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A natural language generation approach to support understanding and traceability 

of multi-dimensional preferential sensitivity analysis in multi-criteria decision mak-

ing 

 

Abstract 

Multi-Criteria Decision Analysis (MCDA) enables decision makers (DM) and decision analysts (DA) 

to analyse and understand decision situations in a structured and formalised way. With the increas-

ing complexity of decision support systems (DSSs), it becomes challenging for both expert and 

novice users to understand and interpret the model results. Natural language generation (NLG) 

techniques are used in various DSSs to cope with this challenge as they reduce the cognitive effort 

to achieve understanding of decision situations. However, NLG techniques in MCDA have so far 

mainly been developed for deterministic decision situations or one-dimensional sensitivity analy-

ses. In this paper, a concept for the generation of textual explanations for a multi-dimensional pref-

erential sensitivity analysis in MCDA is developed. The key contribution is a NLG approach that 

provides detailed explanations of the implications of preferential uncertainties in Multi-Attribute 

Value Theory (MAVT). It generates a report that assesses the influences of simultaneous or sepa-

rate variations of inter-criteria and intra-criteria preferential parameters determined within the deci-

sion analysis. We explore the added value of the natural language report in an online survey. Our 

results show that the NLG approach is particularly beneficial for difficult interpretational tasks. 

1 Introduction 

With the aim of enabling transparent and systematic support in complex decision situa-

tions, Multi-Criteria Decision Analysis (MCDA) represents a formalised framework for the 

analysis of different decision alternatives (Stewart, 1992; Geldermann et al., 2009). While 

such decision support approaches are aimed at providing guidance to decision makers 

(DMs), their increasing mathematical complexity often hinders a straightforward under-

standing and traceability on the part of the DMs. Consequently, a lot of cognitive effort is 

required in order to analyse, interpret and derive adequate implications from the obtained 

model results which is particularly challenging for novice users (Spiegelhalter and Knill-

Jones, 1984; Henrion and Druzdzel, 1991; Gregor and Benbasat, 1999). DMs consider 

such models as a ‘black box’, so they mistrust or even reject them (Brans and Mareschal, 

1994; Bell et al., 2003), which leads to a gap between available information on the one 

hand and processible information on the other hand.  

To compensate for this, further explanations of decision analysis results promote under-

standing of the decision situation and thus help to increase trust and acceptability of the 
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system (Greer et al., 1994; Greef and Neerincx, 1995; Dhaliwal and Benbasat, 1996; 

Gregor and Benbasat, 1999; Parikh et al., 2001; Geldermann, 2010). The use of natural 

language generation (NLG) techniques to generate such explanations automatically 

based on the model results has been proposed, for instance, by Papamichail and French 

(2003), Geldermann et al. (2009) or Clark et al. (2010). However, existing DSSs with ex-

planatory functions focus mainly on the communication of their largely deterministic re-

sults. For instance, Papamichail and French (2000, 2003) developed an approach allow-

ing for the generation of two kinds of reports. Their comparative report analyses and com-

pares the performance of two alternatives in relation to each other. Their sensitivity report 

assesses the influences of varying the relative importance of a specified criterion on the 

alternatives’ overall performance. However, their sensitivity report is limited to generate 

explanations for a one-dimensional sensitivity analysis only, i.e. when one weight parame-

ter is varied at a time. 

Aimed at analysing the impact of simultaneous variations of multiple preference parame-

ters on the alternatives’ overall performance, many approaches for multi-dimensional sen-

sitivity analysis have been proposed in the MCDA literature (see e.g., French and Rios-

Insua, 1991; Butler et al., 1997; Lahdelma et al., 1998; Bertsch et al., 2007; Scholten et al. 

2015; Bertsch and Fichtner, 2016). Many of these, including Bertsch and Fichtner (2016), 

are based on Multi-Attribute Value/Utility Theory (MAVT/MAUT, cf. Keeney and Raiffa, 

1976). However, albeit their higher complexity in comparison to one-dimensional sensitiv-

ity analyses, these approaches do not include any advanced explanation systems. This 

shortcoming leads to an increase of the above mentioned gap between available and 

processible information. 

Our contribution in this paper is therefore the presentation of a NLG approach providing 

explanations for multi-dimensional sensitivity analyses, i.e. explaining the results in the 

presence of multiple preferential uncertainties aimed at increasing user understanding in 

such decision situations. We developed explanatory text in an iterative process with ex-

perts and implemented the NLG approach in Matlab. We added the resulting explanation 

system as an extension module to the existing DSS SIMADA (‘Simulation Based Multi-

Attribute Decision Analysis’, see Bertsch and Fichtner, 2016). In order to validate our con-

cept with novice users we conducted an online survey and can show that the generated 

explanations are beneficial, particularly for rather difficult interpretational tasks.  

We demonstrate what new results/explanations can be obtained by applying the devel-

oped NLG approach for a case study in the context of the energy sector transformation in 

Germany (see Bertsch and Fichtner, 2016). The energy sector typically involves long-term 
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investment decisions in the presence of high uncertainties resulting from regulatory, 

techno-economic, ecological and social interdependencies as well as the preferential in-

fluences of different interest groups. This is the reason why a wide range of MCDA meth-

ods is used in this area which apply different methodologies in order to model the decision 

situation and the involved uncertainties (cf. Browne et al., 2010; Heo et al., 2010; Kaya 

and Kahraman, 2011; Streimikiene et al., 2012; Ribeiro et al., 2013; Ren et al., 2013; 

Lühn et al., 2014). For literature reviews of the application of MCDA methodologies in en-

ergy decision situations please refer to Greening and Bernow, 2004; Pohekar and 

Ramachandran, 2004; Diakoulaki et al., 2005; Zhou et al., 2006; Loken, 2007; Kowalski et 

al., 2009; Wang et al., 2009; Abu-Taha, 2011 and Scott et al., 2012. 

This paper is structured as follows: In section 2, we review and summarise relevant litera-

ture related to (i) preferential uncertainty modelling in MCDA, (ii) benefits of explanation 

systems in general and (iii) existing explanatory features in MCDA tools. In section 3, we 

describe the conceptual structure and the main steps of the development process of our 

NLG approach before we present its evaluation in section 4. In section 5, we demonstrate 

the explanatory power of our NLG approach on the basis of a case study. Section 6 pro-

vides a discussion and limitations of the methodology. Section 7 concludes the paper.  

2 Related work 

In this section, we summarise and present relevant, existing literature related to our own 

work. While section 2.1 presents approaches for modelling preferential uncertainties in 

MCDA (with a focus on multi-dimensional sensitivity analysis), section 2.2 provides a short 

overview of user needs and benefits from explanation systems in DSSs. Section 2.3 pre-

sents existing implementations of explanation systems in MCDA tools. The selection of 

literature is adjusted to the focus of our paper, i.e. the presentation of a NLG approach 

explaining results of multi-dimensional sensitivity analyses. The selection of previous work 

can therefore not be comprehensive and will, to some extent, always be subjective.  

2.1 Modelling of multiple preferential uncertainties  

Uncertainties in decision situations originate from a variety of sources (Zimmermann, 

2000), which arise with the application of different MCDA methodologies. This includes for 

example the preference elicitation which is influenced by behavioural effects as well as 

the limitations of modelling a decision situation in general (French, 1995; Gilovich et al., 

2002; Hämäläinen and Alaja, 2008; Morton and Fasolo, 2009; Scholten et al., 2015). Nu-

merous uncertainty classifications exist in the literature (Morgan et al., 1990; Belton and 

Stewart, 2002; Stewart, 2005; Bertsch, 2008; Geldermann, 2010) and there is also a vari-
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ety of modelling approaches in MCDA theory to deal with them (cf. Durbach and Stewart, 

2012; Broekhuizen et al., 2015).  

Especially in group decision-making situations it can be challenging to attain a consensus 

regarding the individual preferences. The application of precise preference information in 

the DSS might therefore not be feasible motivating the application of parameter ranges for 

one or multiple preference parameters (Ríos Insua and French, 1991; Butler et al., 1997; 

Matsatsinis and Samaras, 2001; Jiménez et al., 2005; Mustajoki et al., 2005; Mateos et 

al., 2006; Mavrotas and Trifillis, 2006; Jessop, 2011; Jessop, 2014; Scholten et al., 2015). 

Many of these approaches use Monte Carlo Simulation techniques, where a probability 

distribution needs to be defined for each preference parameter. In case there is none or 

strongly limited information on the parameter available, uniform distributions are often 

applied (see e.g., Bertsch and Fichtner, 2016).  

For situations where very little or no preferential information is available or the DMs are 

unwilling to provide such information, Lahdelma et al. (1998) introduce Stochastic Multiob-

jective Acceptability Analysis (SMAA). SMAA has been used in many MCDA applications 

(Tervonen and Figueira, 2008). The method is designed as an inverse method aimed at 

exploring the weights for which an alternative achieves a certain rank, which is expressed 

in terms of a ‘rank acceptability index’ for each alternative (Lahdelma and Salminen, 

2001). Tervonen (2014) developed an open source software which provides a user inter-

face for the application of different SMAA approaches. While it definitively makes the 

analysis of a decision situation more convenient for a DA, the software does not include 

NLG techniques for explaining the used terminology or the implications for the decision 

situation that can be derived from the model results. 

Bertsch et al. (2007) propose a simulation based approach for multi-dimensional sensitiv-

ity analysis in MAVT/MAUT similar to the one proposed by Butler et al. (1997). Both of 

these are designed as direct approaches as opposed to the inverse SMAA. The approach 

by Bertsch et al. (2007) has been implemented in the DSS SIMADA (Bertsch and Ficht-

ner, 2016). SIMADA is mainly aimed at supporting two groups of users: decision makers 

(DM) and decision analysts (DA). Implemented in Matlab, SIMADA features a graphical 

user interface that provides various visualisations. These support a thorough analysis of 

the obtained model results and their sensitivity towards changes of various (uncertain) 

modelling parameters considered in the decision analysis, including inter-criteria prefer-

ence parameters (i.e. weights) and intra-criteria preference parameters (i.e. value function 

shapes). For the latter, an exponential form is assumed (Kirkwood, 1997). With different 

preferential parameters applied in the Monte Carlo simulation runs, the aggregated model 

results in SIMADA are represented by value ranges of the alternatives’ overall perform-
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ance scores (OPS). In the MAVT module of SIMADA, the OPSs are calculated with an 

additive value function (Belton and Stewart, 2002; Basson and Petrie, 2007; French et al., 

2009). SIMADA also calculates the alternatives’ expected overall performance scores 

(EOPS), which can be seen as an aggregate performance indicator (Durbach and Stew-

art, 2009). A selection of visualisations provided by SIMADA is presented in section 5. 

Since the analysis of the influences of various uncertain preferential parameters on the 

model results can become rather complex, the focus of this paper is on the NLG approach 

to support the user in understanding the multi-dimensional sensitivities of the decision 

situation (further details of its conceptual structure and implementation are provided in 

sections 3 and 4).  

2.2 User needs and benefits of explanations 

To interpret and derive implications from a sensitivity analysis purely based on data and 

visualisations remains challenging for DMs and even for DAs (Hodgkin et al., 2005). Sim-

ply providing the obtained model results of a decision situation under uncertainty does 

neither promote understanding nor supports judgmental performance of the users in an 

effective way (Hammond et al., 1975; Brehmer, 1980; Hoffman et al., 1981). This is due to 

the fact that the human brain is limited in processing large amounts of data (Silver, 1991a; 

Zimmermann, 2000; Linkov et al., 2004; Kiker et al., 2005) which may lead to systematic 

biases in the assessment of a decision situation (Sage, 1981; Hogarth, 1987; Parikh et al., 

2001; Bell et al., 2003). For example, people pay inconsistent attention to the criteria 

(Gardiner and Edwards, 1975), neglect alternatives that do not reach a certain threshold 

performance (Tversky, 1972) or unintentionally focus on aspects that draw their initial at-

tention (Kahneman and Knetsch, 1992). Furthermore, particularly for novice users, it is 

challenging to understand the underlying methodology of a DSS and its reasoning for a 

certain result (Spiegelhalter and Knill-Jones, 1984; Henrion and Druzdzel, 1991). This 

unfamiliarity leads to mistrust, especially in situations where they experience an expecta-

tion failure or anomaly comparing the output of the system to their own logic or belief (Ye, 

1995; Gregor and Benbasat, 1999).  

The described interpretational challenges of a DSS’s model results can be partially re-

solved by explanations providing informative guidance with unbiased and relevant infor-

mation (Silver, 1991a; Silver, 1991b). However, with respect to MCDA theory, this infor-

mation should not include a specific suggestion in favour of or against a certain alterna-

tive. The aim is furthermore to describe the model’s reasoning logic (Weiner, 1980; Bu-

chanan and Shortliffe, 1984) and the used terminology (Gregor and Benbasat, 1999) as 
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well as to support visual model results with explanations on how to interpret them which 

can be complemented by value tables or additional statistical analyses (Silver, 1991a). 

Due to the increased transparency of the DSS, users are more likely to accept and trust 

its application on decision situations and the obtained results from their simulations 

(Swartout and Moore, 1993; Buchanan and Shortliffe, 1984; Greer et al., 1994; Dhaliwal 

and Benbasat, 1996; Parikh et al., 2001). Explanations that provide the user with relevant 

information and a meaningful interpretation of them reduce the cognitive effort of deriving 

these independently what results in higher acceptance and decision efficiency by the user 

(Hammond et al., 1975; Brehmer, 1980; Hoffman et al., 1981; Dhaliwal and Benbasat, 

1996; Mao and Benbasat, 2000). In this way, the user can efficiently explore a decision 

situation and gain a more detailed understanding, which leads to more accurate judge-

ment and increases the effectiveness of decision-making (Hayes and Reddy, 1983; 

Gregor and Benbasat, 1999; Parikh et al., 2001; Tintarev and Masthoff, 2007). While nov-

ices use the explanations primarily to understand the obtained results, experts verify the 

underlying assumptions and resolve anomalies of the involved stakeholders. Therefore, 

explanatory DSSs have proven beneficial for fostering the understanding of both novices 

and expert users (Buchanan and Shortliffe, 1984; Greef and Neerincx, 1995; Ye, 1995; 

Gregor and Benbasat, 1999; Mao and Benbasat, 2000). However, it shall also be noted 

that the understanding of explanations is not unambiguous (Kahneman et al., 1982) and 

can also cause behavioural influences on the DMs’ judgement (Silver, 1991a). 

2.3 Literature overview on MCDA DSSs with explanatory functions 

Explanatory functions were originally developed for expert systems and in the field of arti-

ficial intelligence in order to improve human-computer interaction and communication 

(Amgoud and Prade, 2006; Geldermann, 2010; Ouerdane et al., 2010). One possibility to 

provide the explanations is by NLG techniques (Holtzman, 1988; Silver, 1991a; Reiter and 

Dale, 1997). In the literature, we found three different approaches of how explanations are 

generated in MCDA DSSs.  

1. The systems of the first category use MAUT in order to tailor their generated explana-

tions to the user (cf. Greer et al., 1994; Walker et al., 2004; Carenini and Moore, 

2006).  

2. The DSSs introduced in Papamichail and French (2000), Papamichail and French 

(2003), Bélanger and Martel (2005), Labreuche et al. (2011), Labreuche et al. (2012), 

Greco et al. (2013), Sánchez-Hernández (2013) and Kadziński et al. (2014) provide 

user-independent explanations of the model results. Both user-dependent and user-

independent NLG approaches use a template-based approach (cf. Reiter and Dale, 
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1997). The DSSs either adapt predefined text components to the obtained model re-

sults or choose entirely different templates for different user groups.  

3. The concept presented in Bailey et al. (2011) constitutes a third category because it 

explains the results for a MCDA DSS by applying fuzzy logic (cf. Zadeh, 1965) to de-

termine the corresponding explanations.  

The concept presented in Papamichail and French (2000) and Papamichail and French 

(2003) differs from these systems in the output format of the explanations which is either a 

comparative or a sensitivity report file generated by a NLG module. The explanations are 

represented by five different types of messages which are structured according to the at-

tribute tree of the decision problem. As an example, reasoning explanations provide ar-

guments in favour or against an alternative. The NLG module fills predefined text tem-

plates with linguistic information which can either be quantitative data from the model or 

qualitative semantic quantifiers which verbally express the quality of the analysed parame-

ters. The latter are chosen by the NLG module based on statistical calculations.  

In addition to the benefits from explanations mentioned above, this report-generating con-

cept also increases the traceability of the decision process which can be followed easily 

from the facilitated documentation. It is validated with various users from different back-

grounds (Papamichail and French, 2005) and successfully applied in a group decision 

situation in Geldermann et al. (2009). However, the sensitivity analysis in this approach is 

limited to the variation of only one weight parameter at a time.  

Overall, the above descriptions show that many approaches exist for multi-dimensional 

sensitivity analysis (without explanation systems) and for NLG based explanation systems 

(limited to one-dimensional sensitivity analyses in MCDA). To our knowledge, however, 

NLG approaches for explaining results of multi-dimensional sensitivity analysis have not 

yet been proposed in the literature.  

3 Explanatory concept for a preferential multi-dimensional 

sensitivity analysis 

For a formal description of the approach to multi-dimensional sensitivity analysis imple-

mented in SIMADA, please see Bertsch and Fichtner (2016). In order to facilitate the us-

ers’ understanding of the multi-dimensional preferential sensitivity analysis of the model 

results, SIMADA is extended by a NLG approach to provide automatic explanations for 

these. Based on the well investigated and validated approach by Papamichail and French 

(2000) and Papamichail and French (2003), the concept in this paper also generates the 
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explanations as a report in HTML format based on predefined text templates. Our main 

contribution is the extension of their approach to generate explanations for simultaneous 

variations of different weights and value function parameters which allows a more detailed 

assessment of the preferential uncertainties involved in the decision situation. Both user 

groups (DMs and DAs) of SIMADA are addressees of this concept. While DAs can use it 

to validate the model results with their own expectations, DMs benefit from the facilitated 

interpretation and enhanced traceability of the decision. This is particularly relevant in the 

light of an increasing demand from the media and the public for information and justifica-

tion from authorities on how decisions are taken (Wybo, 2006). However, the explanations 

may still require support from an experienced DA due to the complexity of the report. 

3.1 General approach to report generation 

Similar to the approaches by Papamichail and French (2003) and Geldermann et al. 

(2009), the generation of textual explanations of multi-dimensional sensitivity analysis in 

our approach involves three stages: (i) content determination, (ii) discourse planning and 

(iii) sentence generation. Please note that, given our focus on multi-dimensional sensitivity 

analysis, our notion of content determination in this paper is slightly different from that by 

Papamichail and French (2003). While Papamichail and French (2003) use this term basi-

cally to describe the choice between generating a comparative report vs. generating a 

sensitivity report, we shall use the term for the step in which users determine which part(s) 

of the multi-dimensional sensitivity analysis results they wish to generate explanations for. 

The three stages are each described in further detail in the subsequent section 3.2.  

3.2 Development process of the report structure, text messages and 

templates  

Klein (1994) and Reiter and Dale (1997) introduce the theoretical approach of developing 

a NLG system. Successfully conducted in Papamichail and French (2003), a similar proc-

ess is followed in this paper. As mentioned above, the generation of textual explanations 

follows a three-stage procedure. Several experts from the field of decision theory and 

MCDA were closely involved on the different stages, i.e. from developing a report struc-

ture to formulating explanatory text templates, in order to critically discuss and reflect sug-

gestions and ensure coherence and understandability of the report as a whole. The ex-

perts originate from Germany, South Africa, Netherlands and Finland; their research fields 

vary from operations research and statistics to decision theory with a particular focus on 

MCDA. We now describe the three stages of report generation in more detail and how the 

experts were involved in each of these. We also provide information on further thoughts, 

activities carried out and additional resources involved for each stage.  



 

10 

 

3.2.1 Content determination 

In a first step, all visualisations of multi-dimensional sensitivity analysis results provided by 

SIMADA were collected. On this basis, we initially identified explanation needs which were 

subsequently discussed and refined in four expert interviews. The refinement process also 

included suggestions for adding new visualisations and corresponding explanations, 

which were not yet provided by SIMADA but the experts perceived as important (e.g., in-

formation on stochastic dominance of alternatives). As a result of the interviews, the fol-

lowing nine message types emerged, which can be grouped into four broad categories. 

A. Overarching overview 

1. Introduction and explanation what multi-dimensional sensitivity analysis is 

2. Executive summary 

B. Sensitivities of overall performance scores 

3. Spread of results 

4. Cumulative performance 

C. Ranking performance 

5. Cumulative performance by alternative 

6. Detailed ranking performance 

7. Stochastic dominance 

D. Preference parameter exploration 

8. Weight space exploration 

9. Value function space exploration 

The exact requirements for explanations in a decision situation will be context-specific to a 

large extent. In the content determination stage, users are therefore given the opportunity 

to choose which type of explanations they wish to generate. However, the overarching 

messages of category A will always be provided. The messages in the other three catego-

ries provide information on the spread and distribution of the attained OPSs of the alterna-

tives (category B), their rank performances for all combinations of preference parameters 

varied in the multi-dimensional sensitivity analysis (category C) and the preferential sensi-

tivities on the first ranking performance of a considered alternative, i.e. for which parame-

ters or parameter combinations will a certain alternative achieve the highest OPS (cate-

gory D). Additionally, a nomenclature defining the used scientific terminology is automati-

cally added as an appendix.   

3.2.2 Discourse planning 

Once users have decided in the content determination stage, which explanations they 

would like to generate, the main target of discourse planning is to provide a structure (text 
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plan) according to which the different text messages will be ordered to achieve a coherent 

report. The development process of the discourse planning stage therefore involved an 

initial proposal of a text plan for each type of explanation. Again, this proposal was dis-

cussed and refined in interviews with the same four experts as in the content determina-

tion stage. The following general structure emerged from the discussions: Each message 

type of the multi-dimensional preferential sensitivity report (with few exceptions, see Table 

1) will include (i) the visualisation itself, (ii) an explanatory introduction explaining how to 

interpret it, (iii) a value table containing the analysed parameter values and (iv) information 

providing insight, i.e. a list of implications which can be derived from the respective analy-

sis or visualisation. Figures 1-4 show the corresponding library of text plans for the multi-

dimensional sensitivity analysis report.  

 

Figure 1: Text plan for the overarching overview messages 

 

  

Figure 2: Text plan for the sensitivities of overall performance scores messages 

 

Overarching overview

Introduction Executive summary

Introduction to pref. uncertainties

Underlying methodology

Purpose of report

Differentiating criteria

Maximax alternative

Best expected rank performance

Best  rank performance

Dominance relationships

Sensitivities of overall performance scores

Spread of results Cumulative performance scores

Visualisation

Introduction

Value table

Insight

Visualisation

Introduction

Value table

Insight

Dominance

(In)distinguishability

Comparison of scores

Dispersion

Most probable OPSs
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Figure 3: Text plan for the ranking performance messages 

 

 

Figure 4: Text plan for the preference parameter exploration messages 

Each of the grey boxes in Figures 1-4 represents at least one message to be conveyed to 

the user. The choice of wording for the explanatory messages and the structure of the 

descriptions are based on a number of literature sources (cf. Mareschal and Brans 1988; 

Brans and Mareschal 1994; Hodgkin et al. 2005; Treitz, 2006; Basson and Petrie 2007; 

Bertsch, 2008; Bertsch and Fichtner 2016) as well as self-developed concepts. Their for-

mulation followed various design principles concerning relevance, conciseness and un-

derstanding (cf. Kass and Finin, 1988; Swartout and Moore, 1993; Nunes et al., 2012; 

Corrente et al., 2014). In terms of the input data required to generate each of the mes-

sages, they can be categorised into three broad groups (see below). For each group an 

example of a corresponding template is provided below (in italics in this section).  

Ranking performance

Cumulative performance by 

alternative

Visualisation

Introduction

Value table

Insight

Detailed ranking performance

Introduction

Value table

Stochastic dominance

Visualisation

Introduction

Insight

First ranked scores

Expected rank 

performance

Risk characteristics 

Comparison of 

outranking performance

Correlation

Impact of preference 

parameter combinations

Visualisation

Preference parameter exploration

Weight space exploration Value function space exploration

Visualisation

Introduction

Value table

Insight

Visualisation

Introduction

Value table

Insight

Influence weights

Dominance of relative 

importance

Influence value functions

Detailed effects on 

alternatives
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 Messages of the first group require no input data. These messages only require un-

changed or ‘canned’ text (see Papamichail and French, 2003). For instance, report ti-

tles belong to this group, but also the messages related to the first message type in 

category A of the content determination (see section 3.2.1) are simply canned text 

messages. The introduction to the ‘spread of results’ visualisation is an example of this 

group of messages:   

o The 'spread of results' graph shows the ranges of the overall performance 

scores for all alternatives. The vertical lines with tick marks at their ends repre-

sent the minimum and maximum results obtained from the simulation runs. The 

tick mark in their middle indicates the expected overall performance score 

(EOPS) for the respective alternative (e.g. the value represents the average 

overall performance score in case of symmetric distributions).  

Please note: This visualisation does not show the distribution of the overall per-

formance scores for the alternatives. 

 Messages of the second group require directly available data. Examples of directly 

available data include alternatives’ names or OPSs which are simply included in the 
sentences without any further transformation. An example of this group of messages is 

(where the words in <> brackets indicate slots in the templates which are to be filled 

by directly available data): 

o  The highest overall performance score is attained by <Alternative 

a_MaxiMax>. It maximises the upside potential of realizing the highest possible 

overall performance score. 

 Messages of the third group require computable data. Messages of this kind are 

needed for almost all sentences related to the ‘insight’ boxes in Figures 1-4. The com-

putable data is either included in the sentences in numerical form or in the form of a 

semantic quantifier, i.e. a verbal expression that may change depending on a numeri-

cal indicator taking different values or value ranges. Computable data in numerical 

form may either be included in individual sentences or in table form. An example of 

this group of messages including computed data in the form of a semantic quantifier is 

given by (where the words in <> brackets indicate slots in the templates which are to 

be filled by either directly available or computable data): 

o  The overall performance scores of <alternative a_cons> are <semantic quanti-

fier> dispersed than those of <alternative(s) a_i>. 

The nature of the text templates required to generate the various messages will be differ-

ent for each of the three groups. While templates of the first group are simple in nature, 

the templates of the second and third group contain placeholders, which are replaced by 

strings or numerical values in the sentence generation stage. Table 1 below provides an 

overview of the structure of the template library.  
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Table 1: Structure of the library of templates 

Determined 
content 

Message type Individual messages and sentences 

Visualisation Introduction Value table Insight 

A. Overarching 
overview 

1. Introduction 
- 

Template A1.1 
(canned text) 

- - 

2. Executive 
summary 

- - - 

Templates 
A2.1-A2.5 

(canned text, 
directly avail-
able and com-
putable data) 

B. Sensitivities 
of OPSs 

3. Spread of 
results 

Template B3.1 
(Figure) 

Template B3.2 
(canned text) 

Template B3.3 
(canned text, 
directly avail-
able and com-
putable data) 

Templates 
B3.4-B3.6 

(canned text, 
directly avail-
able and com-
putable data) 

4. Cumulative 
performance 
scores Template B4.1 

(Figure) 
Template B4.2 
(canned text) 

Template B4.3 
(canned text, 
directly avail-
able and com-
putable data) 

Templates 
B4.4-B4.5 

(canned text, 
directly avail-
able and com-
putable data) 

C. Rank per-
formance 

5. Cumulative 
performance 
sorted by al-
ternative 

Template C5.1 
(Figure) 

Template C5.2 
(canned text) 

Template C5.3 
(canned text, 
directly avail-
able and com-
putable data) 

Templates 
C5.4-C5.8 

(canned text, 
directly avail-
able and com-
putable data) 

6. Detailed 
ranking per-
formance - 

Template C6.1 
(canned text) 

Template C6.2 
(canned text, 
directly avail-
able and com-
putable data) 

- 

7. Stochastic 
dominance 

Template C7.1 
(Figure) 

Template C7.2 
(canned text) 

- 

Template C7.3 
(canned text, 
directly avail-
able and com-
putable data) 

D. Parameter 
exploration 

8. Weight 
space explora-
tion Template D8.1 

(Figure) 
Template D8.2 
(canned text) 

Template D8.3 
(canned text, 
directly avail-
able and com-
putable data) 

Templates 
D8.4-D8.6 

(canned text, 
directly avail-
able and com-
putable data) 

9. Value func-
tion space 
exploration Template D9.1 

(Figure) 
Template D9.2 
(canned text) 

Template D9.3 
(canned text, 
directly avail-
able and com-
putable data) 

Templates 
D9.4-D9.5 

(canned text, 
directly avail-
able and com-
putable data) 
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After refining and formulating all templates on the basis of the discussions in the four ex-

pert interviews, the resulting text templates were sent to four additional experts who pro-

vided written feedback which we incorporated in an additional iteration. Overall, all experts 

provided various ideas for reducing the complexity of the explanations (e.g., regarding 

sentence length and use of language), increasing user understanding by adding additional 

textual and visual information and suggesting new concepts (e.g., stochastic dominance). 

3.2.3 Sentence generation  

Once the users have chosen for which results they wish to generate explanations in the 

content determination stage and the overall structure of the text is determined by the cor-

responding text plan from the library of text plans in the discourse planning stage, the 

main task of the sentence generation stage is to fill the placeholder slots of the templates 

with numerical values or strings.  

In a final stage, all generated messages are assembled in a HTML file. To ensure a co-

herent layout, a Cascading Style Sheet (CSS) produced in the discourse planning stage 

defines various style specifications for headlines, tables and paragraphs.  

In the following subsections, details of the sentence generation stage are described for a 

selection of messages and templates. While the descriptions below generally cover all 

three groups of messages mentioned in section 3.2.2, we put special emphasis on mes-

sages requiring computable data. For each described message, we also provide the cor-

responding text template(s) (again in italics). 

3.2.3.1 Overarching overview: Introduction 

The overarching introduction into the report is mostly based on a ‘canned text’ template, 

where only very little adaptations are made. Even though scientific terminology is reduced 

to a minimum in the report, model-specific terms like ‘overall performance score’ or ‘simu-

lation run’ cannot be completely avoided. In terms of layout, these terms are generally 

underlined in the templates indicating that they are linked to the nomenclature which is 

also represented as a predefined template in the NLG module to provide easily under-

standable definitions of such terms to users. They are also represented as tooltips in the 

report which appear when the cursor is moved over the respective link in the document. 

This analysis examines the robustness of the simulation results of a decision situation with 

respect to the influences of preferential uncertainties. The decision situation is modelled 

by Multi-Attribute Value Theory (MAVT) with an additive value function where the un-

derlying preferential uncertainties are expressed by assigned parameter intervals. These 

file:///C:/Users/Wulf/Documents/Dropbox/2016_Explaning_Uncertainty/Sensitivity%20report/PrefSensRep%20Alt4%20AllPrefUn.html%23ch125
file:///C:/Users/Wulf/Documents/Dropbox/2016_Explaning_Uncertainty/Sensitivity%20report/PrefSensRep%20Alt4%20AllPrefUn.html%23ch102
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include intra-criteria preferential uncertainties (regarding the criteria level ranges of the 

alternatives) as well as inter-criteria preferential uncertainties (regarding the relative im-

portance of the criteria). The intra-criteria preferential uncertainties are modelled by the 

variation of the value function shapes (curvature variations) while the inter-criteria prefer-

ential uncertainties are represented by weight variations. 

The aim of this analysis is to identify the most relevant preferential uncertainties in order 

to explore their respective impact on the results and to examine how the alternatives are 

distinguishable from each other in the light of these uncertainties. Therefore, this report 

presents the results of the analysis of <amount> simulation runs of the decision situa-

tion for which <amount> different alternatives are considered. In each of the simulation 

runs, the uncertain parameter samples are varied randomly with respect to the assigned 

interval boundaries. 

3.2.3.2 Sensitivities of overall performance scores: Explaining the ‘spread of 

results’ visualisation 

The explanation of the spread of results includes the following information: 

 Visualisation 

 Introduction 

 Value table 

 Insight: Dominance, (In)distinguishability, Comparison of scores 

Examples of the visualisation, introduction and value table are provided in section 5 as 

well as the appendix. Here, we focus on the sentence generation for the insight-related 

messages.  

Dominance 

As part of this explanation, strict dominance relationships between two alternatives are 

explored and reported. It occurs if all OPSs of an alternative    are strictly better than 

those of alternative    (       ) in every simulation run. Therefore, the system verifies 

condition (1) for all alternatives if the alternative    strictly dominates another alternative    
and fills the template below accordingly (it is not filled if the condition (3.4) is not met for 

an alternative): 

 <Alternative   > dominates alternative(s) <Alternative   > for all preference parameter 

combinations within the considered intervals.                                             (1) 

file:///C:/Users/Wulf/Documents/Dropbox/2016_Explaning_Uncertainty/Sensitivity%20report/PrefSensRep%20Alt4%20AllPrefUn.html%23ch145
file:///C:/Users/Wulf/Documents/Dropbox/2016_Explaning_Uncertainty/Sensitivity%20report/PrefSensRep%20Alt4%20AllPrefUn.html%23ch13
file:///C:/Users/Wulf/Documents/Dropbox/2016_Explaning_Uncertainty/Sensitivity%20report/PrefSensRep%20Alt4%20AllPrefUn.html%23ch13
file:///C:/Users/Wulf/Documents/Dropbox/2016_Explaning_Uncertainty/Sensitivity%20report/PrefSensRep%20Alt4%20AllPrefUn.html%23ch13
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(In)distinguishability  

On the other hand, if the OPS ranges of the alternatives overlap, they are considered in-

distinguishable with regard to their performances. This is expressed in equation (2)(2).  

 The overall performance scores of <Alternative   > are indistinguishable from the 

overall performance scores of alternative(s) <Alternative   >.                                                                               (2) 

Comparison of scores 

In decision theory under uncertainty, several concepts have been developed to identify 

the preferred alternative(s) in the presence of uncertainty (cf. Neumann, 1928). Making 

use of these, the NLG module identifies the MaxiMax, MiniMin and MaxiMin alternatives 

amongst all      respectively, where   is the set of all alternatives,       and     

is the total number of alternatives of the simulation. This is done by comparing the alterna-

tives’ OPSs obtained in the simulation runs     , where   is the set of all simulation runs,       and     is the total number of simulation runs, to the MaxiMax, MiniMin and 

MaxiMin OPSs of the simulation as defined in the conditions (3), (4) and (5). This informa-

tion is then used to fill the text templates below. 

                                                     
                                                    
                                                      

(3) 

 

(4) 

 

(5) 

 The highest overall performance score is attained by <                    >. It 

maximises the upside potential of realizing the highest possible overall performance 

score. 

 The lowest overall performance score is attained by <                    > (<value>). 

 Alternative <Alternative         > attains the highest minimum of all alternatives 

(<value>). This alternative maximises the minimal overall performance scores of all al-

ternatives. 

3.2.3.3 Sensitivities of overall performance scores: Explaining the ‘cumulative 

performance’ visualisation 
The explanation of the cumulative performance includes the following information: 

 Visualisation 
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 Introduction 

 Value table 

 Insight: Dispersion, Most probable OPSs 

As in the previous section, we focus on the sentence generation for the insight-related 

messages here and refer to the appendix for further information related to the other mes-

sages.  

Dispersion 

The dispersion message uses semantic quantifiers for the verbal description of certain 

observations of the visualisations in the text templates. Motivated by Papamichail and 

French (2000), they are based on statistical calculations of certain model parameters. As 

an example, the predefined text template describing the dispersion of the OPSs of the 

considered alternative       in pairwise comparison to the dispersion of the other alterna-

tives’ OPSs is shown below. These explanations complement the cumulative performance 

visualisation which shows distributional information for the alternatives’ OPSs. The text 

templates are filled with a semantic quantifier to describe the degree of difference in dis-

persion between them. It is determined in the following way, where        to calculate a 

95 % confidence interval for the considered alternative’s standard deviation       : 
 The overall performance scores of <Alternative      > are <semantic quantifier> dis-

persed than those of <Alternative(s)   >.                                                                                      
                                                                                                                                                                                                                                                                      

(6) 

 

(7) 

(8) 

(9) 

(10) 

Most probable OPSs 

This section of the report analyses the inter-quantile range of the 5 % and 95 % quantile 

of the considered alternative’s OPSs. The boundaries of the inter-quantile range are 

stated and compared and compared to the quantiles and/or EOPSs of the other alterna-

tives. This can be seen as a weaker relationship than the strict dominance of alternatives 

and accounts for the fact that values outside of this inter-quantile range (5-95%) can po-

tentially represent outliers. 

 The 90 % most probable overall performance scores of Alternative <Alternative name> 

in the executed simulation runs are between <value> and <value>. 



 

19 

 

 <All/The highest 95 %> overall performance scores of Alternative <Alternative name> 

dominates <the 95 % highest/all> overall performance scores of Alternative <Alterna-

tive name>. 

 The expected overall performance score of Alternative <Alternative name> dominates 

<the 95 % highest/all> overall performance scores of Alternative <Alternative name>. 

3.2.3.4 Ranking performance: Explaining the ‘cumulative performance sorted by 

alternative’ visualisation 
The explanation of the cumulative performance sorted by alternative includes the following 

information: 

 Visualisation 

 Introduction 

 Value table 

 Insight: First ranked scores, Expected rank performance, Risk characteristics, Correla-

tion, Impact of preference parameter combinations 

In contrast to the above sections, we focus on the sentence generation for the value table 

and the insight-related messages here and refer to the appendix for further information 

related to the other messages.  

Value table 

This value table provides information on the percentage of simulation runs in which they 

achieve a certain rank within a simulation for each alternative. The system calculates a 

ranking matrix as shown in equation (11) where an entry      is defined by the rank of al-

ternative      in the simulation run     . Afterwards, the number of equal entries in 

every line is divided by the number of simulation runs. This indicates the relative percent-

age of simulation runs that the alternatives achieved the respective rank. These numbers 

also represent the entries for the value table of the cumulative performance sorted by al-

ternative visualisation.  

          
                                                       

   
                                . 

 

(11) 

 

(12) 

In addition to the table itself, a list of further aspects is provided based on the information 

in matrix (11):  
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 The <highest/lowest> percentage of <No. 1/last> ranks is attained by Alternative <Al-

ternative name>. 

 Alternative <Alternative name> does never <become the preferred alternative/attain 

the last rank>. 

 The overall performance scores that <Alternative      > attains in the simulation runs 

where it ranks first range from <value> to <value>. 

Especially the last aspect provides detailed information on the maximal value that the 

considered alternative can attain in simulation runs where it becomes the preferred one.  

First ranked scores 

This paragraph analyses the results the considered alternative obtains in the simulation 

runs where it ranks first. It indicates the range of obtained overall performance scores and 

calculates the expected overall performance scores for these. Lastly, the first-ranking per-

formances of the considered alternative are compared to the first-ranking performances of 

all alternatives. This lets the DM or DA interpret if the considered alternative attains high 

or low performance scores when it becomes the preferred alternative in the simulation. 

 The overall performance scores that Alternative <Alternative name> attains in the 

simulation runs where it ranks first range from <value> to <value>. 

 The expected overall performance score of the simulation runs where Alternative <Al-

ternative name> becomes the preferred alternative accumulates to <value>. 

 This value is <value> % <higher/lower> compared to the expected overall perform-

ance score of all first ranking overall performance scores. This means, that in the 

simulation runs in which Alternative <Alternative name> ranks best, it also attains 

<high/low> overall performance scores. 

Expected rank performance 

Based on equation (13) the system outputs the best, worst and in case the considered 

alternative is not one of these, also the expected rank of this alternative in text form.                                     
(13) 

 Alternative <Alternative name> does attain the <best/worst> expected rank of <ex-

pected rank> out of <number of alternatives> alternatives. 

 Alternative <Alternative name> attains an expected rank of <value> out of <number of 

alternatives> alternatives. 

Risk characteristics 

In order to provide insights into the risk of choosing a low performing alternative, the re-

port calculates the regret (i.e. opportunity loss) for every alternative by equation (14). This 

can be seen as the sum of the difference of OPS between one alternative and the first-
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ranking alternative of every simulation run (cf. Loomes and Sugden, 1982; Bell, 1982). 

The minimal regret value identifies the MiniMax regret alternative. A potential decision for 

this alternative minimises the risk of obtaining low performance results.  

                                                   (14) 

 Alternative <Alternative name> does achieve the highest expected overall perform-

ance score. This alternative minimises the downside risk of obtaining a low overall per-

formance score with regard to the best alternative of every single simulation run. It can 

be expected that this alternative does attain an overall performance score that is 

<value> <higher/lower> than the best overall performance score of a simulation run. 

Correlation 

In order to describe the linear correlation between the alternatives, Pearson’s correlation 

coefficient is calculated with the alternatives’ OPSs (for a discussion on correlation coeffi-

cients cf. Hauke and Kossowski, 2011; Bishara and Hittner, 2012; Pagano, 2013). Since 

for a high number of data samples already small effects can cause significant influences 

regarding the correlation of two alternatives, the effect of correlation is of particular inter-

est (Ellis, 2013). This degree is expressed in the following text template by the semantic 

quantifiers ‘very small’, ‘small’, ‘medium’ and ‘large’ according to the effect size classifica-

tion of correlation in Cohen (1988) and Ellis (2010). However, only if the correlation can be 

considered significant, the template is generated for the report. This is verified by calculat-

ing the p-value of the correlation with the t-statistic (Gosset, 1908) and a significance level 

of      . 

 <Alternative      > correlates <positively/negatively> with <Alternative   > to a <se-

mantic quantifier> extent. This correlation is significant (p = <         >).                                  ,                                                ,                                                                                                                                                

(15) 

(16) 

(17) 

(18) 

Impact of preference parameter combinations 

In this section of the report, the influence of separate considerations of inter- and intra-

criteria preferential uncertainties is compared. It is done by running the same simulation 

though considering different combinations of these uncertainty types. The first-ranking 

performance (percentage of first ranks obtained in the simulations) is used as an indicator 
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for the considered alternative in the report to determine how sensitive it is with regard to 

the different uncertainty type combinations.  

The overall performance score of Alternative <Alternative name> is most sensitive to <un-

certainty type>.  

 With inter- as well as intra-criteria preferential uncertainties taken into account Alterna-

tive <Alternative name> attains rank 1 in <value> % of the cases. 

 Considering only inter-criteria preferential uncertainties for this alternative, it ranks first 

in <value> % of the simulation runs. 

 When only the intra-criteria preferential uncertainties are modelled, Alternative <Alter-

native name> achieves the first rank in <value> % of the simulation runs. 

3.2.3.5 Ranking performance: Explaining ‘stochastic dominance’ relations 

The explanation of stochastic dominance includes the following information: 

 Visualisation 

 Introduction 

 Insight: Comparison of outranking performance 

As in most previous sections, we focus on the sentence generation for the insight-related 

messages here and refer to the appendix for further information related to the other mes-

sages.  

Comparison of outranking performance 

In contrast to the strict dominance relationship which considers the OPSs obtained by the 

compared alternatives as a whole set, stochastic dominance (see Levy, 1992; Graves and 

Ringuest, 2009; Eisenführ et al., 2010; Scholten et al., 2014) is defined in this paper as 

the percentage of simulation runs in which one alternative achieves an equal or higher 

OPS than a compared alternative (equation (19)). The following text output is generated 

for each pairwise comparison of the considered alternative       of the report with all of 

the other alternatives           . 

 <Considered alternative ID> dominates <alternative ID> in <                > % of 

the simulation runs.  

                                                                        (19) 
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3.2.3.6 Preference parameter exploration: Explaining the weight space 

exploration visualisation 
The explanation of the weight space exploration includes the following messages: 

 Visualisation 

 Introduction 

 Value table 

 Insight: Influence weights, Dominance of relative importance, (In)distinguishability of 

relative importance 

As above, we focus on the sentence generation for the insight-related messages here and 

refer to the appendix for further information related to the other messages.  

Influence weights 

The weight space exploration visualisation compares the total weight space (containing 

the weights        ) for each individual criterion with the so-called limited weight space. 

This subset of the total weight space contains the weights         which are applied in the 

simulation runs where the respective alternative obtains the first rank. We now compare 

the deviation of weight range (i.e. difference between the maximum and minimum 

weights) of the total and limited weight space for every criterion individually. If this value 

differs by at most 10 % from the maximum (minimum) of the deviations of all criteria range 

deviations, the respective criterion has a high (low) influence on the first-ranking perform-

ance of the analysed alternative. In this case, the condition (20a) (or (20b)) is fulfilled. 

                                                                                         
                                                                                        

(20a) 

 (20b) 

 The following criterion is most sensitive for the ranking of Alternative <Alternative 

name> as preferred alternative: <list of criteria>. 

 The relative importance of criteria <list of criteria> slightly affect the ranking of Alterna-

tive <Alternative name> as preferred alternative. 

Dominance of relative importance 

Similar to the dominance relationship defined in equation (1) we also analyse potential 

dominance relationships between the relative importance of the criteria. However, we use 

each criterion’s upper and lower boundaries of the total and limited weight space instead 

of the OPSs as input for equation (1).  The following text is generated in case the domi-

nance relationship occurs already with the application of the total weight space, i.e. in all 

simulation runs (first bullet point). The text of the second bullet point is generated in the 
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case where there occurs a dominance relationship only when the simulation runs in which 

the alternative ranks first are considered (i.e. the limited weight space is applied).   

 Criterion <Criterion name> is more important than criterion <Criterion name> in all 

simulation runs. 

 Only in the simulation runs where Alternative <Alternative name> ranks first, criterion 

<Criterion name> is more important than criterion <Criterion name>. 

4 Evaluation of the approach  

After the implementation of the natural language generator on the basis of the concept 

presented in section 3, we have evaluated our approach with both expert users and nov-

ice users.   

4.1 Expert users 

Five experts, that were part of the feedback rounds referred to in section 3, were con-

tacted again to provide additional comments on the concept after its implementation. The 

aim of this interview loop was twofold. First, we intended to gather assessments by ex-

perts of the added value provided by the implemented approach. Second, we sought 

feedback for final adjustments on the content of the explanations, especially focussing on 

the more detailed results that were available and explained in the report as a result of the 

implemented natural language generator. In relation to the first aim, the overall attitude 

expressed by the experts was very positive in general.   

4.2 Novice user validation 

In order to validate the usefulness of our NLG approach to explain a multi-dimensional 

preferential sensitivity analysis to novice users, an online survey was conducted. The sur-

vey was completed by a total of 268 participants. The comparison of the collected socio-

demographic data of our sample with the average values of the German population par-

ticularly shows the following deviations. The share of participants aged between 18 and 

30 years and with a high educational background is overrepresented as compared to the 

German population (according to the German Federal Statistical Office). Also the share of 

male participants (75%) is higher than the average of 49% of the German population.  

The survey tested user understanding on the basis of the ‘spread of results’ visualisation 

for a hypothetical decision situation in a between subject design. After a brief introduction 

to MCDA and preferential uncertainty modelling in SIMADA, the participants had to an-

swer questions which tested their understanding of the visualised information. While one 
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sample group was provided with the explanations generated by the NLG approach pre-

sented in this paper in addition to the visualisation, the other half had to answer the ques-

tions without these explanations (i.e. only on the basis of the visualisation). The tasks dif-

fered in difficulty as they required different levels of interpretational capabilities. While 

some questions asked the participants to identify the value of an alternative’s OPS (e.g. 

‘What is the maximum overall performance score of Alternative 2?’), another type of ques-

tion requested them to compare the alternatives (e.g. ‘What is the minimal overall per-

formance score of all alternatives?’). With regard to the taxonomy of educational objec-

tives by Bloom et al. (1984), these two question types verify if the participants understand 

the visualisation in terms of what it shows and if they can apply this knowledge when they 

are confronted with slightly more difficult comparison tasks. The two sample groups did 

not show a significant difference of understanding (proxied by the number of correct and 

wrong answers). Both sample groups answered over 80 % of the questions correctly. For 

these basic tasks, we can therefore conclude that the understanding of the participants 

did not depend on the provision of explanations.  

A further question, however, also tested deeper analysis and interpretational capabilities 

of the participants. They were asked about distributional information on the alternatives’ 

OPSs (‘Are high overall performance scores more probable for Alternative 3 than low 

overall performance scores?’). In theory, this question was not more difficult to answer 

than the questions before for the sample group that was provided with explanations. They 

were provided with the explanation to answer this question correctly. The other user 

group, however, had to use their own interpretational capabilities to answer it. Almost 

twice as many participants of the former sample group (30 %) answered this question 

correctly as opposed to 17 % of the participants that were not provided with explanations. 

Pearson’s Chi-squared test (Pearson, 1900) as well as Fisher’s Exact test (Fisher, 1922) 

indicate a significant difference between the samples (p=0.03 and p=0.02 respectively). 

We thus conclude that the NLG approach is particularly useful for complex interpretational 

tasks (for the example of the spread of result visualisation) by reducing the user’s cogni-

tive effort to achieve understanding. However, the result also shows that a considerable 

number of participants who were provided with explanations did not read them carefully 

enough to retrieve the correct answer. 

5 Demonstration of the natural language generation approach for a 

case study 

We now apply our NLG approach to the MCDA case study presented in Bertsch and 

Fichtner (2016). The background of the case study is the multi-criteria evaluation of five 
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decision alternatives in the context of the German energy transition. Each alternative in-

cludes a combination of different feed-in regimes for renewable electricity generation (i.e. 

curtailment options) and electricity transmission grid expansion possibilities (i.e. capacity 

reinforcement measures of existing lines or construction of new lines). The decision to be 

supported is therefore owned by the regulator and policy makers. The five considered 

alternatives are: 

 A1: Economic RES injection management and economic grid expansion 

 A2: Economic RES injection management and fixed, maximal grid expansion 

 A3: Fixed, maximal RES injection and fixed, maximal grid expansion 

 A4: RES injection fixed to 90% of max. and economic grid expansion 

 A5: RES injection fixed to 90% of max. and fixed, maximal grid expansion 

These five alternatives are evaluated with respect to the three traditional dimensions of 

energy policy (economic competitiveness, environmental sustainability, security of sup-

ply), which Bertsch and Fichtner (2016) augmented by public acceptance as a fourth key 

dimension. Figure 5 shows the corresponding attribute tree for their case study.  

 

Figure 5: Attribute tree for the case study (Bertsch and Fichtner, 2016) 

Table 2 shows the performance of the five alternatives with respect to the attributes of the 

attribute tree. For the top level criteria of the attribute tree, the following weight intervals 

are assumed for the multi-dimensional sensitivity analysis (Bertsch and Fichtner, 2016): 

Economic competitiveness (0.10-0.30), Environmental sustainability (0.15-0.55), Security 

of Supply (0.20-0.60), Public acceptance (0.05-0.25). While our NLG approach does pro-

vide textual explanations for varying the value functions’ shapes, we focus on the text 
messages explaining the results of a multi-dimensional weight sensitivity analysis in this 

paper. The value functions are therefore assumed to be linear in the context of the case 

study. For all further details related to the case study in general as well as specific model-

ling assumptions, please see Bertsch and Fichtner (2016). 
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Table 2: Decision table for the case study (Bertsch and Fichtner, 2016) 

Criterion Scale A 1 A 2 A 3 A 4 A 5 

Total expenses of electricity supply [Billion €] 182 200 224 204 220 

CO2 emissions Million t CO2/year 204 201 158 175 162 

Structural grid bottlenecks % 5 2 2 5 2 

Primary energy import ratio % 28 21 18 20 16 

Landscape modification Point scale 0 1.3 1.3 0.2 1.3 

Noise Point scale 0 0.2 0.2 0.05 0.2 

Health implication Point scale 0 0.4 0.4 0.05 0.4 

While the original version of SIMADA used in Bertsch and Fichtner (2016) also supported 

multi-dimensional sensitivity analysis, the main difference is the following: The original 

version enabled the generation of mainly three visualisations. The version including the 

NLG approach presented in this paper enables, in addition to these visualisations, the 

automatic generation of a comprehensive natural language report explaining the impact of 

simultaneous variations of preference parameters on the MCDA results. As mentioned 

above, users have the opportunity to actively choose which type of explanations they wish 

to generate. However, the executive summary listing the key findings of the analysis is 

always provided in the beginning of each report. Such an executive summary is shown in 

the box below for the data and parameters of the case study. A full version, i.e. for users 

that chose to generate ‘all’ available explanations for simultaneous weight variations 

within the above mentioned intervals, of the multi-dimensional sensitivity report (including 

visualisations and textual explanations) is presented in Appendix A.  

 

Executive summary 

Overall, the following key aspects are characteristic for this decision situation and the 

executed simulation runs: 

 The criterion CO2 Emissions has the highest differentiating influence between all crite-

ria of the decision problem. 

 On the contrary, criterion Primary energy import ratio has the lowest differentiating 

influence between all criteria of the decision problem. 

 The highest expected overall performance score is attained by Alternative 5 (0.316). 

 Alternative 5 does attain the best expected rank of 1.26 out of the 5 alternatives con-

sidered in this decision situation. 

 Alternative 5 attains most often the first rank in the executed simulation runs. In 

76.2 % of the simulation runs it becomes the preferred alternative. 

 There is no alternative with strictly higher overall performance scores than any of the 

other alternatives. 



 

28 

 

6 Discussion and limitations of the natural language generation 

approach 

In the case study, Alternative 5 can be considered as a recommendable choice since it 

achieves the highest EOPS of all alternatives. Additionally, it attains the first or second 

rank in 98 % of the simulation runs while it stochastically dominates Alternative 1 in 

79.5 % of the simulation runs and all other alternatives in at least 97.3 %. As this alterna-

tive also minimises the downside risk of achieving low OPSs, it is also the preferred alter-

native for a risk-averse DM. If the goal of the DMs is to maximise the upside potential, 

Alternative 3 might become more preferable as it achieves the maximum OPS(s) in the 

decision situation. However, this represents a rather risky choice because it is stochasti-

cally dominated by Alternative 5 in 97,3 % of the simulation runs. 

Overall, we received positive feedback from the interviewed experts that were involved in 

the development process of the explanations. They appreciated the usefulness of the im-

plications for a detailed preferential sensitivity analysis. Besides, we could also show its 

benefits for novice users for complex interpretational tasks of the spread of results visuali-

sation. Critically reflecting our approach, we still lack more detailed knowledge about the 

explanatory preferences of novice users though. This includes on the one hand their 

benefits regarding other visualisations of the multi-dimensional sensitivity analysis. On the 

other hand, a more general assessment on how novice users perceive and accept the 

explanations could further improve this concept in future. 

Our survey results show that the explanations for the spread of results visualisation only 

reduce the complexity of cognitively demanding interpretational tasks. This needs to be 

further verified with a more representative sample of participants, as young people with 

high educational backgrounds were overrepresented in our evaluation study. Apart from 

this, we consider the spread of results visualisation as the cognitively easiest to under-

stand within the preferential sensitivity report. We assume that due to the higher complex-

ity of the other visualisations, such as the cumulative performance visualisation, we ex-

pect that our explanatory concept would show a considerably higher impact on their inter-

pretation by novice users. We need to further validate this hypothesis, also in order to find 

out which explanations are really beneficial and which are less relevant for different 

groups of users. Further prioritisation of the explanations will also lead to a better interpre-

tation by the users as we assume that they read shorter texts more carefully. In our survey 

we observed that the majority of the sample group that was provided with explanations did 

probably not use the information for the most difficult interpretational task. Focussing the 
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explanations upon novice user needs can thus help reduce the effect that people do not 

notice or recall the explanations. 

Since novice users were not included in the development phase of the explanations so 

far, we currently do not know how understandable and concise the generated explana-

tions are for them. Another focus of research could thus be a more detailed assessment of 

this, for example in face-to-face settings aimed at revealing more detailed insights on the 

explanatory needs of different users.  

7 Conclusions 

Due to the complex and opaque character of DSSs in MCDA, explanatory functions that 

facilitate the analysis and interpretation of a decision situation within MCDA provide valu-

able benefits for DMs and DAs. One reason for this is the detailed modelling of preferen-

tial uncertainties of the decision situation and the comprehensive sensitivity analyses that 

these DSSs conduct. There are various DSSs existing which explain the obtained model 

results and partially also their sensitivities towards the variations of one weight parameter 

to the user. However, they do not provide explanations for the assessment of simultane-

ous variations of different preferential parameters. 

The key contribution of this paper is a natural language generation approach to explain 

the influences of inter-criteria and/or intra-criteria preferential uncertainties on a decision 

situation. The aim of our NLG approach is to reduce the cognitive complexity to access, 

understand and interpret the influences of preferential uncertainties on a decision situa-

tion. The concept promotes deeper understanding for both expert and novice users as it 

provides relevant information on key implications that support their judgemental capabili-

ties. The generated text provides complementary information for various sensitivity analy-

sis visualisations. Both visualisations and text are provided in a multi-dimensional prefer-

ential sensitivity report which the developed tool can automatically generate for the user 

on the basis of the model results. This format furthermore increases the traceability and 

documentation of a decision-making process. 

Beyond applying the presented NLG approach to an energy policy case study, we evalu-

ated its benefits with both expert and novice users. The involved experts appreciated the 

level of detail of the multi-dimensional preferential sensitivity report. They considered it to 

be very useful in real decision-making situations as it conveniently explains implications 

related to the model results. The evaluation with novice users showed that our approach 

provides particularly beneficial support in cognitively demanding tasks that require a deep 

understanding and interpretational capabilities.  
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Future research activities in this area should include investigation and validation of the 

approach in a number of different decision situations. Moreover, a methodological exten-

sion including explanations for data uncertainties in MCDA is a relevant area for future 

research.  
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A.  Appendix: Multi-dimensional preferential sensitivity report of the 

evaluation of energy strategies 

 

SIMADA - Simulation-Based Multi-Attribute Decision Analysis 

(c) Copyright IIP, Karlsruhe Institute of Technology (KIT) 
 

S 

Multi-dimensional sensitivity report 
s 
 

This report summarises the multi-dimensional sensitivity analysis regarding the criteria 

levels for the alternatives on them. on the model results regarding the preferential uncer-

tainties provided by SIMADA. 

 

Date: 26-Oct-2016 16:16:50 

Number of alternatives: 5 

Number of simulation runs: 1000 

Considered alternative: Alternative 5 

Uncertainties considered: Weight variations, Value function curvature variations, Varia-

tions of lower boundaries of value functions, Variations of upper boundaries of value func-

tions  

 

Table of contents 

 

1. Introduction 

2. Executive summary 

3. Preferential sensitivities regarding the overall performance scores 

a. Spread of overall performance scores 

b. Cumulative performance 

4. Preferential sensitivities regarding the ranking performances 

a. Cumulative performance sorted by Alternative 5 

b. Detailed information on ranking performance of Alternative 5 

c. Stochastic dominance 

5. Preferential sensitivities on first ranking performance of Alternative 5 

a. Weight space exploration 

6. Nomenclature 

 

Scientific terms are underlined by a dotted line. Further explanations are shown if the 

mouse cursor is moved on the underlined terms.  

 

 

Introduction 
 
 

This analysis examines the robustness of the simulation results of a decision situation for 

Alternative 5 with respect to the influences of preferential uncertainties. The decision 

situation is modelled by Multi-Attribute Value Theory (MAVT) with an additive value func-
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tion where the underlying preferential uncertainties are expressed by assigned parameter 

intervals. These include intra-criteria preferential uncertainties (regarding the criteria level 

ranges of the alternatives) as well as inter-criteria preferential uncertainties (regarding the 

relative importance of the criteria). The inter-criteria preferential uncertainties are mod-

elled by the variation of the value function shapes (curvature as well as upper and lower 

boundary variations) while the inter-criteria preferential uncertainties are represented by 

weight variations. 

 

The aim of this analysis is to identify the most relevant preferential uncertainties in order 

to explore their respective impact on the results and to examine how the alternatives are 

distinguishable from each other in the light of these uncertainties. Therefore, this report 

presents the results of the analysis of 1000 simulation runs of the decision situation for 

which 5 different alternatives are considered. In each of the simulation runs, the uncertain 

parameter samples are varied randomly with respect to the assigned interval boundaries. 

 

This report assesses the influences of the following preferential uncertainties on the simu-

lation result: 

 

Inter-criteria preferential uncertainties 

 

 Variations of the weights 

 

Intra-criteria preferential uncertainties 

 

 Variations of the value function curvatures 

 Variations of the lower boundaries of the value functions 

 Variations of the upper boundaries of the value functions 
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Executive summary 
 
 
Overall, the following key aspects are characteristic for this decision situation and the 

executed simulation runs: 

 

 The criterion CO2 Emissions has the highest differentiating influence between all crite-

ria of the decision problem. 

 On the contrary, criterion Primary energy import ratio has the lowest differentiating 

influence between all criteria of the decision problem. 

 The highest expected overall performance score is attained by Alternative 5 (0.316). 

 Alternative 5 does attain the best expected rank of 1.26 out of the 5 alternatives con-

sidered in this decision situation. 

 Alternative 5 attains most often the first rank in the executed simulation runs. In 

76.2 % of the simulation runs it becomes the preferred alternative. 
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 There is no alternative with strictly higher overall performance scores than any of the 

other alternatives. 
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Preferential sensitivities regarding the overall performance 
scores 
 
 
This paragraph compares the overall performance scores of the considered alternatives. 

The following observations are of general character, since the compared scores do not 

necessarily belong to the same simulation runs. The following aspects are examined: 

 

a. Spread of overall performance scores 

b. Cumulative performance 
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Spread of overall performance scores 
 
The 'spread of results' graph shows the ranges of the overall performance scores. The 

vertical lines with tick marks at their ends represent the minimum and maximum results 

obtained from the simulation runs. The tick mark in their middle indicates the expected 

overall performance score for the respective alternative (e.g. the value represents the av-

erage overall performance score in case of symmetric distributions).  

Please note: This visualisation does not show the distribution of the overall performance 

scores for the alternatives. 
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Detailed results: 
 

 
Minimal overall per-
formance scores  

Expected over-
all performance 
score  

Maximal overall per-
formance scores 

Alternative 1 0.061 0.223 0.513 

Alternative 2 0.043 0.160 0.358 

Alternative 3 0.029 0.172 0.596 

Alternative 4 0.016 0.075 0.276 

Alternative 5 0.135 0.316 0.559 

 
Dominance of alternatives 

 

In the following, all alternatives which have a dominance relation between each other are 

enumerated. This means that an Alternative A achieves strictly better overall performance 

scores than an Alternative B in all simulation runs. 

 

 There is no alternative with strictly higher overall performance scores than any of the 

other alternatives in the executed simulation runs. 

 

 

 

Indistinguishability of alternatives 

 

The following alternatives cannot be distinguished from the visualisation only since their 

overall performance score value ranges do overlap: 

 

 Alternative 1 is indistinguishable from all other alternatives. 

 Alternative 2 is indistinguishable from all other alternatives. 

 Alternative 3 is indistinguishable from all other alternatives. 

 Alternative 4 is indistinguishable from all other alternatives. 

 Alternative 5 is indistinguishable from all other alternatives. 

 

Comparison of expected overall performance scores 

 

 The expected overall performance score of Alternative 5 is higher than the maximum 

overall performance score of Alternative 4. 

 

 The highest overall performance score is attained by Alternative 3 (0.596). It maxi-

mises the upside potential of realizing the highest possible overall performance score. 

 The lowest overall performance score is attained by Alternative 4 (0.015). 

 Alternative 5 attains the highest minimum of all alternatives (0.135). This alternative 
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maximises the minimal overall performance scores of all alternatives. 
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Cumulative performance 
 
The 'cumulative performance figure' shows the cumulative percentage (referring to 1000 

simulation runs) and the respective overall performance score obtained by the alterna-

tives. At any point on the graph, the cumulative percentage indicates the probability of an 

alternative to have an overall performance score equal or lower than at this point.  

For every alternative the respective overall performance scores are sorted in ascending 

order individually so that the scores of different alternatives at one point do not necessarily 

belong to the same simulation run. This is why no implication on the ranking performance 

of the alternatives can be drawn. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Detailed results: 
 

 
Standard de-
viation  

5 %-quantile  
Inter-quantile 
range  

95 %-quantile  
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Alternative 1 0.073 0.120 0.240 0.360 

Alternative 2 0.059 0.079 0.198 0.277 

Alternative 3 0.088 0.060 0.276 0.336 

Alternative 4 0.044 0.027 0.133 0.160 

Alternative 5 0.082 0.187 0.275 0.462 

 
Dispersion of simulation results 

 

The overall performance scores of Alternative 5 are neither more nor less dispersed with 

regard to the dispersion of the overall performance scores of all other alternatives. The 

standard deviation of 0.082 is a measure to express the dispersion of the overall perform-

ance scores of Alternative 5 around its expected overall performance score of 0.316. 

 

Comparing the dispersion of the overall performance scores of Alternative 5 to the other 

alternatives individually, the following observations can be concluded: 

 

 The overall performance scores of Alternative 4 are strongly less dispersed. 

 The overall performance scores of Alternative 3 are more dispersed. 

 The overall performance scores of Alternatives 1 and 2 are less dispersed. 

 

 

Observations regarding the most probable overall performance scores 

 

The 90 % most probable overall performance scores of Alternative 5 in the executed 

simulation runs are between 0.187 and 0.462. 

 

 The highest 95 % overall performance scores of Alternative 4 dominate the 95 % 

highest overall performance scores of Alternative 5. 

 The expected overall performance score of Alternative 5 is higher than 95 % of the 

overall performance scores achieved by Alternative 2. 
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Preferential sensitivities regarding the ranking performances 
 
 
This paragraph analyses the ranking performances of the considered alternatives. There-
fore, the overall performance scores of the alternatives are compared to each other within 
the corresponding simulation runs. The following aspects are examined: 
 
a. Cumulative performance sorted by Alternative 5 
b. Detailed info on ranking performance of Alternative 5 
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c. Stochastic dominance 
 

Top 
 

 
 

Cumulative performance sorted by Alternative 5 
 
The 'cumulative performance sorted by Alternative 5' visualisation shows the cumulative 

percentage (referring to 1000 simulation runs) and the respective overall performance 

score obtained by Alternative 5. At any point on the curve of Alternative 5 (represented by 

the continuous line), the cumulative percentage indicates the probability for this alternative 

to reach an overall performance score equal or lower than at this point. The overall per-

formance scores of the other alternatives at a specific point belong to the same simulation 

run as the one of Alternative 5. This way, the value of the overall performance scores also 

determines the ranking of the alternatives in a particular simulation run. 

 

 
 
Rank performance of the alternatives 
 
The following table shows the percentage of the 1000 simulation runs that an alternative 

attained a certain rank: 

 

 
#1 rank #2 rank #3 rank #4 rank #5 rank 

Alternative 1 20.3 % 36.4 % 28.3 % 14.3 % 0.7 % 

Alternative 2 1 % 16.2 % 39.1 % 36.3 % 7.4 % 

Alternative 3 2.5 % 25.6 % 28.4 % 36.6 % 6.9 % 

Alternative 4 0 % 0 % 2.2 % 12.8 % 85 % 

Alternative 5 76.2 % 21.8 % 2 % 0 % 0 % 
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 The highest percentage of No. 1 ranks (76.2 %) is attained by Alternative 5. 

 The lowest percentage of No. 1 ranks (0 %) is attained by Alternative 4. 

 The lowest percentage of last ranks (0 %) is attained by Alternative 5. 

 The highest percentage of last ranks (85 %) is attained by Alternative 4. 

 Alternative 4 does never become the preferred alternative. 

 Alternative 5 does never attain the last rank. 

 

First ranked overall performance scores of Alternative 5 

 

In the simulation runs where Alternative 5 becomes the preferred alternative, the following 

implications on its obtained overall performance scores can be made: 

 

 The overall performance scores that Alternative 5 attains in the simulation runs where 

it ranks first range from 0.169 to 0.559. 

 The expected overall performance score of the simulation runs where Alternative 5 

becomes the preferred alternative accumulates to 0.339. 

 This value is 0.016 % higher compared to the expected overall performance score of 

all first ranking overall performance scores. This means, that in the 76.2 % of the 

simulation runs in which Alternative 5 ranks best, it also attains very high overall per-

formance scores. 

 

Expected rank performance of the alternatives 

 

The following table shows the expected ranks attained by the alternatives in all 1000 

simulation runs: 

 

 
Expected rank performance 
(out of 5 alternatives) 

Alternative 1 2.387 

Alternative 2 3.329 

Alternative 3 3.198 

Alternative 4 4.828 

Alternative 5 1.258 

 

 Alternative 5 does attain the best expected rank of 1.26 out of 5 alternatives. 

 Alternative 4 does attain the worst expected rank of 4.83 out of 5 alternatives. 

 

Risk characteristics of the alternatives 

 

 Alternative 5 does achieve the highest expected overall performance score. This alter-

native minimises the downside risk of obtaining a low overall performance score with 

regard to the best alternative of every single simulation run. 
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It can be expected that Alternative 5 does attain an overall performance score that is 

0.017 lower than the best overall performance score of a simulation run. 

 On the other hand, Alternative 4 does achieve the lowest expected overall perform-

ance score. This alternative is characterised by the highest downside risk of obtaining 

a low overall performance score with regard to the best alternative of every single 

simulation run. 

It can be expected that Alternative 4 does attain an overall performance score that is 

0.258 lower than the best overall performance score of a simulation run. 

 

Correlation of the alternatives' overall performance  

 

 Alternative 5 correlates negatively with Alternative 1 to a medium extent. This correla-

tion is significant (p = 0.000). 

 Alternative 5 correlates positively with Alternative 2 to a small extent. This correlation 

is significant (p = 0.000). 

 Alternative 5 correlates positively with Alternative 3 to a large extent. This correlation 

is significant (p = 0.000). 

 Alternative 5 correlates positively with Alternative 4 to a small extent. This correlation 

is significant (p = 0.000). 

 

Influences of different types of preferential uncertainties 

 

The overall performance score of Alternative 5 is most sensitive to a combination of inter- 

and intra-criteria preferential uncertainties. It is recommended to focus the initial discus-

sion on this type of uncertainties. 

 

 With inter- as well as intra-criteria preferential uncertainties taken into account Alterna-

tive 5 attains in 76.2 % of the cases rank 1. 

 Considering only inter-criteria preferential uncertainties for this alternative, it ranks first 

in 91.8 % of the simulation runs. 

 When only the intra-criteria preferential are modelled, Alternative 5 achieves in 95.1 % 

of the simulation runs the first rank. 

 In the deterministic simulation (without the consideration of any preferential uncertain-

ties), Alternative 5 is ranked 1 out of 5 alternatives. 
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Detailed analysis of ranking performance for Alternative 5 
 
The following bar graph shows the percentage of simulation runs in which Alternative 5 

attains a certain rank. The red line represents the cumulative percentage of these ranking 

performances, it indicates the percentage in which Alternative 5 has attained a respective 

rank or better. 
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 Alternative 5 attains rank 1 in 76.2 % of the simulation runs. 

 Alternative 5 ranks last in 0 % of the simulation runs. Alternative 5 never ranks worse 

than rank 3. 

 In the majority of the simulation runs (76.2 %) Alternative 5 ranks 1. 

 In 90 % of the simulation runs Alternative 5 attains rank 2 or better. 

 Alternative 5 attains in 2 % of the simulation runs rank 3, overall this rank or better is 

achieved in 100 % of the cases. 
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Stochastic dominance 
 
The following graph shows a comparison of the overall performance scores of Alternative 

5 with every other alternative individually. Each horizontal bar shows the number of simu-

lation runs in which Alternative 5 outperforms the respective compared alternative.  

On the left, the number of simulation runs where Alternative 5 has a higher overall per-

formance score than the compared alternative is shown. On the right the number of simu-

lation runs in which the compared alternative dominates Alternative 5 can be seen. For 

each alternative comparison the relative percentage of outranking performances is indi-

cated on the respective side of the horizontal bar. 
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 Alternative 5 dominates Alternative 4 in 100 % of the simulation runs. Also the ex-

pected overall performance score of Alternative 5 (0.316) is higher than the corre-

sponding 0.0749 of Alternative 4. 

 Alternative 5 dominates Alternative 2 in 97.4 % of the simulation runs. Also the ex-

pected overall performance score of Alternative 5 (0.316) is higher than the corre-

sponding 0.16 of Alternative 2. 

 Alternative 5 dominates Alternative 3 in 97.3 % of the simulation runs. Also the ex-

pected overall performance score of Alternative 5 (0.316) is higher than the corre-

sponding 0.172 of Alternative 3. 

 Alternative 5 dominates Alternative 1 in 79.5 % of the simulation runs. Also the ex-

pected overall performance score of Alternative 5 (0.316) is higher than the corre-

sponding 0.223 of Alternative 1. 
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Preferential sensitivities on first ranking performance of Alterna-
tive 5 
 
 
This paragraph analyses the preferential parameters that make Alternative 5 the preferred 

alternative based on the simulation results. The following aspects are examined: 

 

a. Weight space exploration 
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Weight space exploration 
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The 'weight range exploration visualisation’ consists of two parts: The upper diagram 
shows the total weight space applied to the different simulation runs. In the lower diagram 

the black weight range without the red part represents all the weights for which Alternative 

5 attains the first rank in the simulation runs. 

 

 
 
Weight range for which Alternative 5 ranks first: 
 

 
Lower boundary Upper boundary 

Total Expenses of Electricity Supply 0.100 0.299 

CO2 Emissions 0.150 0.540 

Structural Bottlenecks 0.100 0.359 

Primary energy import ratio 0.101 0.359 

Landscape modification 0.009 0.095 

Noise 0.012 0.110 

Health implications 0.014 0.119 

 

 As indicated by the red area the importance of the following criterion is most sensitive 

for the ranking of Alternative 5 as preferred alternative: Total Expenses of Electricity 

Supply. 

 The relative importance of criteria CO2 Emissions and Structural Bottlenecks slightly 

affect the ranking of Alternative 5 as preferred alternative. 

 

Dominance in relative importance 

 

The following criteria dominate other criteria in importance. This means that a criterion A 

is considered strictly more important than a criterion B. All executed simulation runs and 

also exclusively those where Alternative 5 ranks first are considered. 

 

 Criterion Total Expenses of Electricity Supply is more important than the criterion 

Landscape modification in all simulation runs.  

 Criterion CO2 Emissions is more important than the criteria Landscape modification, 

Noise and Health implications in all simulation runs.  
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 Criterion Structural Bottlenecks is more important than the criterion Landscape 

modification in all simulation runs.  

 Criterion Primary energy import ratio is more important than the criterion Land-

scape modification in all simulation runs.  

 Criterion Landscape modification is less important than the criteria Total Expenses 

of Electricity Supply, CO2 Emissions, Structural Bottlenecks and Primary energy im-

port ratio in all simulation runs.  

 Criterion Noise is less important than the criterion CO2 Emissions in all simulation 

runs.  

 Criterion Health implications is less important than the criterion CO2 Emissions in all 

simulation runs.  

 
Indistinguishability of relative importance 
 

The following criteria are indistinguishable with regard to their importance, i.e. their weight 

ranges overlap. All executed simulation runs and exclusively those where Alternative 5 

ranks first are considered. 

 

 The relative importance of criterion Total Expenses of Electricity Supply is indistin-

guishable from the relative importance of criteria CO2 Emissions, Structural Bottle-

necks, Primary energy import ratio, Noise and Health implications when all simulation 

runs are considered.  

 The relative importance of criterion CO2 Emissions and criteria Total Expenses of 

Electricity Supply, Structural Bottlenecks and Primary energy import ratio are indistin-

guishable when all simulation runs are considered.  

 The relative importance of criterion Structural Bottlenecks is indistinguishable from 

the relative importance of criteria Total Expenses of Electricity Supply, CO2 Emis-

sions, Primary energy import ratio, Noise and Health implications when all simulation 

runs are considered.  

 The relative importance of criterion Primary energy import ratio is indistinguishable 

from the relative importance of criteria Total Expenses of Electricity Supply, CO2 

Emissions, Structural Bottlenecks, Noise and Health implications when all simulation 

runs are considered.  

 The relative importance of criterion Landscape modification is indistinguishable 

from the relative importance of criteria Noise and Health implications when all simula-

tion runs are considered.  

 The relative importance of criterion Noise is indistinguishable from the relative impor-

tance of criteria Total Expenses of Electricity Supply, Structural Bottlenecks, Primary 

energy import ratio, Landscape modification and Health implications when all simula-

tion runs are considered.  

 The relative importance of criterion Health implications is indistinguishable from the 

relative importance of criteria Total Expenses of Electricity Supply, Structural Bottle-

necks, Primary energy import ratio, Landscape modification and Noise when all simu-

lation runs are considered.  

  

Top 
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Nomenclature 
 
 

The following table defines scientific terms used in this report: 

 

Term Definition 

5 %-quantile 5 % of all the values of a sample are smaller than this value. 

95 %-quantile 95 % of all values of a sample are smaller than this value. 

Additive value 

function 

Possible aggregation function of Multi-Attribute Value Theory 

(MAVT): the individual performance scores on the criteria are 

multiplied with their respective weights and then summed up to 

an overall performance score. 

Concave shape 
The graph of a function is always above the intersection of any 

two points of the graph. 

Convex shape 
The graph of a function is always below the intersection of any 

two points of the graph. 

Correlation 

Describes the relationship between two samples of data. In this 

report it describes the linear relationship between the overall 

performance scores. A positive correlation means that with in-

creasing overall performance scores of one alternative, also the 

other alternative's overall performance scores increase. A nega-

tive correlation indicates however that with increasing overall 

performance scores of one alternative, the other alternative's 

overall performance scores decrease. 

Criterion level 

This is the performance of an alternative on a criterion, e.g. 

Alternative A achieves 1.000 EUR on criterion price. This value 

is later transformed to a 0-1-scale by a value function. 

Cumulative per-

centage 

Indicates the percentage of simulation runs for which an alter-

native has an equal or lower overall performance score than at 

this point. 

Cumulative per-

formance 

Indicates the overall performance scores of an alternative that 

are equal or lower than at this point. 

Curvature of the 

value functions 

Describes the curvature that distinguishes a function from a 

linear function. The higher the curvature the steeper (both posi-

tive and negative) the graph. 
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Data uncertainties 

Term to describe uncertainties regarding the obtained criteria 

levels of the alternatives, especially when they are difficult to 

assess. For example, the acceptance of an alternative in the 

population cannot easily be expressed in one value and is thus 

influenced by uncertainties. 

Decreasing prefer-

ences 

Describes the preferences of an individual who prefers to have 

less of a good. For example, a low price is usually preferred to 

a high price. 

Deterministic deci-

sion situation 

Consideration of the alternatives without any uncertainty (data 

or preferential uncertainty) involved. 

Differentiating in-

fluence 

A criterion with high differentiating influence has high impact on 

the distinguishability of overall performance scores of the alter-

natives, i.e. this criterion is very important for the overall deci-

sion problem. 

Distinguishability 
Variables can be distinguished when their value ranges do not 

overlap. 

Distribution of 

overall perform-

ance scores 

The way how variables are distributed, e.g. normally distributed 

variables are distributed around their expected value. 

Dominance 
Alternative A dominates Alternative B when it is strictly better 

than B in every simulation run. 

Expected overall 

performance score 

In case of symmetric distributions, this value represents the 

average overall performance score of an alternative. 

Expected rank per-

formance 

This value represents the average rank of an alternative for all 

simulation runs. 

Increasing prefer-

ences 

Describes the preferences of an individual who prefers to have 

more of a good. For example, a high income is usually pre-

ferred to a low income. 

Indistinguishability 
Variables cannot be distinguished when their value ranges 

overlap. 

Inter-criteria pref-

erential uncertain-

ties 

Uncertainties regarding the importance of different criteria, 

modelled by the weights of the criteria. 

Inter-quantile range 

Value difference of the 5 % and 95 %-quantile. In case of sym-

metric distributions, the inter-quantile range represents the 90 

% most probable values of a sample around the expected 
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value. 

Intra-criteria pref-

erential uncertain-

ties 

Uncertainties regarding the importance of differences of the 

performance scores of the alternatives with regard to every cri-

terion individually, modelled by the value function shape. 

Meaningful repre-

sentation 

The modelling of the decision situation holds certain conditions 

(e.g. regarding the weighting of the criteria or the adequate 

covering of the solution space; see meaningful analysis section 

of this report for more details). 

Multi-Attribute 

Value Theory 

Field of Multi-Criteria Decision Analysis that deals with a finite 

and discrete number of alternatives. 

Multi-Criteria Deci-

sion Analysis 

Field of Operations Research that formalises decision-making 

between different alternatives and multiple criteria. 

Multi-dimensional 

sensitivity analysis 

Assessment of the influence of simultaneous changes of the 

inter-criteria and intra-criteria preferential uncertainties on the 

model results. 

Multivariate statis-

tical methods 

Statistical methods that analyse and observe simultaneously 

more than one outcome variable. For SIMADA these variables 

are the preferential parameters and performance scores of the 

alternatives. 

Non-meaningful 

representation 

The modelling of the decision situation does not hold certain 

conditions (e.g. regarding the weighting of the criteria or the 

adequate covering of the solution space; see meaningful analy-

sis section of this report for more details). 

Normalised vector 

The vector is normalised to a length of 1. This is done for visu-

alisation purposes of the principal component analysis visuali-

sation. 

Overall perform-

ance score 

Aggregation of all performance scores on the considered crite-

ria for an alternative. This represents the final performance re-

sult for an alternative. 

Performance score 
Score for an alternative on a criterion which is between 0 and 1. 

It is determined by the value function of the respective criterion. 

Preferential pa-

rameters 

These can include weight ranges, value function curvature 

ranges and the variations for upper and lower boundaries of the 

value functions. 

Preferential uncer-

tainties 

In SIMADA these include intra-criteria and inter-criteria prefer-

ential uncertainties which can be analysed in a combined or 



 

59 

 

separated way. 

Principal compo-

nent analysis 

Projects multi-dimensional data in a 2-dimensional plane for 

better visualisation purposes by multivariate statistical methods. 

It aims to keep as much as possible from the original data, i.e. it 

minimises the loss of information between the original data set 

and the projection. 

p-Value 

Represents a mean for testing a statistical hypothesis. It de-

scribes the probability of obtaining a result equal to or "more 

extreme" than what was actually observed, assuming that the 

hypothesis under consideration is true. In this report, a low p-

Value supports the hypothesis of the correlation This value 

represents the maximal probability of refusing the correlation 

hypothesis in the case where it is actually existing in the ana-

lysed data. 

Ranking perform-

ance 

This term describes the rank that an alternative obtains in a 

simulation run. 

Scenario 

Technique for dealing with uncertainty in decision situations. A 

scenario describes a possible set of future conditions (e.g. de-

velopments of prices). By comparing the results of different 

scenarios one is able to deduct cause-effect relations on the 

overall result of a decision situation. 

Sensitivity analysis 
Assessment of the most important influencing input factors on 

the model results. 

SIMADA 
Simulation-based Multi-Attribute Decision Analysis; name of the 

underlying decision model of this report. 

Simulation run 

A simulation run describes the modelling of the decision situa-

tion with a drawn sample of preferential parameters. In every 

simulation run that is executed different sets of preferential pa-

rameters are drawn. That's why the more simulation runs are 

executed the more the obtained results converge to the 

mathematical expected overall performance score for every 

alternative. 

Solution space 
The 2-dimensional plane of the PCA visualisation is the solution 

space. It needs to be entirely covered by the criteria axis. 

Standard deviation 

The standard deviation is a measure to express the dispersion 

of the overall performance scores of an alternative around its 

expected overall performance score. 
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Stochastic domi-

nance 

This term describes the probability of an alternative to dominate 

over another one, i.e. it is determined by the percentage of 

simulation runs in which an Alternative A attains a higher overall 

performance score than Alternative B. 

Value function 

Transforms the criteria level of the alternatives to a common 0-

1-scale for comparison purposes. Also describes the differ-

ences between the criterion levels by its value function shapes. 

Value function cur-

vature variations 

Modelling parameter that describes the uncertainty of differ-

ences for the performance scores of the alternatives. 

Value function 

shape 
Describes the curvature and slope of the value function. 

Variance 
Value to describe the dispersion of samples around their ex-

pected value. 

Variations of lower 

boundary of the 

value functions 

Parameters that describe the uncertainty of differences in per-

formance scores for a criterion, especially with regard to the 

minimum of performance scores. 

Variations of upper 

boundary of the 

value functions 

Parameters that describe the uncertainty of differences in per-

formance scores for a criterion, especially with regard to the 

maximum of performance scores. 

Weight variations 
Varied modelling parameters that describes the uncertainty of 

relative importance of the criteria. 

 

Top 

 
 

 

 


