA(qa)

end

forall the qb = (qa, qd) ∈ QB : qd ∈ FD do

FB(qb)← FA(qa)

end

forall the qb = (qa, qd) ∈ QB do

forall the qb′ = (qa′ , qd′) ∈ QB do

forall the σ ∈ Σ do

if δD(qd, σ) = qd′ then

δB(qb, σ, qb′)← δA(qa, σ, qa′)

end

end

end

end
Algorithm 2: Building a new Pfa from the information provided by a Pfa

and a Dfa.

18

(∅, q0)/0 (s1, q1)/0 (s2, q1)/1

(s1, q2)/0 (s2, q2)/0

1

p(hn| ˘ “) p(hn|s1)/ ˘ “ p(hn| ˘ “) p(hn|s2)/ ˘ “

p(wh| ¯)p(wh|s2)/ ¯

p(st wh| ˘ “) p(st|s1)p(wh|s2)/ ˘ “
p(wn| ¯) p(wh|s1)/ ¯

p(wh| ¯) p(wh|s2)/ ¯

p(hn| ˘ “) p(hn|s2)/ ˘ “

Figure 4: Pfa obtained by the intersection of the Pfa shown in Fig. 2 and the Dfa shown

in Fig. 3. An arrow toward a state represents its initial probability (omitted when 0). Text

inside states represents the intersection of the original states from which it originates, along

with the probability of stopping. Text over edges represents the probability of the transition

and its label.

interesting advantage of our approach. The decoding strategies considered here

are listed below:390

- Most probable path (MPP): this seeks the most probable path of the Pfa,

and then outputs the sequence associated with this path. This is typically

computed with an efficient Viterbi alike algorithm.

- Most probable sequence (MPS): searching for the most probable sequence

of a distribution defined by a Pfa is known to be NP -Hard (Casacuberta395

& de la Higuera, 2000). Nevertheless, a recent development makes its

computation possible with a complexity of the inverse of the probability

of the most probable sequence (de la Higuera & Oncina, 2014). This

approach is used herein.

- Optimum decoding to minimize number of corrections (MNC): if it is as-400

sumed that the output will be corrected by a human supervisor, and that

after each correction the machine will be allowed to output a new hypothe-

19

sis (interactive approach), the optimum means of minimizing the expected

number of sequential corrections is that of computing the algorithm de-

veloped by Oncina (2009).405

All of these strategies will be compared experimentally.

3.4. Training stage

Having described the operation of the system, we shall now summarize the

training stage that is performed. The system must learn from a set of labeled

examples of isolated pen-based music symbols.410

Let us again consider Σ as the set of musical symbols. Let S be the stroke

space, using S+ as the (infinite) set of stroke sequences containing at least one

stroke. Our training set T initially consist of pairs {(s̄, σ : ŝ ∈ S+, σ ∈ Σ}, that

is, sequences of one or more strokes associated with a musical symbol. Note

that each symbol can be defined by a different number of strokes.415

The first step is to obtain the set of stroke primitives. At this point, there

is the open question of how to label each stroke in the dataset so as to group

those that are more similar. It is clear that the alphabet of musical symbols

is defined by the music notation itself, but this is not so in the case of the set

of stroke primitives. The approach followed here is that shown in the work of420

Calvo-Zaragoza & Oncina (2015). This work proposes the use of a k-medoids

clustering (Theodoridis & Koutroumbas, 2006) for the automatic labeling of

strokes, given an ambiguity rate allowed. This rate defines the proportion of

different musical symbols that can be defined by the same sequence of stroke

primitives. The idea is to obtain the minimum number of stroke primitives425

without breaking the ambiguity rate. Since this value is a parameter to be

tuned empirically, our experimentation will consider several possibilities for this

rate.

As a result of this clustering process, we obtain a discrete set of stroke

primitives, Π, and a function that maps each stroke onto its corresponding430

stroke primitive label. If each stroke is given a label, a set of construction rules

can therefore easily be generated from T , as described in Sect. 3.1.

20

Having obtained the construction rules, it is now necessary to assign a prior

probability to each one depending on how often it appears in the training set.

Let Rσ = {(σ, π̄) ∈ R : σ ∈ Σ, π̄ ∈ Π+} be the set of rules whose musical symbol435

is σ. The prior probability of a rule (σ, π̄) ∈ Rσ is then computed as:

p(π̄|σ) =
#((σ, π̄))∑

(σ,π̄′)∈Rσ #((σ, π̄′))
(7)

where #((σ, π̄)) denotes the number of times that a rule appears in the dataset.

Note that
∑

(σ,π̄)∈Rσ p(π̄|σ) = 1, for any σ ∈ Σ.

We also wish to map each input stroke onto the probability of it being each

possible stroke primitive. As explained in Section 3.2, this probability estimation440

is governed by instance-based algorithms, signifying that there is no need for

training and that it is merely necessary to query the set of strokes that are

labeled after the clustering process.

4. Experimentation

This section describes the experimentation performed to assess the goodness445

of our proposal.

The HOMUS dataset (Calvo-Zaragoza & Oncina, 2014) of pen-based musical

symbols will be used in this experimentation 1. This set contains 15200 samples

from 100 different musicians. We took advantage of the configuration of this

set, and the series of experiments therefore consists of recognizing semi-synthetic450

pen-based music scores from two different scenarios: user-dependent, in which

both learning and test data were provided by the same musician, and user-

independent, in which all available data is mixed. The objective of the former

scenario is to measure the performance when the user is known by the system,

while that of the latter is to simulate a more general situation.455

The input of both experiments is a series of 1000 sequences of musical sym-

bols, generated randomly and which respect the language model defined. Each

1The dataset is freely available at http://grfia.dlsi.ua.es/homus/

21

sequence is used to generate a pen-based score using the data available from

HOMUS. Figure 5 illustrates an example of this generation. The sequences

generated contain 17.1 musical symbols, an average of (± 3 of standard devia-460

tion), with a variable number of strokes depending on the synthetic generation.

Language
Model

G-Clef 4-4-Time Half-Note Quarter-Note
Quarter-Rest Barline Whole-Note Barline

Pen-based
symbols set

Figure 5: Example of the procedure used to generate semi-synthetic pen-based scores for

experimentation.

The stroke labeling process is performed automatically, as mentioned in Sec-

tion 3.1. We will allow different ambiguity rates, denoted as α, ranging from 0

to 0.3 depending on each scenario. Higher values of ambiguity are expected to

give very poor results.465

Please recall that, as mentioned in Section 3.2.3, it is necessary to develop a

Dfa that indicates which musical sequences are allowed. Since the development

of a restrictive model for music notation is an extremely complex task, we shall

restrict ourselves to taking into account the time-signature constraints of each

bar in the composition. Note that this is an important source of disambiguation.470

For instance, similar symbols such as the Half Note (˘ “) or the Quarter Note (ˇ “)
would play a very different role for the time-signature constraints. AppendixA

describes an efficient way in which to build such a model automatically. In these

experiments, we specifically consider scores with a common time metric (44 or
S), one of the most common in modern Western music.475

With regard to the performance evaluation, there are different ways in which

to measure the goodness of a hypothesis depending on the main goal pursued.

22

To this end, we take the following metrics of interest:

- Error rate (Er): this provides the number of times (out of the total) that

the first hypothesis provided by the system is the actual input. It is used480

when a 0/1 loss function is assumed.

- Average edit distance (Ed): this provides the expected number of correc-

tions per sequence by computing the average edit distance between the

solutions provided by the system and the actual inputs. It is the unnor-

malized version of the Word Error Rate.485

- Average number of corrections (C): a good way in which to measure the

performance of this kind of systems is to count the number of corrections

the user would have to make before obtaining the sequence actually writ-

ten (Vidal et al., 2008). After each correction, the system is allowed to

recompute a new hypothesis, which is expected to be more accurate since490

some parts of the solution are known.

The results achieved in each scenario are presented in the following subsec-

tions. It is important to stress that we do not compare this experiment with

those of other approaches. As stated in Section 2, no fully learning-based mu-

sic notation recognition has yet been proposed, and a fair comparison is not495

therefore possible.

4.1. User-dependent experiment

The user-dependent experiment consists of the following steps: for every se-

quence, a user from the dataset is randomly selected and an automatic stroke

primitive labeling is performed with different ambiguity rates ranging from 0 to500

0.2. The data in each of them is split into a test and a train set. The test set is

used to build the pen-based score that fulfills the definition of the sequence gen-

erated, whereas the train set is used to both extract the set of construction rules

of musical symbols and train the stroke probability estimators (see Section 3.4).

The machine obtained is then decoded to produce a hypothesis concerning the505

input sequence. Finally, the aforementioned performance evaluation is applied.

23

Table 3 shows the results attained after carrying out this experiment. Al-

though further analysis is presented below, an initial remark to begin with is that

the performance is quite promising. The best results yield that 90 % of these

sequences are perfectly recognized (Er = 0.10). From another point of view,510

the results show 0.3 mistakes per sequence (Ed) or 0.28 corrections needed per

sequence (C). This implies that the post-processing user correction phase could

be assumed effortlessly, regardless of the use of an interactive approach.

If the above is studied in greater detail, it will be noted that the allowable

ambiguity rate in stroke labeling has a particular impact on the results. In515

most cases, the results of the same probability estimator with the same decod-

ing strategy are noticeably worse as the ambiguity rate becomes higher. For

instance, the NN estimation with FCC and decoded by MPS achieves an error

rate of 0.10 with α = 0, but error rates of 0.17 and 0.38 are obtained with

α = 0.1 and α = 0.2, respectively. This tendency is depicted in Fig. 6, which520

shows the average results obtained using the different decoding strategies and

the probability density estimator for each ambiguity rate considered. Note that

the results degenerate as α becomes higher. A remarkable exception occurs in

the case of the NN estimation with FCC when the number of corrections (C) is

considered as an evaluation metric. In this case, the best result (which is also525

the best with regard to the whole experiment) is that with α = 0.1.

Not surprisingly, stroke probability estimation is also a relevant factor. How-

ever, it would appear that the dissimilarity function is more accurate when com-

pared to the probability density estimator. As a whole conclusion in this respect,

NN with FCC appears to be the most accurate stroke probability estimator for530

this task. Furthermore, the results hardly vary as regards the decoding strate-

gies considered, especially in the case of α = 0. Despite this, the best average

results for Er and Ed are attained when using the MPS strategy, whereas MNC

needs the lower number of corrections. The worst average results are, in most

cases attained when using MPP.535

24

Table 3: Mean results of the user-dependent experiment with an average number of 1000

random sequences of length 17.1. Several allowable ambiguity rates (α) for the automatic

stroke labeling are considered.

Prob. Dissim. Decod.
α = 0 α = 0.1 α = 0.2

Er Ed C Er Ed C Er Ed C

NN

FCC

MPP 0.11 0.31 0.36 0.19 0.62 0.31 0.42 1.54 0.73

MPS 0.10 0.30 0.36 0.17 0.55 0.28 0.38 1.39 0.65

MNC 0.10 0.31 0.35 0.18 0.59 0.26 0.40 1.46 0.62

DTW

MPP 0.16 0.56 0.45 0.32 1.12 0.55 0.54 2.08 1

MPS 0.16 0.57 0.44 0.33 1.13 0.53 0.48 1.97 0.9

MNC 0.17 0.58 0.44 0.32 1.13 0.52 0.51 2.04 0.91

NS

MPP 0.19 0.70 0.60 0.36 1.38 0.63 0.54 2.37 1.09

MPS 0.19 0.70 0.59 0.34 1.33 0.59 0.52 2.25 1.02

MNC 0.19 0.69 0.58 0.34 1.32 0.58 0.54 2.37 1.05

CP

MPP 0.10 0.30 0.51 0.23 0.8 0.37 0.45 1.87 0.81

MPS 0.10 0.30 0.51 0.19 0.73 0.34 0.40 1.7 0.75

MNC 0.10 0.30 0.51 0.2 0.75 0.35 0.43 1.8 0.77

Parzen

FCC

MPP 0.14 0.50 0.34 0.23 0.83 0.44 0.43 1.71 0.76

MPS 0.13 0.50 0.33 0.2 0.74 0.38 0.39 1.57 0.68

MNC 0.13 0.50 0.31 0.21 0.78 0.39 0.42 1.65 0.71

DTW

MPP 0.27 1.01 0.79 0.49 2.11 1.14 0.65 3.06 1.60

MPS 0.26 0.94 0.72 0.45 1.96 1.03 0.61 2.89 1.50

MNC 0.26 0.94 0.70 0.45 1.92 0.99 0.65 2.94 1.46

NS

MPP 0.19 0.72 0.52 0.37 1.56 0.79 0.57 2.69 1.29

MPS 0.19 0.74 0.48 0.34 1.48 0.74 0.56 2.6 1.24

MNC 0.19 0.74 0.48 0.34 1.51 0.75 0.57 2.66 1.22

CP

MPP 0.17 0.57 0.48 0.29 1.05 0.54 0.46 1.9 0.88

MPS 0.16 0.56 0.45 0.23 0.88 0.46 0.43 1.73 0.79

MNC 0.16 0.59 0.46 0.25 0.96 0.45 0.45 1.8 0.8

25

 0

 0.5

 1

 1.5

 2

 0 0.1 0.2

A
v
e
ra

g
e
 r

e
su

lt
s

Ambiguity (α)

Error rate (Er)
Edit distance (Ed)

Corrections (C)

Figure 6: Impact of the stroke labeling ambiguity on the results attained. Average results

for all decoding strategies and probability density estimators are shown with regard to the

ambiguity rate allowed.

4.2. User-independent experiment

The user-independent experiment is a more general scenario in which the

system does not know what kind of handwriting style it will receive and must,

therefore, learn from samples of many different musicians. Given the large num-

ber of different strokes found in this scenario, the automatic labeling of strokes540

during the training set fails to obtain a non-ambiguous clustering when using

less than 500 labels (maximum considered). The experiments are, therefore,

shown with ambiguity rates of 0.1, 0.2 and 0.3.

Table 4 shows the results obtained in this experiment. As a general analysis,

the results are worse than in the previous case, since the complexity of the545

task is higher. However, the best values obtained are still quite competitive:

64 % of the sequences were perfectly recognized with the first hypothesis; on

average, only 1.10 of editing operations are necessary, with only 0.54 corrections

when considering an interactive case. These figures demonstrate that the use of

an interactive approach is highly profitable in this scenario, unlike that which550

26

occurred in the previous one.

Once again, the ambiguity rate would appear to be the most important

factor as regards recognition (Fig.7 shows the average tendency with regard to

this factor). Since a null ambiguity rate has not been possible, the best case in

the user-independent scenario is still unknown. However, the results obtained555

using α = 0.1 are at the same level as those obtained using α = 0.2 in the user-

dependent case. This leads us to believe that the user-independent scenario

would not be very far from the user-dependent scenario if an optimal stroke

labeling were performed.

 0

 1

 2

 3

 4

 5

 6

 7

 0.1 0.3

A
v
e
ra

g
e
 r

e
su

lt
s

Ambiguity (α)

Error rate (Er)
Edit distance (Ed)

Corrections (C)

Figure 7: Impact of the stroke labeling ambiguity on the results attained. Average results

among all decoding strategies and probability density estimators are shown with regard to the

ambiguity rate allowed.

Furthermore, probability estimation has a higher impact in this scenario.560

For instance, the Parzen estimation using DTW attains fairly poor results in

all the cases considered. Depending on each particular case, NN using FCC or

Parzen using NS would appear to be the best configurations.

The decoding algorithm has less relevance in the results, as occurred in the

previous scenario. Nevertheless, MPS generally achieves slightly better results565

27

Table 4: Mean results of the user-independent experiment with 1000 random sequences of an

average length of 17.1. Several allowable ambiguity rates (α) for the automatic stroke labeling

are considered.

Prob. Dissim. Decod.
α = 0.1 α = 0.2 α = 0.3

Er Ed C Er Ed C Er Ed C

NN

FCC

MPP 0.39 1.52 0.59 0.94 4.70 2.37 0.94 6.81 4.11

MPS 0.36 1.10 0.56 0.85 4.10 2.23 0.92 6.50 3.55

MNC 0.36 1.13 0.54 0.89 4.32 2.20 0.93 6.60 3.55

DTW

MPP 0.59 2.04 1.07 0.94 4.78 2.76 0.98 7.43 4.64

MPS 0.54 1.90 0.90 0.90 4.58 2.46 0.95 7.04 4.12

MNC 0.56 2.00 0.90 0.91 4.58 2.46 0.97 7.11 4.07

NS

MPP 0.57 2.18 0.91 0.90 4.73 2.58 0.96 7.06 4.32

MPS 0.55 2.13 0.88 0.94 4.91 2.50 0.94 6.60 4.07

MNC 0.56 2.13 0.88 0.94 4.91 2.51 0.95 6.68 4.04

CP

MPP 0.54 2.18 0.93 0.92 4.29 2.40 0.95 6.57 3.86

MPS 0.54 2.26 0.91 0.90 4.11 2.18 0.93 6.59 3.73

MNC 0.54 2.28 0.90 0.91 4.16 2.17 0.93 6.59 3.73

Parzen

FCC

MPP 0.68 2.90 1.31 0.92 5.13 2.83 0.97 6.94 4.45

MPS 0.48 1.75 0.85 0.91 4.31 2.32 0.95 6.37 3.62

MNC 0.50 1.76 0.84 0.91 4.36 2.31 0.95 6.37 3.62

DTW

MPP 0.90 4.75 2.62 1.00 6.73 4.13 0.98 7.86 5.68

MPS 0.79 3.53 1.71 0.97 6.05 3.39 0.98 7.73 4.78

MNC 0.79 3.54 1.69 0.97 6.05 3.38 0.98 7.73 4.74

NS

MPP 0.45 1.57 0.73 0.91 4.93 2.74 0.94 6.95 4.20

MPS 0.37 1.16 0.62 0.83 3.90 2.33 0.94 6.60 3.64

MNC 0.37 1.19 0.60 0.85 4.39 2.32 0.94 6.60 3.64

CP

MPP 0.76 3.58 1.71 0.96 5.89 3.33 0.98 7.67 5.02

MPS 0.66 2.53 1.30 0.96 5.10 2.76 0.96 7.07 4.11

MNC 0.67 2.53 1.23 0.96 5.16 2.75 0.96 7.07 4.11

28

for Er and Ed, whereas MNC does so for C.

5. Conclusions

This work presents a new approach for the recognition of pen-based music

compositions using stroke similarity algorithms and finite-state machines. Our

approach is able to learn writing styles from data, and notation is not therefore570

restricted to predefined rules or gestures.

The series of strokes received as input is mapped onto stroke primitive proba-

bilities with similarity-based probability density estimators. These probabilities

are combined with a set of learned rules describing musical symbols in terms

of these primitives. A probabilistic model is then obtained, which is eventu-575

ally crossed with a formal language in order to avoid those sequences that do

not make musical sense. Finally, a decoding algorithm is applied to produce a

hypothesis as a solution to the task.

Comprehensive experimentation has been carried out during which several

metrics of interest have been evaluated considering a number of probability580

density estimators, stroke similarity functions and decoding strategies. Two

main scenarios were considered: user-dependent and user-independent.

As expected, better recognition results were obtained from the user-dependent

experiment, whose best results yielded that only 10 % of the hypotheses were

wrong, whereas the other only needed a few corrections (an average of under585

0.3). However, the user-independent scenario also provided competitive results,

obtaining only 36 % of erroneous hypotheses, and otherwise requiring an average

of around 1 of corrections (0.5 in the interactive case).

The accuracy of the recognition was found to be closely related to the degree

of allowed ambiguity in the automatic stroke labeling process. One option to be590

considered is that of improving this process. In fact, the method used was unable

to obtain a non-ambiguous stroke labeling in the user-independent scenario,

and there is, therefore, still room for improvement. The dissimilarity measure

utilized also proved, to a lesser extent, to be an important parameter to consider.

29

In this respect, NN estimation using FCC dissimilarity would appear to be the595

best choice in a broad sense.

As an overall conclusion, we have demonstrated that it is possible to de-

velop a pen-based music recognition system in which the handwriting style is

learned, in contrast to previous strategies based on hand-engineered heuristics.

Moreover, the use of statistical models based on finite state machines has been600

justified, since they allow a proper decoding strategy for the optimization of

each performance measure considered. The system has also proven to be ro-

bust: although the probability estimation has some influence on the results, all

the possibilities performed competitively.

As future work, our interest lies in developing an interactive system in which605

user corrections will be used to continuously improve the performance of the sys-

tem. Note that the training stage is completely data-driven and uses instance-

based recognition algorithms. The mere inclusion of new examples in the train-

ing set is, therefore, sufficient as regards performing incremental learning. The

main concern, however, is to provide a transparent and user-friendly means to610

receive feedback while the user is using the system, and how this feedback can

be efficiently exploited. This should be one of the main objectives when making

future improvements. A usable front-end application that takes advantage of

the research explained here is also being considered.

Acknowledgements615

This work was supported by the Spanish Ministerio de Educación, Cultura

y Deporte through a FPU Fellowship (Ref. AP2012–0939) and the Spanish

Ministerio de Economía y Competitividad through the TIMuL Project (No.

TIN2013-48152-C2-1-R, supported by UE FEDER funds).

References620

Anstice, J., Bell, T., Cockburn, A., & Setchell, M. (1996). The design of a pen-

based musical input system. In Proceedings of the 6th Australian Conference

30

on Computer-Human Interaction (pp. 260–267).

Bainbridge, D., & Bell, T. (2001). The challenge of optical music recognition.

Computers and the Humanities, 35 , 95–121.625

Calvo-Zaragoza, J., & Oncina, J. (2014). Recognition of pen-based music nota-

tion: The HOMUS dataset. In Proceedings of the 22nd International Confer-

ence on Pattern Recognition (ICPR) (pp. 3038–3043).

Calvo-Zaragoza, J., & Oncina, J. (2015). Clustering of strokes from pen-based

music notation: An experimental study. In Proceedings of the 7th Iberian630

Conference on Pattern Recognition and Image Analysis (pp. 633–640).

Casacuberta, F., & de la Higuera, C. (2000). Computational Complexity of

Problems on Probabilistic Grammars and Transducers. In Proceedings of

the 5th International Colloquium on Grammatical Inference: Algorithms and

Applications ICGI 2000 (pp. 15–24). London, UK, UK: Springer-Verlag.635

Connell, S. D., & Jain, A. K. (2001). Template-based online character recogni-

tion. Pattern Recognition, 34 , 1–14.

Dalitz, C., Droettboom, M., Pranzas, B., & Fujinaga, I. (2008). A comparative

study of staff removal algorithms. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 30 , 753–766.640

Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Pattern Classification. (2nd

ed.). New York, NY: John Wiley & Sons.

Fornés, A., & Sánchez, G. (2014). Analysis and recognition of music scores.

In Handbook of Document Image Processing and Recognition (pp. 749–774).

Springer.645

Freeman, H. (1961). On the encoding of arbitrary geometric configurations. IRE

Transactions on Electronic Computers, EC-10 , 260–268.

García, S., Luengo, J., & Herrera, F. (2015). Data Preprocessing in Data Mining

volume 72 of Intelligent Systems Reference Library . Springer.

31

George, S. E. (2003). Online pen-based recognition of music notation with650

artificial neural networks. Computer Music Journal , 27 , 70–79.

Hartmann, B., & Link, N. (2010). Gesture recognition with inertial sensors and

optimized DTW prototypes. In IEEE International Conference on Systems

Man and Cybernetics (SMC) (pp. 2102–2109).

de la Higuera, C., & Oncina, J. (2014). Computing the Most Probable String655

with a Probabilistic Finite State Machine. In 11th International Conference

on Finite-State Methods and Natural Language Processing (pp. 1–8).

Hopcroft, J. E. (1979). Introduction to automata theory, languages, and com-

putation. Pearson Education India.

Kim, D.-W., Lee, J., Lim, H., Seo, J., & Kang, B.-Y. (2014). Efficient dynamic660

time warping for 3D handwriting recognition using gyroscope equipped smart-

phones. Expert Systems with Applications, 41 , 5180–5189.

Kim, J., & Sin, B.-K. (2014). Online handwriting recognition. In D. Doer-

mann, & K. Tombre (Eds.), Handbook of Document Image Processing and

Recognition (pp. 887–915). Springer London.665

Lee, K. C., Phon-Amnuaisuk, S., & Ting, C. Y. (2010a). A comparison of hmm,

naïve bayesian, and markov model in exploiting knowledge content in digital

ink: A case study on handwritten music notation recognition. In Multimedia

and Expo (ICME), 2010 IEEE International Conference on (pp. 292–297).

IEEE.670

Lee, K. C., Phon-Amnuaisuk, S., & Ting, C.-Y. (2010b). Handwritten music

notation recognition using HMM – a non-gestural approach. In Proceedings

of the International Conference on Information Retrieval Knowledge Man-

agement (CAMP) (pp. 255–259).

Levenshtein, V. (1966). Binary Codes Capable of Correcting Deletions, Inser-675

tions and Reversals. Soviet Physics Doklady , 10 , 707.

32

Liu, C., Yin, F., Wang, D., & Wang, Q. (2013). Online and offline handwritten

Chinese character recognition: Benchmarking on new databases. Pattern

Recognition, 46 , 155–162.

Macé, S., Éric Anquetil, & Couasnon, B. (2005). A generic method to design680

pen-based systems for structured document composition: Development of a

musical score editor. In Proceedings of the First Workshop on Improving and

Assesing Pen-Based Input Techniques (pp. 15–22). Edinghburg.

Miyao, H., & Maruyama, M. (2004). An online handwritten music score recog-

nition system. In Proceedings of the 17th International Conference on Pattern685

Recognition (ICPR) (pp. 461–464). volume 1.

Miyao, H., & Maruyama, M. (2007). An online handwritten music symbol recog-

nition system. International Journal of Document Analysis and Recognition,

9 , 49–58.

Mohri, M., Pereira, F., & Riley, M. (2002). Weighted finite-state transducers in690

speech recognition. Computer Speech & Language, 16 , 69–88.

Mohri, M., Pereira, F., & Riley, M. (2005). Weighted automata in text and

speech processing. CoRR, abs/cs/0503077 .

Mondal, T., Bhattacharya, U., Parui, S. K., Das, K., & Roy, V. (2009). Database

generation and recognition of online handwritten bangla characters. In Pro-695

ceedings of the International Workshop on Multilingual OCR MOCR ’09 (pp.

9:1–9:6). New York, NY, USA: ACM.

Ng, E., Bell, T., & Cockburn, A. (1998). Improvements to a pen-based musical

input system. In Proceedings of the Computer Human Interaction Conference

(pp. 178–185).700

Oncina, J. (2009). Optimum algorithm to minimize human interactions in se-

quential Computer Assisted Pattern Recognition. Pattern Recognition Let-

ters, 30 , 558–563.

33

Parzen, E. (1962). On estimation of a probability density function and mode.

The Annals of Mathematical Statistics, 33 , 1065–1076.705

Paz, A. (1971). Introduction to probabilistic automata. New York: Academic

Press.

Plamondon, R., & Srihari, S. N. (2000). On-Line and Off-Line Handwriting

Recognition: A Comprehensive Survey. IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence, 22 , 63–84.710

Poláček, O., Sporka, A. J., & Slavík, P. (2009). Music alphabet for low-resolution

touch displays. In Proceedings of the International Conference on Advances

in Computer Enterntainment Technology ACE ’09 (pp. 298–301). New York,

NY, USA: ACM.

Rabiner, L. R. (1989). A tutorial on hidden markov models and selected appli-715

cations in speech recognition. Proceedings of the IEEE , 77 , 257–286.

Rebelo, A., Fujinaga, I., Paszkiewicz, F., Marcal, A., Guedes, C., & Cardoso,

J. (2012). Optical music recognition: state-of-the-art and open issues. Inter-

national Journal of Multimedia Information Retrieval , 1 , 173–190.

Rico-Juan, J. R., & Iñesta, J. M. (2006). Edit distance for ordered vector sets:720

A case of study. In D.-Y. Yeung, J. Kwok, A. Fred, F. Roli, & D. de Ridder

(Eds.), Structural, Syntactic, and Statistical Pattern Recognition (pp. 200–

207). Springer Berlin Heidelberg volume 4109 of Lecture Notes in Computer

Science.

Sakoe, H., & Chiba, S. (1990). Dynamic programming algorithm optimization725

for spoken word recognition. In A. Waibel, & K.-F. Lee (Eds.), Readings in

speech recognition (pp. 159–165). San Francisco, CA, USA: Morgan Kaufmann

Publishers Inc.

Theodoridis, S., & Koutroumbas, K. (2006). Pattern Recognition, Third Edition.

Orlando, FL, USA: Academic Press, Inc.730

34

Vidal, E., Rodríguez, L., Casacuberta, F., & García-Varea, I. (2008). Interactive

pattern recognition. In A. Popescu-Belis, S. Renals, & H. Bourlard (Eds.),

Machine Learning for Multimodal Interaction (pp. 60–71). Springer Berlin

Heidelberg volume 4892 of Lecture Notes in Computer Science. doi:10.1007/

978-3-540-78155-4_6.735

Vidal, E., Thollard, F., de la Higuera, C., Casacuberta, F., & Carrasco, R. C.

(2005). Probabilistic finite-state machines-part I. IEEE Transactions on

Pattern Analysis and Machine Intelligence., 27 , 1013–1025.

35

AppendixA. Automatic generation of regular languages for music se-

quences740

Formal languages are widely used to improve sequential recognition systems,

for which the output is a sequence of symbols. These models focus on detecting

which hypotheses are less likely based on their context, or even which of them

are not feasible owing to task constraints. The approach presented in this work

makes use of a Deterministic Finite-State Automaton representation (Dfa),745

which is able to define any Regular Language (RL).

The key aspect in a musical sequence, if it is to be grammatically correct, is

related to the time signature. The time signature of a music score determines

how many beats each note represents and how many beats each bar can contain.

An approach with which to generate RLs with regard t to a given time signature750

in the form of a Dfa is presented below. The algorithm is driven by a dynamic

programming (DP) scheme that makes the process efficient.

The main problem when defining languages for musical sequences concerns

the semantics of the symbol dot (·). This symbol is placed to the right of

some figures and increases their lengths by a factor of 1.5. That is, if the755

symbol represents two beats, it will represent three with the dot. During the

construction of the Dfa, this forces us to create paths with a memory that takes

into account the last symbol processed in order to discover how many beats a

subsequent dot gets.

We use Σ to define the set of musical symbols that may appear in our task.760

However, it should be noted that the dot symbol cannot appear behind any

other symbol, but only behind those that represent tone and beat. We use

Σdot ⊂ Σ to define this subset. It is assumed that the barline (|) is a special

symbol that only appears when all beats are got. We also define the function

T (σ), which provides the number of beats that gets any symbol σ ∈ Σ.765

The proposed scheme is presented in algorithm 3. The maximum number of

beats in a bar is calculated as the number of allowed beats (parameter beats)

divided by the minimum number of beats got by any symbol (which defines the

36

resolution allowed). The matrix of the DP stores states of the Dfa and it is

2-dimensional: one dimension is used to indicate the beats got so far, while the770

other is used to indicate the last symbol received. This is used to discover how

many beats the subsequent dotwould get. Symbol ε denotes a symbol that does

not belong to Σdot, and dot is not therefore possible directly after.

The Dfa generated starts in the state stored in PD[0, ε]. For the sake of

simplicity, it is assumed that the information needed in the recursive procedure775

is accessed globally. During the recursive action (function f), the following steps

are computed:

1. If the state has already been visited, the function returns its value stored

in the DP matrix. Otherwise, a new state is created.

2. If the last symbol belongs to Σdot, a dot transition from the new state is780

generated, as long as this is possible, taking into account the number of

remaining beats allowed.

3. For any possible symbol, an out-transition is, if possible, generated. If the

symbol belongs to Σdot, the recursive call includes the symbol. Otherwise,

ε is included.785

4. Before returning the new state created, it is stored in the DP matrix in

order to save future repetitions of the same call.

After the recursive procedure has ended, all the possible sequences that

getting the maximum number of beats are connected to the starting state by

means of a barline transition.790

As an example, Fig. A.8 illustrates a Dfa generated for a time signature of

4
4, considering Σ = { ˘ “, <, ˇ “, > } and Σdot = { ˘ “}.

Note that this Dfa is focused solely on the bars. An additional process must

pay attention to many other features of the musical scores. For instance:

• Include some states at the beginning such that sequences must contain a795

clef, the possibility of having a key signature and the time signature sym-

bol. The last of these states directly connects to the first state generated

by Algorithm 3.

37

Algorithm getDFA(beats,T,Σ,Σdot)

M = beats
minσ∈Σdot T (σ)

PD : M × Σdot ∪ {ε} → State

D = (Q,Σ, δ, q0, F)

Q = ∅

q0 = f(0,ε)

F = {q0}

forall the σ ∈ Σdot ∪ {ε} do

δ(PD[M,σ], |) = q0

end

return D

Procedure f(time,last)

if PD[time,last] 6= ∅ then
return PD[time,last]

end

State q

Q→ Q ∪ {q}

if last ∈ Σdot then

if time+ T (last)
2 ≤M then

δ(q, ·) = f(time+ T (last)
2 , ε)

end

end

forall the σ ∈ Σ do

if time+ T (σ) ≤M then

if σ ∈ Σdot then
δ(q, σ) =

f(time+ T (σ), σ)

else
δ(q, σ) =

f(time+ T (σ), ε)

end

end

end

PD[time,last] = q

return q

Algorithm 3: Dynamic programming scheme used to generate a Dfa fulfilling

a given time signature (defined by beats and T).

38

[0, ε]start [1, ε] [2, ε]

[2, ˘ “]

[3, ε]

[3, ˘ “]

[4, ε]

[4, ˘ “]

ˇ “, > ˇ “, > ˇ “, > ˇ “, >

˘ “ ˘ “

˘ “

< < <

‰ ‰

|

|

Figure A.8: Example of an automatically generated Dfa. Text inside states indicate from

which position in the PD matrix they originate.

39

• Ensure that accidentals are placed only before a symbol with pitch. This

also prevents the infinite repetition of those symbols that do not get beats.800

40

