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Abstract— A heuristic procedure based on novel recursive 

formulation of sinusoid (RFS) and on regression with predictive 

least-squares (LS) enables to decompose both uniformly and 

nonuniformly sampled 1-d signals into a sparse set of sinusoids 

(SSS). An optimal SSS is found by Levenberg-Marquardt (LM) 

optimization of RFS parameters of near-optimal sinusoids 

combined with common criteria for the estimation of the number 

of sinusoids embedded in noise. The procedure estimates both the 

cardinality and the parameters of SSS. The proposed algorithm 

enables to identify the RFS parameters of a sinusoid from a data 

sequence containing only a fraction of its cycle. In extreme cases 

when the frequency of a sinusoid approaches zero the algorithm 

is able to detect a linear trend in data. Also, an irregular 

sampling pattern enables the algorithm to correctly reconstruct 

the under-sampled sinusoid. Parsimonious nature of the 

obtaining models opens the possibilities of using the proposed 

method in machine learning and in expert and intelligent systems 

needing analysis and simple representation of 1-d signals. The 

properties of the proposed algorithm are evaluated on examples 

of irregularly sampled artificial signals in noise and are 

compared with high accuracy frequency estimation algorithms 

based on linear prediction (LP) approach, particularly with 

respect to Cramer-Rao Bound (CRB).  

 
Index Terms—Signal decomposition, Signal recovery, Sparse 

set of sinusoids, Time series modeling, Predictive least squares 

 

I. INTRODUCTION 

A. Problem statement 
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 denote a time series, where ( )Kkwk ,...,1=ℜ∈  

is the kth observation obtained at the corresponding time 

point tk, { }K

kkt 1= . Suppose a time series representing a finite 

number of sine waves embedded in noise. Suppose also that a 

time series may have a nonzero mean value and/or a linear 

trend. The objective of this paper is spectral analysis and 

modeling of a time series outlined above and represented by: 
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where o and κ denote the corresponding y-intercept at t=0 and 

the slope of a linear trend line, An, ωn and φn are the 

corresponding amplitude, radian frequency and phase of the 

nth sine wave and sk represents the noise.  

B. Related work  

A non-uniform sampling is common to many long-time 

ground-based astronomical observations including spectra and 

time series (Lomb, 1976; Scargle, 1982). A number of papers 

dealing with the decomposition of a time series into a SSS are 

based on the least-squares spectral analysis and have been 

published very early. Methods based on the least-squares fit of 

sinusoids to data are introduced, also known as LS 

periodogram (LSP) analysis, formulated as LS fitting problem: 
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where ωmax denotes maximum expected angular frequency. 

Frequency estimation methods can be divided into the two 

main classes: nonparametric and parametric. The 

nonparametric frequency estimation is based on the Fourier 

transform and its ability to resolve closely spaced sinusoids is 

limited by the length of sampled data. On the other hand the 

parametric approach enables to achieve a higher resolution 

since it assumes the generating model with known functional 

form, which satisfies the signal (So et al., 2005). 

The earliest nonparametric frequency estimation methods 

are based on LSP analysis. Barning (1962) used least-squares 

fitting to calculate the amplitudes of sine waves from the 

corresponding frequencies selected from periodogram. 

Vaníček (1969) first proposed successive spectral analysis of 

equally spaced data and later he extended the analysis to 

nonumiformly sampled data (Vaníček, 1970). Lomb, (1976) 

analyzed statistical properties of irregularly spaced data based 

on periodogram analysis. He has shown that, due to the 

correlation between noise at different frequencies, noise has 

less effect on a spectrum than it could be expected. Scargle 

(1982) studied the use of periodogram with irregularly spaced 

data. He concluded that periodogram analysis and least-

squares fitting of sine waves to data are exactly equivalent. 

Foster (1995) proposed a sequential method for removing 

false peaks from power spectra that can be viewed as 

Matching Pursuit (Mallat, & Zhang, 1993), a general 

procedure for computing adaptive signal representations 
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which decomposes any signal into a linear expansion of 

waveforms that are selected from a redundant dictionary of 

functions. Bourguignon, Carfantan, and Idier, (2007) 

estimated spectral components from irregularly sampled data. 

Sparse representation of noisy data is searched for in an 

arbitrarily large dictionary of complex-valued sinusoidal 

signals, which can be viewed as Basis Pursuit Denoising 

problem (Chen, Donoho, & Saunders, 2001). The 

nonparametric method for spectral analysis of nonuniform 

sequences of real-valued data named real-valued iterative 

adaptive approach (RIAA) is proposed by Stoica, Li, and He 

(2009). It can be interpreted as an iteratively weighted LSP. 

The method can be used for spectral analysis of general data 

sequences but is most suitable for zero-mean sequences with 

discrete spectra. Similar problems, dealing with sparse 

reconstruction, have been investigated recently in scope of 

compressed sensing, (Tang et al., 2012; Nichols, Oh, & 

Willett, 2014; Boufounos et al., 2012; Panahi & Viberg, 2014; 

Teke, Gurbuz, & Arikan, 2013), illustrating only signal 

reconstruction errors but not demonstrating that the proposed 

methods achieve a Cramer–Rao bound, above some SNR 

threshold, for all the real frequencies embedded in the signal.  

Well-known  parametric frequency estimation methods are 

maximum likelihood (ML) (Rife, & Boorstyn, 1976; Bresler 

& Macovski, 1986), and nonlinear least squares (NLS) (Stoica 

& Nehorai, 1988) and the methods based on linear prediction 

(LP) property of sinusoids like Yule–Walker equations (Chan, 

& Langford, 1982), total least squares, (Rahman, & Yu, 1987), 

iterative filtering (Li, & Kedem, 1994), MUSIC and ESPRIT 

(Porat, 2008), weighted least squares (So et al., 2005). Under 

additive white Gaussian noise the ML and NLS methods are 

equivalent and achieve Cramer–Rao lower bound (CRLB) 

asymptotically, but they are computationally demanding. The 

above mentioned methods, based on LP property, provide 

suboptimum estimation performance but they are 

computationally efficient. The parametric methods based on 

linear prediction (Chan, Lavoie, & Plant, 1981; So, et al., 

2005; Dash, & Hasan, 2011; Yang, Xi, & Guo, 2007) enable 

to retrieve the sinusoids from a uniformly sampled sinusoidal 

signal in noise when the number of sinusoids in the signal is 

known a priori. So et al. (2005) developed two high accuracy 

frequency estimators for multiple real sinusoids in white noise 

based on the LP approach. First, they developed a constrained 

least squares frequency estimator named reformulated 

Pisarenko harmonic decomposer (RPHD) and then they 

improved it through the technique of weighted least squares 

(WLS) with a generalized unit-norm (WLSun) and monic 

(WLSm) constraint. The method assumes uniformly sampled 

data and the number of sinusoids to be known a priori. 

The heuristic procedure elaborated in this paper is also 

based on the LP property of a sinusoid and is intended for 

recovery of frequency-sparse signals in noise. It can be used in 

signal processing, machine learning and expert and intelligent 

systems to facilitate solving the classification, diagnosis, 

monitoring or process control tasks needing analysis and 

parsimonious representation of signals, including the signals 

in technical systems, bio-signals, astronomical observations, 

etc. The proposed algorithm enables to retrieve the sinusoids 

from either uniformly or nonuniformly sampled data. In order 

to adapt it to nonuniform sampling we first reformulate the LP 

property of a sinusoid and we named it a recursive formulation 

of a sinusoid (RFS). Then we formulate a sinusoidal model 

based on RFS and the corresponding procedures for the 

estimation of RFS parameters based on the minimization of 

LS error. By combining the RFS approach with the well-

known methods for the estimation of the number of sinusoids 

in noise the proposed procedure enables to retrieve the 

sinusoids iteratively, one at a time, and to determine the order 

of the generating model. The proposed method assumes 

neither a zero mean sequence nor the number of sinusoids in a 

signal to be known a priori. The accuracy of the frequency 

estimation procedure proposed in this paper is compared with 

very high accuracy of frequency estimation obtained by LP 

approach reported by So et al. (2005). For a frequency-sparse 

signal the computational complexity of both methods is 

comparable, O(K
3
). 

C. Methods for detection of the number of sinusoids  

Most parametric methods for detection of sinusoids 

corrupted with noise minimize the sum of a data fit 

(likelihood) term and the complexity penalty term where the 

penalty term is usually derived via Akaike information 

criterion (AIC) (Akaike, 1974), Bayesian information criteria 

(BIC) (Schwarz, 1978) or minimum description length (MDL) 

(Rissanen, 1978). A review of information criterion rules for 

model-order selection with the summary of necessary steps 

used to adapt a rule to a specific problem is given in Stoica 

and Selen (2004). In this paper the attention is restricted to 

efficient detection criteria (EDC) type estimators (Djurić, 
1996, 1998; Nadler & Kontorovich, 2011). EDC type 

estimators determine the number of sinusoids by minimizing: 
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where w is the observed time series of length K, 
Mβ
)

 are 

parameter estimates of a model of order M, ( )w,L Mβ
)

 is the 

corresponding likelihood term and CK is the model-complexity 

penalty term that captures the dependency of the penalty on 

the number of samples K. For the unknown noise level the 

log-likelihood term in (3) can be approximated by: 
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where ( )MkMP β
)

,
 denotes the approximation of wk at time point 

tk made by a model of order M. By substituting (4) for 

log-likelihood in (3) we obtain: 
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By considering a Bayesian formulation and selecting the 
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model with maximum a posteriori probability (MAP) criterion 

for sinusoids with unknown frequencies amplitudes and 

phases Djurić (1996) derived the following penalty term 

 

( ) KMCK ln25=  (6) 

 

and he concluded that the parameters that can be determined 

more precisely should receive stronger penalty. Nadler and 

Kontorovich (2011) proposed the estimator inspired by ideas 

from extreme value theory (EVT) and the maxima of 

stochastic fields with the following penalty term 
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where α<<1 denotes a confidence level chosen by the user, 

typically α≤0.005. They recommend the generalized 

likelihood ratio test (GLRT) 
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to determine the number of sinusoids (M).  

Next section elaborates the RFS and the RFS-based 

regression procedures and the corresponding RFS-based 

algorithm (RFSA) used to retrieve the sinusoids from 

nonuniformly sampled data. In Section III the frequency 

estimation accuracy of the proposed procedure is compared 

with high accuracy LP approach (So et al., 2005). Also the 

results of spectral analysis of a couple of nonuniformly 

sampled 1-d signals are given to illustrate the properties of the 

proposed method. 

 

II. TIME SERIES ANALYSIS BY RFS 

This section presents a novel RFS based procedure for 

retrieving the sinusoids from unevenly spaced data. The 

proposed procedure is able to precisely estimate the total 

number and the parameters of SSS from uniformly and 

nonuniformly sampled sinusoidal signal in noise. It can 

discover a cyclical pattern with linear trend in data (e.g. 

excitation signals in AC voltammetry, atmospheric Carbon 

Dioxide data) or to retrieve an undersampled sinusoid or a low 

frequency sinusoid in cases when only a fraction of its cycle is 

covered by a time series. The procedure is based on 

minimization of accumulated prediction error using 2
l -norm. 

The frequencies from a predefined set of frequencies are 

optimized individually by LM (Levenberg, 1944; Marquardt, 

1963) in order to obtain the parameters of a sinusoid which 

best minimizes the predictive LS error. Next, LM optimization 

is used to fine tune the RFS parameters of all most dominant 

sine waves found until then, resulting with a decomposition of 

a time series into an optimal set of sinusoidal components. In 

order to determine the cardinality of a SSS, the procedure 

combines the criteria for the detection of the number of 

sinusoids embedded in noise (Nadler & Kontorovich, 2011; 

Djurić, 1996; Djurić, 1998) (see Section I–C). 

The idea of RFS in nonuniform and uniform sampling case 

and its adaptation for straight line approximation is given 

below, followed by a reformulation of the LS fitting problem 

(2) in terms of sine wave representation by a RFS. Next, the 

procedure for calculating pairs of initial samples of the 

sinusoids is presented, then the elaboration of the LM 

optimization of RFS parameters is given and finally the 

explanation of RFS model order estimation procedure, which 

rounds up the methodology. The section concludes with the 

description of the RFSA algorithm.   

A. Recursive Formulation of a Sinusoid and a Straight Line 

1) Nonuniform sampling case  

A sinusoid ( )mmmm tAy ϕω += sin  can be predicted by 

using a simple RFS (see Appendix A), which relates any 

sample of a sinusoid with its two referent samples, e.g. two 

initial samples: 

 

1,,2,,, mkmmkmkm ybyay +=  (9) 

 

where m denotes a sine wave with the corresponding radial 

frequency (ωm), amplitude (Am) and phase (φm), ym,k denotes 

the predicted magnitude of the sine wave at time point tk, ym,1 

and ym,2 represent two initial samples obtained at the 

corresponding time points t1 and t2, am,k and bm,k are time and 

frequency dependent coefficients defined as  
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with 
ijij tt −=,τ  representing the difference in seconds between 

the time points of jth and ith sample from the sequence of 

samples and ωm denoting angular frequency of the sine wave 

in rad/s. Note that the radian frequency and the two initial 

samples (ωm, ym,1, ym,2) are the parameters of RFS (9), which 

completely specify the corresponding sinusoid. 

If 0→mω , (10) and (11) can be replaced by

1,21,, ττ kkma ≈  and 1,22,, ττ kkmb −≈ , respectively. 

Substituting τk,2=τk,1–τ2,1 in bm,k and then am,k and bm,k in (10) 

the following approximate equation is obtained: 
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which can be recognized as a recursive formulation of an 

arbitrary straight line. Hence, for the given angular frequency 
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[ ]max,0 ωω ∈m  and the two initial samples ym,1 and ym,2 with the 

corresponding time points t1 and t2, any sample ym,k of a sine 

wave, including a straight line as a special case when ω=0, can 

be accurately predicted at the time point tk by using (9)–(12). 

2) Uniform sampling case 

In case of uniform sampling the coefficients (10) and (11) 

become 
( )[ ]

( )T

Tk
a

m

m
km

ω

ω

sin

1sin
,

−
=  and 

( )[ ]
( )T

Tk
b km

ω

ω

sin

2sin
,

−
−= , 

where T denotes a sampling period and the coefficients are 

now calculated recursively by adapting Chebyshev multiple 

angle formula, i.e. 

 

1,1,, −− += kmkmmkm baxa  (13) 

 

1,, −−= kmkm ab  (14) 

 

where am,1=0, bm,1=1, and 

 

( )Tx mm ωcos2= . (15) 

 

Note that in uniform sampling case the parameter xmϵ[-2,2] is 

equivalent to frequency parameter ωm and the calculation of 

the coefficients (13) and (14) is reduced to FP multiplications 

and additions only. After the parameter xm is estimated, it can 

be easily converted into the frequency 

 

( ) Txmm /2/cos 1−=ω . (16) 

 

Note that Eqs. (13) – (16) are valid for both, a sinusoid and 

an arbitrary straight line (ωm =0 ⇔ xm=2). 

B. Reformulation of LS Fitting Problem 

After substituting the RFS (9) for each sinusoidal 

component, including a trend line (12), the time series (1) can 

be represented by the following relation: 
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m
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where am,k and bm,k denote the coefficients (10) and (11) of the 

mth RFS (9) and N in (1) is replaced by M=N+1 in (17)  

because additional RFS in (17) is used to represent a linear 

trend in data (1). Recall that recursive formulation of a straight 

line (12) is a special case of RFS (9) when the frequency of a 

sinusoid approaches zero. Note that two initial samples ym,1 

and ym,2 in each RFS m=1,…,M in (17) and the corresponding 

angular frequency ωm, which affects the coefficients am,k (10) 

and bm,k (11) are all considered independent variables. Hence, 

the sinusoidal signal can be restored from noisy data sequence 

(17) if the initial samples and the frequencies of the 

corresponding sinusoids can be estimated. The LS fitting 

problem (2) is re-formulated in the following way: 
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where ωmin and ωmax denote the corresponding lower and 

upper bound for possible angular frequencies 

[ ]maxmin ,ωωω ∈m  and M is the number of detected sinusoids. 

The LS fitting of RFS to data (18) is different from (2) since it 

employs prediction rather than approximation to estimate RFS 

parameters β, { } { }M

mmmm

M

mm yy
12,1,1

,,
==

= ωβ , or 

{ } { }M

mmmm

M

mm yyx
12,1,1

,,
==

=β in the uniform sampling case, by 

minimizing the error function based on predictive least 

squares (Rissanen, 1986).  If it would be possible to estimate 

the RFS parameters, by solving the LS fitting problem (18), 

then it should also be possible to reconstruct the time series 

(17) or (1) as well as to calculate the amplitudes and phases of 

all sine waves (see Appendix C). 

To solve the LS fitting problem (18) the following 

procedures are necessary: 

1. Calculation of initial samples of sine waves that best 

minimize (18) for the given angular frequencies (see 

Section II–D). 

2. Optimization of parameters (frequencies and initial 

samples) of multiple RFS by LM algorithm (see 

Section II–E).  

This new formulation, when applied to nonuniformly 

sampled data representing multiple superimposed oscillations 

(MSO), enables to recover the sinusoid even if sampled data 

represent only a fraction of its cycle as well as to recover the 

under-sampled sinusoid whose frequency might be higher than 

the Nyquist frequency defined by the Nyquist–Shannon 

sampling theorem (Shannon, 1998). In case of nonuniform 

sampling the Nyquist frequency can be pushed very high 

(Eyer & Bartholdy, 1999; Koen, 2006). For the given angular 

frequency ωx, the proposed procedure maps all nonuniformly 

spaced angles into the same normalized sine wave period [0, 

2π], using the relation mod2π(ωxtk+φx), thus artificially 

shortening the average sampling period. The design of optimal 

sampling pattern is beyond the scope of this paper. 

C. RFS Model Estimation 

Let { }K

kkw
1=
 be a nonuniform time series with the 

corresponding time points { }K

kkt 1=
 represented by (1) or 

equivalently by (17). A solution to LS fitting problem (18) is 

the following RFS model of a time series: 
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where PM,k(β) denotes the predicted value of kth sample of a 

time series represented by a superposition of M RFS. The time 

and frequency dependent coefficients am,k and bm,k are defined 

by (10) and (11), respectively. To derive the model (19) we 
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need to estimate the RFS parameters β. The corresponding 

algorithm (see Section II–G) iteratively estimates the most 

dominant sinusoids in the signal. It uses predefined 

frequencies to find the suboptimal RFS parameters close to 

real RFS parameters (Section II–D), then it optimizes RFS 

parameters (Section II–E) trying to solve the LS fitting 

problem (18). The procedure starts with estimation and 

optimization of RFS parameters of the first most dominant 

sinusoid, than continues with the estimation and optimization 

of the RFS parameters of the two most dominant sinusoids etc. 

The procedure combines EDC estimators to select the model 

order. 

D. Calculation of Initial Samples of Sine Waves 

This section details the calculation procedure, which 

enables direct solution to (18) for M predefined frequencies. 

Given the frequencies, { }M

mm 1=
ω , or { }M

mmx
1=
 in the uniform 

sampling case, the LS prediction error (18) has to be 

minimized with respect to initial samples of sinusoids α, 

{ } { }M

mmm

M

mm yy
12,1,1

,
==

=α , where the coefficients am,k and bm,k 

in (18) are calculated by (10) and (11) using the preselected 

frequencies { }M

mm 1=
ω , or in case of uniform sampling by (13) 

and (14) using the preselected parameters (15), { }M

mmx
1=
. Note 

that α is a subset of β, α⊆β. After setting the partial 

derivatives of (18) with respect to initial samples equal to zero 

a set of 2M simultaneous linear equations in matrix form is 

obtained: 

 

( ) wJαJJ TT = , (20) 

 

where w is a time series vector, α is a parameter vector to 

calculate and J is a Jacobian matrix of time series prediction 

model PM,k(ββββ) (16) with respect to α, α⊆β, (see Appendix B). 

Eq. (20) can be solved directly for α. 

E. Optimization of RFS parameters by LM algorithm 

The parameter vector β of the RFS model (19), obtained in 

Section II–C, can be optimized by LM algorithm (Levenberg, 

1944; Marquardt, 1963) in order to further minimize the LS 

error (18). LS fitting problem (18), adapted for LM 

optimization takes the form of a nonlinear error function: 
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where δ denotes the parameter increment vector to calculate, 
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= δδδδ , and β is the parameter vector to 

optimize. Note that in case of uniform sampling the parameter 

xm has to be substituted for ωm in (21) and in ββββ and δ. After 

setting the partial derivatives of (21) with respect to 

increments equal to zero and after introducing an adjustable 

nonnegative damping factor γ and the diagonal matrix of J
T
J, 

where J is a Jacobian matrix of a time series model PM,k(β) 

(19) with respect to parameters β, a well-known LM equation 

in matrix notation is obtained: 
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summarizing a set of 3M linear equations with 3M unknowns 

(δ). A more detailed description of (22) is given in Appendix 

D. Over a preset number of steps L the LM algorithm 

successively modifies the parameter vector (βl+1=βl+δl) by the 

lth instance of the increment vector (δ), obtained from (22). In 

nonuniform sampling case the partial derivatives of ym,k with 

respect to ωm, ym,1 and ym,2  in (21) are derived from (9) after 

substituting (10) and (11) for am,k and bm,k, respectively: 
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The partial derivatives (23) – (25) are derived by assuming the 

mutual independence of the RFS parameters: 
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In uniform sampling case the partial derivatives of ym,k with 

respect to xm, ym,1 and ym,2 in (21) are derived from (9) after 

substituting (13) and (14) for am,k and bm,k, respectively: 
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where 
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Note that the components of partial derivatives am,k, bm,k, 

∂am,k/∂xm and ∂bm,k/∂xm can be calculated completely 

recursively by using FP multiplications and additions only. 

F. Error minimization and RFS model order selection 

The RFS approach can be efficiently combined with well-

known criteria for detection of the number of sinusoids 

embedded in noise. The number of sinusoids is estimated by 

following the procedure outlined in Stoica, Li, and He (2009).  

Let 

 

{ }M

mmmmM yy
12,1, ,,

=
=

((((
ωβ   (32) 

 

denote the RFS parameters of the corresponding M sinusoids 

used to approximate the time series by the RFS model (19). 

The corresponding errors (18), due to the approximation of a 

time series by a certain number M=1,2,…,Mmax of 

superimposed sinusoids, are arranged in a decreasing order of 

their values:  

 

max
...21 MEEE ≥≥≥ .  (33) 

 

Note that the RFS parameters (32) obtained in the preceding 

steps are optimized in each succeeding step by LM ((21) and 

(22)) with the aim to minimize the error (18).  

Under the idealizing assumptions that a time series consists 

of a finite number of sinusoidal components and of normal 

white noise, and that (18) represents maximum likelihood 

(ML) estimates of frequencies and initial samples of Mmax such 

sinusoidal components, the EDC(M) is used to select M in (5), 

where EDC(M) is obtained after substituting (19) for ( )
MkMP β
)

,
 

in (5). If a time series consists of white noise only, {wk}={sk}, 

then according to (5) M=0 is selected with the corresponding 

EDC(0): 
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Note that in case of uniform sampling the parameter xm 

needs to be optimized, instead of ωm, to minimize the error. 

 

G. RFSA 

This section describes the algorithm (RFSA) for 

decomposition of a time series into an optimal SSS. The basic 

steps of the algorithm are outlined in Table I. The procedure is 

iterative with the corresponding initial guess: 0=M
)

, 

{ }=0β
(

 and E0=EDC(0) defined by (34). In each succeeding 

cycle (M=1,2,…,Mmax) a set of predefined trial frequencies 

{ωj}, j=1,…,J is used to estimate the current (Mth) most 

dominant frequency in a time series. Each trial frequency is 

separately appended to the set of most dominant frequencies 

obtained in the preceding cycle and each time (20) is solved to 

estimate the initial samples of M sine waves that best 

minimize (18). The best obtained set of RFS parameters 

(including the frequencies) is then optimized by LM (22) in 

order to further decrease the prediction error (21). In each 

cycle the RFS parameters 
Mβ

(
 that best minimize (21) are 

saved along with the corresponding )(MEDC  used in (5). 

When the condition M≥Mmax has been satisfied, the model 

order M
)

 (5) and the corresponding RFS parameters 
M
)

(
β  are 

determined. The GLRT stopping criterion (8) slightly 

increases the probability of underestimation of the number of 

sinusoids in high noise and is therefore not embedded in 

RFSA. Note that the product of angular frequency and 

sampling interval ωmτ2,1 may cause an overflow error when 

calculating (10), (11), (23), (24) and (25). To prevent the 

possible errors the following constraint is implemented in 

software: if sin│ωmτ2,1│<δ, where │δ│=10
–12

, then set 

sin(ωmτ2,1) equal to –δ or +δ depending on the negative or 

positive sign of sin(ωmτ2,1), respectively. The RFSA algorithm 

outlined in Table 1 is the same for uniform sampling case 

except that parameter x (15) has to be optimized instead of 

frequency ω using the corresponding parameter range limits 

xmin=–2 and xmax=2 instead of ωmin and ωmax, respectively. 

TABLE I 

DECOMPOSITION OF TIME SERIES INTO THE OPTIMAL SSS BY RFSA 

Input 
 time series {wk}, lowest (ωmin) and highest (ωmax) expected radian 

frequency, total number of trial frequencies (J), maximum number of 

sinusoids (Mmax), maximum number of LM optimization steps (L) 
Initialization 
 

0=M
)

, { }=0β
(

, ∑= 2

0 kwe  

Iteration – main loop 

 For M=1 to Mmax  step 1 

    eM=eM-1 

    For j=1 to J step 1 

        ωj=ωmin+(j–1)·(ωmax–ωmin)/(J–1) 

       { }0,0,1 jMM ω+= −ββ
(

 

        Solve  EM(ββββM) for αM⊆ββββM (20) 

        If eM>EM(ββββM) Then eM=EM(ββββM) and 
MM ββ =

(
 

    Next j 

    Optimize 
M
β
(

by LM (22) in up to L steps to minimize ELM, (21) 

    Calculate and save the corresponding EDC(M), (5).  

Next M 

Results 

 
Return the model order M

)
 (5) and the RFS parameters

M
)

(
β  (32) 
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To retrieve each new sinusoid the algorithm has to solve 

(20) and (22) repeatedly. For M<<K, the complexity of (20) 

and (22), when estimating M sinusoids, is ( )2
MKO . Since 

(20) has to be solved J times and (22) L times to retrieve each 

new most dominant sinusoid, the overall complexity of the 

algorithm is ( )2

max)( KMLJO + , where J, L  and Mmax are the 

preset numbers of trial (grid) frequencies, LM optimization 

steps and maximum expected sinusoidal components, 

respectively. The complexity can be reduced significantly if 

(20) is solved for all J trial frequencies in parallel i.e.  

( )2

maxKMLO ⋅ . 

 

III. RESULTS OF TIME SERIES ANALYSIS BY RFSA 

This section describes the results of analysis and modeling 

of an irregularly sampled MSO. Examples of artificial MSO 

embedded in noise are given. The accuracy of frequency 

estimation of RFSA will be compared with high accuracy 

frequency estimation algorithms based on LP approach (So et 

al., 2005) in Section III–A, and in the succeeding sections it 

will be demonstrated how RFSA can efficiently recover  

under-sampled sinusoid and a sinusoid represented by a 

fraction of its cycle (Section III–B), two closely spaced 

sinusoids with linear trend (Section III–C), three closely 

spaced sinusoids (Section III–D), and 10 sinusoids (Section 

III–E). Nonuniformly sampled signals with additive noise are 

considered in all examples. The results are obtained by 

minimizing EDC (5) with respect to M and by applying the 

two model-complexity penalizations: MAP (6) and EVT (7). 

Some general remarks are given in Section III–F. 

The CRB for irregular sampling is hard to calculate. It was 

shown experimentally (Larsson & Larsson, 2002) that CRB is 

practically the same, but not identical, for different sampling 

schemes having the same average sampling interval. Hence, 

the CRB for uniform sampling can be used to approximate the 

CRB for nonuniform sampling if the average sampling 

interval of the nonuniform sampling pattern is equal to 

sampling interval in uniform sampling. To approximate the 

bound on the frequency for the case of nonuniform sampling 

the CRB (Porat, 2008, page 265), can be rewritten in the 

following way: 
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where τ  denotes the mean sampling interval in seconds and 

σ
2
 is the noise variance. 

The signal-to-noise ratio (SNR) for mth sinusoid is defined 

as 22
2/ σmA  or in dB units: 
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2
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2
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σ

m
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where Am is the amplitude of the mth sinusoid. The additive 

noise is white with zero mean. In all figures the SNR is given 

with respect to a sinusoid with amplitude A=1, i.e. 

SNR=1/(2σ
2
) , except in figures in Section III–A, where A=2

0.5
 

and SNR=1/σ
2
. In all examples the maximum number of LM 

optimization steps is 30 and the LM damping factor is 1.5. The 

RFSA is coded in Visual C and executed on Intel®Xeon® 

CPU E5420 @ 2.50 GHz. To illustrate the computational 

complexity of the procedure the maximum computation time 

needed to decompose a single time series is given in each 

example. 

A. Comparing RFSA with high accuracy frequency 

estimation algorithm 

The accuracy of frequency estimation of the RFSA is 

compared with LP-based high accuracy frequency estimation 

algorithm proposed by So et al., (2005). The algorithms have 

approximately equal computational complexity. The results 

obtained by RFSA are compared with the results published by 

So et al. (2005).  Fig 1 shows a mean squared error (MSE) of 

frequency of a single sinusoid y=2
0.5

sin(0.3π) in white 

Gaussian noise obtained from uniformly sampled data (T=1s) 

with K=20 samples. SNR values in the range [–10, 40] dB are 

considered in this experiment. For each SNR value 1000 

Monte Carlo (MC) trials are performed. The frequency 

interval fϵ[0,0.5] Hz (fϵ[0,π] rad/s) is used in RFSA with 

0.5/19 Hz (π/19 rad/s) as a step of a frequency grid (J=20 

frequencies) and the maximum preset order of a model is 

Fig. 1. MSE of the frequency versus SNR obtained by RFSA from irregular 

data sequences (K=20) using EVT model order estimator (7) with α=0.1% 

and 20 trial frequencies. 

 

Fig. 2. MSE of the frequency versus SNR obtained by RFSA from irregular 

data sequences (K=1000) using EVT model order estimator (7) with α=0.5% 

and 20 trial frequencies. 
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Mmax=4. EVT penalization (7) is used with confidence level α 

=0.1%. From Fig 1 it can be seen that MSE obtained by RFSA 

is almost identical to MSE obtained by WLS with monic and 

unit norm constraints when initiated by FFT (WLSmFFT and 

WLSunFFT) or RPHD (WLSmRPHD and WLSunRPHD). All 

methods have SNR threshold at about 2dB and attained the 

CRB for sufficiently high SNR conditions. Note that, unlike 

the methods published by So et al. (2005), RFSA does not 

need the number of sinusoids in the signal to be known a 

priori and it selected correct model order (M=1) in the entire 

range of SNR. Maximum execution time of RFSA for a single 

trial was 0.385 s. The same test was repeated for K=1000. The 

frequency interval fϵ[0,0.5] Hz (fϵ[0,π] rad/s) is used in RFSA 

with 0.5/999 Hz (π/999 rad/s) as a step of a frequency grid 

(J=1000 frequencies) and the maximum preset order of a 

model is Mmax=4. The results shown in Fig. 2 are obtained 

from uniformly sampled data (T=1s). The SNR range [–20, 

40] dB is considered. EVT penalization (7) is used with 

confidence level α =0.5%. The RFSA correctly selects the 

model order (M=1) in the entire range of SNR and attained the 

CRB at threshold SNR≈–12dB. Maximum execution time of 

RFSA for a single trial was 12.8 s. The MSE reported by So et 

al. (2005) is given in the shorter SNR range [–10, 40] dB and 

attained the CRB over the entire range for the WLS initiated 

by FFT. The results obtained by WLS method when initiated 

by RPHD are considerably worse. 

Finally the estimation of the frequencies in the three tone case 

y=2
0.5

sin(0.3π)+2
–0.5

sin(0.34π)+2
–0.5

sin(0.7π) is considered. 

The SNR values are varied in the range [–10, 40] dB. For each 

SNR value 1000 MC trials are performed. The frequency 

interval fϵ[0,0.5] Hz (fϵ[0,π] rad/s) is used in RFSA with 

0.5/19 Hz (π/19 rad/s) as a step of a frequency grid (J=20 

frequencies). In this particular case the RFSA tends to 

overestimate the model order. To prevent overestimation we 

set the maximum order of a model equal to the actual number 

of sinusoids in a model (Mmax=3) what can be considered 

equivalent to the condition when the number of sinusoids is 

known a priori. The MSE for the lowest frequency (0.3 rad/s), 

obtained from uniformly sampled data (T=1s) with K=20 

samples, is shown in Fig 3. EVT penalization (7) is used with 

confidence level α =0.5%. From Fig 3 it can be seen that 

RFSA attains CRB at significantly lower SNR threshold than 

the WLS methods. Almost identical results have been obtained 

for other two frequencies (0.34π and 0.7π). Maximum 

execution time of a single trial was 0.098 s. From Figs 1–3 it 

can be concluded that under the same conditions RFSA 

achieved frequency estimation accuracy at least equal to or 

better than the accuracy reported by So et al. (2005). 

B. Two sinusoids: one represented by a fraction of its cycle 

the other one under-sampled 

To illustrate the other possibilities of time series analysis by 

RFSA let us consider an irregularly sampled 1-d signal 

consisting of M=2 superimposed sinusoidal components where 

the sampled data (64 samples) represent a fraction of the cycle 

of the first sinusoid whereas the second sinusoid can be 

considered under-sampled as the time interval between any 

two adjacent samples is always longer than the full period of 

the sinusoid. The frequencies of the sinusoids are f1=0.011 Hz 

and f2=2.2 Hz and their amplitudes are: A1=1 and A2=0.5. The 

sampling times are calculated by tk+1=tk+τk+1,k; k=1,2,…,64, 

where t1=1s and the sampling intervals are uniformly and 

independently distributed over the interval τk+1,k ϵ[0.5, 1.5] s 

with mean 1,1 ≈+ kkτ s. Note that minimum sampling interval 

equals 0.5 s and the  Nyquist frequency ≤1 Hz is expected.  

The phases are φ1=0 rad and φ2=π/3 rad and the additive noise 

is white and normally distributed with zero mean. SNR values 

in the range [–5, 22] dB are considered in the experiment. The 

frequency interval fϵ[0,4] Hz (fϵ[0,8π] rad/s) is used in RFSA 

with 4/511 Hz (2π/511 rad/s) as a step of the frequency grid 

(512 frequencies). A refined frequency grid enables precise 

estimation of very low frequencies. Maximum preset order of 

a model is Mmax=5. For each SNR value 500 Monte Carlo 

(MC) trials are performed. Note that the corresponding 

sampling pattern and additive noise are randomized in each 

new MC trial. The RFSA sequentially estimates the RFS 

parameters of most dominant sinusoids and uses MAP and 

EVT estimators with the corresponding penalization terms (6) 

and (7) to estimate the number of sinusoids in a model. Given 

the sampling times and the estimated RFS parameters, the 

corresponding amplitudes and phases of the sinusoids can be 

calculated by following the procedure outlined in Appendix C. 

Each sinusoid can be easily reconstructed by (9) using its RFS 

parameters or by calculating its frequency, amplitude and 

phase (Appendix C). 

Fig 4 shows an estimated probability of correct model order 

selection (M=2) by RFSA for MAP and EVT estimators with 

respect to SNR. Fig 5 shows a MSE of two angular 

frequencies estimated by RFSA from 500 Monte Carlo trials 

by using MAP model selection criteria (6). Almost identical 

chart is obtained by using EVT (7) with α=0.5%. From Fig 5 it 

can be concluded that the threshold for the frequency 0.011 Hz 

(MSE1) is at SNR≈2 dB and for the frequency 2.2 Hz (MSE2) 

at SNR≈9 dB. Above these thresholds the MSE approaches to 

CRB. Note that SNR values in Fig 5 correspond to the 1
st
 

sinusoid (A1=1) and are actually lower for about 6 dB for the 

2
nd

 sinusoid (A2=0.5). The RFSA estimates both the model 

order and the frequencies. From Fig 4 it can be seen that 

correct model selection begins above SNR≈8 dB for model 

Fig. 3. MSE of the frequency versus SNR obtained by RFSA from irregular 

data sequences (K=20) using EVT model order estimator (7) with α=0.5% 

and 20 trial frequencies. 
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selection criteria MAP (6) and EVT (7) with confidence level 

α =0.5%. Maximum execution time of a single trial was 1.46 s. 

Fig 6 illustrates an instance of irregular sampling pattern 

with the corresponding data embedded in noise (SNR= 7 dB).  

Time frame begins at 1 s and ends with 65.10 s. The RFS 

parameters of the correct model, obtained by the RFSA from 

data sequence (Fig 6) using MAP estimator (6), are given in 

Table II. Table III shows true amplitudes, frequencies and 

phases (subscript T), and the corresponding estimates 

(subscript E), obtained from RFS parameters (Table II) in 

accordance with Appendix C. Evidently, the RFSA is able to 

precisely estimate the low frequency (0.011 Hz) represented 

by a fraction of its cycle and the under-sampled frequency (2.2 

Hz), which is higher than the Nyquist frequency (1 Hz) based 

on the minimum sampling interval (0.5 s). 

C. Two closely spaced sinusoids with linear trend 

A data sequence consists of a trend line κtk+o with fixed y–

intercept o=0.5 and a slope κ=0.006 s
–1

 and 2 sinusoidal 

components Amsin(2πfmt+φm), m=1,2 with the corresponding 

amplitudes A1=A2=1, phases φ1=0 rad and φ2=π/4 rad and 

frequencies f1=0.2 Hz  and f2=0.2+1/K Hz, where K is the 

number of samples in the sequence. The additive noise is 

white and normally distributed with zero mean. The data 

 
Fig. 4. Estimated probability of correct model order selection (M=2) obtained 

by MC simulations (500 MC trials per SNR value) of irregular data sequence 

(K=64) representing two sinusoids: one with incomplete cycle and the other 

one under-sampled. 
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TABLE II 

ESTIMATED RFS PARAMETERS OF THE MODEL 

Component 1 2 

ω [rad] 6.8901E–02 1.3822E+01 

y1 4.7207E–02 3.1457E–01 

y2 9.5103E–02 3.0437E–01 

 

TABLE III 

TRUE AND ESTIMATED PARAMETERS OF SINUSOIDS 

Component 1 2 

AT 1 0.5 

fT [Hz] 0.011 2.2 

φT [rad] 0 π/3 

AE 9.0025E–01 5.1729E–01 

fE [Hz] 1.0966E–02 2.1998E+00 

φE [rad] –1.6439E–02 1.2324E+00 

 

Fig. 7. Estimated probability of correct model order selection (M=3) obtained 
by MC simulations (500 MC trials per SNR value) of irregular data sequence 

(K=64) consisting of two closely spaced sinusoids with linear trend. 
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sequences consisting of K=64 and K=128 sampling points are 

analyzed with the corresponding sampling patterns fixed in all 

MC trials. The SNR interval [ ]22,5−∈SNR  dB is used for data 

sequence consisting of K=64 sampling points and 

[ ]12,8−∈SNR  dB for K=128. For each SNR value 500 MC 

trials are performed. In each MC trial a new instance of 

additive noise is generated.  By following the Poisson process, 

the sampling intervals are exponentially distributed (parameter 

λ = 0.1 s
–1

) with mean 1/λ = 10 s. The sampling times are 

round off to 10 decimals. Maximum preset order of a model is 

Mmax=6. 

The frequency interval [ ]5.0,0∈f  Hz ( [ ]πω ,0∈  rad/s) is 

used with 1/255 Hz (2π/255 rad/s) as a step of the frequency 

grid in RFSA (256 frequencies). Note that the correct model 

order in this experiment is 3 because the RFSA is representing 

a straight line by a segment of a sinusoid having a frequency 

of oscillation very close or equal to zero. Depending on the 

values of the estimated frequencies, (9) or (12) can be used to 

reconstruct any component from its RFS parameters (radian 

frequency and two initial samples) returned by RFSA.  

 Fig 7 shows an estimated probability of correct model 

order selection (M=3) for a data sequence consisting of 64 

sampling points obtained from RFSA by using MAP (6) and 

EVT (7) estimators. For each SNR, 500 MC trials are 

performed. From Fig 7 it can be seen that very high 

probability of correct model order selection (≥0.986) begins at 

SNR=2 dB but correct model order selection with no misses 

begins at SNR=10 dB. Maximum execution time of a single 

trial was 1.18 s. Fig 8 shows a MSE of the estimated 

frequencies obtained by RFSA from 500 MC trials by using 

EVT (8) model selection criteria with confidence level α=1%. 

Solid black line in Fig 8 represents a CRB for the two closely 

spaced frequencies. MSE1 in Fig 8 denotes the MSE of the 

trend in data (ω≈0) and MSE2 and MSE3 denote the MSE of 

the frequencies of two closely spaced sinusoids 0.2 Hz and 

0.2+1/64 Hz, respectively. From Fig 8 it is evident that a 

perfect reconstruction of all frequencies occurs at the 

threshold SNR=10 dB. The RFSA is trying to match the linear 

trend in data sequence with the corresponding segment of a 

sinusoid by tuning its RFS parameters. The resulting sinusoid 

generally has extremely low frequency and huge amplitude 

and it is not possible to calculate the CRB for that frequency. 

From Fig 8 it can be seen that the MSE of this extremely low 

frequency (ω≈0 Hz) is more than 170 dB lower than the MSE 

of two other frequencies and it shows the same CRB trend 

with respect to SNR. 

Fig 9 illustrates a sampling pattern (K=64) and the 

corresponding data corrupted with noise (SNR=10 dB). The 

sampling intervals are highly irregular and range from 0.257 s 

to 53.462 s with mean value 9.533 s.  Time frame begins at 

5.409 s and ends at 605.994 s. Table IV displays the RFS 

parameters of a model, estimated from data sequence (Fig 9) 

by using RFSA with MAP estimator (6). The parameters from 

Table IV are then used to calculate the corresponding 

amplitudes and phases of sinusoids, Table V, in accordance 

with Appendix C. As can be seen from Table V, the linear 

Fig. 9. A sampling pattern (K=64) with an instance of a data sequence with 

zero mean normally distributed additive noise (SNR=10 dB). Vertical lines 

illustrate the sampling pattern with exponentially distributed intervals. 
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TABLE IV 

ESTIMATED RFS PARAMETERS OF A MODEL 

Component 1 (Slope) 2 (0.2Hz) 3 (0.2+1/64Hz) 

ω [rad] 2.7923E–13 1.2566E+00 1.3550E+00 

y1 5.1969E–01 5.1281E–01 9.2444E–01 

y2 5.2126E–01 7.5561E–01 7.8079E–01 

 

TABLE V 

CALCULATED PARAMETERS OF SINUSOIDAL COMPONENTS 

Component 1 (Slope) 2 (0.2Hz)  3 (0.2+1/64Hz) 

f [Hz] 4.4441E–14 2.0000E–01 2.1565E–01 

A 2.1649E+10 9.8512E–01 9.5813E–01 

φ [rad] 2.2495E–11 3.3496E–02 7.9115E–01 

 

Fig. 11. MSE of the frequencies of sinusoids versus SNR obtained from 

irregular data sequences (K=128) by RFSA using EVT model order estimator 

(7) with α=0.5%. Circles, squares and triangles represent the corresponding 

MSEs and solid line represents the CRB for two closely spaced frequencies. 
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trend in data is approximated by a segment of a sinusoid 

having extremely low frequency (4.4441E–14 Hz) and huge 

amplitude (2.1649E+10). The frequencies of the two closely 

spaced sinusoids are estimated with negligible errors.  

Fig 10 shows an estimated probability of correct model 

order selection (M=3) obtained from MC simulations of data 

sequence consisting of K=128 sampling points by using RFSA 

with MAP and EVT estimators. For each SNR value in the 

range [–8,12] dB a 500 Monte Carlo trials are performed. 

Maximum execution time of a single trial was 2.12 s. Fig 11 

shows a MSE of the estimated frequencies obtained by RFSA 

from 500 MC trials by using EVT (7) model selection criteria 

with confidence level α=0.5%. Again, MSE1 in Fig 11 denotes 

the MSE of trend in data (ω=0). From Fig 11 it can be seen 

that a perfect reconstruction of all frequencies occurs above 

the threshold SNR=0 dB, which is about 10 dB lower than in 

the previous case (K=64). 

D. Three closely spaced sinusoids 

An irregular data sequence (K=128 and K=512 samples) 

consists of M=3 sinusoidal components with frequencies 0.2, 

0.2+1/K and 0.2+2/K Hz, amplitudes 1, 0.56234 and 1, and 

phases 0, π/4 and π/3 rad, respectively. Note that the middle 

sinusoid is 5 dB weaker than the other two. The sampling 

times are calculated by tk+1=tk+τk+1,k, where t1=1s and the 

sampling intervals are uniformly and independently 

distributed over the interval τk+1,kϵ[0.01,9.99] s with mean 

5,1 ≈+ kkτ  s. Note an extremely wide dynamic range of 

sampling intervals. The additive noise is white and normally 

distributed with zero mean. The SNR interval [ ]16,8−∈SNR  

dB for K=128 and [ ]7,12−∈SNR  dB for K=512 is used with 

1 dB as a step of the noise grid. For each SNR value 500 MC 

trials are performed. In each MC trial a new sampling pattern 

and additive noise are generated. The frequency interval 

[ ]5.0,0∈f  Hz ( [ ]πω ,0∈  rad/s) is used with 1/255 Hz (2π/255 

rad/s) as a step of the frequency grid in case of K=128 and 

1/1023 Hz (2π/1023 rad/s) in case of K=512. Maximum preset 

order of a model is Mmax=6. 

Fig 12 shows an estimated probability of correct model 

order selection (M=3) for a data sequence consisting of 128 

sampling points obtained from RFSA by using MAP and EVT 

estimators and 500 MC trials per each SNR. Maximum 

execution time of a single trial was 2.57 s. Fig 13 shows a 

MSE of the frequencies estimated by RFSA from 500 MC 

trials using EVT (7) model selection criteria with confidence 

level α=0.1%. Fig 14 shows an estimated probability of 

correct model order selection (M=3) for a data sequence 

consisting of 512 sampling points obtained from RFSA by 

using MAP and EVT estimators. Maximum execution time of 

a single trial was 25.94 s. Fig 15 shows a MSE of the 

frequencies estimated by RFSA from 500 MC trials using 

MAP (6) model selection criteria. From Figs 12–15 it can be 

seen that the proposed algorithm, based on the combination of 

Fig. 12. Estimated probability of correct model order selection (M=3) 

obtained by MC simulations (500 MC trials per SNR value) of irregular data 

sequences (K=128) representing three closely spaced sinusoids. 
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RFS and parametric methods for model order selection, 

enables to detect the correct number of sinusoids and to 

perfectly retrieve the corresponding frequencies from signals 

highly contaminated with noise. 

E. Time series consisting of ten sinusoids 

An irregular data sequence (K=200 samples) consists of 

M=10 sinusoidal components {Amsin(ωmt+φm), m=1,…,10}. 

Table VI displays the corresponding amplitudes, frequencies 

and phases uniformly and independently distributed over the 

intervals Amϵ[1,2], ωmϵ[0,1] rad/s and φmϵ[–π,π] rad, 

respectively. The sampling times are calculated by 

tk+1=tk+τk+1,k; where t1=0 s and the sampling intervals are 

uniformly and independently distributed over the interval 

τk+1,kϵ[0. 01,1.99] s with mean 1,1 ≈+ kkτ  s. The additive noise is 

white and normally distributed with zero mean. The SNR 

interval SNRϵ[–8,12] dB is used with 1 dB as a step of the 

noise grid. For each SNR value 500 MC trials are performed. 

In each MC trial a completely new instances of sampling 

pattern and additive noise are randomly generated. Maximum 

preset order of a model is Mmax=13. The frequency interval 

[ ]5.0,0∈f  Hz ( [ ]πω ,0∈  rad/s) is selected with 200 trial 

frequencies equidistantly distributed over the interval with a 

step of a frequency grid equal to 1/199 Hz (2π/199 rad/s).  

Fig 16 shows an estimated probability of correct model order 

selection (M=10) obtained from RFSA by using MAP (6) and 

EVT (7) estimators. Maximum execution time of a single trial 

was 21.20 s. Fig 17 shows a MSE of the frequencies estimated 

by RFSA from 500 MC trials using EVT (7) model selection 

criteria with confidence level α=0.5%. Fig 18 illustrates a 

MSE of a model, obtained from RFSA by using MAP (6) and 

EVT (7) estimators, with respect to clean signal (Table VI). 

Figs 16–18 demonstrate how RFSA can select the correct 

model order and precisely estimate the corresponding 

parameters of the significant number of sinusoids heavily 

contaminated with noise. Recall that SNR (36) in Fig 16–18 

corresponds to A=1 and, depending on the amplitudes given in 

Table IV, the SNR is actually higher for at least 0.08 dB 

(A9=1.009) to maximum 6 dB (A2=1.994).  

F. Some general remarks 

The proposed method is computationally intensive and is 

best suited for off-line analysis of high frequency and sparse 

sinusoidal signals. In case of low frequency signals 

(astronomical observations, electrical biosignals) it can 

perform analysis in real-time. A comprehensive simulations 

show that RFSA works fine with any EDC-type model 

selection criteria but generally achieves the most consistent 

results using EVT-based model-complexity penalization (7) 

with confidence level α=0.5%. More details on selecting a 

proper confidence level can be found in (Nadler & 

Kontorovich, 2011). It is worth noting that RFSA needs no 

LM optimization if the frequencies of sinusoidal components 

coincide with the corresponding trial frequencies, but this 

condition is uncommon to majority of applications. In order to 

decrease the probability of LM optimization to get stuck in 

Fig. 16. Estimated probability of correct model order selection (M=10) 

obtained by MC simulations (500 MC trials per SNR value) of irregular data 

sequence (K=200) representing 10 sinusoids. 
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Fig. 18. Estimated MSE of a model obtained by MC simulations (500 MC 

trials per SNR value) of irregular data sequence (K=200) representing 10 

sinusoids embedded in noise. Dashed line represents the corresponding CRB. 
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TABLE VI 

TRUE PARAMETERS OF SINUSOIDAL COMPONENTS 

m ωm [rad/s] Am φm [rad] 

1 0.086 1.133 1.556 

2 0.147 1.994 0.974 

3 0.253 1.155 –2.841 

4 0.324 1.270 0.593 

5 0.509 1.896 2.252 

6 0.571 1.479 –2.012 

7 0.632 1.940 1.535 

8 0.714 1.643 –0.187 

9 0.831 1.009 –0.957 

10 0.992 1.246 –2.513 
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false local minima it is generally advisable to decrease the step 

of the frequency grid and in this way bring some trial 

frequencies close enough to true frequencies. 

 

IV. CONCLUSION 

The recursive formulation of sinusoid can be efficiently 

combined with common criteria for model order selection in 

analysis and modeling of nonuniform data sequence 

representing a sinusoidal signal in noise. By optimizing the 

parameters of near-optimal sinusoids estimated from the 

predefined set of trial frequencies, the proposed approach 

enables decomposition of 1-d signal into a sparse set of 

sinusoids. It can efficiently model a time series with linear 

trend in data since a recursive formulation of a straight line 

can be considered a special case when the frequency of a sine 

wave approaches zero. It was demonstrated how the proposed 

algorithm enables to retrieve the under-sampled sinusoid and 

the sinusoid represented by a fraction of its cycle. 

The comprehensive simulations of decomposition of 

artificial sinusoidal signals corrupted with additive white noise 

with zero mean always ended by the correct model order 

selection and by the least-squares estimates of frequencies 

achieving the Cramer–Rao bound above the threshold signal-

to-noise ratio. A relatively high computational complexity can 

be significantly reduced by parallelizing the execution of (20) 

for all trial frequencies.  

In case of equidistant sampling the computational 

complexity of the method is further reduced by using 

Chebyshev’s multiple angle formula. A preliminary research 

also shows that slightly modified recursive formulation of a 

sinusoid enables to retrieve exponentially damped sinusoids as 

well. 

 

APPENDIX A 

RECURSIVE FORMULATION OF A SINUSOID 

 

Let as consider a three irregularly spaced samples of a sine 

wave: 

 

( )ϕω += ii tAy sin , (A1) 

 

( ) ( )ijijj tAtAy ,sinsin ωτϕωϕω ++=+=  (A2) 

 

and 

 

( ) ( )ikikk tAtAy ,sinsin ωτϕωϕω ++=+= , (A3) 

 

where A denotes the corresponding amplitude, ω is the radian 

frequency φ is the phase in radians, tk is a time point 

(timestamp) of the corresponding kth sample yk, and τk,i=tk–ti is 

the difference between the timestamps of kth and ith sample.  

After rewriting (A2) by using basic trigonometric equations 

we obtain 
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and finally 
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sin
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−
=+ , (A5) 

 

After rewriting (A3) we obtain 
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Substituting (A5) for Acos(ωti+φ) in (A6) and after 

arrangement we obtain a predictive recurrence relation of a 

sine wave: 
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Note that (A7) is independent on how the samples are 

encountered providing that the time differences, τk,j, τk,i, and τj,i 

are used with the corresponding signs. Any sine wave sample 

can be predicted from any two known samples by knowing 

their points in time from which the corresponding angular 

positions in radians can be calculated for the given radian 

frequency ω. If we set yi=y1 and yj=y2 in (A7), an arbitrary 

sample in a sequence of sine wave samples can be related to 

the first two samples by: 
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APPENDIX B 

SIMULTANEOUS LINEAR EQUATIONS FOR THE CALCULATION 

OF INITIAL SAMPLES OF SINE WAVES 

 

To solve error minimization problem (18), for initial 

samples of the sine waves α, { } { }M

mmm

M

mm yy
12,1,1

,
==

=α , with 

known frequencies, { }M

mm 1=
ω , or x parameters, { }M

mmx
1=
, the 

following Jacobian matrix J, parameter vector α and time 

series vector w: 
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are substituted in (20) to obtain a set of simultaneous linear 

equations 
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which can be solved directly for α. In case of nonuniform 

sampling, the coefficients am,k and bm,k are calculated by (10) 

and (11) and in case of uniform sampling  by (13) and (14). 

 

APPENDIX C 

CALCULATION OF AMPLITUDE AND PHASE OF A SINUSOID 

FROM RFS PARAMETERS 

 

Amplitude and phase of a sine wave can be calculated if the 

corresponding RFS parameters (radian frequency ω and two 

samples y1 and y2) are known. A sine wave 

 

( )ϕω += tAy sin  (C1) 

 

can be represented by a superposition of the corresponding 

sine and cosine part. In this way, the two samples of a sine 

wave obtained at time point t1 and t2 are defined by: 

 

( ) ( )111 cossin tCtBy ωω += , (C2) 

 

 

( ) ( )222 cossin tCtBy ωω += . (C3) 

 

By combining (C2) and (C3) one can calculate the amplitude 

of the corresponding cosine 
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and the sine part 
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By using (C4) and (C5) the amplitude of the original sine 

wave can be calculated by: 

 

22 CBA += . (C6) 

 

The phase of a sine wave can be calculated by using Euler’s 

relation: 

 

jBCe j +=ϕ . (C7) 

 

In case of uniform sampling the procedure is the same after 

converting parameter x into the frequency (16). 

 

APPENDIX D 

A SET OF SIMULTANEOUS LINEAR EQUATIONS TO CALCULATE 

INCREMENT VECTOR FOR LM OPTIMIZATION OF RFS 

PARAMETERS 

  

To solve the error minimization problem (21) with respect 

to increment vector δ, the following parameter vector β, 

parameter increment vector δ, time series vector w, time series 

prediction vector P(β) and Jacobian matrix J: 
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are substituted in (22) to obtain a set of simultaneous linear 

equations: 
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that can be solved directly for δ. Partial derivatives 
m

kmy
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∂ , , 
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2,
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∂

∂
, can be calculated by (23)–(26). In case of 

uniform sampling parameter x should be substituted for ω and 

the corresponding partial derivatives are calculated by (27)–

(29). 
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