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Abstract

Predictive modeling in medicine involves the development of computational

models which are capable of analysing large amounts of data in order to pre-

dict healthcare outcomes for individual patients. Computational intelligence

approaches are suitable when the data to be modelled are too complex for

conventional statistical techniques to process quickly and efficiently. These ad-

vanced approaches are based on mathematical models that have been especially

developed for dealing with the uncertainty and imprecision which is typically

found in clinical and biological datasets. This paper provides a survey of re-

cent work on computational intelligence approaches that have been applied to

prostate cancer predictive modeling, and considers the challenges which need

to be addressed. In particular, the paper considers a broad definition of com-

putational intelligence which includes evolutionary algorithms (also known as

metaheuristic optimisation, nature inspired optimisation algorithms), Artificial

Neural Networks, Deep Learning, Fuzzy based approaches, and hybrids of these,

as well as Bayesian based approaches, and Markov models. Metaheuristic op-

timisation approaches, such as the Ant Colony Optimisation, Particle Swarm

Optimisation, and Artificial Immune Network have been utilised for optimis-
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ing the performance of prostate cancer predictive models, and the suitability of

these approaches are discussed.

Keywords: prostate cancer prediction; predictive modeling; computational

intelligence; machine learning; soft computing; disease classification;

evolutionary computation; metaheuristic optimisation.

1. Introduction

The increasing availability of electronic healthcare databases is enhancing

opportunities for developing computer-based prediction and decision support

models which can be used to improve the management of patients by healthcare

professionals. An important challenge for clinical teams remains the prediction5

and assessment of risk, and the development of accurate approaches for diagnos-

ing, and predicting the diagnosis and therapeutic responsiveness and outcomes.

The aim of predictive modeling in the context of medicine involves the devel-

opment of computational models which are capable of predicting future events

and/or healthcare-related outcomes for patients using contemporarily-available10

healthcare data (Waljee et al., 2014), (Shariat et al., 2009b). These models can

be based on statistical techniques or computational intelligence techniques, with

the latter being a relatively new strategy.

Computational intelligence approaches combine evolutionary algorithms such

as the Genetic Algorithm and Particle Swarm optimisation, with machine learn-15

ing algorithms such as the Deep Learning, Support Vector Machines, Bayesian

models, and hybrids of these (Mumford & Jain, 2009) for optimising the perfor-

mance of the prediction model. Machine learning algorithms have a fundamen-

tal role in predictive modeling, as they can be utilised to create the component

which learns from existing patient data in order to be able to make predictions20

on new patient data. Take, for example, a model which has been developed

to predict prostate cancer. Given a set of inputs (also called features, predic-

tors, variables, observations) and a set of clinical results (also called targets), a

model can be trained to learn the inputs of this dataset. Once the learning pro-
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cess is accomplished, then the model can accept new inputs and predict clinical25

outcomes.

Clinical prediction systems which consider a profile of variables for predict-

ing an outcome require sophisticated computational methods (Tewari et al.,

2001). Computational intelligence approaches have the capability to deal with

the imprecision and uncertainty which is typically apparent in clinical and bio-30

logical data. Furthermore, these approaches are effective when the data to be

modelled are too large or complex for conventional statistical techniques. For

example, computational intelligence algorithms have been used in risk predic-

tion models for breast cancer (Hameed & Bagavandas, 2011), (Bourdes et al.,

2007), cardiovascular disease (Vijaya et al., 2010), and lung cancer (Sun et al.,35

2008), (Balachandran & Anitha, 2013), (Diaz et al., 2014), (Dass et al., 2014),

(Kumar et al., 2011).

This paper provides a survey of recent work on prostate cancer predictive

modeling using computational intelligence approaches, provides a broader per-

spective of the area, and considers challenges that remain to be addressed.40

The paper is structured as follows: Section 2 introduces the process of cre-

ating a classifier, cross validation techniques, and evaluation of classification

models. Section 3 discusses the recent advances in computational intelligence

algorithms that have been developed for prostate cancer, particularly the appli-

cation of Artificial Neural Networks, Deep Learning, Fuzzy approaches, Support45

Vector Machines, metaheuristic optimisation, Ensemble learning algorithms,

and Bayesian approaches, including the Bayesian Network, and the Markov

model. Section 4 discusses considerations for selecting a suitable metaheuristic

optimisation method. Section 5 provides a discussion of advances, challenges

and future areas of potential research. A conclusion and future directions are50

presented in Section 6.
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2. Cancer Classification and Evaluation

Classification is the process of finding a model which is capable of distin-

guishing data records into classes. Prior to constructing a classification model,

the dataset must be prepared using processes that may include the following:55

• Data normalisation includes filling missing values, identifying and remov-

ing outliers, grouping variables, and normalising data.

• Feature extraction is the task of representing the original data in a reduced

dimensional space. Feature extraction approaches are related to dimen-

sionality reduction methods which include Principal Component Analysis60

(PCA) and Singular Value Decomposition (SVD).

• Feature selection involves selecting the most useful features without alter-

ing the original data representation, and hence choosing a subset of the

features relevant for the task. In large datasets, evolutionary approaches

such as the Genetic Algorithm can be used for finding the best subset of65

features.

Whether a feature extraction or selection approach is required depends on the

type of data and the task. For example, feature extraction approaches are

commonly applied to tasks involving image processing, for which it is important

to represent the original image in a reduced dimensional space from which noise70

has been eliminated. On the other hand, feature selection is important for

clinical data when the names of the features are important, for example when

identifying which symptoms are the best predictors of a cancer; or when trying

to identify which combination of features (‘biomarkers’) would make up the

optimum cancer ‘fingerprint.75

A classification model can be constructed once the data preparation stage is

completed. The process of constructing a classification model comprises of two

main phases, as illustrated in Fig. 1:

1. Learning phase (or training phase) in which the data are analysed using a

classification algorithm, and from which a classifier (i.e. learned model) is80
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created. During the learning phase, the classification algorithm analyses

a set of training data which contains data records comprising of a set of

inputs (also called features, predictors, variables, observations) and their

known class labels (also called targets, known outputs) in order to learn

from the data and build the classifier. A class label is the outcome of an85

event, for example cancer stage after diagnosis. The class labels are only

used during the training process in order to enable the classifier to reason

with the inputs. It should be noted that, since the class labels are provided

to the classifier during the learning process, this phase is also known as

supervised learning. Supervised learning is different from unsupervised90

learning (or clustering), during which the class label of each data record is

not known in advance. Once a classifier is trained, a classification model is

derived, and that model is used to predict the class labels of data records

for which the class labels are unknown. The classification model may be

represented in the form of neural networks, classification rules, graphical95

models such as Bayesian networks, Markov random fields and decision

trees, or as a mathematical/statistical formulae (Han et al., 2011). Fig. 1

provides an overview of the process of creating a classification model for

predicting patient outputs (i.e. class labels); and

2. Prediction phase (or testing and validation) of the model is used for clas-100

sification/prediction tasks. During this phase, the learned model classifies

new unknown data (contained in test and validation datasets) which have

not been previously seen by the model in order to evaluate the accuracy

of the learned model. Initially, the predictive accuracy of the model is

evaluated and, if it is acceptable, then the learned model can be used for105

prediction.

Studies show that the accuracy of the classifiers depends on the specific

dataset and the problem to be solved, and that there is no single classifier

which outperforms all other classifiers across all tasks. Furthermore, the choice

of validation method influences the reported accuracy of the classifier. The110
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Figure 1: Process of creating a predictive model: Initially the dataset is prepared and a

classification model is constructed. At the Learning Phase, the classifier learns from inputs

(e.g. patient data records) and known class labels (known result). At the Prediction Phase,

the classifier takes as input a new previously unseen records and predicts their class labels.

concept applies to clinical and biological data, and challenges related to sample

size, especially when biological data is concerned (Swan et al., 2013).

There are a number of methods and metrics which can be used for evaluating

the predictive performance of a classifier. Predictive models are most commonly

evaluated using the cross-validation method discussed in Section 2.1, and a115

number of evaluation measures which are discussed in Section 2.2.

2.1. Cross-Validation

Cross-validation is a technique for evaluating the performance of a model in

terms of how well it performs on an independent dataset which was not used

during the learning process. Cross-validation is also used for estimating how120

accurately a model will perform in clinical practice, and also for estimating how

a selection of biomarkers can affect the outcome of a classification or prediction

model.

As previously mentioned, in a typical prediction problem, a model is usually

trained on a given dataset and known class labels (training dataset), and tested125
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on a previously unseen dataset of unknown data labels (testing dataset). Let

A be an m × n matrix containing m number of records (e.g. patient records),

and n number of variables (a.k.a. features, factors, or predictors). A record X

is represented by an n-dimensional vector, X = x1, x2, . . . , xn, where n is the

total number of variables. Each vector, X, is given a known class label. In k-130

fold cross-validation, the original dataset A is partitioned into k approximately

equally sized subsets, A1, A2, . . . , Ak. A single subset is retained for testing

the model, and the remaining subsets are used for training the model. The

cross-validation process is then repeated k times (i.e. k folds), with each of

the k subsets used exactly once as the validation data. Hence, in the first135

iteration subsets A2, . . . , Ak are treated as the training set to create the first

model, which is tested on subset A1; the second iteration is trained on subsets

A1, A3, . . . , Ak and tested on A2; and the process continues. The accuracy

is calculated by averaging the evaluation results obtained from each k fold to

produce a single estimation. Evaluation measures that are typically used are140

described in Section 2.2. The number of k-folds is selected based on the size of

the dataset, and usually ranges from 2 to 10 folds, but in general k remains an

unfixed parameter.

Two commonly used types of k-fold cross validation are employed in clinical

research: leave-one-out and stratified cross-validation. With leave-one-out cross145

validation, one record is left out as the testing data and the remainder of the

records are used as the training data - this process is repeated in every fold.

Furthermore, in leave-one-out cross validation, the number of k folds is equal to

the number of records m, such that k = m; the training and testing process is

repeated m times, with a different record being left out for testing each time until150

all records are left out. With stratified cross-validation, the folds are stratified

so that they contain approximately the same proportions of labels as the original

dataset. (Kohavi, 1995) provides a comprehensive overview of cross-validation

and other validation approaches for accuracy estimation and model selection.

Finally, it is important to adopt a cross validation methodology when con-155

structing classification models in order to avoid overfitting the classification
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model to the trained dataset. Overfitting occurs when a model describes ran-

dom error or noise instead of the underlying relationship, and can occur when

a model is excessively complex by having too many parameters relative to the

number of observations. A model will exhibit very good training performance160

and very poor predictive performance when overfitting occurs. Therefore, a

suitable cross-validation should be adopted when evaluating computational in-

telligence models in order to ensure an efficient and more accurate reporting of

the performance of the model.

2.2. Evaluation of Classification models165

The performance of classification models in clinical tasks is often evaluated

by the Receiver Operating Characteristic (ROC) curve analysis, an approach

which is fundamental in clinical research. The ability of a system to differen-

tiate between the data records in given classes (e.g. cancer patient or benign

(no cancer disease) patient), is often measured by quantifying the ROC Area170

Under the Curve (AUC). The True Positive Rate (TPR, Sensitivity) measures

the proportion of actual positives which are correctly identified as such (e.g.

the percentage of cancer patients who were correctly identified as cancer pa-

tients), and the False Positive Rate (FPR, measured as 1-Specificity) measures

the proportion of actual negatives which are incorrectly identified as positives175

(e.g. the percentage of benign patients who were incorrectly identified as can-

cer patients). The aim is to identify the optimal cutoff point which maximises

the number of True Positives and minimises the number of False Positives on

the ROC curve. This is often decided by the operator who is constructing the

model.180

The Area Under the Curve is a reflection of how good the system’s perfor-

mance is at discriminating between patients with and without disease, and the

larger the Area Under the Curve the better the performance. Examples of ROC

curves are presented in Fig. 2, which shows the results from evaluating the

efficacy of four different types of tumour markers, as prostate cancer predictors,185

at various cutoff points (Chadha et al., 2014).
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Figure 2: Receiver operating characteristic (ROC) graphical representation of the relationship

between sensitivity and specificity. Each graph models the probability of local disease versus

metastatic prostate cancer. Each ROC curve evaluates the efficacy of a tumour marker, as a

prostate cancer predictor, at various cutoff points, and shows the Area Under the ROC curve.

The figure shows that PSA (Prostate-Specific Antigen) and TNF (tumor necrosis factor-α)

levels were the strongest predictors of local versus metastatic disease. Soluble tumor necrosis

factor-α receptor 1 (sTFNR1) was also a reasonably good predictor (Chadha et al., 2014).
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3. Computational Intelligence Approaches to Prostate Cancer Pre-

dictive Modeling

Computational intelligence concerns the theory, design, application, and de-

velopment of biologically and linguistically motivated computational paradigms190

which include Artificial Neural Networks, Genetic Algorithms, Evolutionary al-

gorithms, Fuzzy systems, and hybrid intelligent systems. In contrast, compu-

tational intelligence is efficient in solving problems which require reasoning and

decision-making and which traditional statistical models often fail to handle,

mainly due to uncertainty, noise and dynamically changing data. This section195

describes the literature on computational intelligence approaches that have been

applied to the prognosis and diagnosis of prostate cancer.

3.1. Artificial Neural Networks

Artificial Neural Networks are learning algorithms that are inspired by bi-

ological neural networks (the central nervous systems of the brain), and they200

consist of a set of interconnected input/output units in which each connection

has an associated weight. The interconnected ‘neurons’ send messages to each

other and their numeric weights can be tuned on the basis of the neural network’s

experience, thereby making neural networks adaptive to inputs and capable of

learning. During the learning phase, neural networks learn by adjusting their205

weights in order to predict the class label of the input records. Neural networks

must be trained for long periods of time before they can be applied to solving

problems such as classification or prediction. The limitation of the Artificial

Neural Network is that it is difficult for humans to understand the symbolic

meaning behind the learned weights of the hidden units in the network, which210

makes it difficult to understand the qualitative reasoning behind the decisions

that are made by the neural network. In addition, neural networks are more

prone to overfitting than other computational intelligence algorithms and hence

it is important to adopt a validation methodology, such as k-fold cross valida-

tion when reporting the performance of the neural network. The advantage of215
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the Artificial Neural Network is that it often performs well with classifying data

which have not been included in the learning process (hence data that have

previously been unseen by the model).

3.1.1. Artificial Neural Networks on Clinical Data

Artificial Neural Networks have been applied to the early detection (Stephan220

et al., 2009) and diagnosis of prostate cancer (Djavan et al., 2002), and for the

prediction of its outcome (Ecke et al., 2012). Neural networks are also effective

for early diagnosis of prostate cancer when integrated into expert systems. The

performance of the Artificial Neural Network has been compared to that of

nomograms for detecting prostate cancer, and the vast majority of the literature225

supports the proposition that Artificial Neural Networks perform better than

nomograms for risk prediction, and disease diagnosis and prognosis (Shariat

et al., 2009a).

Interestingly, some studies have found that the predictive performance of

the nomograms was close to that of the Artificial Neural Network, and that the230

performance of these models is dependent on the data and task in question.

However, the outcomes of such studies were inconclusive. For example, Ecke

et al. (2012) compared the performance of Artificial Neural Network against the

nomograms developed by Karakiewicz et al. (2005) and Kawakami et al. (2008),

and found that, during the testing phase, each of the methods performed very235

similar to each other, with no definitive answer to which is best. Consequently,

they concluded that Artificial Neural Networks would be more successful for

increasing detection rates, in daily practice, than nomograms. Artificial Neu-

ral Network classifiers have been applied for early diagnosis of prostate cancer

and aiding the decision-making process without the need to perform a biopsy240

on patients. Çinar et al. (2009) applied an Artificial Neural Network and Sup-

port Vector Machines for early prostate cancer diagnosis on a reduced dataset

(which comprised features: Prostate Specific Antigen (PSA), prostate volume,

density, and smoking). To obtain the set of reduced features, they applied in-

dependent sample t-test statistical analysis as a technique for feature selection.245
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The performance of the Artificial Neural Network was compared to that of the

Support Vector Machine classifier, and the results revealed that the Artificial

Neural Network and Support Vector Machine performances were very close.

The performance of the Artificial Neural Networks reached its highest with 81%

sensitivity, 77.9% specificity, and 79.1% accuracy, whereas the Support Vector250

Machine reached its highest performance with 84.2% sensitivity, 74.8% speci-

ficity, and 81.1% accuracy, thereby slightly outperforming the neural network.

Similarly, Saritas et al. (2010) devised an Artificial Neural Network for the

prognosis of cancer, the aim of which was to help doctors to decide whether

a biopsy is necessary. They used data obtained from 121 patients who were255

definitively diagnosed with cancer after biopsy. Their results revealed an Area

Under the Curve of 94.44%, thereby suggesting that an Artificial Neural Network

system can help doctors make quick and reliable diagnoses. However, these

results appear to be inconclusive due to the very small dataset which was used

and validation methodology adopted – 92 randomly selected records (n = 92,260

70% of the total data) were used for constructing the dataset used for training

the Artificial Neural Network, and the remaining 29 data records (n = 29, 30%

of the total data) were used for constructing the test dataset.

It is important to mention that when comparisons between prediction mod-

els, nomograms and other statistical models, are carried out, the same data265

and evaluation measures must be used for evaluating the predictive accuracy of

the models in order to allow a fair comparison between them. This will reveal

whether computational approaches are superior to nomograms when trained

and tested on small datasets. Such a comparison is described in Cosma et al.

(2016).270

3.1.2. Artificial Neural Networks on Images

Artificial Neural Networks have been applied to the detection of prostate

cancer using data obtained from transrectal ultrasonography and magnetic res-

onance images. In a study by Lee et al. (2006), the diagnostic performance of an

Artificial Neural Network model was evaluated in the presence and absence of275
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transrectal ultrasonographic (TRUS) data which was obtained from 684 consec-

utive patients who had undergone TRUS-guided prostate biopsy. Their results

revealed that performance improved when TRUS findings were included, with

the ROC analysis revealing an average AUC of 85%.

Artificial Neural Networks have also been successfully applied to determine280

the probability of malignancy by classifying information extracted from multi-

parametric Magnetic Reasonance Imaging (MRI) (Vos et al., 2012). When the

performance of the Artificial Neural Network was compared to the systematic

biopsy, the results revealed that it can achieve a lower false positive rate than

systematic biopsy, and hence it can be utilised as a tool to assist radiologists285

and guide biopsies to the most aggressive location of the cancer. Using a similar

application of neural networks, Matulewicz et al. (2014) have assessed whether

an Artificial Neural Network can be utilised to detect cancer using information

extracted from endorectal magnetic resonance imaging and magnetic resonance

spectroscopic imaging (endo MRI/MRSI), and also information about anatomi-290

cal segmentation. The Artificial Neural Network achieved a high accuracy with

an Area Under the Curve, sensitivity and specificity of 96.8%, 62.5% and 99.0%

respectively. Although the dataset used for performing the evaluations was very

small and attributed to data availability, combining data obtained from images

with information about anatomical segmentation is a promising way forward for295

improving detection rates.

A hybrid Neural Network and Support Vector Machine system has been em-

bedded in a Computer-Aided Diagnosis (CAD) tool for predicting the Gleason

Grade of prostate cancer using histopathology images (Greenblatt et al., 2013).

This system uses the quaternion wavelet transform and modified local binary300

patterns for the analysis of image texture in regions of interest; and then utilises

a two-stage classification method for predicting the Gleason grade. Firstly, a

quaternion neural network with a new high-speed learning algorithm used for

multi-class classification is applied; aftre which several binary Support Vector

Machine (SVM) classifiers are used for classification refinement. Experimen-305

tal evaluations using the leave-one-out cross validation approach to predict the
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Gleason grades (3, 4, and 5) using a dataset of 71 images revealed a high degree

of accuracy, 98.87%, and also that it outperformed other published automatic

Gleason grading systems. When results were averaged over all the classes, the

system achieved a specificity rate of 99% and a sensitivity rate of 96.7%. In310

the signal processing field, quaternions have been employed in adaptive filter-

ing, including Kalman filtering (Choukroun et al., 2006) and stochastic gradient

type of algorithm, such as the Quaternion Least Mean Square (QLMS) (Took

& Mandic, 2009).

3.1.3. Deep Learning Networks315

Deep Learning is a sub-field of machine learning composed of models com-

prising multiple processing layers to learn representations of data with multiple

levels of abstraction (Guo et al., 2016). Deep Learning models comprise mul-

tiple levels of distributed representations, with higher levels representing more

abstract concepts (Bengio, 2013). Deep Learning algorithms are known for320

their capability to learn features more accurately than other machine learning

algorithms, and are considered to be promising approaches for solving data an-

alytics tasks with high degrees of accuracy. Recently, the Deep Neural Network,

which is a variation of the standard Artificial Neural Network, has received

attention. Many types of Deep Neural Networks exist, some of which are the325

Deep Boltzmann Machines (Salakhutdinov & Hinton, 2009), the Restricted Deep

Boltzmann machine (Hinton & Sejnowski, 1986), and the Convolutional Deep

Belief Network (Lee et al., 2009). These methods have dramatically improved

state-of-the-art natural language processing (Mikolov et al., 2013), computer

vision (Ciresan et al., 2012), as well as many other applications such as drug330

discovery and genomics (LeCun et al., 2015), and the analysis carcinoma images

(Arevalo et al., 2015a). Convolutional neural networks have been applied for

classifying mass lesions following mammography (Arevalo et al., 2015b). The

Deep Boltzmann Machine has been applied for feature representation and fu-

sion of multi-modal information from Magnetic Resonance Imaging (MRI) and335

Positron Emission Tomography (PET) for the diagnosis Alzheimer’s Disease
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(AD) and Mild Cognitive Impairment (MCI) (Suk et al., 2014). The authors

applied the system to solve three binary classification problems of AD versus

healthy Normal Control (NC), MCI versus NC, and MCI converter versus MCI

non-converter. Their results revealed that the system was highly accurate, with340

maximal accuracies of 95.35%, 85.67%, and 74.58%, respectively, thereby out-

performing the competing methods. The authors concluded that the proposed

Deep Learning method could hierarchically discover the complex latent patterns

that are inherent in both MRI and PET. These findings highlight the potential

value of Deep Learning on multi-modal neuro-imaging data for aiding clinical345

diagnosis. The application of Deep Learning algorithms to prostate cancer is

starting to emerge. Guo et al. (2015) proposed a deep-learning based approach

for the segmentation of the prostate using Magnetic Resonance (MR). Instead

of training a classifier using handcrafted features, the authors have proposed a

Deep Neural Network based approach which learns the feature hierarchy from350

the data. They found that the learned features were often more accurate in

describing the underlying data than the handcrafted features.

Deep Belief networks are another type of Deep Learning Networks. Deep

Belief networks are probabilistic generative models that are composed of multi-

ple layers of stochastic, latent variables. Azizi et al. (2015) have developed an355

automatic feature selection framework for analysing temporal ultrasound signals

of prostate tissue. The framework is based on a Deep Belief Network (DBN)

model and consists of: an unsupervised feature reduction step that applies the

model on spectral components of the temporal ultrasound data; and a super-

vised fine-tuning algorithm that uses the histopathology of the tissue samples to360

further optimize the model. Finally, a Support Vector Machine (SVM) classifier

uses the activation of the Deep Belief Network as input to predict the likelihood

of cancer.

3.2. Fuzzy Approaches

Traditional classification algorithms such as the Artificial Neural Network365

and the Support Vector Machine group each item into a single set (or class). In
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classical set theory, sets can wholly include or wholly exclude any given element

(i.e. item). A fuzzy set is a set without a crisp or clearly defined boundary

and can therefore contain elements with partial degrees of membership. Fuzzy

rule-based systems are mathematical models that are based on fuzzy set theory370

(Zadeh, 1965), and are suitable approaches for solving classification and pre-

diction problems in circumstances in which an item can partially belong to one

or more sets (assigned a degree of membership for each set). Such approaches

therefore resemble human-like reasoning. Fuzzy rule-based systems have been

especially designed for dealing with the uncertainty and the imprecision found in375

data which are typical in medical data that are used for prognosis and diagnosis

of disease in patients.

As an example, one could consider the task of predicting the prostate cancer

stage of patients so that the prediction can assist clinicians when deciding on the

best treatment for the patient. Assume that true is represented by the numerical380

value of 1 and false the numerical value of 0, fuzzy logic permits in-between

values like 0.35 stage I and 0.74 stage II cancer. Hence, the values represent the

degree of membership of an element in set Stage I and set Stage II respectively.

This degree is computed via a membership function. A membership function

defines how each point in the input space is mapped to a membership value385

(or degree of membership) between 0 and 1. Fig. 3 illustrates a membership

function developed by Castanho et al. (2013) neuro-fuzzy system.

Fuzzy rule-based systems are suitable approaches for tasks which require

reasoning with data which contains degrees of uncertainty, as these approaches

provide a simple, IF-THEN rule-based approach to solve a problem. Fuzzy390

rules can be expressed using linguistic features (e.g. clinical test names, for

example: PSA, age) to create the rules which map inputs (e.g. clinical test

results: PSA=14.0, Gleason 1=4, Gleason 2=4, age=70, etc.) into outputs

(e.g. prostate cancer risk=Very High). Importantly, the derived rules (qual-

itative information) can be easily interpreted by clinicians. Fuzzy rule-based395

approaches add extra value to the prediction since they provide the reasoning

behind the prediction in the form of rules. For example, they could provide
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Figure 3: Membership functions which refer to input variables of PSA level, Gleason score,

and Clinical stage (Castanho et al., 2013)

insight into which combinations of socio-demographic and early clinical features

increase a patient’s risk (useful for making predictions, and treatment decisions

personalised to patients).400

3.2.1. Neuro-Fuzzy Approaches

To date, fuzzy rule-based approaches are amongst the most popular ap-

proaches that have been applied to prostate cancer. Benecchi (2006) predicted

the presence of prostate cancer using a co-active neuro-fuzzy inference system

(CANFIS). CANFIS initially adopts a Genetic Algorithm (GA) to simultane-405

ously search for features and thereafter uses the selected features to derive the

fuzzy rules for prediction. Experiments were carried out with data from 1030

men, of which 195 (18.9%) had prostate cancer. All men had total prostate-

specific antigen (tPSA) level of less than 20 ng/mL. Men with a Prostate Specific

Antigen (PSA) level higher than 20 ng/mL in their bloodstream are likely (but410

not definitely) to have prostate cancer. The challenge in prostate cancer detec-

tion is to identify those men with prostate cancer who have PSA levels less than

20 ng/mL. A PSA level higher than 20 ng/mL may occur due to factors other

than cancer, such as urinary infection or an enlarged prostate. Their results

revealed that the predictive accuracy of CANFIS was superior to that of the415

PSA blood test. Similarly, Keles et al. (2007) have created a Neuro-Fuzzy Clas-
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sification (NEFCLASS) tool for the diagnosis of prostate cancer, and prostate

enlargement diseases. The symptoms of prostate cancer are very similar to

those of prostate enlargement, and the aim of the classifier was to differentiate

between these two scenarios and hence assign them to different classes. The420

authors only used data from 90 cases (and 47 values were missing from these

cases), and concluded that the parameters of the NEFCLASS must be tuned for

better prediction performance. However, results were inconclusive due to the

small amount of data that were used to train and test the model.

Recently, Cosma et al. (2016) developed a neuro-fuzzy computational in-425

telligence model for classifying and predicting the likelihood of a patient hav-

ing Organ-Confined Disease (OCD) or Extra-Prostatic Disease (ED) using a

prostate cancer patient dataset obtained from The Cancer Genome Atlas (TCGA)

Research Network. The process for estimating the likelihood that the cancer

has spread before treatment is given to the patient, is known as cancer staging430

prediction. Such a prediction is important for determining the most suitable

treatment and optimal management strategy for patients. Clinical test results

such as the pre-treatment Prostate-Specific Antigen (PSA) level, the most com-

mon tumor pattern in tumour tissue biopsies (Primary Gleason pattern) and the

second most common tumor pattern (Secondary Gleason pattern), and the clin-435

ical T stage are commonly used by clinicians to predict the pathological stage of

prostate cancer. The neuro-fuzzy system by Cosma et al. (2016) takes as input

the results of those tests and an additional input, which is the age at diagno-

sis. Experiments revealed that the proposed neuro-fuzzy system outperformed

other computational intelligence based approaches, namely the Artificial Neural440

Network, Fuzzy C-Means, Support Vector Machine, the Naive Bayes classifiers.

The proposed neuro-fuzzy system also performed better than the AJCC pTNM

Staging Nomogram (Edge et al., 2010) which is commonly used by clinicians.

At its optimal point, the neuro-fuzzy system returned the largest Area Un-

der the ROC Curve (AUC), with a low number of false positives (FPR = 0.274,445

TPR=0.789, AUC=0.812). The proposed approach is also an improvement over

the AJCC pTNM Staging Nomogram (FPR=0.032, TPR=0.197, AUC=0.582).
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3.2.2. Genetic-Fuzzy Approaches

Using a different application of the fuzzy rule-based approach, Castanho

et al. (2013) have developed a Genetic-Fuzzy expert system to predict the patho-450

logical stage of prostate cancer. Such a prediction impacts on the treatment

decision provided to patients. Their proposed Genetic-Fuzzy system tunes the

fuzzy rules and membership functions using a Genetic Algorithm. Their system

achieved an Area Under the Curve of 82.4% which was compared against a sys-

tem which uses Partin probability tables (i.e. nomogram) that only achieved455

and Area Under the Curve of 69.3%. It should be noted that in the study by

Castanho et al. (2013), the Genetic Algorithm was used for membership func-

tion tuning, whereas in previous studies such as that by Benecchi (2006), the

Genetic Algorithm was used for feature extraction. This demonstrates the suit-

ability of the Genetic Algorithm for tuning membership functions and feature460

extraction tasks.

3.2.3. Evolutionary Fuzzy Cognitive Maps

A Fuzzy Cognitive Map (Kosko, 1986) is an extension of cognitive maps

which inherited the main aspects of fuzzy logic and Artificial Neural Networks

for graphically representing the reasoning behind a given domain of interest.465

Fuzzy Cognitive Maps describe a system using nodes/concepts (variables, states)

and signed fuzzy relationships between them. Although the Fuzzy Cognitive

Map bears a resemblance to an Artificial Neural Network, it is a conceptual

network and therefore the nodes and arcs within the Fuzzy Cognitive Map are

able to follow semantical interpretation. The advantage of Fuzzy Cognitive470

Maps over Artificial Neural Networks is that knowledge about the casual de-

pendencies within the domain of interest is transparent and hence it can be

easily interpreted by humans. However, a limitation of Fuzzy Cognitive Maps

is that they are constructed manually, and therefore it may not be feasible to

apply them when dealing with data comprising of a large number of variables.475

In order to address this limitation, Froelich et al. (2012) proposed an evolution-

ary Fuzzy Cognitive Map approach which is capable of learning Fuzzy Cognitive
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Maps. The proposed evolutionary Fuzzy Cognitive Map was applied to predict

a patient’s state after a period of time following a suggested therapy plan. The

evolutionary Fuzzy Cognitive Map was applied to a small dataset comprising of480

40 patients suffering with prostate cancer. The results revealed that the evo-

lutionary Fuzzy Cognitive Map outperformed the basic Fuzzy Cognitive Map.

Although it is difficult to determine the reliability of the results given the small

dataset, it is important to appreciate that the authors gave appropriate thought

to the validation of the results in order to ensure reliability of findings. They ap-485

plied two methods to validation - method 1: the data were divided into learning

and testing sets of the same cardinality (the learning set contained records of 20

patients, the remaining 20 records constituted the testing set); and method 2:

the leave-one-out cross validation (LOOCV) method was applied. The results

revealed that both validation methods returned very similar results, and this490

may not have been the case if a larger dataset was utilised.

3.3. Support Vector Machines

Support Vector Machine (SVM) (Cortes & Vapnik, 1995) is a method for

the classification of linear and nonlinear data, and uses nonlinear mapping to

transform the original training data into a higher dimension. Support Vector495

Machines then search for the linear optimal separating hyperplane, which es-

sentially is a boundary which separates the records into classes. The Support

Vector Machine finds the optimal hyperplane using support vectors (which can

be characterised as the most significant training records) and margins (which

are defined by the support vectors) (Han et al., 2011). The Support Vector500

Machine can be trained using several functions: the Linear Kernel Function,

Quadratic, Gaussian Radial Basis (GRB), Multilayer Perceptron Kernel (MP)

functions. Fig. 4 shows an example Support Vector Machine applied to ovarian

cancer prediction using a linear separation of classes (Gaul et al., 2015). The

most suitable training function is often experimentally selected. Support Vector505

Machines, when trained using the appropriate training function, are highly accu-

rate and capable of modeling complex nonlinear decision boundaries (Han et al.,
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Figure 4: (a) Accuracy using Support Vector Machine (SVM) feature selection for metabolic

detection of early stage ovarian cancer. Plot (a) shows the performance of the SVM based

classifier against alternative approaches. A minimum of 16 metabolic features that provided

100% accuracy. Plot (b) shows the optimal linear separation between epithelial ovarian cancer

(EOC) and control samples by the SVM-based model. The vertical line is the projection of

the separating hyperplane generated by the SVM model. The discriminant linear SVM model

was evaluated by leave-one-out cross-validation (LOOCV) (Gaul et al., 2015).

2011). They are also much less prone to overfitting than other computational

intelligence methods, and can be used for classification as well as prediction

tasks. Support Vector Machines have been adopted to solve decision-making510

tasks on data which also include data obtained from images, microarray and

other clinical data.

The automatic identification of the boundary between the prostate and non-

prostate regions is challenging, as the low contrast of ultrasound prostate images

makes prostate and non-prostate boundaries fuzzy and noisy. Computational515

intelligence methods can be applied to identify and segment the prostate region

on ultrasound images. Sung et al. (2011) proposed a Computer-Aided Diagnosis

(CAD) system, based on Support Vector Machines, for prostate cancer detec-

tion using dynamic contrast-enhanced MRI (DCE-MRI) examinations. Their

system was evaluated using DCE-MRI examinations of 42 patients, and the520

results revealed that the system achieved an overall accuracy, sensitivity and
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specificity of 83%, 77% and 77% respectively. In a recent study, Haq et al.

(2015) also produced a DCE-MRI system for prostate cancer prediction. The

approach by Haq et al. (2015) is data-driven and utilises a number of approaches

for feature extraction and feature reduction. In particular, Principal Compo-525

nent Analysis (PCA) was applied along with the least absolute shrinkage and

selection operator (LASSO) to extract the optimal set of principal components.

Using the extracted features, a predictive model was created which was based

on the Support Vector Machine classification algorithm. For testing the model,

a total of 449 tissue regions were obtained from 16 patients, and the results530

revealed that the proposed system achieved an Area Under the Curve of 86%

when using the leave-one-out cross validation approach.

Fei et al. (2011) have developed a PET/CT directed, 3D ultrasound image-

guided biopsy system for improving the detection of prostate cancer. Their

system was designed to automatically identify the areas of an image containing535

prostate and non-prostate tissues. The prostate textures were captured by train-

ing the locally placed Wavelet-based Support Vector Machines (W-SVMs). The

trained W-SVMs were used to tentatively label the voxels around the surface

into prostate and non-prostate tissues based on their texture features obtained

from different Wavelet filters. Thereafter, boundaries were formed between the540

tentatively labelled prostate and non-prostate tissues based on defined weighting

functions and labeled voxels. The authors found that, using local texture fea-

tures and geometrical data, W-SVMs can improve the classifier’s performance

with regards to differentiating the prostate tissue from the adjacent tissues.

They also found that TRUS image textures can provide important features545

for accurately defining the prostate, particularly for the regions where prostate

boundaries are not clear. The system was evaluated using data sets contain-

ing 3-D TRUS images from 5 patients. The system achieved an average DICE

overlap ratio of 90.7%± 2.5%, and an average sensitivity of 90.7%± 4.9%.

Fig. 5 shows sample segmentation and its comparison with the corresponding550

gold standard (obtained from manual segmentation) (Fei et al., 2011). Briefly,

the DICE overlap ratio is the result of using the DICE coefficient (Dice, 1945)
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Figure 5: 2-D segmentation results in different planes: red lines are the gold standard bound-

aries (those defined by experts) and green lines are the segmentation boundaries (those defined

by the system which uses Wavelet-based Support Vector Machines, W-SVMs). (a)Coronal

plane (b) Sagital plave (c) Transverse plane (Fei et al., 2011)

which measures the extent of spatial overlap between two binary images. It

is commonly used in reporting performance of segmentation and gives more

weighting to instances where the two images agree. A DICE overlap ratio value555

ranges from 0 (or 0%), indicating no spatial overlap between two sets of binary

segmentation results, to 1 (or 100%), indicating complete overlap and there-

fore perfect agreement. The performance of the system proposed by Fei et al.

(2011) was tested on a very small dataset of images, and more evaluations need

to be conducted to conclude on the systems overall accuracy in automatically560

identifying the areas of an image containing prostate and non-prostate tissues.

Similarly, Kim & Seo (2013) proposed an approach for segmenting prostate

tissues using TRUS images and Gabor texture features, snake-like contour

smoothing algorithm and the Support Vector Machine algorithm. Gabor fea-

ture extraction was applied to smooth the image and remove speckle noises, and565

the snake-like contour algorithm was then implemented to conclusively define

the boundary of the prostate. After identifying the pixels defining the prostate

boundary, the Support Vector Machine was trained using the pixels and known

class labels (as identified by human experts) for classifying the pixels within

prostate and non-prostate. During the testing phase, the accuracy of the algo-570

rithm in identifying the pixels defining the outline for the prostate boundary is

compared to the results of a human expert who performed the same task. A
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total of 20 experimental images were used for the tests and the results revealed

that the prostate boundaries generated differed from those that were drawn by

human experts by only 10%. More recently, a system proposed by Lehaire et al.575

(2014) used Support Vector Machines in combination with feature extraction for

distinguishing between normal, normal but suspicious, and aggressive classes of

cancer tissue found in multi-parametric magnetic resonance (mp-MR) images.

The system was evaluated using mp-MR images of 35 patients. The system

achieved a mean Area Under the Curve of 78%± 1%, which compares well with580

other current state of the art systems.

Gertych et al. (2015) emphasise that although image classification approaches

have been developed to identify and classify glandular regions in digital images

of prostate tissues, the success of these has been limited by their capability to

identify the different types of tissue components such as stroma, benign/normal585

epithelium and prostate cancer. They proposed a machine learning approach

comprising of a Support Vector Machine followed by a Random Forest classi-

fier to differentiate prostate tissue into stroma, benign/normal epithelium and

prostate cancer areas. A total of 210 high resolution images of low-grade and

high-grade tumors which were collected from 20 radical prostatectomies were590

manually annotated by two pathologists. The 210 images were split into the

training (n = 19) and test (n = 191) sets. In the pre-processing steps, the

Support Vector Machine separated the areas of stroma from the epithelium.

Subsequently, areas of epithelium were stratified into benign/normal glands and

prostate cancer using the Random Forest classifier. The Random Forest classi-595

fier was trained with a different number of trees. Algorithms were evaluated by

Jaccard (J), area overlap (O) and Rand indices (Ri) in order to determine the

concordance of the algorithm-based prediction with pathologist manual anno-

tations. J and O indices for concordance of stroma and epithelium areas were

calculated separately, whereas Ri was calculated for stroma and epithelium to-600

gether. To distinguish benign/normal glands from prostate cancer they trained

a Random Forest classifier and obtained separate performance values for be-

nign/normal glands and prostate cancer: JBN = 35.2± 24.9, OBN = 49.6± 32,
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JPCa=49.5± 18.5, OPCa=72.7± 14.8 and Ri = 60.6± 7.6.

Singireddy et al. (2015) devised a Support Vector Machine classifier to iden-605

tify biomarkers associated with prostate cancer progression (i.e. cancer stage)

using RNA-Seq and the Support Vector Machine classifier. They utilised the

Minimum Redundancy Maximum Relevance (mRMR) (Peng et al., 2005) statis-

tical approach to select the best features, and thereafter a linear Support Vector

Machine for performing the classification task. Although the reported accuracy610

was high, in the range of 80% to 99.3%, this was a small-scale study which used

a dataset of 106 prostate cancer samples. The authors do not report on the

validation approach, nor whether the results reported were of the training or

testing stage. Luque-Baena et al. (2014) performed a comparative study of the

Stepwise Forward Selection (SFS) and Genetic Algorithms for the analysis of615

microarray data, with the aim of identifying groups of genes which have high

predictive capability and biological relevance. They found that the predictive

models returned higher accuracies when the Genetic Algorithm was utilised to

select features as opposed to the Stepwise Forward Selection approach.

In summary, the automatic identification of the boundary between prostate620

and non-prostate continues to be challenging given that the boundary is often

not clear in ultrasound prostate images and that their textures are difficult to

classify. The identification and classification of cancerous and non-cancerous tis-

sues by analysing image data is also a challenging and ongoing area of research.

A common barrier relates to the availability of datasets which are large enough625

to ensure that the reported system performance is indeed representative. How-

ever, the studies conducted thus far in this area are yielding promising results.

With regards to extracting relevant features from microarray data, this is also

a very complex task because this type of data comprises a large number of fea-

tures while few samples are generally available (Luque-Baena et al., 2014). The630

use of metaheuristic optimisation approaches for feature selection and bound-

ary identification warrant examination, and the applications of metaheuristic

optimisation algorithms to prostate cancer are discussed in Section 3.4.
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3.4. Metaheuristic Optimisation

Metaheuristic optimisation algorithms are designed to solve complex optimi-635

sation problems and are applied to find, generate, or select a heuristic (partial

search algorithm) that may provide a sufficiently good solution to a problem.

Metaheuristic algorithms are especially effective when the information is uncer-

tain and dynamic (Bianchi et al., 2009). Some of the most popular metaheuris-

tics include the Genetic Algorithm (Holland, 1992), Particle Swarm Optimisa-640

tion (Kennedy & Eberhart, 1995), Artificial Bee Colony algorithm (Teodorovic

et al., 2006), and Ant Colony optimisation algorithm (ACO) (Dorigo & Gam-

bardella, 1997). Many of these nature-inspired algorithms are developed by

studying the evolutionary behaviour of species (e.g. birds, insects, humans) and

mimicking this in a computer science algorithm. Metaheuristic optimisation ap-645

proaches are most commonly used for finding the best features in large datasets.

These approaches require their parameters to be carefully tuned using suitable

parameter values which need to be adapted based on the dataset and problem to

be solved. Furthermore, models which comprise of a collection of optimisation

and classification algorithms can be easily over-trained and extensive evalua-650

tions using appropriate validation approaches must therefore be carried out. In

the subsections that follow, the metaheuristic optimisation approaches which

have been applied to derive prostate cancer predictive models are discussed.

3.4.1. Genetic Algorithm

A Genetic Algorithm is an evolutionary algorithm (also known as a search655

heuristic or metaheuristic) which generates solutions to optimisation and search

problems. Genetic Algorithms use techniques inspired by natural evolution, such

as inheritance, mutation, selection, and crossover, and are often combined with

other computational intelligence approaches to solve classification and predic-

tion problems. Underwood et al. (2012) developed a Genetic Algorithm based660

method that integrates a simulation model in a Genetic Algorithm with the aim

of selecting the best Prostate Specific Antigen (PSA) test screening policy. Com-

parisons between the results obtained from their proposed method and previ-
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ously recommended screening policies revealed that patients should be screened

more aggressively, but for a shorter length of time than previously published665

guidelines recommend. Their research clearly demonstrates how computational

intelligence can be used to influence healthcare policies. Treatment planning

for radiation therapy is a multi-objective optimisation process. Yu et al. (2000)

present a machine intelligent scheme for the planning of radiation therapy which

is based on Multi-Objective Decision Analysis (MODA) and Genetic Algorithm670

(GA) optimisation. They found that a combination of MODA and GA optimi-

sation can provide solutions to practical treatment planning tasks. The authors

emphasise the potential for real time applications in radiotherapy. Shi et al.

(2013) propose a new approach to segment prostate ultrasound images using the

Genetic Algorithm optimisation. Boundary curve representations are derived675

by using Principal Component Analysis (PCA), after which prostate boundary

features are determined and a Genetic Algorithm applied in order to optimize

the parameters of the implicit curve representation. Recently, McGeachy et al.

(2015) developed a Simple Genetic Algorithm (SGA) for determining optimal

seed distributions for low-dose-rate prostate brachytherapy (McGeachy et al.,680

2015). The SGA performance was evaluated by comparing solutions obtained

from a commercial optimizer (Inverse Planning Simulated Annealing [IPSA])

with the same cohort of 45 patients. The results of the SCGA and the IPSA

were similar, and clinically acceptable. The Genetic Algorithm has also been

used in various hybrid models in which it has been used to optimise the perfor-685

mance of a classifier, or for feature selection tasks. For example, Castanho et al.

(2013) proposed a hybrid rule-based fuzzy system for predicting the pathologi-

cal stage of prostate cancer, which uses a Genetic Algorithm to tune the fuzzy

rules and membership functions was discussed in Section 3.2.2. Other hybrid

algorithms which use Genetic Algorithms are discussed in the relevant sections690

of the paper.
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3.4.2. Ant Colony Optimisation

In computer science, the Ant Colony optimisation algorithm (ACO) (Dorigo

& Gambardella, 1997) is a probabilistic technique for solving computational

problems that are concerned with finding the best paths through graphs. Ant695

Colony optimisation algorithms are based on the behaviour of ants seeking a

path between their colony and a source of food - ants search for, and mark, the

best solutions and take account of previous markings to optimize their search.

Ant Colony optimisation has been applied to solve a variety of issues, including

classification (Martens et al., 2007) and data mining problems (Parpinelli et al.,700

2002). In the prostate cancer classification system proposed by Thangavel &

Manavalan (2014), Ant Colony Optimisation was applied to select the best fea-

tures for detecting prostate cancer from TRUS images. Initially, the Regions

of Interest (RoI) were identified from the TRUS images and thereafter optimi-

sation approaches were applied to the selected Regions of Interest in order to705

find the best features. Rough set based algorithms (namely the Hybridization

of rough set based Quick Reduct) were combined with the Ant Colony Opti-

misation (QR-ACO) algorithm for selecting the best features from the selected

Regions of Interest of TRUS images in order to improve accuracy and efficiency

(feature selection). As an alternative to QR-ACO, a Genetic Algorithm-Ant710

Colony Optimisation (GA-ACO) algorithm was also developed for reducing the

feature set. Once the best features were selected, the Support Vector Machine

was applied for classifying the images to benign and cancer. Their experimental

results revealed that the Ant Colony optimisation algorithm is an efficient ap-

proach for selecting the minimal features that are required for highly accurate715

classification of cancer and benign images.

3.4.3. Particle Swarm Optimisation

The Particle Swarm Optimisation (PSO) approach (Kennedy & Eberhart,

1995) is an adaptive, randomly optimal algorithm which is constructed on swarm

intelligence, as each particle within the swarm represents a possible solution to720

the optimisation problem. In a Particle Swarm Optimisation system, a particle
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is within the search space and, with each iteration, it adjusts its position on the

basis of its own experience and that of nearby particles. The particles evaluate

their own position on the basis of a fitness function, and the process is repeated

until the number of iterations have been exceeded. Sadoughi & Ghaderzadeh725

(2013) have developed a system to support the diagnosis of prostate cancer which

combines the features of a Back Propagation Neural Network (BPNN) with

particle swarm optimisation host. The authors used a dataset from 360 patients

who underwent radical prostatectomy for prostate cancer. The dataset is a two-

class problem, either positive or negative, for cancer and benign hyperplasia730

of prostate (BPH) diseases respectively. Sensitivity, specificity, and accuracy

were recorded for the system during training and achieved 96.87%, 100% and

98.33%, respectively. The authors note that while the system does not produce

a concrete diagnosis for prostate cancer, it does provide information for doctors

to help assess whether a biopsy is necessary.735

3.4.4. Artificial Immune System

The Artificial Immune System (AIS), first proposed by Jerne (1974) are

another type of metaheuristic learning algorithm which has been designed to

solve optimisation problems. AIS algorithms are inspired by the principles of

theoretical immunology and the processes of the vertebrate immune system740

(Tang & Vemuri, 2005). The vertebrate immune system has many specialized

cells and molecules that interact in particular ways. AIS algorithms typically

exploit the immune system’s characteristics of learning and memory to solve a

problem.

Kuo et al. (2015) have developed a model based on the AIS for the prognosis745

of prostate cancer which also uses a two-stage fuzzy neural network. Regression

analysis was initially performed to find out the important factors which affect

prognosis, and these factors included age, Body Mass Index (BMI), Prostate

Specific Antigen (PSA), Digital Rectal Examination (DRE), clinical T-stage,

biopsy, and treatment methods. These important factors are then applied to a750

fuzzy neural network. The fuzzy neural network comprised two steps. During
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the first stage, clustering of the features was performed using the aiNET-K

clustering algorithm which is based on an Artificial Immune Network (Kuo

et al., 2014) in order to find a good initial solution for the membership functions

at the beginning of training. During the second stage, the Artificial Immune755

Network was integrated with Particle Swarm optimisation (called Opt-aiNET)

for the training of a fuzzy neural network. Through iterative evolution, the

algorithm tries to find the optimal solutions. The system was trained using a

small dataset comprising of 100 records and using 10-fold cross validation. Their

experiments revealed that the proposed method has the potential to accurately760

predict prostate cancer, and that it outperformed the network-based fuzzy logic

control system. The drawbacks of the proposed algorithm are computational

time and parameter tuning.

3.5. Ensemble Learning Approaches

Ensemble learning is the process by which multiple models, such as classi-765

fiers, are strategically generated and combined to solve a particular problem.

Ensemble learning algorithms are mainly used for classification and prediction

problems and are considered to be effective in achieving high performance.

An Ensemble method combines a number of k learned base classifier models,

M1,M2, . . . ,Mk, and aims to create an improved classification model, M∗, which770

is a combination of all the classifiers. A dataset, A, is decomposed into a to-

tal of k training sets, such that A1, A2, . . . , Ak, where all, but one datasets,

Ai(1 ≤ i ≤ k − 1), are used to train each classifier Mi. The remaining dataset

is used for validating the predictive accuracy of each classifier, and hence the

records found in this dataset have not been previously seen by any of the classi-775

fication models. During the classification process, a record Xi is passed to each

classification model which then returns a vote (i.e. class label) for the given

record. The Ensemble algorithm then returns a final class prediction which is

based on the majority of the votes of the base classifiers (Han et al., 2011).

Alternative Ensemble methods such as bagging, boosting and Random Forests780

have been created for deriving the final prediction (i.e. processing of multiple

30



votes to reach a final prediction). The Ensemble approach described above is

illustrated in Fig. 6.

Ensemble models reflect the real life decision making process where several

opinions may be gathered, and then all opinions are considered to make a final785

decision. For example, individual opinions of several experts are typically taken

into consideration before making a final decision and agreeing on a medical

procedure to minimise errors and optimise patient treatment (Polikar, 2009).

The purpose of adopting, and ensemble approach which comprises several

classifiers, as opposed to adopting a single classifier to solve a problem could be790

due to one or more of the following reasons (Polikar, 2009):

• Statistical reason: Ensemble algorithms are suitable when there is inade-

quate data to properly represent the data distribution;

• Computational reason: Ensemble models are chosen when there are many

computational models which are suitable to solving a given problem, and795

there is uncertainty as to which model to apply for solving the problem;

and

• Representational reason: certain problems are too difficult for a single/given

classifier to solve, meaning that the decision boundary that separates data

from different classes may be too complex for the classifier to learn. How-800

ever, an appropriate combination of an Ensemble of classifiers may be

capable of learning the boundary.

3.5.1. Random Forests

Random Forests (Breiman, 2001) are an Ensemble learning method that cre-

ates a number of decision trees using a random selection of attributes. Decision805

trees are a popular method for various machine learning tasks. Decision trees

can grow to be very deep in order to be capable of learning irregular patterns.

For this reason, they tend to over-fit their training datasets (and hence per-

form better during the training than during the prediction tasks) due to their
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Figure 6: Ensemble classification: Combining an Ensemble of classifiers for making a predic-

tion. A dataset is decomposed into k datasets which are used to generate a set of classification

models, M1, . . . ,Mk. A new data record is passed to each classifier, each classifier returns a

vote (i.e. chosen class label). All votes are combined to return a final class prediction (i.e.

class label). Adapted from Han et al. (2011).

high variance. The Random Forests Ensemble learning method aims to reduce810

variance by averaging multiple deep decision trees that have been trained on

different parts of the same training set (Hastie et al., 2001), and hence it is less

prone to overfitting noise and it is less prone to chance correlation. During the

classification process, each tree votes for a class label of a given record, and the

class label with the majority of the votes is considered to be the predicted class815

label. Random Forests have been shown to boost the performance of the final

model and are known to be more robust to errors and outliers when compared

to other Ensemble learning methods such as the AdaBoost learning method (see

Section 3.5.2).

Random Forests have been applied to predict rectal toxicity following prostate820

cancer radiotherapy (Ospina et al., 2014); to classify prostate cancer samples us-

ing a proteomic data set generated mass spectrometry data (Tong et al., 2004);

and to identify biomarker panels in serum datasets for the detection and staging

of prostate cancer (Fan et al., 2011). A recent application of Random Forest has

been reported by Mohareri et al. (2014) who have designed a system for comput-825

ing the probability of prostate cancer. Their system is based on a combination of

features which were extracted from a novel multi-parametric quantitative ultra-

sound elastography technique. The performance of the system was validated on

32



a dataset containing data from 10 patients undergoing radical prostatectomy.

A Random Forest classification algorithm was applied to the combination of830

data extracted from the images in order to separate the cancerous regions from

the non-cancerous regions, and to compute a probability for prostate cancer.

During evaluations, the system achieved an Area Under the Curve of 82%± 1%

using the leave-one-out cross validation, thereby demonstrating that this type

of system has potential for clinical use.835

Another interesting application of Random Forests for the prediction of bio-

chemical recurrence following prostate surgery has been proposed by Golugula

et al. (2011). For this, multimodal data (imaging and non-imaging data) was

collected and a hybrid approach combining Supervised Regularized Canonical

Correlation Analysis (SRCCA) with a Random Forest classifier created. Their840

proposed approach was applied on a cohort of 19 patients, all of whom had

radical prostatectomy, 10 of whom experienced biochemical recurrence within

5 years of surgery and 9 of whom did not. Their proposed approach reached

a maximum classification accuracy of 93%. Importantly, the authors empha-

sise that “computational challenges have limited the ability to quantitatively845

integrate imaging and non-imaging data channels with different dimensionality

and scales”; few attempts have been made to mine such data for the purpose

of constructing classifiers; and that no studies were found to “quantitatively

combine histology (imaging) and proteomic (non-imaging) measurements for

making diagnostic and prognostic predictions”.850

Frantzi et al. (2014) provide a very interesting discussion on biomarker re-

search and how it is continuously expanding in the field of clinical proteomics.

They discuss the technical proteomic platforms that are available along the

different stages in biomarker discovery, and clinical applications relating to

bladder cancer biomarker research. They emphasise that mass spectrometric855

techniques could provide highly valuable tools for biomarker research, and that

advances could provide biomarkers that are clinically applicable for disease di-

agnosis and/or prognosis.

Much more research into combining non-image clinical data such as clini-
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cal data obtained from patient examinations and blood tests (biomarker and860

proteomic data) with data obtained from images needs to be performed. Due

to the uncertainty and noise found in clinical data, it is useful and important

to take into consideration multimodal data (imaging and non-imaging data)

when making predictions which can affect decision-making. The challenge is

to select the best features from the different types of data, and to be able to865

find the best combinations for solving the prediction task. Advanced compu-

tational intelligence techniques such as Ensemble learning methods are suitable

for such challenging problems for which the classification problem is complex

and a number of classifier results need to be considered for reaching a predicted

outcome.870

3.5.2. Adaboost Ensemble Method

Adaboost or adaptive boosting is a popular Ensemble method boosting al-

gorithm which is used for improving the accuracy of the learning method. As

previously mentioned, Ensemble algorithms apply a variety of classifiers and

then weigh the output of each classifier to reach a conclusion. Adaboost assigns875

a weight to each classifier’s predicted output (or vote) based on the performance

of the classifier. A classifier’s performance is computed using the error rate -

the lower the error rate, the better the performance of the classifier.

Doyle et al. (2012) have designed a boosted Bayesian multiresolution (BBMR)

system, the aim of which is to identify regions of prostate cancer on digital880

biopsy slides. Initially, the proposed system decomposes the image down into

a multiple resolution levels pyramid image. A Bayesian classifier for identifying

the cancerous regions at lower resolution levels is then applied. These regions

are then examined in greater detail at higher resolution levels - this approach

allows for a quicker and more efficient analysis of large images which would885

require more computational time compared to running the algorithm directly

at full (highest) resolution. A total of 10 image features are chosen from each

resolution level through the use of an Adaboost Ensemble method. The system

was tested on a set of 100 images, gathered from 58 patients, and evaluations
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revealed that it achieved at its lowest, intermediate, and highest levels an Area890

Under the Curve of 84%, 83%, and 76% respectively. The authors found that

their proposed boosted Bayesian multiresolution (BBMR) system outperformed

both and individual features (no Ensemble) approach, and a Random Forest

classifier Ensemble obtained by bagging multiple decision tree classifiers. Com-

puterised image analysis is a challenge due to the size of the digitised histology895

images which contain hundreds of millions of pixels. Importantly, the authors

found that different classes and types of image features become more relevant for

discriminating between prostate cancer and areas of benign disease at different

image resolutions. It was therefore important to extract features from different

image resolutions (Doyle et al., 2012), as this improves image processing speed900

and system accuracy.

3.6. Bayesian Approaches

Bayesian classification is a probabilistic model which addresses the classi-

fication problem by learning the distribution of instances given different class

values. This section describes the Naive Bayesian and the Bayesian Belief Net-905

work classifiers.

3.6.1. Naive Bayesian Classifier

Naive Bayesian classification is based on Bayesian theorem of posterior prob-

ability. Although it is designed for use when predictors within each class are

independent of one another, it is known to work well even when that indepen-910

dence assumption is not valid. The Naive Bayesian approach, classifies data

in two steps. The first step is the training (i.e. learning) step which uses the

training input records to estimate the parameters of a probability distribution,

assuming that predictors are conditionally independent. The second step is

the prediction step, in which the classifier predicts any unseen test records and915

computes the posterior probability of that sample belonging to each class. It

subsequently classifies the test records according to the largest posterior prob-

ability. Some of the functions that can be used for tuning the Naive Bayesian
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classifier include the Gaussian Distribution (i.e. normal distribution) and Ker-

nel Density Estimation functions, and selecting which one to use depends on920

the dataset. Bayesian approaches have been applied to predict prostate can-

cer risk and risk of high-grade disease for men who undergo a prostate biopsy

(Thompson et al., 2006). Strobl et al. (2015) demonstrated that a Bayesian

approach integrated with Markov Chain Monte Carlo (MCMC) can improve

the predictive performance of the well-known Prostate Cancer Risk Calculator925

(PCPTRC) tool, and also found that using Random Forests can consistently

over-fit the training data. The Prostate Cancer Risk Calculator (PCPTRC)

(Thompson et al., 2006) is a risk assessment tool that assesses patient risk, in

consultation of their primary care physician.

Mazzetti et al. (2011) have used a Bayesian classifier for identifying malig-930

nant areas in Magnetic Resonance Images. In particular, they developed a Dy-

namic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI) Computer-

Aided Diagnosis (CAD) system to determine whether a given image area con-

tains malignant tissue. The system can be used to help locate prostate cancer

and guide biopsy to avoid unnecessary sampling. The system performs noise935

filtering and feature extraction. A Bayesian classifier is then applied to the

extracted data to estimate the probability of malignancy. The dataset used by

the authors was small and only included 10 patients with prostate cancer, and

the evaluation results show that the system achieved an Area Under the Curve

of 89.9%, a sensitivity of 82.4% and specificity of 82.1%.940

3.6.2. Bayesian Network

Bayesian networks are probabilistic graphical models which model the depen-

dencies among subsets of attributes (Lacave & Dez, 2003). Bayesian networks

are also known as belief networks, Bayesian Belief Networks and probabilis-

tic networks. A Bayesian network consists of an acyclic directed graph, whose945

nodes represent random variables, and whose links represent relations among

them, along with a probability distribution over its variables. The nodes can

also correspond to actual variables given in the data or correspond to “hidden
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variables” which are believed to form a relationship. For example, in the case of

medical data, a hidden variable may indicate a syndrome, representing a num-950

ber of symptoms that could characterise a disease (Han et al., 2011). Bayesian

Belief Networks are different to naive Bayes classifiers, in that Bayesian Belief

Networks do not assume class conditional independence. Class conditional inde-

pendence is when the value of a particular feature is independent of the value of

any other feature, given the class variable. If the assumption of class conditional955

independence holds, then the Naive Bayes classifier is a more accurate approach

than the Naive Bayesian approach.

Fig. 7 shows a simple belief network for six variables: FamilyHistory, Lung-

Cancer, PositiveXRay, Smoker, Emphysema, and Dyspnea. All six variables are

Boolean, meaning that they have a yes/no answer. The arcs in Fig. 7 represent960

casual knowledge about lung cancer, for example, people with FamilyHistory

of lung cancer and who are smokers have a greater risk of lung cancer. The

PositiveXRay variable is independent of whether a person has a FamilyHistory

of lung cancer or is a Smoker. Since the outcome of PositiveXRay is known,

then the results of the FamilyHistory or Smoker variables do not provide any965

additional information regarding PositiveXRay (Han et al., 2011). A Bayesian

network provides a conditional probability table (CPT) for each variable. Fig.

7 shows the conditional probability table for the variable LungCancer, where

the conditional probability for each known value of LungCancer is provided for

each possible combination of the value of its parents, for example,970

P(LungCancer=yes|FamilyHistory=yes, Smoker=yes)=0.8

P(LungCancer=no|FamilyHistory=no, Smoker=no)=0.9.

Bayesian networks have been applied to the analysis of genomic data, and

mainly for investigating relationships between data and different types of data

obtained from multiple platforms in the context of prostate cancer. Xutao975

et al. (2007) created a Bayesian network approach which uses mass spectrometry

and microarray data for cross-platform analysis of cancer biomarkers. Using

their proposed Bayesian network model, they were able to identify fourteen

genes/proteins as reliable serum biomarkers, including prostate specific antigen
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Figure 7: Simple Bayesian belief network. (a) A proposed causal model, represented by a

directed acyclic graph. (b) The conditional probability table for the values of the variable

LungCancer (LC) showing each possible combination of the values of its parent nodes, Fami-

lyHistory (FH) and Smoker (S). Source: Adapted from Russell, Binder, Koller, and Kanazawa

Russell et al. (1995) by Han et al. (2011).

(PSA). Importantly, the authors emphasise that combining different types of980

data reduces the number of putative biomarkers and allows for more-focused

clinical studies.

Ni et al. (2014) developed a Bayesian network approach which can be used for

investigating the relationships between genetic and epigenetic alterations, and

how these mutations affect a patient’s clinical outcome. They have applied their985

methods to identify known biologically relevant relationships and new genes

that could potentially be novel biomarkers for cancer progression using a multi-

platform dataset derived from patients with glioblastoma (an aggressive form of

brain cancer). Jiang et al. (2014) have proposed a Bayesian network approach

for patient survivorship prediction. The aim of the method is to predict patient990

survivorship, while having the capability to handle high-dimensional data and

being able to incorporate it into a clinical decision support system (CDSS).

Jiang et al. (2014) evaluated the system using a breast cancer dataset, and

found that their proposed system outperformed the Cox proportional hazard
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model and was comparable to the random survival forest method.995

Bayesian networks have not been applied to the problem of solving prostate

cancer classification tasks on non-genomic data as commonly as other approaches.

It would therefore be very useful to investigate their predictive capability and

compare this to alternative approaches which do not provide the advantage of

graphically representing the reasoning behind a prediction.1000

3.7. Markov models for Decision Making

A Markov model consists of a set of the possible states of a system, with

possible transition paths between those states, and the rate parameters of those

transitions. Future states depend only on the present state, and not on the se-

quence of events that preceded it (that is, it assumes the Markov property). The1005

Markov model is a stochastic model used to model randomly changing systems

representing the evolution of some system of random values over time. Hid-

den Markov models (HMMs) can be viewed as examples of dynamic Bayesian

networks because they use different Bayesian classification techniques like Max-

imum A Posteriori (MAP), or Maximal Posterior Mode (MPM) to restore the1010

distribution of the hidden process conditional to the observations, which is called

its “posterior” distribution (Ghahramani, 2002). Fig. 8 presents an example of

a Markov model illustrating the various health states a patient experiences from

a start state, “no evidence of disease” until the end state which can be “dead

(cancer)” or “dead (non-cancer)”. As illustrated in Fig. 8 a patient can remain1015

in a healthy state such as “no evidence of disease” until a parameter changes

which then triggers a transition to another state.

Pieczynski Pieczynski (2003) has proposed a new model called a Pairwise

Markov Chain (PMC), which generalizes the classical Hidden Markov Chain

(HMC) model so that it can be applied to more complex situations with nu-1020

merous applications to signal and image processing, such as speech recognition,

image segmentation, and symbol detection or classification. A variation of the

Pairwise Markov model (PMMs) has been applied to detect prostate cancer

using information obtained from images. Monaco et al. (2009) proposed the
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Figure 8: A Markov model of superficial bladder cancer. In each cycle, a patient cohort

moves between the five health states. The direction of the arrows indicates the movement

of the patients between the different health states (i.e. Markov states). Reflexive arrows

(pointing back to their state) indicate that a patient can remain in a healthy state in successive

cycles.(Elkin et al., 2006)

probabilistic pairwise Markov model (PPMMs) for detecting prostate cancer in1025

whole-mount histological images. The algorithm was integrated into a Com-

puter Aided Diagnosis system which aims to detect cancerous glands. Experi-

ments were performed on a dataset which consisted of 20 histological sections of

prostate tissue taken from 19 patients. Their evaluations revealed an Area Un-

der the Curve of 87% when the probabilistic pairwise Markov model (PPMMs)1030

was used, as opposed to the alternative baseline system which returned an Area

Under the Curve of 83%. Yu et al. (2011) applied the Probabilistic Pairwise

Markov model for detecting regions of prostate cancer using colour fractal di-

mensions. Their approach combined the probability map constructed via colour

fractal dimension with their Probabilistic Pairwise Markov model (PPMM). The1035

performance of the detection system was evaluated using 27 prostatectomy spec-

imens from 10 patients. The results revealed an Area Under the Curve of 83.1%.

Markov models are useful to adopt when a clinical decision problem involves risk

that is continuous over time, when the timing of events is important, and when
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important events may occur more than once (such as cancer recurrence) (Son-1040

nenberg & Beck, 1993). Markov models are recursive decision trees with the

advantage over the conventional decision trees that they can model situations

under uncertainty which consider timing of events which are too complex for

conventional decision trees to model. With regards to Markov models that have

been developed to solve clinical decision problems (such as life expectancy esti-1045

mation, and decision for screening), the Markov-cycle tree is a suitable model.

The Markov-cycle tree uses a tree representation of clinical events and may be

evaluated either as a cohort simulation or as a Monte Carlo simulation (Son-

nenberg & Beck, 1993). Fig. 9 shows an example of a Markov cycle tree for the

analysis of lung cancer screening that includes four health states: well, asymp-1050

tomatic lung cancer (ASYM), symptomatic lung cancer (SYM), and dead. The

decision making process starts at time zero, when the cohort of patients subject

to screening are distributed between the ‘well’ and ‘ASYM’ states (Black, 1999).

The cohort of patients then moves between the asymptomatic, symptomatic and

dead (from cancer, or other causes) states. Given that each living health state1055

(well, asymptomatic and symptomatic) is assigned a value of 1, and the dead

state is assigned a value of 0, then the Markov model can be used to estimate

life expectancy (Black, 1999).

Markov models have also been applied for finding optimal prostate cancer

treatment plans. Goulionis & Koutsiumaris (2010) developed a Markov-based1060

model (namely the Partially observable Markov decision model) for finding opti-

mal disease treatment plans. Smith et al. (2009) created a Markov model as an

aid for selecting the radiation-therapy strategy for patients with prostate cancer.

Ross et al. (2005) created a Markov model to estimate the benefits of screening

for prostate cancer as patient age at screening increases. Recently, Sanyal et al.1065

(2014) developed a Markov Monte Carlo model for predicting clinical outcomes

and mortality across risk groups, with the ultimate aim of better managing dis-

ease. In order to determine the cost-effectiveness of prostate cancer treatment,

Keegan et al. (2012) and Eldefrawy et al. (2013) applied the Markov model for

determining an economic analysis of active surveillance compared with imme-1070
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Figure 9: Markov cycle tree for natural history of disease. Asym = asymptomatic; Symp =

symptomatic. Black (1999)

diate treatment. Black (1999) emphasise that although Randomised Controlled

Trials (RCTs) are the most valid method for determining the effectiveness of

screening, they require a large number of participants and many years of follow-

up. Decision models, such as the Markov model, can be effectively used to find

answers to clinical problems, and they can help to address, in a timely manner,1075

many of the important clinical questions about cancer screening which have not

been answered by randomised controlled trials. Markov models can be used to

predict many outcomes related to screening and the expected gain (or loss) in

life expectancy with screening. Sanyal et al. (2014) also point out the limitations

of randomised controlled trials and argue that “most of the observational stud-1080

ies and randomized trials on prostate cancer have concurrently evaluated fewer

treatments over short follow-up” and that decision analytic models can be used

to address the lack of literature on evaluations of contemporary management

options.

There is a need to apply decision making models such as the Markov model1085

for forecasting short and long-term clinical outcomes of evaluating various con-

temporary management options.
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4. Selecting a suitable Metaheuristic Optimisation method

Many studies have focused on the topic of comparing the performance and

robustness of metaheuristic optimisation methods using benchmark problems,1090

(Kachitvichyanukul, 2012), (Xue et al., 2016), (Hassan et al., 2005), (Elbeltagi

et al., 2005). The task of comparing optimisation methods is itself a challenge,

since although the objective functions and the fitness values of their solutions

could be the same, the optimisation methods may select different individual

features to reach that best solution. For this reason it is important to experi-1095

ment with various methods and consider the difference of the fitness values; the

consistency of the selected features during the comparison process; and the time

taken for the method to reach the best solution (Xue et al., 2016).

Elbeltagi et al. (2005) evaluated the performance of various optimisation

algorithms including the GA, the PSO, and ACO using benchmark problems.1100

Twenty trial runs were performed for each problem, and the performance of

the different algorithms was compared using three evaluation criteria: (1) the

percentage of success, as represented by the number of trials required for the

objective function to reach its known target value; (2) the average value of the

solution obtained in all trials; and (3) the processing time to reach the optimum1105

target value. It was observed that the performance of the algorithms depended

on the objective function which the algorithm was trying to maximise or min-

imise. Experimenting with various objective functions, the authors concluded

that the behaviour of each optimisation algorithm in all continuous and discrete

test problems was consistent. They found that the PSO algorithm outperformed1110

all other algorithms in terms of solution accuracy and success rate, and was sec-

ond best in terms of processing time (Elbeltagi et al., 2005). The computational

effort required by PSO to arrive to optimum solutions is less than the effort re-

quired to arrive at the same solutions by the GA, due to its simple updating

mechanisms – the PSO generates a new swarm of particles via the velocity and1115

position update equations.
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Hassan et al. (2005) compared the PSO with the GA and in particular they

carried out two tests (1) an effectiveness test to measure the quality of the solu-

tions found by the two algorithms with respect to known solutions for benchmark

test problems; and (2) an efficiency test, to determine whether the computa-1120

tional effort of PSO is less than that of the GA for the sample problem set using

the same convergence criteria. Their results revealed that the computational

effort required by PSO to arrive to high quality solutions is less than the effort

required to arrive at the same high quality solutions by the GA. Importantly,

it was concluded that the difference in computational effort between PSO and1125

the GA is problem dependent. It appears that PSO outperforms the GA when

applied to solve unconstrained nonlinear problems rather than constrained non-

linear problems using continuous or discrete design variables.

Certainly, the first consideration when choosing which metaheuristic method

to use is the type of optimisation problem, and in particular whether it is a1130

continuous optimisation or a discrete optimisation problem. Some methods work

best with discrete variables, often a subset of integers, whereas other methods

can work with variables that can take on any real value. Optimisation methods

with discrete variables are known as discrete optimisation problems; whereas

methods with continuous variables are continuous optimisation problems.1135

GA is initially a discrete optimisation technique that is also suitable for

combinatorial optimisation problems, whereas PSO is a continuous technique

that is very poorly suited to combinatorial problems. Discrete or combinatorial

optimisation deals mainly with problems where the optimum solution must be

found from a finite number of possible solutions. For this reason the GA and1140

ACO algorithm are both suited to discrete problems. However, metaheuris-

tic algorithms which were originally developed to solve continuous optimisation

problems, such as PSO, have been adapted to solve discrete optimisation prob-

lems. For example, Yang et al. (2014) proposed a new multi-objective discrete

PSO algorithm based on enhanced search strategy.1145

Most metaheuristic optimisation methods (including GA, PSO, and ACO)

have been applied for feature selection or to optimise the performance of classi-
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fiers using datasets containing thousands of features. Of all metaheuristic opti-

misation methods, the GA is the most established algorithm with most versions

and applications.1150

Metaheuristic optimisation algorithms, such as the GA, PSO, ACO, and the

AIS are stochastic search methods, meaning that they have randomness in their

nature, and will therefore usually reach a different solution every time they are

executed. In particular, stochastic optimisation is the process of maximizing or

minimizing the value of an objective function when one or more of the input pa-1155

rameters is subject to randomness. This can pose a problem when datasets have

a large number of features and thus optimisation algorithms whose search strate-

gies can converge to a solution in a reasonable amount of time and consistently

need to be chosen. Xue et al. (2016) emphasize that for large-scale optimisation

problems, and especially feature selection problems, new approaches are needed,1160

including new search algorithms. Metaheuristic optimisation approaches have

shown their potential for large-scale (global) optimisation problems and which

provides a good opportunity to better address large-scale feature selection tasks.

In conclusion, it is important to adopt several suitable optimisation methods

and evaluate these using the dataset, objective functions, and suitable evalua-1165

tion strategies to determine most suitable method for the task at hand. Cer-

tainly, when choosing an algorithm it is worth experimenting with the Genetic

algorithm for discrete combinatorial optimisation problems and the PSO for

continuous optimisation problems.

5. Discussion and Future Directions1170

Computational intelligence based models are suitable for clinical and biolog-

ical predictions as they are efficient in finding patterns in data which contain

noisy features, and which traditional statistical models alone often fail to handle.

A commonly encountered challenge in cancer research is the collection of a

representative data sample of sufficient size to enable the algorithms to learn on1175

a subset of that data, and to predict on an unseen subset of data. This problem
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is more apparent in research concerning image analysis. It has been observed

that many studies do not place appropriate emphasis on adopting a suitable

validation approach for evaluating the performance of algorithms. The dataset

size, dataset quality, and quality of selected features impact on the effective-1180

ness of computational intelligence approaches for accurate cancer predictions.

In general, computational intelligence approaches perform well on cancer risk

prediction tasks and, due to their capability to be retrained on new data and to

adapt their algorithm in order to further improve prediction, these approaches

are much more efficient for risk prediction than statistical approaches. Suitable1185

validation techniques (i.e. k-fold, leave-one-out, etc.) must be carefully con-

sidered and adopted for evaluating system performance appropriately in order

to accurately report results. Computational intelligence algorithms which are

over trained (and hence are susceptible to overfitting of the data) are likely to

report excellent training and poor testing and validation results. It is therefore1190

important to adopt a suitable cross validation approach. The remaining sub-

sections summarise the advances and challenges of computational intelligence

approaches, as applied to the analysis and interpretation of cancer data.

5.1. Predictive Modeling using Multimodal Data (Image and Non-Image)

Data obtained from various sources such as patient examinations, blood tests1195

and images can hold important information which is needed in order to reach

a more accurate cancer prediction. However, not all data features are needed

and it is important to select the best features (i.e. predictors) from each set of

data. The feature selection step is important because unnecessary features will

add noise and obscure a predictive model’s performance. Importantly, due to1200

the uncertainty and noise found in the different types of data, it is useful and

important to take into consideration multimodal data when making predictions

which can affect decision-making. Selecting the best features from the different

types of data and finding the best combinations for solving the prediction task is

a significant challenge. Liang et al. (2015) emphasise that “Although numerous1205

integrative clustering approaches have been developed to analyse cancer data,
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few of them are particularly designed to exploit both deep intrinsic statisti-

cal properties of each input modality and complex cross-modality correlations

among multi-platform input data”. Although the solution proposed by Liang

et al. (2015) is not specific to prostate cancer, it is worth mentioning. They pro-1210

pose a multimodal Deep Belief Network (DBN) approach which initially encodes

the relationships of features found in each data modality, into multiple layers

of hidden variables, and then uses a joint latent model to fuse common fea-

tures derived from multiple input modalities. The Contrastive Divergence (CD)

learning algorithm is then applied to infer the parameters of a multimodal Deep1215

Belief network model in an unsupervised manner. More research which demon-

strates the benefits of multimodal data in improving cancer predictions needs

to be performed. Due to the uncertainty and noise found in data obtained from

images, and the challenges involved in identifying the cancerous regions with

confidence, combining image with non-image data is important for improving1220

predictions.

For complex problems, an Ensemble of learning algorithms can be used to

find a solution when single classification algorithms are not capable of reaching

sufficient accuracy, and the results of a number of classifiers needs to be con-

sidered as part of reaching a predicted outcome. The suitability of Ensemble1225

Learning approaches for multimodal data needs to be thoroughly investigated.

5.1.1. Big Data in Prostate Radiotherapy

Big data applied to radiation oncology involves the use of multimodal data

which includes clinical features, treatment related dose-volume metrics and bi-

ological data. Given the heterogeneity of patient populations, it is important1230

that datasets are large enough to include enough records to reflect the underly-

ing patient population (Coates et al., 2016). Coates et al. Coates et al. (2016)

provide a review of big data-mining techniques that have been applied to ra-

diotherapy outcome modeling. They found that a major limitation in modern

outcome modeling is the difficulty in grouping together datasets from multiple1235

institutions, mainly due to patient privacy and security concerns. They pro-
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pose that appropriate data-sharing protocols are needed in order to enable big

data analytics to be applied. This will result in improved data-driven outcome

models, as these will be trained and validated on larger datasets.

5.1.2. Micro-array gene expression analysis1240

A number of studies are focusing on micro-array gene expression data for can-

cer diagnosis. Although these studies mainly utilise statistical approaches for

identifying and classifying biomarkers, computational intelligence approaches

could also be applied to improve the accuracy of these statistical models. Ac-

cording to Alexey et al. (2015) “a significant need for reliable and accurate1245

cancer diagnostics and prognosis compels the search for novel biomarkers that

would be able to discriminate between indolent and aggressive tumours at the

early stages of disease.” Very few studies on the use of machine learning and

computational intelligence approaches for developing predictive prostate cancer

models using RNA-Sequencing exist(Singireddy et al., 2015). RNA-sequencing1250

(Wang et al., 2009) is an approach that is rapidly revealing promising results

in prostate cancer. For example, a study by Shi et al. (2015) proposed using

miR-124, a small non-coding RNA, in patients to make enzalutamide therapy

more effective. Enzalutamide is a new type of hormone therapy for men whose

prostate cancer has spread to other parts of the body (advanced stage of prostate1255

cancer) and has stopped responding to other hormone therapy treatments. En-

zalutamide therapy may help some men to live longer and can also help to

control symptoms.

5.2. Feature Selection

Feature selection is the process of finding the best predictor variables which1260

can be used for maximising predictive accuracy. Although these variables can be

identified using statistical tests, these approaches may not be suitable for high

dimensional data, in that statistical algorithms can return a high number of false

positives due to random correlations (Handl et al., 2007). Extracting relevant

features from microarray data is a challenging task, as these data comprise a1265
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large number of features with few samples being generally available (Luque-

Baena et al., 2014). There is a need for the development of suitable feature

identification approaches which can be applied to biomarker data.

Computational intelligence approaches, and in particular, metaheuristic ap-

proaches can be effective and efficient solutions to feature selection. Such ap-1270

proaches may be particularly useful when dealing with a large number of vari-

ables and there is a requirement to select the most suitable ones for optimising

the prediction task. In particular, feature selection approaches which are based

on metaheuristic optimisation algorithms are capable of finding the best com-

bination of features. These features are the predictors which would be used to1275

train a classifier. Statistical approaches can be embedded as objective functions

in metaheuristic optimisation approaches.

Only a few prostate cancer studies have applied the Genetic Algorithm and

other metaheuristic approaches to prostate cancer prediction tasks. More stud-

ies are needed for investigating the performance of computational intelligence1280

algorithms applied to multimodal data; determining which approaches are most

efficient for feature selection and extraction in multimodal and non-multimodal

data; and whether the performance of prediction models can be improved when

such approaches are adopted.

5.3. Understanding the Reasoning Behind Predictions1285

Artificial Neural Networks, Support Vector Machines, and Naive Bayesian

are among the most popular approaches that have been used for predicting

prostate cancer risk and are known to perform well on prediction tasks. How-

ever, it is impossible for the human to understand the reasoning behind the

predictions derived from the above-mentioned approaches. In contrast, Fuzzy1290

rule-based approaches and Bayesian networks have the additional benefit of

presenting the reasoning behind a prediction (either in the form of rules, or

a graphical representation of variable associations) which can be easily inter-

preted by humans, and therefore can provide a qualitative reasoning to the risk

prediction process. Although Bayesian networks are amongst the most useful1295
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approaches for presenting reasoning behind a prediction, the most challeng-

ing task in dealing with Bayesian networks is learning their structure. Heuristic

search algorithms such as the hill-climbing search heuristic approach (Tsamardi-

nos et al., 2006), and Genetic Algorithms (Larranaga et al., 1997) therefore need

to be adopted. More research which is focussed on developing approaches to1300

learning the structure of a Bayesian network; investigating the predictive ca-

pability of Bayesian networks when various metaheuristic algorithms are inte-

grated; and comparing the performance of the Bayesian network to alternative

approaches which do not provide the advantage of graphically representing the

reasoning behind a prediction needs to be conducted. Support Vector Machines1305

are amongst the most efficient and highly accurate approaches for risk prediction

and, although they do not provide the reasoning behind the decision, they are

known for their high accuracy and capability of modeling complex non-linear

decision boundaries. When a large number of variables is needed for a predic-

tion, then interpreting the rules or graphical representation presented may not1310

be necessary. As a consequence, it may be more suitable to choose an algorithm

which does not provide that reasoning behind the prediction, but can create a

predictive model which returns higher predictive accuracy, but this is dependent

on the task.

6. Conclusion1315

Computational intelligence approaches have not been as widely adopted into

prostate cancer detection as they have for other diseases and it is now time to

embrace, challenge and expose these approaches to achieve better results in

prostate cancer predictive modeling tasks. In the future, clinical data could

be combined with novel biomarkers and imaging tools to improve accuracy in1320

risk prediction, prognosis and diagnosis tasks. Advanced feature selection ap-

proaches can be applied to find the most significant features from a variety of

data sources and bring these together for more accurate prostate cancer pre-

diction models. Despite the evidence in the literature that computational intel-
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ligence approaches can result in effective clinical predictions, very few compu-1325

tational intelligence approaches have actually penetrated into clinical practice.

This is in contrast to statistically-based nomograms which are widely adopted

in clinical practice. There is sufficient evidence in the literature to suggest that

computational intelligence approaches are promising approaches for efficient and

accurate prediction. It is now time to comprehensively apply these approaches1330

to develop cancer prediction models which learn from large and big multimodal

data and which can benefit clinical practice. It is vital to move research be-

yond the experimental stage onto the clinical validation stage, a step towards

achieving patient benefit via improved predictions of outcomes.
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