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a b s t r a c t 

There is growing interest in the automatic detection of animals’ behaviors and body postures within the 

field of Animal Computer Interaction, and the benefits this could bring to animal welfare, enabling re- 

mote communication, welfare assessment, detection of behavioral patterns, interactive and adaptive sys- 

tems, etc. Most of the works on animals’ behavior recognition rely on wearable sensors to gather infor- 

mation about the animals’ postures and movements, which are then processed using machine learning 

techniques. However, non-wearable mechanisms such as depth-based tracking could also make use of 

machine learning techniques and classifiers for the automatic detection of animals’ behavior. These sys- 

tems also offer the advantage of working in set-ups in which wearable devices would be difficult to use. 

This paper presents a depth-based tracking system for the automatic detection of animals’ postures and 

body parts, as well as an exhaustive evaluation on the performance of several classification algorithms 

based on both a supervised and a knowledge-based approach. The evaluation of the depth-based track- 

ing system and the different classifiers shows that the system proposed is promising for advancing the 

research on animals’ behavior recognition within and outside the field of Animal Computer Interaction. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

Technology is unquestionably changing our world and our lives

very day. In this ever-growing digital era, human beings are not

he only ones who can make use of technology. With an esti-

ated 75 million households owning at least one pet animal in

urope, 1 and more than 71 million pet dogs and 73 million pet cats

n USA, 2 animals are also a significant population coexisting with

ur technological surroundings. Domestic dogs and cats have been

bserved using some of our technological devices, such as smart-

hones or tablets, in their own way ( Baskin, Anavi-goffer, & Za-

ansky, 2015; Noz & An, 2011; Westerlaken & Gualeni, 2014 ) and

ome zoos are also introducing touchscreens and tablet games for

rimate enrichment ( Carter, Webber, & Sherwen, 2015 ). All these

nimals could benefit from the technological advances we have

chieved throughout the digital revolution. However, animals have

ifferent physical features and mental perceptions of the world,

reventing them from fully using and understanding our technol-
∗ Corresponding author. 

E-mail addresses: ppons@dsic.upv.es (P. Pons), fjaen@upv.es (J. Jaen), 

.catala@utwente.nl (A. Catala). 
1 http://www.fediaf.org/fileadmin/user _ upload/Secretariat/facts _ and _ figures _ 2014. 

df . 
2 http://www.petfoodinstitute.org/?page=PetPopulation . 
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gy and interaction methods, which have been designed with hu-

an requirements and characteristics in mind. 

Recently, spreading research is addressing the aforementioned

oncerns within the field of Animal–Computer Interaction (ACI)

 Mancini, 2011, 2013 ). ACI considers animals as the target users of

igital systems, and grounds on the development of computer in-

erfaces and digital systems specifically designed for them. Animal-

entered technology could improve animal welfare and wellbeing

n several scenarios: interactive systems or devices could provide

nrichment and stimulation for captive animals in zoos ( Carter et

l., 2015; French, Mancini, Sharp, & Smith, 2014 ), digital and/or

angible games could foster physical activity of animals in shel-

ers and even entertain pets alone at home ( Hirskyj-Douglas, Luo,

 Read, 2014; Pons, Jaen, & Catala, 2014 ), alleviating stress and iso-

ation. 

In the era of computers and with the advances in computer vi-

ion and machine learning techniques, a promising research line

nto ACI would be automatizing behavior recognition on animals.

nimals are not verbal communicators; instead, they rely on body

ostures or sounds to express themselves. For these reasons, ACI

tudies are taking a big effort in developing technology for the

utomatic recognition of animal behavior and body postures. The

enefits this technology could bring both to animal welfare and

CI research are countless. Firstly, it could provide both objective

http://dx.doi.org/10.1016/j.eswa.2017.05.063
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2017.05.063&domain=pdf
mailto:ppons@dsic.upv.es
mailto:fjaen@upv.es
mailto:a.catala@utwente.nl
http://www.fediaf.org/fileadmin/user_upload/Secretariat/facts_and_figures_2014.pdf
http://www.petfoodinstitute.org/?page=PetPopulation
http://dx.doi.org/10.1016/j.eswa.2017.05.063
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3 http://www.whistle.com/ . 
4 www.fitbark.com . 
measurement mechanisms and more reliable feedback to inform

the design and development of animal-centered technology. Sec-

ond, animal welfare could be evaluated using automatic behavior

recognition paired with machine learning techniques. This knowl-

edge could be used to support the detection of abnormal behaviors

of animals, allowing early detection of illnesses and other kind of

problems which could be derived from an abnormal behavior. Fi-

nally, body posture and behavior recognition could also be used to

automatically adapt the reactions of a system to the animals’ inter-

actions ( Pons et al., 2014; Pons, Jaen, & Catala, 2015b ). In this way,

animals could interact with systems on their own, improving ani-

mal wellbeing when they are alone (at home, zoos, shelters, etc.). 

Great advances are being done using wearable devices as a way

of recognizing animals’ body postures and activities. These works

make use of the information provided by accelerometers and gy-

roscopes attached to a wearable device such as a collar or harness

that the animal has to put on. The extracted raw information from

the sensors is then processed using machine learning techniques to

train different classification algorithms to recognize animals’ pos-

tures and activities. Depending on the activities and/or postures to

be recognized, a wide range of classification algorithms have been

used, either as standalone algorithms or combining them in a more

complex learning process. However, there are animals who are nei-

ther used to wear harnesses nor other wearable devices and could

find those elements disturbing. Other animals, such as cats, have

extreme agility and wide range of movements, and wearable de-

vices could limit their naturalness. There are also animals to whom

the use of wearable devices could pose a threat, such as wild an-

imals, zoo animals or protected species. In addition, while wear-

able tracking systems might offer wider coverage area, they also

require maintenance of batteries and sensors and one wearable de-

vice can only track one animal at a time. The use of non-wearable

tracking mechanisms would be a promising complement for an-

alyzing behavior and body postures in cases in which the use of

wearable devices will not be feasible. These systems would allow

more natural interactions within technologically-mediated environ-

ments as the animals will not be required to wear or carry any de-

vice, avoiding stress or affecting their behavior. Although the use

of non-wearable systems would be delimited to a specific tracking

area, they offer centralized maintenance and a single tracking de-

vice could provide information of several animals at a time. This

information could also be used to train different classification al-

gorithms for the automatic recognition of animals’ postures, there-

fore providing the same benefits to ACI as the wearable approach

in terms of animal wellbeing. 

This paper describes the development of a non-wearable depth-

based tracking system for cats and the promising results obtained

by applying classification algorithms on the obtained depth infor-

mation for the automatic recognition of the animals’ body parts

and postures. The use of depth information along with traditional

computer vision techniques provides more information about the

tracked animal than using solely an RGB camera. By exploiting

this information using machine learning techniques and suitable

classification algorithms, this approach could be a promising start-

ing point towards the automatic detection and analysis of animals’

behavior without requiring the animal to use any wearable de-

vice. This article is structured as follows: Section 2 analyzes pre-

vious tracking systems for animals based on wearable and non-

wearable devices and their purposes, and states the necessity of

a new approach grounding on previous research on non-wearable

human-tracking systems. Section 3 describes the development of a

depth-based tracking system for cats in indoor scenarios. Section

4 reports two experiments carried out to determine the accu-

racy of the system using both a supervised learning process and a

knowledge-based approach for the classification of the cats’ body

postures and body parts, describing the different classification al-
orithms used and their accuracy rates. Section 5 explains how this

racking mechanism could be applied in several ACI domains and

ow it could be coupled with human and object tracking, and con-

lusions and future work are given in Section 6 . 

. Related works 

This section provides an overview on existing research about

nimal tracking focused on animal gesture and body posture

ecognition for different purposes using both wearable and non-

earable tracking systems. 

.1. Wearable tracking systems 

Several works have addressed the necessity of tracking animals

n different scenarios. The most common method to gather in-

ormation about the animal has been using wearable harnesses

r collars with attached technological devices providing informa-

ion to the system in charge of processing the information. One

f the most basic methods for animal tracking in outdoor scenar-

os has been relying on GPS or radio-frequency localization, attach-

ng the emitter devices to a collar or harness. These systems only

ive information on the animals’ location and have been used by

et owners, mostly to assess their dogs’ locations and whether or

ot they are in trouble ( Mancini, van der Linden, Bryan, & Stu-

rt, 2012 ). This technology has also been used during hunting ac-

ivities with dogs, allowing the human leading the hunting ac-

ivity to interpret the movements of the dog in the field by fol-

owing its signal on a handheld display ( Paldanius, Kärkkäinen,

äänänen-Vainio-Mattila, Juhlin, & Häkkilä, 2011; Weilenmann &

uhlin, 2011 ). 

However, several outdoor scenarios require more precise infor-

ation about the animals’ movements or body postures during the

ctivity, and even some kind of communication from the animal to

he human side. As an example, determining the pose of the ani-

al is of vital importance in the case of Search and Rescue (SAR)

ogs. Due to its agility and strong sense of smell, dogs are suited to

erform SAR tasks which are not always safe for humans, such as

ccessing small locations or identifying potential locations of sur-

ivors after a catastrophe. Usually SAR dogs have to work away

rom human sight, and it would be extremely useful for the dog

andlers if they could know the location and pose of the dog to

etermine if the dog is trying to communicate some discovery, and

o assess the physical wellbeing of the animal. Recognition of an-

mals’ postures and activities in this kind of scenarios are usually

erformed using accelerometers, gyroscopes or other inertial mea-

urement units, and the majority of works are focused on dogs

 Bozkurt et al., 2014; Zeagler et al., 2016 ). In these works, differ-

ntiating clearly between what is activity and what is a posture is

sually difficult. A specific activity entails that the animal adopts

 specific posture, e.g. walking or jumping are different activities

dentified by their posture, and eventually some postures are in it-

elf an activity, e.g. sitting. 

Most of the works based on wearable devices for activ-

ty/posture recognition are based on the use of a tri-axial ac-

elerometer located at the dog’s collar and then apply classifica-

ion techniques to the data obtained from the accelerometer in

rder to recognize the activity/posture. There are several devices

or dogs, some of them even commercial, such as Whistle®, 3 Fit-

ark®4 or WagTag TM ( Weiss, Nathan, Kropp, & Lockhart, 2013 )

hich make use of a tri-axial accelerometer to perform basic ac-

ivity level recognition. However, these systems are only capable of

http://www.whistle.com/
http://www.fitbark.com
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Table 1 

Existing wearable tracking systems for animals and summary of features. 

Related work Device Indoor/Outdoor use Position detection Posture recognition Activity recognition 

( Mancini et al., 2012 ) Collar-worn GPS Outdoor Yes No No 

( Paldanius et al., 2011 ) Collar-worn GPS Outdoor Yes No No 

( Weilenmann & Juhlin, 2011 ) Collar-worn GPS Outdoor Yes No No 

Whistle Collar-worn GPS and 

accelerometer 

Indoor and outdoor Yes No Basic 

FitBark Collar-worn accelerometer Indoor and outdoor No No Basic 

WagTag Collar-worn accelerometer Indoor and outdoor No No Basic 

( Ladha et al., 2013 ) Collar-worn accelerometer Indoor (possibly outdoor if the 

device range of frequencies 

allow it) 

No Yes Yes 

( Valentin, 2014 ) Accelerometer on a harness Indoor and outdoor No No Yes 

( Valentin et al., 2015 ) Collar-worn accelerometer and 

gyroscope 

Indoor and outdoor No Yes Yes 

( Ribeiro et al., 2009 ) Two accelerometers on a 

harness 

Indoor and outdoor No Yes No 

( Bozkurt et al., 2014; 

Brugarolas et al., 2013 ) 

Two accelerometers and two 

gyroscopes on a harness 

Indoor and outdoor No Yes Yes 

( Watanabe et al., 2005 ) Two collar-worn 

accelerometers 

Indoor No Yes Yes 

PawTrack Collar-worn GPS Outdoor Yes No No 

Cat@Log Collar-worn GPS and 

accelerometer 

Indoor and outdoor Yes Yes Yes 

( Wingrave et al., 2010 ) Harness with IR emitters and 

Wiimote IR camera 

Indoor Yes Yes No 
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ndicating if the dog was resting or moving and do not differenti-

te between different activities which involve movement. In Ladha,

ammerla, Hughes, Olivier, and Ploetz (2013 ), dogs wear a tri-axial

ccelerometer on the collar and, after being trained with a kNN

lassifier, the system is able to differentiate between 14 activities

nd 2 postures. 

Within the FIDO project ( Jackson et al., 2013 ), researchers have

een studying how wearable devices could mediate the communi-

ation between working dogs and their handlers. They have un-

ertaken extensive work on providing dogs with suitable wear-

ble activators ( Jackson et al., 2015 ). In addition, they have also

onsidered to mediate this communication by recognizing motion-

ased dog gestures – sit, spin, roll, jump, etc. – using a three-

xis accelerometer attached to the front of a service dog harness

 Valentin, 2014 ). More recently, they have studied the use of a dog

ollar with an accelerometer and gyroscope for the recognition of

ead gestures on dogs ( Valentin, Howard, & Jackson, 2015 ). 

The effectiveness of wearable harnesses with several inertial

easurement units located along the harness has also been stud-

ed. The work of Ribeiro, Ferworn, Denko, and Tran (2009 ) uses the

ngles of two accelerometers on different locations on the dogs’

arness to develop an algorithm capable of estimating four poses

ncluding: standing, lying down, sitting, and walking. Other works

 Bozkurt et al., 2014; Brugarolas et al., 2013 ) extend this idea by

sing more inertial measurement units located on the optimal lo-

ations of a dog’s body, which have been determined attending

o the algorithm’s performance and the dogs’ comfort and phys-

ognomy. Using the information provided by these units and ap-

lying machine learning techniques, five static postures and three

ynamic behaviors can be identified. They have also compared

he performance of the classification algorithm using supervised

gainst unsupervised classification methods ( Winters et al., 2015 ). 

Acceleration data-loggers are also a common and efficient way

f detecting cats’ body postures and frequent behaviors based on

ovement ( Watanabe, Izawa, Kato, Ropert-Coudert, & Naito, 2005 ).

ommercial devices for cat activity recognition are also available,

uch as PawTrack®, 5 which detects whether the cat is at home or

utside, and offers GPS geolocation for outdoor walks. However,
5 http://pawtrack.com/ . 

m  

a  

(  
t neither monitors any activity nor gesture. Cat@Log ( Yonezawa,

iyaki, & Rekimoto, 2009 ) is a non-commercial but more com-

lete device. It consists of a cat collar device with several sensors:

 camera, a GPS, an accelerometer, a Bluetooth module, battery

nd micro SD card. The camera provides videos of the cat’s view,

hile the accelerometer data is used for activity recognition such

s sleeping, jumping, walking or scratching. 

Canine Amusement and Training ( Wingrave, Rose, Langston, &

aViola, 2010 ) presents a wearable tracking system for dogs not

ased on accelerometers. It consists of IR emitters attached to the

og’s harness, and a Wiimote’s IR camera placed on the ceiling.

he system detects the location and posture of the animal by track-

ng the IR emissions of the harness using the Wiimote. The de-

ected postures and location are used by the system to determine

hether the dog is performing correctly the proposed training ac-

ivities offered by the system. Table 1 provides a summary of the

xisting approaches for wearable tracking systems for animals and

heir most distinctive features: the device being used for tracking,

hether it works in indoor or outdoor locations, and whether or

ot it detects the position of the animal within the tracking area,

ts posture and/or its activity. 

.2. Non-wearable tracking systems 

Although wearable devices are the most common way of track-

ng an animals’ position and posture, a number of non-wearable

olutions have also been proposed. Poultry.Internet ( Lee et al.,

006 ) illustrates a remote communication system between a pet

nd its owner, in which the owner is able to remotely obtain real-

ime information on the location and orientation of its poultry in-

ide the house backyard. This system tracks the movements of the

hicken using a camera and an electro-pad located in the chicken’s

eg to sense its muscle activity. Through camera images they also

etect the chicken’s head to find the orientation of the animal

ithin the backyard, but no postures are identified. In Karlsson,

en, and Li (2010 ) computer vision methods have been used to

rack the movements of animals inside a zoo environment using

ultiple cameras, but again neither body postures nor gestures

re identified. No wearable device is either used in Purrfect Crime

 Trindade et al., 2015 ), an interspecies digital game for cats and

http://pawtrack.com/
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Fig. 1. Set-up for the tracking system. 
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humans. In this case a Microsoft Kinect®6 is used to detect the

position of the cats inside the play area, using the depth informa-

tion provided by this sensor. However, the system only detects the

central position of the animal, and neither posture nor orientation

is detected. Therefore, the interactive responses of the system were

sometimes erroneous, as not being able to identify where the cat

was looking introduced some interactions which were not really

intended by the animal. 

To the best of the authors’ knowledge, none of the existent non-

wearable systems intended for animal tracking is capable of detect-

ing body postures. In order to address the aforementioned limita-

tions that wearable devices present in several application domains,

there is a need for the development of tracking mechanisms for

animals not based on wearable devices which allow to detect body

postures as well as locating the animal within the tracked area.

The following section describes a promising non-wearable tracking

system for animals based on depth information. For the recogni-

tion of the animals’ body parts and postures using the data pro-

vided by this depth-based tracking system, it has been essential

to analyze how different classification algorithms perform in this

domain. Both supervised and knowledge-based classification tech-

niques have been tested, and the promising results obtained will

be described in Section 4 . 

3. Tracking system 

Within Human Computer Interaction, depth sensors have been

successfully used for gesture detection and posture recognition on

human beings. A depth frame of an image provides, for each pixel,

the distance in millimeters from the sensor plane to the near-

est object in that particular pixel. Depth sensors, such as the Mi-

crosoft Kinect®, have been very useful to detect and recognize vol-

umes and 3D shapes from 2D images. Usually, these sensors are

located in a vertical plane, either in front of the user who is inter-

acting or facing the scene to be analyzed. However, recent works

have located this kind of sensors on the ceiling to track an open

space area ( Benko, Wilson, Zannier, & Benko, 2014; Jones et al.,

2014; Jones, Benko, Ofek, & Wilson, 2013; Moreno, Van Delden,

Poppe, Reidsma, & Heylen, 2015 ), providing wider tracking areas

and avoiding occlusion due to elements in the room. Human ges-

tures can be detected using this set-up ( Bednarik & Herman, 2015;

Hu, Reilly, Alnusayri, Swinden, & Gao, 2014; Lin, Liu, Hsu, & Fu,

2015 ), and this configuration of the depth-sensor could also be

useful for animal tracking applications. The skeleton of animals

such as cats or dogs should be easily recognizable from above in

several postures, e.g. sitting or walking, if volumetric information

of the image such as depth analysis is used: the head could be

identified as a volumetric shape different from the body and/or

tail, and depth information would also allow to locate the position

of each body part in a tridimensional representation space. In the

case of other animals more similar to human beings in terms of

skeletal characteristics, such as orangutans, similar approaches as

the ones used for human gesture detection could be used. There-

fore, a depth-based tracking system would be a promising way of

detecting the animals’ location, posture and field of view ( Pons,

Jaen, & Catala, 2015a, 2017 ). In the following sections, a depth-

based tracking system for the detection of cats’ body postures, lo-

cation and orientation is described. The tracking system has been

developed and tested with cats as target users, but it could be

adapted to work with other animal species using a similar ap-

proach. 
6 https://msdn.microsoft.com/en-us/library/hh855355.aspx . 

i  

r  

p  

g  
.1. Equipment and procedure 

Several sessions with cats were carried out in which a Microsoft

inect® v1.0 sensor was used to record video streams of depth and

olor information from the cats’ natural movements during a pe-

iod of time. During the sessions, cats moved freely and were also

ncouraged to play with their owners, caretakers or small interac-

ive robotic toys. The Microsoft Kinect® was placed looking down

rom the ceiling at a height of 250 cm, where it covered an area

f approximately 200 cm long and 270 cm wide, as shown in Fig.

 . The tracking area was a clear space with neither furniture nor

bjects besides the toys/robots used for the games. The Microsoft

inect® recorded both color and depth video streams at a rate of

0 frames per second with 640 × 480 pixel resolution. 

Ethical guidelines for ACI studies were considered ( Väätäjä &

esonen, 2013 ), and therefore the subjects were not forced to inter-

ct and they could walk freely around the room. Cats were encour-

ged to interact within the tracking area of the sensor by means of

heir owners/caretakers drawing their attention to this area with

oys or by calling them. However, as the cat could move freely in-

ide the room where the interaction took place, only the moments

n which the cats were within the tracking area were valid record-

ngs. These sessions allowed to obtain real data on common and

pontaneous postures, behaviors and movements, which were later

nalyzed and processed to develop the depth-based tracking sys-

em. The tracking system has been developed using C#, Microsoft

inect® SDK 1.8, and EmguCV, an OpenCV framework for .NET sys-

ems which has been used for image processing. 

.2. Processing depth-based information 

The Microsoft Kinect® v1.0 sensor provides both color (see Fig.

 a) and depth streams (see Fig. 2 b). The tracking system will only

se depth information as input, so the color streams are discarded.

ach depth frame provides, for each pixel, the distance in millime-

ers from the camera plane to the nearest object in that particular

ixel (see Fig. 2 b). In the obtained depth images, the contours of

he cats can be clearly observed as their depth values are greater

han the floor’s depth, which is constant. Instead, the depth pixels

f a cat vary along its body, allowing a human eye to differenti-

te between the different parts of the cat’s body just by looking

t the depth frame. In the same way, different cat postures can be

bserved to generate different cat contours in the processed depth

rames. 

The first processing step of the algorithm consists of extracting

he cat’s pixels from the depth frame (see Fig. 2 b). In the current

mplementation of the algorithm, which has been tested with pre-

ecorded data, background segmentation has been done by sim-

ly discarding from the image those pixels corresponding to the

round, as the sensor was placed in a fixed position during the

https://msdn.microsoft.com/en-us/library/hh855355.aspx
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Fig. 2. Process of extracting the cat’s orientation: (a) color frame (b) depth frame, (c) background segmentation, (d) cat contours, (e) clusters for head, body and tail, (f) 

orientation vector. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 3. Cat’s postures and the corresponding depth and clustered image (a) standing 

(b) walking (c) sitting (d) turning (e) semisitting (f) jumping. 
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essions and therefore the distance to the floor was known (see

ig. 2 c). However, this approach can unintentionally remove the

ats’ tail (as observed in Fig. 2 c, cat on the lower-right corner of

he image), which in some cases could be a source of valuable

nformation when creating richer posture descriptors. Thus, more

laborated approaches for background segmentation should be in-

orporated in order to overcome this current limitation and to al-

ow for more flexible set-up conditions. With the floor removed

rom the image, computer vision algorithms are applied to the

epth image in order to extract the cats’ contours, which now ap-

ear as grey-scale blobs on the image (see Fig. 2 d). In this step,

 cat’s location within the tracked area can be determined by us-

ng the centroid of the extracted contours as a 2D coordinate. Each

etected contour is then processed by a k-means clustering algo-

ithm, which groups the pixels by their depth value and relative

osition (see Fig. 2 e): pixels of similar depth which are located to-

ether in the image would be grouped together within the same

luster. The number of clusters was set to three in order to divide

he cat contour into the three most noticeable parts of the cat’s

ody, i.e. head, body and tail. The following step of the tracking

ystem would be the recognition of the cats’ postures and body

arts. For this purpose, the obtained clusters of each cat have to

e classified into either head, body or tail. Once the head is de-

ected, its position in relation to the body/tail clusters allows an

rientation vector to be defined, from the center of the body/tail

luster to the center of the head cluster (see Fig. 2 f), roughly es-

imating the cat’s field of view. Moreover, not only the cats’ body

arts can be detected but also different body postures can be iden-

ified. A pseudocode description of the tracking, classification and

lustering process is shown in Algorithm 1 and Algorithm 2 . 

Algorithm 1 Processing pipeline. 

BEGIN 
1. Capture depth image 
2. Carry out background segmentation 
3. Obtain contours 
4. Call Algorithm 2 
5. Calculate orientation vector 
END 

Algorithm 2 Cat clustering algorithm. 

Input: feature vector 
Output: posture, head, body, tail 
BEGIN 
1. Obtain unclassified clusters with k-means (k = 3) 
2. Match body parts to clusters and obtain posture 
END 

Step 2 in our clustering algorithm ( Algorithm 2 ) can be carried

ut in different ways. In this work, a supervised training method
nd a knowledge-based classification system have been evaluated

or the detection of both postures and body parts. Both approaches

ill be explained in Sections 4.1 and 4.2 , respectively. A dataset

as created from the recordings in order to train and evaluate

hese classification mechanisms. It was observed that the tracking

evice was providing better images for one of the cats, probably

ue to its color, size and density of the coat. However, with the

urrent data it was difficult to quantify to which extent each fac-

or was affecting the tracking accuracy. To avoid introducing errors

ue to such factors in the experiment, only images in which the

at contour was correctly tracked and extracted were used for the

xperimental data. The dataset is comprised of 1422 contours of

ats in different postures, which were manually labeled indicating

he posture and the different body parts of the cat. 

. Classification results and discussion 

A set of experiments have been conducted in order to deter-

ine the accuracy of the system in the detection of a cat’s posture

nd the classification of its body parts. The following postures were

onsidered, and representative color and clustered images of each

f them can be observed in Fig. 3: 

• Standing: the cat is standing on its four legs, head slightly

higher than the body. 
• Walking: the cat is standing, head slightly bent forward and

legs moving forward. 
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Table 2 

Accuracy rates for base learners when classifying a cluster belonging to a cat’s contour. 

Decision tree Random tree Random forest Rule induction ∗ Support vector machine ∗ kNN ( k = 4) Naïve Bayes Logistic regression ∗

Head 97.57% 42.98% 77.55% 84.63% 64.90% 61.46% 34.16% 49.23% 

Body 47.44% 40.43% 50.82% 74.70% 59.37% 54.58% 29.63% 59.34% 

Tail 93.00% 63.57% 85.29% 81.18% 73.29% 66.23% 59.65% 81.46% 

Average 62.87% 47.17% 62.28% 82.20% 66.67% 60.64% 34.81% 60.33% 

Table 3 

Accuracy rates for base learners when classifying a cat’s posture. 

Decision tree Random tree Random forest Rule induction Support vector machine kNN ( k = 4) Naïve Bayes Logistic regression 

Standing 72.62% 50.65% 55.17% 85.41% 83.44% 85.32% 84.62% 84.62% 

Walking 75.12% 51.35% 76.39% 77.19% 74.89% 74.55% 63.31% 71.43% 

Sitting 89.77% 67.27% 85.71% 92.90% 89.08% 87.63% 90.86% 90.00% 

Semisitting 81.15% 58.76% 87.25% 84.78% 78.69% 86.57% 81.02% 78.12% 

Turning 81.40% 42.07% 79.35% 80.19% 70.98% 71.68% 62.17% 73.78% 

Jumping 92.31% 80.47% 96.84% 94.71% 93.66% 96.69% 96.97% 92.92% 

Average 79.56% 55.84% 69.59% 85.50% 81.93% 83.32% 79.01% 82.05% 

Table 4 

Accuracy rates for base learner when classifying a cat’s posture, using forward feature selection. 

Decision tree Random tree Random forest Rule induction ∗ Support vector machine ∗ kNN ( k = 4) Naïve Bayes Logistic regression ∗

Standing 76.05% 63.06% 74.64% 88.64% 85.92% 92.98% 82.77% 73.81% 

Walking 79.27% 59.56% 71.94% 80.60% 69.70% 87.83% 77.92% 79.03% 

Sitting 91.33% 87.80% 90.75% 94.12% 83.61% 94.12% 96.64% 88.89% 

Semisitting 80.45% 74.80% 78.86% 82.61% 10 0.0 0% 84.67% 82.19% 77.50% 

Turning 74.57% 62.42% 73.33% 76.81% 74.24% 87.32% 71.22% 83.78% 

Jumping 93.56% 92.57% 97.01% 96.72% 96.61% 97.52% 96.52% 89.23% 

Average 81.10% 70.74% 79.58% 86.62% 83.80% 91.22% 83.63% 80.05% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b  

b  

s  

i  

m  

8  

i  

o  

c  

a  

t

 

t  

d  

t  

t  

t  

b  

t  

d  

a  

s  

s  

A  

t  

H  

o  

j  

f

 

o  

fi  

T  

m  

c  
• Sitting: the cat is sitting on its rear legs, without bending its

front legs. 
• Turning: the head of the cat and its front part of the body are

curving towards one side. 
• Semisitting: the cat is sitting on its rear legs but bending to-

wards the front. 
• Jumping: the cat jumps on its back legs, head and front paws

up, all body extended vertically. 

4.1. Supervised classification of body parts and postures 

Supervised learning has been used to classify the three different

body parts of a cat’s contour into head, body and tail. The follow-

ing features have been used to describe each body part: width and

height of the cat’s contour, average depth, number of pixels and

shape descriptors (second order moments and Hu invariant mo-

ments). It should be noticed that the posture has not been consid-

ered a feature. In this way, the algorithm can firstly classify a cat’s

body parts regardless of its posture, and then use that informa-

tion to properly create the feature vector of a cat’s posture as will

be explained later in this section. The labeled dataset of cats´body

parts contained a total of 4266 feature vectors (1422 feature vec-

tors of each class, i.e. head, body and tail) and the analysis was

performed using the RapidMiner data mining tool. Table 2 shows

the accuracy of several base classifiers tested using k -fold cross val-

idation (10 validations, stratified sampling) to analyze their perfor-

mance, except for those marked with 

∗, in which simple split val-

idation was used (70% of the data set used for training, stratified

sampling). 

Results show rather low average accuracy rates. However, it can

be seen that for several classification algorithms such as decision

trees and random forest, very promising accuracy rates are ob-

tained when classifying the head and the tail. As we know that

for each cat’s contour, there is only one head, tail and body, the

first two kinds of clusters could be identified using the learned

classification model and the latter one, the body cluster, would
e the remaining one. To demonstrate this hypothesis, a com-

ined model has been built using a stacking approach and con-

idering the three best base learning algorithms for this data: rule

nduction, support vector machine and decision tree. The resulting

odel, combined using rule induction, has an average accuracy of

3.18% (head = 88.22%, body = 77.75%, tail = 83.97%). As expected,

t follows the prediction if the output class is either head or tail,

r classifies the cluster as body otherwise. With the head correctly

lassified, the field of view of the cat can be roughly estimated as

n orientation vector from either the center of the body or tail to

he center of the head. 

Supervised learning has also been used to classify a cat’s pos-

ure. The same dataset of 1422 manually labeled images of cats in

ifferent postures was used. For each posture, the following fea-

ures were considered: width and height of the cat’s contour, clus-

ers basic info (centroid, average depth, and number of pixels), dis-

ance between head to body centroids, distance between tail and

ody centroids, distance between head and tail centroids, angle be-

ween the vectors from body to tail and from body to head, depth

ifferences between clusters (head and body, head and tail, body

nd tail), with a total of 21 features. Base learners performed as

hown in Table 3 using k -fold cross-validation (100 validations,

tratified sampling) when classifying the aforementioned postures.

s can be observed in Table 3 , rule induction was shown to be

he best performing algorithm considering average accuracy scores.

owever, some algorithms perform better than others depending

n the posture being classified. As an example, classification of

umping postures has slightly better results using a kNN, random

orest or Naïve Bayes classifier rather than rule induction. 

Forward feature selection was applied on all base learners in

rder to discard features that could introduce noise into the classi-

cation. Accuracy results for the same cat postures are shown in

able 4 . k -Fold cross validation was used to analyze the perfor-

ance of all classifiers (100 validations, stratified sampling), ex-

ept for those marked with 

∗, in which simple split validation was
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Table 5 

Accuracy of the tracking system identifying the cats’ postures and body parts. 

Sitting/semi-sitting Walking/standing Jumping Turning 

Posture 84% 49.5% 69% 53% 

Body parts 99% 74.5% 92.5% 71% 
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sed (70% of the data set used for training, stratified sampling). It

an be observed that in few cases the average and individual accu-

acy rates are significantly improved, such as in the random tree,

andom forest and kNN classification algorithms. The selected fea-

ures are different depending on the algorithm being used, hence

t seems that there are no noisy features and the best performing

ubset of features will depend on the algorithm being used. With

his approach, the kNN classifier not only has the best average per-

ormance score, but also is the best classifier for four of the six

ostures, and in the remaining two postures it is the second best

erforming classifier. 

As a final validation, a combined model has been trained us-

ng a stacking approach, considering the three best performer

lassifiers (kNN, rule induction and support vector machine)

nd combining them using rule induction. Forward feature se-

ection has been applied to the combined model. The aver-

ge accuracy for this model is 88.50%, with the following class

ccuracy: standing = 87.32%, walking = 80.56%, sitting = 94.00%,

emisitting = 86.36%, turning = 89.47%, jumping = 96.72%. 

The obtained results are very promising and demonstrate that

eliable tracking systems for animals based on depth information

an be developed using machine learning algorithms for the clas-

ification of the cat’s body parts and postures. 

.2. Knowledge-based classification of body parts and postures 

The process for supervised learning is time demanding as it re-

uires to label the data in order to construct the training set and

uild a suitable model to apply to the new data. As this system

s envisioned to adapt to cats of different breeds, sizes and physi-

al characteristics, it would be very beneficial if the tasks of label-

ng, training and deploying the model could be eased. Other works

ave also considered including knowledge-based models directly

ncoded in classification algorithms for solving several problems

 Li, Goldgof, & Hall, 1993; Winters et al., 2015 ), when the costs

or the preparation of datasets and training required in supervised

earning are not feasible. Therefore, an exploratory study on the ac-

uracy of the tracking system using knowledge-based classification

as been conducted in order to assess the suitability of such an

pproach. If feasible, it could allow easy deployment and adapta-

ion of the system to new scenarios and users, i.e. cats of different

izes and breeds, with minimal configuration requirements. 

In order to develop such a system, an observational analysis on

 sample of the recordings and their corresponding clustered im-

ges was conducted. Different cat postures were seen to generate

ifferent cat contours in the processed depth frames, and the sizes

nd depth values of the different clusters also varied from one pos-

ure to another. As an example, the cat’s depth stream contour

hen sitting showed a smaller, square-shaped bounding rectangle

see Fig. 3 c), while the depth stream when standing or walking

evealed a larger and rectangular-shaped bounding rectangle (see

ig. 3 a and b). In addition, the pixels of the sitting cat’s head had a

ignificantly higher average depth than the pixels of the rest of the

ody. This is observed in Fig. 3 c, in which the grey pixels of the

ead are significantly darker than the pixels of the cat’s haunch.

n contrast, the cat walking in Fig. 3 b has an average depth of its

ead pixels very similar to the average depth of the haunch and

ail pixels. Another aspect to consider is that the k-means cluster-

ng algorithm has been fixed to provide three clusters at all times.

ence, the classification algorithm for the different body parts is

he one responsible of determining which one would correspond to

he lower back of the cat. This cluster, in most cases, corresponds

o the tail. However, in some cases in which the tail is not visible

uch as in Fig. 3 c, the detected cluster physically corresponds to

he lower back of the animal. These cases usually occur when the

at is in a sitting posture. In this case, the head is clearly differ-
ntiated from the rest of the body, and in terms of average depth

t is undoubtedly the highest cluster detected. Hence, in this pos-

ure only the detection of the head and the body would allow the

at’s field of view to be determined. However, in other postures

he detection of the tail is crucial to determine the orientation of

he cat. For instance, determining whether the cat is looking north

r south in Fig. 3 b would be difficult if the tail was not detected,

ecause the head is not clearly in a higher position than the rest

f the body. 

After the analysis, a decision tree algorithm was developed

hich considered the following parameters: dimensions of the

at’s contour, number of pixels for each cluster and average depth

or each cluster. The decisions on the tree are made in terms of

he observed average values for each feature on the data used for

he analysis, allowing a threshold for the variance of each of these

alues. Several simplifications have been made. Firstly, the algo-

ithm cannot differentiate between walking and standing positions,

or between sitting and semi-sitting, as considering this basic in-

ormation the average and threshold values overlap and it is only

ossible for machine learning algorithms to build such an elabo-

ate classification. Therefore, this basic version of the tracking sys-

em is focused on detecting sitting/semi-sitting, walking/standing,

umping and turning positions of several cats at a time, and classi-

ying the different pixel regions in each posture to detect the head,

ody and tail of each cat. Secondly, with the supervised approach it

as possible to isolate the classification of postures from the clas-

ification of clusters into cats’ body parts. It is not possible to do

hat in this knowledge-based approach, as for the human observer

he identification of each cluster depends on the posture being an-

lyzed, and vice versa. Third, and extra piece of information has

een given to the algorithm. If the decision tree cannot find the

ead of the cat, information from the last previous frame will be

sed to find the closest cluster which was classified as the head

n the last frame. The pseudocode in Algorithm 3 shows the basic

ehavior of the decision tree algorithm. 

An accuracy analysis has been conducted extracting 200 ran-

om frames of each posture and processing them offline by the

racking and classification algorithms. Table 5 shows a summary

f the results indicating the percentage of frames for each pos-

ure in which the algorithm correctly identified the posture and

ody parts of the cats respectively. Regarding the posture, the re-

ults indicate the percentage of cases in which the decision tree

ssigns the correct label for the analyzed cat’s contours. Regard-

ng the body parts, the results indicate the percentage of cases in

hich the algorithm correctly identifies the head of the cat and its

ody and/or tail. 

As it can be observed, the sitting position is one of the most

istinctive ones as it usually comprises a small area in which the

ead can be clearly identified and hence the body parts are very

asily classified and the orientation vector between the head and

ody/tail can be almost perfectly traced. The algorithm also clas-

ifies very well the cat’s body parts when jumping, although the

lassification of this posture has a 31% error rate. This is mostly

ue to the moments in which the jump is starting or finishing.

n these cases, the threshold value established to determine the

ump, which is the difference in depth between the highest and

he deepest cluster, does not fit well. This accuracy rate could

robably be improved by adjusting more carefully this thresh-

ld. The algorithm had problems identifying the walking/standing
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Algorithm 3 Knowledge-based decision tree algorithm. 

Input : cat’s contour size, clusters’ average depth, clusters’ number of pixels, clusters’ 
centroids, head 
cluster’s centroid from last frame 
Output : posture, head cluster, body cluster, tail cluster 
BEGIN 
1. if (small bounding rectangle of the cat’s contour) 
2. if (difference between highest and deepest cluster > threshold) 
3. posture = jumping 
4. head = highest cluster (cluster with smallest depth value) 
5. body = intermediate cluster 
6. tail = deepest cluster (cluster with biggest depth value) 
7. else if (number of pixels of highest cluster < average tail max. size) 
8. posture = turning 
9. tail = highest cluster (cluster with smallest depth value) 
10. head = intermediate cluster 
11. body = deepest cluster (cluster with biggest depth value) 
12. else if (number of pixels of highest cluster < average head max. size) 
13. posture = sitting 
14. head = highest cluster (cluster with smallest depth value) 
15. body = intermediate cluster 
16. tail = deepest cluster (cluster with biggest depth value) 
17. else 
18. posture = unknown 
19. head = closest cluster to the head cluster detected in last frame 
20. tail = furthest cluster from head 
21. body = remaining cluster 
22. else 
23. if (difference between highest and deepest cluster > threshold) 
24. posture = jumping 
25. head = highest cluster (cluster with smallest depth value) 
26. body = intermediate cluster 
27. tail = deepest cluster (cluster with biggest depth value) 
28. else if (number of pixels of highest cluster < average tail max. size) 
29. tail = highest cluster (cluster with smallest depth value) 
30. head = furthest cluster from tail 
31. body = remaining cluster 
32. if (bounding rectangle of the cat’s contour within average turning posture dimensions) 
33. posture = turning 
34. else 
35. posture = walking/standing 
36. else if (number of pixels of second highest cluster < average tail max. size) 
37. tail = second highest cluster 
38. head = furthest cluster from tail 
39. body = remaining cluster 
40. if (bounding rectangle of the cat’s contour within average turning posture dimensions) 
41. posture = turning 
42. else 
43. posture = walking/standing 
44. else if (number of pixels of highest cluster > average tail max. size AND 
45. number of pixels of highest cluster < average head max. size AND 
46. depth difference between highest and second highest cluster is very small) 
47. posture = sitting/semisitting 
48. head = highest cluster (cluster with smallest depth value) 
49. body = intermediate cluster 
50. tail = deepest cluster (cluster with biggest depth value) 
51. else 
52. posture = unknown 
53. head = closest cluster to the head cluster detected in last frame 
54. tail = furthest cluster from head 
55. body = remaining cluster 
END 
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position as well as the turning one. Nevertheless, in both cases the

classification of the body parts offers promising accuracy rates and

allows to determine an orientation vector to estimate the animal’s

field of view. 

At this stage the knowledge-based classification algorithm

would not be suitable to provide very accurate posture classifi-

cation in all cases. It is likely that the decisions coded in the al-

gorithm do not represent well the most characteristic features of

each posture as it has been a manual process based on observa-

tion and codification. This is an issue that supervised classification

algorithms are capable of resolve, as it has been demonstrated by

the results in Section 4.1 . However, the knowledge-based classifica-
ion algorithm presented in this section performs well in terms of

ody parts classification, allowing to determine the different body

arts of the animal correctly with less training time than in a su-

ervised approach. 

Therefore, for a system to automatically recognize between

ifferent body postures of an animal with very high certainty,

upervised classification algorithms are preferred over a basic

nowledge-based approach. If more complex systems are to be

eveloped, supervised classification algorithms are the recom-

ended approach. For example, they could provide very reliable

nformation in monitoring systems for animal welfare and be-

avioral pattern recognition, or remote communication systems
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Fig. 4. Kitten chasing a Sphero ®. 
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or dogs with occupations based on postures. Nevertheless, a

nowledge-based classification technique could provide satisfac-

ory accuracy rates if other types of information derived from the

ody parts of the animal are required, such as determining its field

f view or just detecting a specific part of the animal such as the

ead. The next section will provide an overview of the different

ystems in which classification algorithms as the ones presented

ould be a key component. 

. Applications within Animal–Computer Interaction 

.1. Behavior recognition, learning behavioral habits and welfare 

ssessment 

Non-wearable depth-tracking systems as the one presented in

his paper would significantly contribute to the development of ACI

esearch. ACI studies usually rely on the observational clues and

xpert knowledge provided by pet owners, caretakers, zookeep-

rs or specialists in animal behavior. They can provide insightful

nterpretations about an animal’s body language by analyzing its

osture and movements, as understanding and analyzing the ani-

als’ body language is one of the potential ways in which ACI re-

earchers can interpret the animals’ reactions to a system. There-

ore, a tracking system capable of detecting body postures, together

ith expert knowledge on animal behavior, could have the poten-

ial to automatize the interpretation of an animal’s responses to a

igital system. Wearable systems might not be used in all scenar-

os; hence, non-wearable technologies would provide great advan-

ages in this regard. 

One of the main benefits of not using wearable devices would

e the possibility of creating systems capable of constantly moni-

oring an animal’s activity neither disturbing it nor modifying its

abits. Complete animal tracking systems such as the one pre-

ented in this paper coupled with machine learning algorithms

ould allow us to learn behaviors and habits of individual an-

mals during their usual daily life. In this way, a personalized

nowledge base could be obtained for each animal, similar to the

nowledge their human companions have about them. Through

he tracking system we could learn, for example, the habitual

ocation and movements an animal performs in a specific con-

ext, the amount of time a day it spends doing physical activ-

ty such as walking or playing, and the intensity of this activity.

his knowledge base could be used to detect changes in behav-

oral patterns, such as increasing/decreasing physical activity or

esting time, therefore supporting early detection of illnesses or

ther problems. 

Zookeepers could make use of these systems in order to assess

he wellbeing of animals in zoos by means of detecting abnormal

ehavioral patterns. Automatically detecting behaviors of animals

n shelters could also alert the caretakers in case that abnormal ac-

ivity patterns are detected on an animal, allowing the caretakers

o take rapid action to foster the animal’s physical activity, ded-

cate more time to that animal or prioritizing adoption for cases

n which the animal does not respond to those cares. In addition,

his automatic behavior detection could allow to create personal-

zed profiles for each animal. When adopting, it is very important

hat the personality of the animal matches the needs and person-

lity of the human beings who are adopting it. In this way, pro-

les of the animals’ personality could be extracted and presented

o the adopters ( Alcaidinho et al., 2015 ). Finally, pet owners could

lso use this kind of systems in order to detect whether their an-

mals are doing well while left alone at home, for example during

orking hours, and communicate remotely with them via cameras

nd microphones if abnormal behaviors are detected. 
.2. Playful environments based on gesture and posture recognition 

Tracking systems such as the one presented in this paper have

n essential role in the development of future playful environ-

ents for animals. Current digital games for animals have been

sually tied to a specific device, human participation has usu-

lly been limited to a “controller” or “assistant” role and there

as been no support for several animal participants playing to-

ether as differentiated players ( Pons et al., 2015b ). However, tra-

itional games with animals rely on a more natural and open

nteraction, meaning that both animals and humans can move

reely during the game. Animals are used to playing by them-

elves or with humans, and in the latter case the human is an

ctive and essential participant in the activity. In addition, tradi-

ional games make use of the elements in the environment to en-

ance the playful experience, not limiting it to the object itself but

o the spontaneous interactions between the players thanks to the

ediating object. 

Future technologically-mediated games for animals could there-

ore be conceived as multimodal and multi-device systems, in

hich animals could play either alone, in a group or with hu-

an beings in a natural way. If animals play by themselves, the

ystem should intelligently manage the different devices and ob-

ects in the environment in order to adapt the game to the ani-

als’ preferences and interactions ( Pons et al., 2014, 2015b ). In or-

er to keep the animals’ interest in the game, some kind of “in-

elligence” is required. Random movements or actions of a digital

lement would cause the animal to eventually lose interest in the

ctivity ( Pons & Jaen, 2016b; Pons, Jaen, & Catala, 2017 ). Hence,

eing able to interpret an animal’s body posture and interactions

n a similar manner humans do is very important for providing

roper actuations in the playful environment. A tracking system

apable of detecting a cat’s location, posture and orientation cou-

led with the detection of digital objects and their movements

ould allow us to create engaging and realistic games using tech-

ological artifacts which adapt to the detected cat’s postures and

eld of view. As an example, we could think of a game in which

 cat chases a Sphero® (electronic ball, see Fig. 4 ) controlled by

he system, but the movements of the ball are not random. In-

tead, the Sphero® could also be tracked by the system and pro-

rammed to move depending on the detected context. Detecting

he location of the cat inside the play area would allow the game

o start whenever the cat approached the electronic ball. The de-

ected cat’s field of view could be used as the region on which to

eploy and move the technological artifacts to attract and maintain

ts attention. Posture detection would allow the system to move

way the toy if the tracking system detects that, for example, the

at is crouched in a hunting position, waiting for the ball to ap-
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proach. The presented tracking system would have other advan-

tages in this regard, as not all animals perform the same interac-

tions in play: during a chasing game, a cat might prefer to wait pa-

tiently until an object approaches him to catch it, whereas another

cat might be more eager and prefers to run after the object. There-

fore, the tracking system could help to learn the specific play dy-

namics and preferences of an animal during the game in order to

adapt it. 

If human beings are also participating, their interactions should

also be considered an essential part of the game and the digi-

tal playful experience should be as natural as traditional games.

The automatic recognition of human gestures by a top-down

depth-based tracking system would allow humans to participate

in the game in a natural way for both the animal and the

human, not being tied to any specific device. Human gestures

could be used to control the movements or features of the dig-

ital elements in the play area, e.g. the human player points at

an element with his hand and then points to another place,

and the element moves in the direction indicated by the hu-

man. Some games could introduce specific gesture-based inter-

actions, e.g. a competitive game between the animal and the

human in which a clapping gesture makes the system move a

toy/cord for 10 seconds to distract the cat so the human can

take advantage. 

5.3. Tracking systems for zoo enrichment and open spaces 

Depth sensors for animal tracking are a powerful tool in order

to help zoos improve their current enrichment practices. Technol-

ogy is being integrated into enrichment activities at zoos world-

wide, as it easily allows creating varied scenarios and cognitive

stimulation for the animal ( French et al., 2016 ). In these environ-

ments, animals are not allowed to acquire and hold the technology

themselves. Therefore, zoo enrichment activities based on technol-

ogy would benefit from mechanisms that track and augment the

animals’ interactions with other elements in their environment. In

this way, all the technological devices could be placed outside the

enclosure while the animal interacts naturally with the augmented

elements inside ( Pons & Jaen, 2016a ). This also leverages the need

of a human caretaker being present to provide the technology. For

example, current studies include the use of depth sensors to de-

tect the interactions of orangutans with a projection on the floor

( Webber et al., 2017 ). Tangible elements inside the environment

have also been augmented using RGB-D sensors. By tracking and

detecting non-technological tangible objects, the system could pro-

duce responses such as sounds based on the animals’ movements

with those objects ( Pons, Carter, & Jaen, 2016 ). 

However, due to current limitations of the RGB-D technology,

the tracking system described in this paper is only suitable for

indoor detection. Other methods would have to be considered if

we wanted to carry out animal tracking outdoors without using

a wearable device, such as dogs in their yards or wild animals in

their habitats. In these scenarios, lighting conditions and required

distance for optimal tracking would make the acquisition of accu-

rate information from the depth sensor very difficult. In fact, cur-

rent works for outdoor animal tracking usually rely on computer

vision techniques either from recorded videos from regular video

cameras ( North, Hall, Roshier, & Mancini, 2015 ), heat-cameras ( van

Vonderen, 2015 ) or drone mounted cameras for survey population

( Hodgson, Kelly, & Peel, 2013 ). The use of drones for posture and

behavioral tracking seems promising but still presents many issues

that could disturb the animals’ natural behaviors: distance from

the device to the animal, noise of the device, battery life, trans-

mission rate and range, etc. Although this is an interesting area, it

requires deeper discussion and consideration. 
. Conclusions and future work 

A tracking system for cats based on depth information has been

eveloped, and two studies comparing its performance using both

upervised and knowledge-based approaches for the classification

f cat’s postures and body parts have been presented. Results have

hown to be very promising and therefore tracking systems for cats

ased on depth information could effectively detect a cat’s location

nd also use classification algorithms to recognize a cat’s postures

nd body parts. Several applications have been envisioned for this

ind of tracking systems and its benefits for animal welfare and

ellbeing have been outlined. 

Our future work would be improving the tracking and classi-

cation system, for example by introducing temporal information

hich could help to better differentiate between several postures

uch as walking or standing, and allowing to register paths and

equences of movements which are usually performed together.

ew postures and behaviors could also be identified, and new ex-

eriments should be conducted with cats of different sizes and

reeds in order to contrast the results. In this regard, improving

he knowledge-based classification process could allow to achieve

ully adaptation of the system to different cats. For example, the

racking system could automatically detect the size of the cat, in

ase it is a kitten, and adapt the classifier to it without requiring

he researcher or owner of the animal to perform manual labeling

f the data to train a new classifier, which is a very time consum-

ng task. 

Some improvements could also be done regarding the detection

f the cat’s field of view. The orientation vector defined as a vector

rom the body/tail of the cat to its head sometimes gives mislead-

ng information when the cat is turning its head around. In these

cenarios, the orientation vector might not be accurate when de-

ermining the cat’s head orientation. Computer vision could then

e used to recognize the shape of the cat’s head and detect char-

cteristic features, such as nose or ears. This would allow the de-

ection of the head orientation and hence correctly determining

here the cat is looking at. Cats have a field of view of 200 °;
herefore detecting the head orientation would be sufficient to pro-

ide a broad area of around 100 ° centered using the head orienta-

ion vector, in which to locate the technological intervention. 

Another feature that will greatly benefit the tracking system in

erms of flexibility and adaptation is automatic background seg-

entation. The tracking system presented in this manuscript per-

ormed background segmentation assuming a fixed position from

he sensor to the floor, and within a clear space with neither ob-

tacles nor furniture. However, from the initial frames of the track-

ng area without any animals or humans in it, background segmen-

ation could be applied to detect the floor (i.e., deepest area in the

mage). Once the floor has been extracted from the image, static

bjects with higher depth than the floor could be detected. This

ould correspond to furniture, obstacles, etc. Once the area and

bstacles have been mapped, any new information with different

epth than the one recorded in the initial static frames would cor-

espond to the player/s. This process would allow the tracker to

dapt to several scenario configurations without minor interven-

ions from the human, either researcher or owner/caretaker. 

It should also be noted that for this study, the depth sensor was

 Microsoft Kinect v1. It is known that the newer version of this

ensor provides better tracking accuracy. Hence, it remains to be

tudied whether this new sensor would help to improve the re-

ults presented in this paper. Moreover, it could also help to quan-

ify and reduce tracking issues caused by the physical character-

stics of the cats, e.g. color, size, density of the coat, etc. In addi-

ion, it would be very interesting to evaluate the tracking system

ith other animal species, not only four legged ones, such as dogs,

ut also animals with very different skeletal characteristics such as
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rangutans. The next step would be the integration of the tracking

ystem and the learned classifiers into an intelligent playful envi-

onment, as explained in Section 5.2 . In this way, the system could

eact properly according to the detected behavior, creating engag-

ng playful scenarios for the animal who is playing. 

The proposed tracking approach for animals based on depth in-

ormation as well as the two studies on the performance of differ-

nt classifiers in this domain are a significant and beneficial contri-

ution for advancing research within and outside the field of Ani-

al Computer Interaction. The outcomes of these two studies will

llow to improve the techniques for posture and behavior recog-

ition of animals using non-wearable devices, which will be used

n the development of systems to support animal welfare and im-

rove animal wellbeing. 
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