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Linear dimensionality reduction for classification via a

sequential Bayes error minimisation with an application

to flow meter diagnostics

Kojo Sarfo Gyamfia,∗, James Bruseya, Andrew Hunta, Elena Gauraa

aFaculty of Engineering and Computing, Coventry University, Coventry, CV1 5FB,
United Kingdom

Abstract

Supervised linear dimensionality reduction (LDR) performed prior to classi-
fication often improves the accuracy of classification by reducing overfitting
and removing multicollinearity. If a Bayes classifier is to be used, then re-
duction to a dimensionality of K − 1 is necessary and sufficient to preserve
the classification information in the original feature space for the K-class
problem. However, most of the existing algorithms provide no optimal di-
mensionality to which to reduce the data, thus classification information can
be lost in the reduced space if K − 1 dimensions are used. In this paper, we
present a novel LDR technique to reduce the dimensionality of the original
data to K − 1, such that it is well-primed for Bayesian classification. This is
done by sequentially constructing linear classifiers that minimise the Bayes
error via a gradient descent procedure, under an assumption of normality.
We experimentally validate the proposed algorithm on 10 UCI datasets. Our
algorithm is shown to be superior in terms of the classification accuracy when
compared to existing algorithms including LDR based on Fisher’s criterion
and the Chernoff criterion. The applicability of our algorithm is then demon-
strated by employing it in diagnosing the health states of 2 ultrasonic flow
meters. As with the UCI datasets, the proposed algorithm is found to have
superior performance to the existing algorithms, achieving classification ac-
curacies of 99.4% and 97.5% on the two flow meters. Such high classification
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accuracies on the flow meters promise significant cost benefits in oil and gas
operations.

Keywords: Linear dimensionality reduction, LDA, heteroscedasticity,
Bayes error, flow meter diagnostics

Point to Point Responses to Review Comments

The authors would like to thank the anonymous reviewers for their in-
sightful comments. Below, we address these comments point by point for
each reviewer.

Responses to Reviewer 1 Comments

• In the conclusion section, the authors need to clearly discuss their the-
oretical contributions in Expert and Intelligent Systems compared to
those in related papers in Expert and Intelligent Systems. This MUST
be added in a separate paragraph. Overall, contributions of the article
are unclear and weak.

Response

We have introduced the following paragraph in the conclusion to clar-
ify the theoretical contributions of the paper to expert and intelligent
systems:

The proposed algorithm is applicable to expert and intelligent systems
that require LDR to overcome overfitting in predictive classification
models so that prediction accuracies may subsequently be improved.
Most of the existing LDR procedures provide no optimal dimension-
ality to which a given dataset may be reduced, and they tend to lose
class-discriminatory information in the optimal (K − 1)-dimensional
subspace required for Bayesian classification. In contrast, the proposed
algorithm provides an optimal reduction to a dimensionality of K − 1
via a sequential minimisation of the Bayes error, thus guaranteeing a
much better classification accuracy than the existing approaches using
a Bayes classifier such as LDA or QDA.
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• In a separate paragraph it is required to provide some including remarks
to further discuss the proposed methods, for example, what are the main
advantages and limitations in comparison with existing methods?

Response

We have included a paragraph in the conclusion highlighting the strength
and disadvantages of the proposed algorithm:

While the proposed algorithm has been shown to be superior to the ex-
isting procedures on the datasets tested in terms of classification accu-
racies, it is built on an assumption of normality of the data in each
of the K-classes. Yet, since a lot of physical data tend to be nearly-
normally distributed (Lyon, 2013), our algorithm is well suited for a lot
of applications particularly those involving measurement errors such as
machine fault diagnosis or those involving physical measurements such
as accelerometer-based human activity recognition. However, for data
that are radically non-normal, our procedure is expected to perform rel-
atively poorly, as the Bayes error is not guaranteed to be minimised.
Also, while the proposed LDR procedure has been derived for Bayesian
classification and is thus expected to perform well on Bayesian clas-
sifiers such as LDA, QDA and the Naive Bayes classifier, it is not
suitable for other discriminative classifiers such as the SVM or logis-
tic regression. Moreover, our algorithm requires the construction of
(K2 + K − 4)/2 classifiers which can be rather computationally costly
for a dataset having too many classes.

• Please open a real window for future work in the conclusion section.
The authors also need to clearly provide 4-5 solid future research direc-
tions in the Conclusion section. These directions should be written as
at least a separate paragraph and such directions need to be insightful
for most of ESWA community.

Response

We have rewritten the last paragraph of the conclusion to clearly show
our four main future research directions:
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In view of the above problems, our future work is concerned with the
violation of the assumption of normality employed in the proposed al-
gorithm. This would make the procedure more robust and applicable
to a wider range of problems. While the Bayes error can be analyti-
cally intractable for an arbitrary non-normal distribution, we aim to
extend the proposed procedure to minimising some upper bounds on the
Bayes error for a given dataset. Alternatively, future research is aimed
at deriving a kernel function that implicitly transforms some data of a
known non-normal distribution into a feature space where the data in
each class is nearly normally distributed. Moreover, we hope to explore
the use of information theoretic measures to reduce the total number
of classifiers constructed in each step of the proposed algorithm. This
would decrease the computational complexity of the algorithm and im-
prove its speed. Finally, as an application to flow meter diagnostics,
our future work is focused on leveraging the correct diagnosis of a flow
meter in the estimation of the error associated with each flow measure-
ment with reasonable accuracy. With knowledge of the true health state
of a flow meter, the associated measurement errors can be estimated
with improved accuracy. This will allow erroneous flow measurements
to be self-validated, thus resulting in significant cost cuts due to incor-
rect flow measurements in oil and gas operations.

Responses to Reviewer 2 Comments

• The organization and writing of the paper need to be improved signifi-
cantly, including all sections.

Response

We have reworked the paper to improve upon its organisation and the
quality of the writing. In particularly, it will be noted that the short
detour about flow meter diagnostics in the introduction section has
been removed in order to maintain the flow of the discussion of linear
dimensionality reduction. Meanwhile, the discussion of flow meter di-
agnostics which was originally placed under the experimental validation
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section has now been moved to a standalone section. Other grammati-
cal and typographical errors, as well as awkward phrasings, have been
corrected to the best of our abilities.

• There are various techniques or algorithms developed and employed in
different fields to simplify the structure of the input data so that higher
accuracy of classification may be achieved in the end. However, the
efficiency of each of them actually depends on the specific data set con-
sidered. Using the algorithm proposed by the authors, the average clas-
sification accuracy regarding LDA and QDA for different natural data
sets in two cases seem to be increased to certain level. This is good. If
a group of statistical hypothesis tests can be conducted to show the sig-
nificant difference among the results from different algorithms, it will
be better.

Response

For every test dataset in all experiments, we perform the Wilcoxon’s
signed rank test at a significant level of 0.01 to check for any significant
difference between the classification accuracy of the best performing
algorithm and those of the remaining algorithms. Based on the test
results, an asterisk has been indicated against a value if that value is
not statistically different from the best value in bold. This is why the
captions of Table 2 and Table 3 read:

The values with asterisk (*) are those that are statistically indiscernible
from the best values based on the Wilcoxon’s signed rank test at a sig-
nificance level of 0.01.

This clarification has now been included in the text in the experimental
validation section.

• LDA and QDA are two classical and traditional statistical analyzing
methods, typically used for classification. There are many other clas-
sical and advanced classification approaches in statistics, such as SVM
and its variants, proved to be very efficient in many application areas.
A comparison between the proposed algorithm and SVM when applying
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to at least one of those real data sets can make this paper much more
meaningful.

Response

Since the proposed algorithm is a linear dimensionality reduction pro-
cedure, a direct comparison with the support vector machine (SVM)
is not appropriate. Instead, we have now introduced a comparison in
Table 4 between the proposed LDR algorithm followed by LDA, and
the linear SVM without any dimensionality reduction.

We note, however, that just as class separability of LDR methods de-
pends on the classifier to be used (Fukunaga, 2013), our algorithm
linearly projects the data onto a (K − 1)-dimensional subspace which
is optimal for Bayesian classification. It is for this reason that we have
employed LDA and QDA for classification after the proposed LDR pro-
cedure, and not the SVM. This limitation of the proposed algorithm
has now been highlighted in the conclusion:

Also, while the proposed LDR procedure has been derived for Bayesian
classification and is thus expected to perform well on Bayesian clas-
sifiers such as LDA, QDA and the Naive Bayes classifier, it is not
suitable for other discriminative classifiers such as the SVM or logistic
regression.

1. Introduction

Linearly reducing the dimensionality of a dataset is an important prepro-
cessing step in machine learning for a number of reasons. For one thing, lin-
ear dimensionality reduction (LDR) enables easy visualisation of data when
the data is reduced to two or three dimensions. For another, performing
LDR prior to learning can reduce model complexity while alleviating the
small sample size problem in algorithms such as Fisher’s linear discriminant,
where a very large dimensionality and much smaller training data cause the
scatter matrix to be singular (Sharma & Paliwal, 2015; Lu et al., 2003). More
importantly, however, LDR often improves learning in the low-dimensional
manifold in which the data is reduced to lie (Brunzell & Eriksson, 2000; Duin
& Loog, 2004). This is usually due to the fact that LDR results in useful fea-
ture extraction from a dataset, thus reducing overfitting (Bermingham et al.,

6



2015; James et al., 2013). In algorithms such as k-Nearest Neighbours (kNN),
the performance improvement obtained from LDR is also attributable to the
fact that LDR mitigates the effects of the so-called curse of dimensionality
(Beyer et al., 1999).

LDR has been applied to several problems such as medical diagnosis e.g.
(Sharma & Paliwal, 2008; Coomans et al., 1978; Sengur, 2008; Polat et al.,
2008), face and object recognition e.g. (Song et al., 2007; Chen et al., 2000;
Liu et al., 2007; Yu & Yang, 2001) and credit card fraud prediction e.g. (Mah-
moudi & Duman, 2015) to reduce the dimensionality of very high-dimensional
feature spaces. Indeed, there are several other emerging application areas
where dimensionality reduction can be employed to improve learning. One
such area is flow meter diagnostics which is described in Section 4.

One of the most popular LDR techniques is Principal Components Anal-
ysis (PCA) (Barber, 2012), which works by projecting the original data onto
a subspace where the variance of the data is maximised in each dimension.
However, when statistical classification is desired after dimensionality reduc-
tion, PCA may lose the class-discriminatory information in the data, as the
directions of maximum variance does not necessarily coincide with the most
class-discriminative directions.

In order to maximise the class-discriminatory information while linearly
reducing the dimensionality, LDR aimed for classification makes use of class
labels to inform the choice of the transformation matrix M. In this case,
the optimum objective function to minimise is the Bayes error in the linearly
reduced space (Fukunaga, 2013; Buturovic, 1994). However, as an analytic
expression for the Bayes error is hard to obtain for any arbitrary probabil-
ity distribution, several approximations have been made (Fukunaga, 2013;
Duda et al., 2012; Buturovic, 1994), leading to several supervised dimension
reduction techniques (Cunningham & Ghahramani, 2015; Duin & Loog, 2004;
Brunzell & Eriksson, 2000; Barber, 2012). Notable among these techniques
is Linear Discriminant Analysis (LDA) (Fisher, 1936; Izenman, 2009; Fuku-
naga, 2013; Barber, 2012). At its core, LDA is built on the assumption that
the data is normally distributed in each class, with the covariance matrices of
the classes being equal (an assumption known as homoscedasticity). Conse-
quently, Fisher’s LDA maximises Fisher’s criterion (Fukunaga, 2013; Barber,
2012; Duin & Loog, 2004) as a measure of class separability, by taking only
the differences in the projected class means into account, ignoring any differ-
ences in covariance matrices that might be present among the various classes
in the data (Duin & Loog, 2004).
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However, experimental results have shown that if one accounts for the
violation of the assumptions in the original procedure, the performance of
LDA can be improved (Hastie & Tibshirani, 1996; Marks & Dunn, 1974; Mika
et al., 1999; Zhao et al., 2009). Along this line, our previous work describe
an iterative procedure to obtain a one-dimensional subspace where the Bayes
error is minimised in the two-class problem under the normality assumption
in LDA, while accounting for heteroscedasticity (Gyamfi et al., 2017).

In this paper, we present a novel technique to LDR, that projects the
original data onto a (K − 1)-dimensional subspace for the K-class problem.
We do this by sequentially creating linear classifiers that minimise the Bayes
error under assumptions of normality and heteroscedasticity via a gradient
descent procedure. This procedure is described in Section 3. Though itera-
tive, the proposed algorithm is fast, and it remains unaffected by the number
of training examples. In Section 4, we describe the applicability of LDR to
flow meter diagnostics. In Section 5, we experimentally validate the proposed
algorithm on 10 University of California, Irvine (UCI) datasets, as well as in
the diagnosis of the health states of two ultrasonic flow meters, using datasets
provided by the National Engineering Laboratory (NEL), United Kingdom.

2. Background and related work

Consider a dataset D = [x1, ...,xn] with n examples and a dimensionality
of d. The dataset is assumed to be labelled and made up of K classes, i.e.,
D = [C1, ..., CK ]. We aim at finding a linear transformation T such that
D̃ = T>D has a dimensionality of q, i.e., T ∈ Rd×q, where q < d, while
maximising the class-discriminatory information.

Let x̄k, Sk and πk = p(Ck) respectively be the mean, covariance and prior
probability of the kth class, for k ∈ {1, ..., K}. Also, let x̄ be the mean of
the overall dataset D.

2.1. Fisher’s criterion

Fisher’s LDA aims to maximise Fisher’s criterion as given by:

JF = trace((T>SWT)−1(T>SBT)) (1)

where SW , the within-class scatter matrix and SB, the between-class scatter
matrix are both given by

SW =
K∑
k=1

πkSk and SB =
K∑
k=1

πk(x̄k − x̄)(x̄k − x̄)>. (2)
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In the two-class case, where reduction to only one dimension is possible,
maximising Fisher’s criterion tends to minimise the Bayes error in the one-
dimensional subspace onto which the data is projected, when the normality
and homoscedasticity assumptions hold (Hamsici & Martinez, 2008; Izenman,
2009).

2.2. Mahalanobis criterion

For the K-class case (where K > 2), however, maximisation of Fisher’s
criterion does not guarantee the minimisation of the Bayes error, even when
the assumptions of homoscedasticity and normality are satisfied. To get
around this problem, an upper bound on the Bayes error based on the Ma-
halanobis distance has been employed for LDR in the multi-class scenario
(Brunzell & Eriksson, 2000). The Mahalanobis-based LDR seeks to preserve
the separation given by

JM =
∏

1≤i<j≤K

(x̄i − x̄j)
>(Si + Sj)

−1(x̄i − x̄j) (3)

in the linearly reduced space.
However, the Mahalanobis distance, just like Fisher’s criterion, does not

take the difference in covariance matrices into account.

2.3. Chernoff criterion

To account for the difference in covariance matrices among the classes,
a heteroscedastic extension of the Mahalanobis distance based on the Bhat-
tacharya distance has been proposed for LDR (Decell Jr & Marani, 1976).
Following this, there has been the use of a wider class of Bregman diver-
gences, notably, the Kullback-Leibler divergence (Decell & Mayekar, 1977)
for heteroscedastic LDR. Yet, while the Bhattacharya distance provides a
good enough bound on the Bayes error, it has been shown that the Cher-
noff bound provides a slightly tighter bound than the Bhattacharya distance
(Duda et al., 2012; Nielsen, 2014). Thus, a directed distance matrix (DDM)
based on the Chernoff criterion has been developed for dimensionality reduc-
tion in the two-class case (Loog & Duin, 2002), as well as in the multi-class
setting (Duin & Loog, 2004). Specifically, based on this DDM, the following
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Chernoff criterion is derived:

JC =
K−1∑
i=1

K∑
j=i+1

πiπjtrace
[
(T>SWT)−1T>S

1
2
W

(
(S
− 1

2
W SijS

− 1
2

W )−
1
2 S
− 1

2
W

× (x̄i − x̄j)(x̄i − x̄j)
>S
− 1

2
W (S

− 1
2

W SijS
− 1

2
W )−

1
2 +

1

τiτj
(log S

− 1
2

W SijS
− 1

2
W

− τi log S
− 1

2
W SiS

− 1
2

W − τj log S
− 1

2
W SjS

− 1
2

W )
)
S

1
2
WT

]
, (4)

with
τi =

πi
πi + πj

, τj =
πj

πi + πj
and Sij = πiSi + πjSj, (5)

which is maximised to obtain an optimum linear transformation (Duin &
Loog, 2004).

However, while the original LDA procedure provides reduction to at most
K−1 dimensions, the LDR approaches described do not provide the optimal
dimensionality to which to reduce the data. The existing procedures are often
reformulated as eigenvalue decomposition or singular value decomposition
(SVD) problems (Cunningham & Ghahramani, 2015), after which a desired
dimensionality q is chosen by taking the first q independent vectors after
the decomposition. Yet, it has been shown that if a Bayes classifier, such
as quadratic discriminant analysis (QDA), is to be applied after LDR, the
smallest set of independent features required is K − 1, corresponding to a
reduction to a (K − 1)-dimensional space (Fukunaga, 2013). This is because
the optimal Bayes classifier evaluates K posterior probabilities, among which
the highest is chosen. Since the K probabilities must sum up to one, only
K − 1 of these K probability functions are independent. Thus, reduction to
a (K − 1)-dimensional subspace is necessary and sufficient to preserve the
classification information in the original feature space (Fukunaga, 2013). In
the absence of an optimal dimensionality q in the existing LDR procedures
described, if q is set to K − 1, there is no guarantee that the first K − 1
independent vectors alone preserve the class-discriminatory information in
the original space. As a result, classification information can be lost in the
(K − 1)-dimensional subspace, formed from the first K − 1 singular vectors
or eigenvectors following an SVD or eigenvalue decomposition, leading to a
reduced classification accuracy using a Bayes classifier.
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Our proposed algorithm, on the other hand, provides a reduction to a
(K− 1)-dimensional subspace while preserving the classification information
in the original feature space.

3. Proposed algorithm

We assume that the data in each of the K classes is normally distributed
with a mean of x̄k and a covariance matrix of Sk for every k ∈ {1, ..., K}.
Our aim is to apply a Bayes classifier after LDR, thus we seek to project D
onto a (K − 1)-dimensional subspace. Therefore, we let the transformation
matrix T be given as T = [v1, ...,vK−1], where vi ∈ Rd for i ∈ {1, ..., K−1}.
The proposed algorithm is such that we find one column of T in each of K−1
steps.

3.1. K=2

In the two-class case, T = v1, and therefore the task of finding v1 that
preserves the classification information in the original space is equivalent to
obtaining a linear discriminant that well separates the two classes C1 and
C2. That is, we obtain a linear classifier {w1, t1} such that for every data
sample x ∈ D, the true class of x, C∗(x), is decided according to the following
decision rule:

C∗(x) =

{
C1 if w>1 x ≥ t1

C2 if w>1 x < t1
(6)

The optimal w1 minimises the Bayes error given by:

ε1 = π1p
(
y < t1|C1

)
+ π2p

(
y ≥ t1|C2

)
(7)

where y = w>1 x.
Since x is assumed to have a normal distribution in classes C1 and C2, y

is expected to be normally distributed with a mean of µ1 and a variance of
σ2
1 for class C1, and a mean of µ2 and a variance of σ2

2 for class C2 given as:

µ1 = w>1 x̄1 µ2 = w>1 x̄2 σ2
1 = w>1 S1w1 σ2

2 = w>1 S2w1 (8)

The normality assumption allows the individual misclassification proba-
bilities in (7) to be expressed as:

p(y < t1|C1) =

∫ t1

−∞

1√
2πσ1

exp

[
− (r − µ1)

2

2σ2
1

]
dr = 1−Q

(
t1 − µ1

σ1

)
(9)
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and

p(y ≥ t1|C2) =

∫ ∞
t1

1√
2πσ2

exp

[
− (r − µ2)

2

2σ2
2

]
dr = Q

(
t1 − µ2

σ2

)
(10)

where Q(.) is the Q-function, so that the Bayes error ε1 may be rewritten as:

ε1 = π1
(
1−Q(z1)

)
+ π2

(
Q(z2)

)
(11)

where

z1 =
t1 − µ1

σ1
and z2 =

t1 − µ2

σ2
(12)

Our previous work has shown using first and second-order optimality
conditions that w1 and t1 that minimise ε1 can be obtained by solving the
following equations iteratively:

w1 =

(
z2
σ2

S2 −
z1
σ1

S1

)−1
(x̄1 − x̄2) (13)

and

t1 =
µ2σ

2
1 − µ1σ

2
2 + σ1σ2

√
(µ1 − µ2)2 + 2(σ2

1 − σ2
2) ln

(
τσ1
σ2

)
σ2
1 − σ2

2

(14)

where τ = π2/π1 (Gyamfi et al., 2017).
Though, our aim is to find only the weight vector w1, we note that w1 is

not independent of t1, as it is related to t1 through z1 and z2. Therefore, the
optimal choice of w1 is obtained only by optimising w1 and t1 simultaneously.

We then set v1 as the optimal w1.

3.2. K=3

In the case where K = 3, the transformation matrix is T = [v1,v2].

3.2.1. Step 1

In the first step, we seek to find the first column of T, i.e., v1. To do this,
we train a linear classifier to separate one class from the remaining classes;
since there are three classes, there are three different classifiers that could
be constructed to this end. Our aim is to choose v1 to correspond to the
classifier among these three that yields the smallest Bayes error.
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First, we consider the possibility of training a linear classifier {w1, t1} to
discriminate class C1 from classes C2 and C3. Then, for every data sample
x ∈ D, the following decision rule applies:

C∗(x) =

{
C1 if w>1 x ≥ t1

C2, C3 if w>1 x < t1
(15)

Notice that, as with the case K = 2, the projected data in class C1 is normally
distributed on one side of the linear discriminant with a mean of µ1 and a
variance of σ2

1 as given by (8), while the projected data in classes C2 and C3,
on the other side of the discriminant, form a mixture of two Gaussians M1

given by:

M1 ∼
3∑
i=2

piN (µi, σ
2
i ), where pi =

πi
1− π1

, such that
3∑
i=2

pi = 1

and µi = w>1 x̄i σ2
i = w>1 Siw1 (16)

As before, the optimal w1 then minimises the Bayes error. However, the
Bayes error is now given by:

ε1 = π1p
(
y < t1|C1

)
+ (1− π1)p

(
y ≥ t1|M1

)
(17)

Here, p
(
y < t1|C1

)
is as given before in (9), while p

(
y ≥ t1|M1

)
can be

expressed as:

p(y ≥ t1|M1) =
3∑
i=2

pi

∫ ∞
t1

1√
2πσi

exp

[
− (r − µi)2

2σ2
i

]
dr

=
3∑
i=2

piQ

(
t1 − µi
σi

)
. (18)

Thus, the Bayes error ε1 can be evaluated as:

ε1 = π1
(
1−Q(z1,1)

)
+ (1− π1)

3∑
i=2

piQ(z1,i),

where z1,k =
t1 −w>1 x̄k

(w>1 Skw1)1/2
, for every k ∈ {1, 2, 3}. (19)
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i.e.,

ε1 = π1
(
1−Q(z1,1)

)
+

3∑
i=2

πiQ(z1,i) (20)

Next, we consider the second possibility of training a linear classifier
{w2, t2} to discriminate class C2 from classes C1 and C3. The optimal {w2, t2}
minimises the Bayes error which can be shown, similar to the derivation of
ε1, to be given by:

ε2 = π2
(
1−Q(z2,2)

)
+

3∑
i=1,i 6=2

πiQ(z2,i),

where z2,k =
t2 −w>2 x̄k

(w>2 Skw2)1/2
, for every k ∈ {1, 2, 3}. (21)

Finally, we train a classifier {w3, t3} to linearly discriminate class C3 from
classes C1 and C2. By minimising the Bayes error, ε3 which can be shown to
be given by:

ε3 = π3
(
1−Q(z3,3)

)
+

2∑
i=1

πiQ(z3,i),

where z3,k =
t3 −w>3 x̄k

(w>3 Skw3)1/2
, for every k ∈ {1, 2, 3}, (22)

the optimal {w3, t3} is obtained.
We assume, without any loss of generality, that the third classifier {w3, t3}

yields the smallest Bayes error, i.e., ε3 < ε1, ε2. We then set v1 to the optimal
vector w3 corresponding to the minimisation of ε3.

3.2.2. Step 2

The next step then is to find the second column of T, i.e., v2. As we
have trained a classifier to separate class C3 from the two remaining classes
in Step 1, we remove C3 from the dataset D and proceed to construct a linear
classifier {w1, t1}, in the fashion of the case K = 2, to linearly discriminate
classes C1 and C2. This is done by minimising the Bayes error ε1 given by:

ε1 = π′1
(
1−Q(z1)

)
+ π′2

(
Q(z2)

)
(23)

It will be noted that by removing C3 from the dataset D, the prior probabil-
ities of the remaining classes change. Therefore, in (23), π′1 and π′2 are the
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prior probabilities of classes C1 and C2 respectively, conditional on class C3
being removed from the dataset D, and they are given by:

π′1 =
π1

1− π3
and π′2 =

π2
1− π3

(24)

The optimal w1 is then assigned to v2.
Note that very often, the transformation matrix T is constrained to be

orthogonal (Cunningham & Ghahramani, 2015). Thus, it would be necessary
to have an orthogonality constraint in the form, w>1 w3 = 0, while minimis-
ing the Bayes error ε1 in the second step. However, such an orthogonality
constraint is not binding, if classification is desired after dimensionality re-
duction (Fukunaga, 2013); it is sufficient that the component vectors of T
be independent.

3.3. General K

Having detailed the fundamentals of the proposed LDR procedure for the
special cases of K = 2 and K = 3, we proceed to describe the proposed
algorithm for a general value of K.

Let L = {1, ..., K}. We define a conditional prior probability π′i = p(Ci|C̄l)
to be the prior probability of Class Ci conditional on the data in Class Cl being
removed from the dataset D, for all i ∈ L. Then for the k = 1st iteration,
when no class has been removed yet, π′i = πi.

3.3.1. Step 1

We construct a linear classifier {wi, ti} that discriminates class Ci from
all other classes, for every i ∈ L, by minimising the Bayes error εi given by:

εi = π′i
(
1−Q(zi)

)
+
∑

j∈L\{i}

π′jQ(zj), (25)

where

zk =
ti − µk
σk

, µk = w>i x̄k and σ2
k = w>i Skwi, for every k ∈ L. (26)

We then set vk, i.e., the kth column of T, as the vector wi corresponding
to the smallest Bayes error, i.e.,

vk = arg min
wi

{ε1, ..., ε|L|} (27)

and let
l = arg min

i
{ε1, ..., ε|L|} (28)
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3.3.2. Step 2

As the optimal classifier {wl, tl} linearly separates class Cl from all other
classes, class Cl can be excluded from the dataset D to allow for the con-
struction of other classifiers to linearly discriminate the remaining classes.
Correspondingly, we remove l from the set L. The conditional prior proba-
bilities of the remaining classes are then updated as:

π′i :=
π′i

1− π′l
, for all i ∈ L. (29)

The index k is then incremented by one.

3.3.3. Step 3

Steps 1 and 2 are repeated until all K − 1 columns of the transformation
matrix T have been determined.

3.4. Optimisation of the Bayes error εi
Up until this point, we have only mentioned that the classifier {wi, ti}

ought to minimise the Bayes error given by (25). We now derive explicit
expressions for the optimality conditions and propose a gradient descent pro-
cedure to minimise the error.

The first-order optimality condition for the minimisation of εi requires
the gradient of εi to be zero, i.e.,

∇εi(wi, ti) =

[
∂εi
∂w>i

,
∂εi
∂ti

]>
= 0 (30)

From (25), it can be shown that:

∂εi
∂wi

= πi

(
1√
2π
e−

z2i
2
∂zi
∂wi

)
−
∑

j∈L\{i}

πj

(
1√
2π
e−

z2j
2
∂zj
∂wi

)
(31)

where ∂zk/∂wi can be obtained from (26) as:

∂zk
∂wi

=
−σkx̄k − zkSkwi

σ2
k

for every k ∈ L. (32)

Therefore,

∂εi
∂wi

=
πi√
2π
e−

z2i
2

(
−σix̄i − ziSiwi

σ2
i

)
−
∑

j∈L\{i}

πj√
2π
e−

z2j
2

(
−σjx̄j − zjSjwi

σ2
j

)
(33)
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Also,
∂εi
∂ti

=
πi√
2π
e−

z2i
2
∂zi
∂ti
−
∑

j∈L\{i}

πj√
2π
e−

z2j
2
∂zj
∂ti

(34)

where,
∂zk
∂tj

=
1

σk
, for every k ∈ L (35)

which can also be obtained from (26). Therefore,

∂εi
∂ti

=
πi√
2πσi

e−
z2i
2 −

∑
j∈L\{i}

πj√
2πσj

e−
z2j
2 (36)

By equating the gradient to zero, (33) yields the following:( ∑
j∈L\{i}

πj
σj
e−

z2j
2
zj
σj

Sj −
πi
σi
e−

z2i
2
zi
σi

Si

)
wi =

πi
σi
e−

z2i
2 x̄i −

∑
j∈L\{i}

πj
σj
e−

z2j
2 x̄j (37)

while (36) results in:

πi
σi
e−

z2i
2 =

∑
j∈L\{i}

πj
σj
e−

z2j
2 (38)

Substituting (38) into (37), we obtain:( ∑
j∈L\{i}

πj
σj
e−

z2j
2
zj
σj

Sj −
∑

j∈L\{i}

πj
σj
e−

z2j
2
zi
σi

Si

)
wi =

∑
j∈L\{i}

πj
σj
e−

z2j
2 x̄i −

∑
j∈L\{i}

πj
σj
e−

z2j
2 x̄j, (39)

i.e., ∑
j∈L\{i}

πj
σj
e−

z2j
2

(
zj
σj

Sj −
zi
σi

Si

)
wi =

∑
j∈L\{i}

πj
σj
e−

z2j
2 (x̄i − x̄j) (40)

wi may then be obtained as:

wi =

[ ∑
j∈L\{i}

πj
σj
e−

z2j
2

(
zj
σj

Sj −
zi
σi

Si

)]−1 ∑
j∈L\{i}

πj
σj
e−

z2j
2 (x̄i − x̄j) (41)
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But for the fact that zi and zj are functions of ti as can be seen from
(26), wi could have been solved for iteratively from (41) starting from an
initial solution. To overcome this problem, we proceed to solve for ti from
(38), expressing it as a function of wi, to allow for the iterative solution of
wi from (41).

From (38), we derive the following:

ln

(
πi
σi

)
− z2i

2
= ln

∑
j∈L\{i}

πj
σj
e−

z2j
2 (42)

If the cardinality of L, |L| > 2, the right hand side of (42) is a logarithmic
sum of exponentials, and (42) has no closed-form solution. Note, however,
that (42) can be rewritten as

ln

(
πi
σi

)
− z2i

2
− ln(|L| − 1) = ln

(
1

|L| − 1

∑
j∈L\{i}

πj
σj
e−

z2j
2

)
. (43)

Then, as a consequence of Jensen’s inequality,

ln

(
πi
σi

)
− z2i

2
− ln(|L| − 1) ≥ 1

|L| − 1

∑
j∈L\{i}

ln

(
πj
σj

)
−
z2j
2
, (44)

By approximating (42) using the lower bound in (44), we obtain:

1

|L| − 1

∑
j∈L\{i}

z2j
2
− z2i

2
+ ln

(
πi
σi

)
− 1

|L| − 1

∑
j∈L\{i}

ln

(
πj
σj

)
− ln(|L| − 1)

= 0 (45)

which can be simplified to:(
1

|L| − 1

∑
j∈L\{i}

1

σ2
j

− 1

σ2
i

)
t2i + 2

(
µi
σ2
i

− 1

|L| − 1

∑
j∈L\{i}

µj
σ2
j

)
ti −

µ2
i

σ2
i

+
1

|L| − 1

∑
j∈L\{i}

µ2
j

σ2
j

+ 2

[
ln

(
πi
σi

)
− 1

|L| − 1

∑
j∈L\{i}

ln

(
πj
σj

)
− ln(|L| − 1)

]
(46)

which is a quadratic in ti. Thus, by solving (46), ti can be expressed as a
function of wi through the variables µi, µj, σi and σj. Being a quadratic,
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there are two solutions to (46). Yet, by choosing the solution that yields the
smaller Bayes error, (41) is then expressed solely in terms of wi, so that wi

can be solved for iteratively.
At this point, we make note of two computational issues with this proce-

dure. First, (41) is derived from the first-order optimality condition. There-
fore, there is no certainty that iteratively solving for wi would converge to
a local minimum of εi, as the optimality condition of (30) from which (41)
is derived is also satisfied for a local maximum or a saddle point. For this
reason, the iterative procedure requires the use of several different initial so-
lutions to improve the chances of convergence to a local minimum. Moreover,
there is no guarantee that (46) has any real solution, for any given dataset
D.

A better approach, which is the one used in the experimental section of
this paper, is to minimise εi via a gradient descent procedure, as follows:

For m = 0 to some maximum number of iterations M :

wm+1
i = wm

i − α
∂εi
∂wm

i

(47)

tm+1
i = tmi − α

∂εi
∂tmi

(48)

starting from an initial choice of wi and ti, where α is the learning rate.
Note that the partial derivatives of εi have already been derived in (33) and
(36). Since the Bayes error is known to be non-convex and is characterised by
multiple local minima (Anderson & Bahadur, 1962), the gradient descent al-
gorithm may have to be performed using different initial solutions to improve
the quality of the local minima to which the algorithm converges.

Though only the optimal wi is required to form the columns of T, we
observe that the optimal wi is tied to the optimal threshold ti through zi and
zj as can be seen from (26) and (41), requiring that they both be minimised
in the gradient descent procedure.

In all, (K2+K−4)/2 classifiers are constructed in the proposed algorithm
for a K-class problem.

4. Application to flow meter diagnostics

In this section, we demonstrate the applicability of LDR, and hence, the
proposed algorithm, to flow meter diagnostics.
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Flow meters are devices used to measure the volumetric or mass flow rate
of a fluid. In the oil and gas industry, flow meters are subject to several prob-
lems such as transducer failure, wax deposit, as well as very harsh conditions
including extremes in temperature and pressure. These problems affect the
performance of the meter and cause the flow rate readings to be erroneous.
This incorrect measurement is of great concern. For example, an incorrect
measurement indicating a high flow rate may attract high tax liabilities.

It is understood that after a period of time, the errors associated with
the flow measurement may become significant and fall outside the allowable
range. Thus, it is the current practice that meters are taken to accredited
flow facilities to be recalibrated typically after one year in operation. How-
ever, this time-based recalibration has two main drawbacks. First, a given
flow meter can encounter a problem such as a transducer failure, even before
the one year schedule, and continually provide incorrect measurements until
the recalibration period is up. Secondly, a given flow meter may be oper-
ating perfectly at the end of the one year period and still be taken in for
recalibration, in line with regulatory requirements. However, recalibration of
a flow meter can be rather expensive, especially when there is no indication
the meter is not healthy. In the UK, for instance, it costs in the region of
£30000 for the recalibration of an ultrasonic flow meter (TUV-NEL, 2012).

Thus, the tradeoff between accurate measurement and cutting cost due
to frequent recalibration of flow meters (which may be healthy) calls for the
adoption of a condition-based flow meter management. With the advent of
new flow meters that provide secondary diagnostic information, it becomes
possible to use machine learning to diagnose the health state of the flow
meter based on the diagnostic parameters, and subsequently enable the real-
time estimation of the error associated with every flow measurement. Such
an expert system also becomes useful to meter operators in the field who
find it difficult interpreting the wealth of diagnostic information available
to them and deciding on what the true health state of the meter is. It is
believed that if evidence can be provided to the regulatory body that the
meter performance is within the allowable range even after the one year
schedule, recalibration can be extended (TUV-NEL, 2012).

The task of correctly diagnosing the health state of the flow meter can be
formulated as a classification task where it is desired to classify the meter un-
der a number of known health states, with the diagnostic parameters forming
the feature vector. For a liquid ultrasonic flow meter (USM), for instance,
the most common health states of the measurement system include: waxing,
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installation effects and gas injection (TUV-NEL, 2012).

Figure 1: An 8-path ultrasonic flow meter transducer configuration (TUV-NEL, 2012)

Nevertheless, the diagnostic parameters available from a given flow meter
can be varied and many, so that the feature vector lives in a rather high-
dimensional space. For the USM shown in Fig. 1, the diagnostic parameters
include the flow profile, symmetry, crossflow, swirl angle, flow velocity (as
measured by each of the eight paths), speed of sound (as measured by each of
the eight paths), signal strength (as measured at both ends of each of the eight
paths), turbulence (as measured by each of the eight paths), signal quality
(as measured at both ends of each of the eight paths), gain (as measured at
both ends of each of the eight paths) and transit time (as measured at both
ends of each of the eight paths). Thus, the feature vector x has 92 diagnostic
parameters in total.

However, some of these parameters are correlated. For example, the
speed of sound, flow velocity and transit time have a known dependence
(Vermeulen et al., 2012). Dimensionality reduction is therefore useful to
reduce the effects of multicollinearity from the features, before the data is
trained for classification.

Furthermore, some of the diagnostic parameters like the swirl angle or
turbulence do not contain any classification information with respect to the
most prevalent health states of the meter. Besides, it is not known if the
diagnostic parameters measured from all eight paths are useful for classifi-
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cation, or whether the average of all eight paths would suffice. The effect of
having too many nuisance features is that the learning model can overfit the
data, especially if the data is noisy. Linear dimensionality reduction allevi-
ates this problem, and if reduction to two or three dimensions is possible,
LDR makes visualisation and analysis of the diagnostics data easier for flow
meter operators.

5. Experimental validation

5.1. UCI datasets

In this section, we validate the proposed LDR technique experimentally
on 10 UCI datasets. The characteristics of these datasets are shown in Table
1.

Table 1: List and characteristics of datasets

Dataset Label d n K
Diabetes (a) 8 768 2

Glass (b) 9 214 6
Cleveland Heart (c) 13 297 2

Vehicles (d) 18 846 4
Image Segmentation (Statlog) (e) 18 2310 7

Ionosphere (f) 33 351 2
SPECTF Heart (g) 44 267 2

Zernike Moments (h) 47 2000 10
Optical Digits (i) 62 5620 11

United States Postal Service (j) 256 9298 10
This table lists the datasets used in the experimental section. K is the number of classes,
d is the dimensionality of the dataset, and n is the number of data points in the dataset.

We first rescale the predictors to the range [0, 1]. We then perform di-
mensionality reduction using the proposed algorithm. This is followed by
10 independent trials of 10−fold cross-validation. On each training set, we
train two Bayes classifiers, namely QDA and LDA as used by Duin & Loog
(2004). We then evaluate the average classification accuracy on the test set
using the two classifiers.

For the proposed algorithm, we optimise the Bayes error using the gradi-
ent descent procedure. We use a learning rate of α = 0.1, and we run 10000
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iterations, terminating prematurely when the difference between two con-
secutive values of the objective function is less than 10−6. We run gradient
descent using only one initial solution given by:

w
(0)
i = S−1L (x̄i − x̄L)

t
(0)
i = log(τ) +

1

2
(x̄>i S−1L x̄i − x̄>LS−1L x̄L) (49)

for every i ∈ L, where

SL =
∑

j∈L\{i}

πiSj, x̄L =
1

|L − 1|
∑

j∈L\{i}

x̄j and τ =

∑
j∈L\{i} πj

πi
. (50)

The performance of our algorithm is then compared with the following:
PCA, F-LDR, M-LDR, C-LDR, as well as the case where there is no dimen-
sionality reduction and the full dimensionality is used (No-LDR). Note that,
for PCA, F-LDR, M-LDR and C-LDR, we take the first K − 1 independent
vectors after the matrix decomposition to form the transformation matrix
T, since a dimensionality of K − 1 is necessary and sufficient for Bayesian
classification for the K-class problem (Fukunaga, 2013). The results of these
experiments can be seen in Tables 2 and 3. For every test dataset, we per-
form the Wilcoxon’s signed rank test at a significant level of 0.01 to check
for any significant differences between the classification accuracy of the best
performing algorithm and those of the remaining algorithms. Based on the
test results, an asterisk has been indicated against a value if that value is not
statistically different from the best value in bold.

To provide a more meaningful perspective on the utility of our algorithm,
in Table 4, we also compare the performance of the proposed LDR algorithm
followed by the LDA classifier with that of the linear Support Vector Machine
(SVM) that uses no dimensionality reduction. The SVM is implemented with
the MATLAB function fitcsvm using the default settings for a linear SVM.

5.1.1. Results and discussions

Table 2 shows that the proposed algorithm achieves the highest classifi-
cation accuracy on 8 out of the 10 datasets tested using a QDA classifier,
as compared to the remaining LDR procedures. This superior performance
is most marked on datasets (e), (g), (h), (i) and (j). On datasets (d), using
the full dimensionality results in the best classification accuracy using the
LDA classifier, as LDR seems to lose useful classification information. Yet,
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Table 2: Average classification accuracy (%) using QDA

Dataset No-LDR PCA F-LDR M-LDR C-LDR Proposed
(a) 74.20 68.57 64.55 77.69 78.09 78.17
(b) 55.16 55.25 54.63 61.89 54.09 55.21
(c) 82.00 79.56 85.06 84.82 85.22* 85.49
(d) 85.27 45.78 63.80 78.61 75.97 81.95
(e) 88.82 89.32 90.36 88.09 89.82 93.56
(f) 87.51 61.140 89.37 90.43 89.12 91.12
(g) 79.42 72.61 79.42 82.96 78.42 84.24
(h) 80.14 77.76 79.08 77.47 82.96 84.93
(i) 96.44 96.00 96.30 92.55 79.94 97.69
(j) 88.09 91.67 88.96 57.70 61.37 92.94

This table shows the average classification accuracy (%) on the test datasets using a QDA
classifier for No-LDR, PCA, F-LDR, M-LDR, C-LDR and the proposed scheme. Best
values are in bold. The values with asterisk (*) are those that are statistically indiscernible
from the best values based on the Wilcoxon’s signed rank test at a significance level of
0.01.

Table 3: Average classification accuracy (%) using LDA

Dataset No-LDR PCA F-LDR M-LDR C-LDR Proposed
(a) 77.39 68.37 65.11 77.76 77.87 78.36
(b) 63.09 60.66 61.08 62.76 59.26 65.09
(c) 83.55 79.61 85.29 84.89 85.36* 85.84
(d) 78.19 47.18 58.31 75.02 75.65 79.30
(e) 91.48 83.68 87.83 88.24 88.84 90.33
(f) 86.72 54.50 73.73 90.13* 74.92 90.62
(g) 75.27 79.42 79.42 84.77 79.30 85.55
(h) 81.79 70.35 74.02 70.78 82.00 83.92
(i) 95.32 91.49 93.06 88.86 56.81 96.09
(j) 91.62 84.29 81.62 27.41 60.96 90.21

This table shows the average classification accuracy (%) on the test datasets using an
LDA classifier for No-LDR, PCA, F-LDR, M-LDR, C-LDR and the proposed scheme. Best
values are in bold. The values with asterisk (*) are those that are statistically indiscernible
from the best values based on the Wilcoxon’s signed rank test at a significance level of
0.01.
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Table 4: Average classification accuracy (%): Proposed+LDA vs Linear SVM

Dataset SVM Proposed+LDA
(a) 76.94 78.36
(b) 57.79 65.09
(c) 83.45 85.84
(d) 74.11 79.30
(e) 92.89 90.33
(f) 87.73 90.62
(g) 79.60 85.55
(h) 82.94 83.92
(i) 98.28 96.09
(j) 95.81 90.21

This table shows the average classification accuracy (%) on the test datasets using a linear
SVM without dimensionality reduction, and the proposed algorithm plus an LDA classifier.
Best values are in bold. The values for both algorithms for all datasets are statistically
different based on the Wilcoxon’s signed rank test at a significance level of 0.01.

among the five dimensionality reduction techniques, the proposed algorithm
achieves the best classification accuracy on those two datasets.

A similar performance is seen in Table 3. The proposed algorithm once
again achieves superior classification accuracy on 8 out of the 10 datasets
using an LDA classifier, with datasets (a), (b), (d), (g) and (h) showing
the most significant performance. Again, while a classification accuracy of
91.62% is achieved on dataset (i) when no LDR is performed, the proposed al-
gorithm achieves the best performance among all the LDR techniques tested
on this dataset.

Though, the Mahalanobis distance based-LDR achieves the best perfor-
mance of 61.89% on dataset (b) using the QDA classifier, we note that our
algorithm achieves a superior accuracy in Table 3 on this same dataset using
the LDA classifier. This is due to the fact the LDA classifier is more robust
to noise, since it tends to not overfit. On the other hand, while the highest
classification accuracy for dataset (j) using the LDA classifier is achieved
for No-LDR, our proposed algorithm achieves a better accuracy using the
QDA classifier. Thus, looking across the two tables, the proposed algorithm
achieves the best classification accuracy on 9 out of the 10 datasets using
either a QDA or an LDA classifier, with the exception being dataset (d).
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Moreover, in Table 4, it is seen that the proposed algorithm easily outper-
forms the linear SVM on 7 out of the 10 datasets tested.

The poor performance of PCA in Tables 2 and 3 on most of the datasets,
e.g., (b), (c), (d), (f), (h) and (i), is due to the fact that PCA reduces the di-
mensionality of the data without taking into account the class discriminatory
information in the data.

As there is no guarantee that the choice of the first K − 1 independent
vectors are those that mostly preserve the classification information in the
reduced space for PCA, M-LDR and C-LDR, a reduction to some other di-
mensionality q 6= K − 1 might result in a better classification performance.
Yet, these algorithms provide the optimal dimensionality q to which to reduce
the data. Thus, extensive trial and error is required to obtain an optimal di-
mensionality in these approaches. Our algorithm, on the other hand, obtains
satisfactory classification performance after a reduction to a dimensionality
of K − 1, which is the optimal dimensionality required for Bayesian classifi-
cation.

We note, however, that the existing LDR algorithms, being deterministic,
have faster training times than the proposed algorithm which is iterative.
Our algorithm is also sequential, requiring the successive construction of
(K2 + K − 4)/2 classifiers. Thus, the time complexity is quadratic in K.
Nevertheless, this is not prohibitive, as the average training time for dataset
(i), which has the largest number of classes, with K = 11 is 4.5s.

5.2. USM diagnostics datasets

We experimentally validate the proposed LDR technique on 2 different
4-path USMs denoted as Meter A and Meter B.

The two USM diagnostics datasets were obtained from experiments con-
ducted at the National Engineering Laboratories (NEL), UK (TUV-NEL,
2012), and they can be accessed at http://cogentee.coventry.ac.uk/

~kojo/ (Marshall et al., 2012). The datasets have 4 classes or health states,
namely: “Healthy”, “Waxing”, “Gas injection” and “Installation effects”,
as well as 43 diagnostic parameters. These parameters are given as: profile
factor, symmetry, crossflow, flow velocity (in each of the four paths), speed
of sound (in each of the four paths), signal strength (at both ends of each of
the four paths), signal quality (at both ends of each of the four paths), gain
(at both ends of each of the four paths), and transit time (at both ends of
each of the four paths). Also, the number of examples n for Meter A is 181,
while Meter B has 180 examples.
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Since the different diagnostic parameters take on different ranges of val-
ues, we first normalise all features to the range [0, 1]. We then apply the
proposed LDR technique, reducing the dimensionality of the data to K − 1
(where K = 4 in this case). In Figs. 2 to 6, we show the representation of the
original diagnostics dataset for Meter A after linearly reducing its dimension-
ality to 3 using the proposed algorithm, PCA, F-LDR, M-LDR and C-LDR.
For the sake of clarity, we show in these figures only the two classes which
are particularly difficult to separate in the original feature space: “Healthy”
and “Installation effects”.

Figure 2: LDR performance on Meter A diagnostics data: PCA

Next, we perform 10 trials of 10−fold cross validation. For each of the
training set, we train a QDA classifier, which is a special case of a Bayes
classifier when the data is normally distributed in each of the classes. The
classification accuracy on the test set is then evaluated using the QDA clas-
sifier.

The performance of our algorithm is then compared with the following:
PCA, F-LDR, M-LDR, C-LDR, as well as the case where there is no dimen-
sionality reduction and the full dimensionality is used (No-LDR). The same
parameters used in the proposed algorithm for the experiments on the UCI

27



Figure 3: LDR performance on Meter A diagnostics data: F-LDR

Figure 4: LDR performance on Meter A diagnostics data: M-LDR
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Figure 5: LDR performance on Meter A diagnostics data: C-LDR

Figure 6: LDR performance on Meter A diagnostics data: Proposed
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datasets are used in this experiment too. The results of these experiments
can be seen in Fig. 7.

Figure 7: Average classification accuracy for Meter A and Meter B (%)
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The classification accuracies for the proposed algorithm are statistically different from the
remaining algorithms at the 0.01 confidence level based on the Wilcoxon’s signed rank
test.

5.2.1. Results and discussion

From Fig. 7, the classification performance when no LDR is performed
prior to applying the QDA classifier stands at 82.1% for Meter A and 86.1%
for Meter B. PCA and Fisher’s LDR, however, result in reduced classification
accuracies. This implies that these two algorithms tend to lose classification
information when linearly reducing the dimensionality of the data to K − 1.
The Mahalanobis distance-based LDR, the Chernoff criterion-based LDR and
the proposed algorithm, on the other hand, achieve an improved classification
accuracy over the case where the full dimensionality is used. These results
also indicate that Meter A has better diagnostic capabilities than Meter B.
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Moreover, Fig. 7 shows that the proposed algorithm achieves the highest
classification accuracy: 99.4% on Meter A and 97.5% on Meter B. This is
followed by the Mahalanobis distance based LDR at 91.6% and 86.9% respec-
tively for Meter A and Meter B. The reasons for the relative performance
of the various LDR algorithms on the flow meter datasets in Fig. 7 are as
given by the analysis of the results of the experiments on the UCI datasets
in Section 4.1.1.

6. Conclusion

In this paper, we have presented a novel technique for supervised linear
dimensionality reduction (LDR). The proposed algorithm projects the orig-
inal data onto a (K − 1)-dimensional subspace, where K is the number of
classes. This is done by sequentially creating linear classifiers that separate
one class from the remaining classes under a normality assumption, while
minimising the Bayes error through a gradient descent procedure.

The proposed algorithm is applicable to expert and intelligent systems
that require LDR to overcome overfitting in predictive classification models
so that prediction accuracies may subsequently be improved. Most of the
existing LDR procedures provide no optimal dimensionality to which a given
dataset may be reduced, and they tend to lose class-discriminatory infor-
mation in the optimal (K − 1)-dimensional subspace required for Bayesian
classification. In contrast, the proposed algorithm provides an optimal re-
duction to a dimensionality of K − 1 via a sequential minimisation of the
Bayes error, thus guaranteeing a much better classification accuracy than the
existing approaches using a Bayes classifier such as LDA or QDA.

To demonstrate this, we have validated the proposed algorithm exper-
imentally on 10 UCI datasets that cut across a wide range of application
areas including medical diagnosis, handwriting recognition and object detec-
tion. The application of the proposed algorithm to flow meter diagnostics has
also been discussed. This is followed by employing the proposed algorithm
in the diagnosis of the health state of two ultrasonic flow meters, achieving
classification accuracies of 99.4% and 97.5%. On both the ultrasonic flow
meter datasets and the UCI datasets, our algorithm is shown to achieve su-
perior performance in terms of the classification accuracy, as compared to
the existing linear dimensionality reduction techniques.

While the proposed algorithm has been shown to be superior to the ex-
isting procedures on the datasets tested in terms of classification accuracies,
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it is built on an assumption of normality of the data in each of the K-classes.
Yet, since a lot of physical data tend to be nearly-normally distributed (Lyon,
2013), our algorithm is well suited for a lot of applications particularly those
involving measurement errors such as machine fault diagnosis or those in-
volving physical measurements such as accelerometer-based human activity
recognition. However, for data that are radically non-normal, our procedure
is expected to perform relatively poorly, as the Bayes error is not guaranteed
to be minimised. Also, while the proposed LDR procedure has been derived
for Bayesian classification and is thus expected to perform well on Bayesian
classifiers such as LDA, QDA and the Naive Bayes classifier, it is not suit-
able for other discriminative classifiers such as the SVM or logistic regression.
Moreover, our algorithm requires the construction of (K2 + K − 4)/2 clas-
sifiers which can be rather computationally costly for a dataset having too
many classes.

In view of the above problems, our future work is concerned with the vi-
olation of the assumption of normality employed in the proposed algorithm.
This would make the procedure more robust and applicable to a wider range
of problems. While the Bayes error can be analytically intractable for an ar-
bitrary non-normal distribution, we aim to extend the proposed procedure to
minimising some upper bounds on the Bayes error for a given dataset. Alter-
natively, future research is aimed at deriving a kernel function that implicitly
transforms some data of a known non-normal distribution into a feature space
where the data in each class is nearly normally distributed. Moreover, we
hope to explore the use of information theoretic measures to reduce the total
number of classifiers constructed in each step of the proposed algorithm. This
would decrease the computational complexity of the algorithm and improve
its speed. Finally, as an application to flow meter diagnostics, our future
work is focused on leveraging the correct diagnosis of a flow meter in the es-
timation of the error associated with each flow measurement with reasonable
accuracy. With knowledge of the true health state of a flow meter, the asso-
ciated measurement errors can be estimated with improved accuracy. This
will allow erroneous flow measurements to be self-validated, thus resulting
in significant cost cuts due to incorrect flow measurements in oil and gas
operations.
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