
Modeling and Solving the Non-Smooth Arc Routing

Problem with Realistic Soft Constraints

Jesica de Armasa, Albert Ferrerb, Angel A. Juanc,∗, Eduardo Lalla-Ruizd

aDepartment of Economics and Business, Universitat Pompeu Fabra & Barcelona GSE,
Barcelona, Spain

bDept. of Applied Mathematics, Technical University of Catalonia, Barcelona, Spain
cIN3 – Dept. of Computer Science, Open University of Catalonia, Castelldefels, Spain

dInstitute of Information Systems, University of Hamburg, Hamburg, Germany

Abstract

This paper considers the non-smooth arc routing problem (NS-ARP) with
soft constraints in order to capture in more perceptive way realistic con-
straints violations arising in transportation and logistics. To appropriately
solve this problem, a biased-randomized procedure with iterated local search
(BRILS) and a mathematical model for this ARP variant is proposed. An
extensive computational study is conducted on rich and diverse problem in-
stances. The results highlight the competitiveness of BRILS in terms of
quality and time, where it provides high-quality solutions within reasonable
computational times. In the context of real-world environments, the per-
formance exhibited by BRILS motivates its incorporation in intelligent and
integrative systems where frequent and fast solutions are required.

Keywords: arc routing problem, soft constraints, non-smooth
optimization, biased-randomization, metaheuristics

∗Supported by the Spanish Ministry of Economy and Competitiveness & FEDER
(TRA2015-71883-REDT, TRA2013-48180-C3-P, SEV-2015-0563)

Email addresses: jesica.dearmas@upf.edu (Jesica de Armas),
alberto.ferrer@upc.edu (Albert Ferrer), ajuanp@uoc.edu (Angel A. Juan),
eduardo.lalla-ruiz@uni-hamburg.de (Eduardo Lalla-Ruiz)



1. Introduction

In real-life logistics and transportation, many decision-making processes
can be modeled as combinatorial optimization problems (OPs) (Montoya-
Torres et al., 2012). In a combinatorial OP, a large number of feasible solu-
tions need to be explored in order to select one that minimizes cost, max-
imizes benefit, etc. Frequently, combinatorial OPs have a well-structured
definition consisting of an objective function to be optimized and a set of
hard constraints that need to be satisfied (Papadimitriou and Steiglitz, 1982).
These OPs can usually be formulated using mixed integer linear program-
ming (MILP) models. However, most of them are NP-hard in nature, which
implies that only small- to medium-sized instances can be solved in rea-
sonable computing times by means of classical MILP methods (Garey and
Johnson, 1990). Thus, heuristics and metaheuristics are usually required to
solve medium- to large-sized instances. An additional difficulty arises when
the mathematical model of the problem does not meet certain characteristics.
In effect, when properties such as convexity and smoothness are not fulfilled,
the solution space might become highly irregular. In such situations, find-
ing an optimal or near-optimal solution becomes a challenging task even for
medium-sized instances.

In this work, we study a relevant combinatorial OP under a non-smooth
environment. In particular, we focus on the arc routing problem (ARP)
with realistic soft constraints, which impose penalty costs on the objective
function. These penalty costs are usually defined as piecewise functions, thus
transforming the objective function into a non-smooth one. The ARP is a
combinatorial OP originally introduced by Golden and Wong (1981). In its
basic version, the ARP is composed of a central depot, a fleet of identical
vehicles, and a network of arcs connecting nodes. Some of these arcs have a
demand that must be served (see Figure 1). Also, there is a cost associated
with traversing each of the arcs. Under these circumstances, the usual goal
is to find a set of routes (solution) which minimizes the total delivering
cost while satisfying the following constraints: (i) every route starts and
ends at the depot, (ii) each arc with a positive demand is served exactly
by one vehicle, and (iii) the total demand to be served in any route does
not exceed the vehicle loading capacity. The main novelty we introduce to
this basic version is the inclusion of soft constraints, i.e., we consider a non-
smooth penalty term to the objective function to penalize every time a given
constraint is not fully satisfied. As discussed in Hashimoto et al. (2006), “in
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Figure 1: Illustration of the arc routing problem

real-world simulations, time windows and capacity constraints can be often
violated to some extent”. In this paper thus, a threshold is imposed on
the maximum cost (distance-based or time-based) any given route can take.
Then, whenever a route exceeds this threshold a penalty cost is added to
the total route cost. As in many real-life applications, this penalty cost will
depend on the size of the gap between the actual route cost and the threshold.

Accordingly, the main contributions of this paper are: (i) a discussion
on the importance of considering non-smooth objective functions in realistic
combinatorial OPs, mainly due to the existence of soft constraints; (ii) an
original mathematical model that formally describes the non-smooth ARP
(NS-ARP); (iii) a metaheuristic approach, based on the integration of biased-
randomized techniques (Grasas et al., 2017) inside an iterated local search
framework (Lourenço et al., 2010), to efficiently cope with the NS-ARP;
and (iv) the use of CPLEX to solve a truncated version of the NS-ARP
model, which allows us to obtain lower bounds for assessing our metaheuristic
approach.

Our current work contributes to the field of Expert and Intelligent Sys-
tems in several ways. Firstly, it considers of a more realistic ARP incorpo-
rating penalty costs when certain constraints are violated, i.e., introducing
soft constraints. This is a more intelligent way to address constraints viola-
tions, as we demonstrate comparing to other perspectives. Additionally, as
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mentioned before, we propose a solving methodology combining biased ran-
domized techniques with an iterated local search metaheuristic framework.
This system leads to important savings for the related logistic and trans-
portation industry, and a mathematical model for this non-smooth version
of the ARP help us to confirm its goodness. In the context of expert systems,
several works have analyzed non-smooth optimization problems. Thus, for
instance, Roy et al. (2010) deal with non-smooth power-flow problems, Lu
et al. (2010) propose an adaptive hybrid differential evolution algorithm to
cope with a non-smooth version of the dynamic economic dispatch problem,
and Ferrer et al. (2016) propose a biased-randomized metaheuristic to solve
the non-smooth flow-shop problem. As far as we know, however, there is a
lack of publications considering realistic non-smooth cost functions in routing
problems, which enhances the importance of this expert system.

The remaining of the paper is structured as follows: Section 2 reviews
some basic concepts related to non-convex / non-smooth optimization prob-
lems, as well as how metaheuristics have been used in solving them. Section 3
presents a survey on recent works on the ARP. A mathematical description of
the NS-ARP is provided in Section 4. In Section 5 a biased-randomized iter-
ated local search algorithm is proposed as a solving method for the NS-ARP.
Section 6 is devoted to explain the computational experiments performed.
Finally, conclusions and future work are described in Section 7.

2. Metaheuristics in non-convex / non-smooth OPs

Optimization problems can be classified as either convex or non-convex.
In general, convex OPs have two parts: a series of constraints that repre-
sent convex regions and an objective function that is also convex. Linear
programming (LP) problems represent a well-known example of convex OPs,
since linear functions are trivially convex. Other examples of convex OPs in-
clude quadratic programming, geometric programming, conic optimization,
or least squares (Boyd and Vandenberghe, 2004). In a convex OP, every con-
straint restricts the space of solutions to a certain convex region. By taking
the intersection of all these regions we obtain the set of feasible solutions,
which is also convex. Due to the structure of the solution space, every single
local optimum is a global optimum too. This is the key property that allows
to efficiently solve convex OPs up to very large instances. Unfortunately,
the algorithms applied for solving convex OPs cannot be easily extended to
solve the non-convex case. The solution space of the non-convex OPs is far
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Figure 2: Example of a non-convex and non-smooth objective function.

more complex since the objective function and/or the region of feasible so-
lutions are not convex. As a consequence, there exist many disjoint regions
and multiple locally optimal points within each of them (Figure 2). Thus,
a traditional local search is not enough since there is a risk of ending in a
local optimum that may still be far from the global one. In addition, it can
take an unreasonable amount of time to conclude that a non-convex OP is
unfeasible, or that the objective function is unbounded, or even that the best
solution found so far is, in fact, the global optimum.

Non-smooth OPs are similar to non-convex OPs in the sense that they are
much more difficult to solve than traditional smooth and convex problems.
A function is smooth if it is differentiable and it has continuous derivatives
of all orders. Therefore, a non-smooth function is one that has missed some
of these properties. In this case, the solution space might contain again mul-
tiple disjoint regions and many locally optimal points within each of them.
The computational techniques that can be used to solve non-smooth OPs
are often fairly complex and depend on the particular structure of the prob-
lem. Unlike convex optimization, non-convex or non-smooth OPs represent
a serious challenge in terms of building solution methods that provide the
global optimum. Developing such techniques is, in general, a difficult and
time-consuming process. Also, the resulting application range is very lim-
ited. Due to the inclusion of soft constraints and the associated penalty costs,
many real-life objective functions are either non-convex or non-smooth.
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An example of a non-convex and non-smooth OP is the minimum sum-
of-squares clustering problem described in Bagirov and Yearwood (2006).
The authors emphasize that a large number of approaches, such as dynamic
programming, branch and bound, or K-means algorithms have been used to
deal with it. However, these methods are efficient only in certain special
settings. For example, a dynamic programming approach only works when
the number of objects is small. Similarly, branch and bound methods are
effective only if the number of clusters is not too large. The efficiency of
K-means algorithms also decreases as the number of clusters is increased.
Moreover, alternative techniques such as bi-linear programming fail as well
when they face non-convex and non-smooth objective functions with many
local optima. The aforementioned authors remark that, in general, better re-
sults are generated when metaheuristics are used for the clustering problem.
Thus, for instance, a tabu search approach that outperforms the K-means
has been proposed in Al-Sultan (1995). Likewise, Selim and Alsultan (1991)
propose a solving approach based on a simulated annealing metaheuristic.
Other examples of non-smooth OPs addressed in the literature are the pin
fin profile optimization (Badescu, 2017) and the optimal profiles of one di-
mensional slider bearings under technological constraints (Badescu, 2015).
Despite coming from the application of Pontryagin principle, finally these
problem reduces to constrained non-linear programming problems.

In telecommunication networks, optimal routing in non-convex / non-
smooth scenarios has also been investigated. The objective here is to find
the best path for data transmission in a short amount of time. The routing
strategy can greatly affect the system performance, so there is a high demand
for efficient algorithms. Thus, for instance, a method that combines genetic
algorithms with Hopfield networks is proposed in Hamdan and El-Hawary
(2002), while an approach based on tabu search is used in Oonsivilai et al.
(2009). Other authors present a non-smooth formulation for the location
problem in wireless sensor networks (Bagirov et al., 2007). In addition to
this, both indoor and outdoor localization systems have been also studied
by many authors. However, most approaches have assumed accurate range
measurements, which is unrealistic in the case of radio frequency signals. For
that reason, some researchers propose probabilistic approaches to deal with
range measurements inaccuracy. This is the case in Ramadurai and Sichitiu
(2003), where the authors propose and test a probabilistic heuristic algorithm
to cope with the problem of estimating the position (spatial coordinates) of
nodes in wireless sensor networks. Their algorithm is distributed and takes
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into account uncertainty in the problem inputs given by inaccuracies in range
measurement.

Artificial bee colony has been applied to solve the economic load dispatch
problem with non-smooth cost functions (Hemamalini and Simon, 2010).
Particle swarm optimization (PSO) has also been used to solve the economic
dispatch problem (Neyestani et al., 2010; Basu, 2015; Niknam et al., 2011).
An application of PSO to a non-smooth manpower assignment problem is
illustrated in Yang and Chou (2011). Similarly, ant colony optimization
(ACO) and PSO algorithms have been used to solve non-smooth optimal
power flow problems in Vaisakh and Srinivas (2011) and Vaisakh et al. (2013),
respectively. Finally, PSO has also been used to solve non-smooth portfolio
selection problems in Corazza et al. (2013), while an extended ACO for non-
convex mixed integer non-linear programming is introduced in Schlüter et al.
(2009). Likewise, a heuristic to solve non-convex OPs is described in Toscano
and Lyonnet (2010).

In the transportation and logistics field, there are multiple applications
focusing on rich and real-life variants of the well-known vehicle routing prob-
lem (VRP)(Caceres-Cruz et al., 2014). Some studies consider realistic VRPs
with soft constraints (Hashimoto et al., 2006), including soft time-windows
and soft traveling-time constraints. In most real-life applications, soft con-
straints are more likely to occur than hard ones, i.e., it might be possible
to violate them to some degree, although constraint violation might imply
a specific penalty cost. The same idea can be applied to traveling time,
e.g., sometimes traveling times can be shortened if paying for a turnpike toll
or a faster transportation mode. The relaxation of these constraints might
naturally lead to a problem formulation, which includes a more realistic,
non-convex or non-smooth, objective function. Some VRP extensions refer
to the inclusion of soft time windows, delivery and pickup operations, split
deliveries, etc., which can be formulated as non-convex or non-smooth OPs
(Derigs and Metz, 1992; Derigs et al., 2010). In particular, a local-search
method to solve the split delivery VRP is presented in Derigs et al. (2010).
Likewise, a non-smooth formulation for the VRP is provided in Juan et al.
(2011), where a biased-randomized solving algorithm is proposed. In a sim-
ilar way, Ferrer et al. (2016) propose a metaheuristic algorithm for solving
a non-smooth scheduling problem with penalty costs generated by machine
failures.
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3. Related work on the ARP

Since ARPs are gaining attention among the research community, several
authors have published surveys on the topic (Dror, 2000; Hertz, 2005; Wøhlk,
2008; Corberan and Prins, 2010; Corberan and Laporte, 2014). Among the
exact methods, branch-and-bound and cutting plane are probably the most
common approaches in the ARP literature. Both are based on integer linear
programming (ILP) formulations. In fact, the ARP was first formulated
as an ILP by Golden and Wong (1981). A number of exact approaches
have been developed since then (Belenguer et al., 2014), including graph
based branch-and-bound methods (Hirabayashi et al., 1992a,b), cutting plane
approaches (Belenguer and Benavent, 2003), as well as branch-and-cut and
price-based algorithms (Letchford and Oukil, 2009). Some of these techniques
offer lower bounds to the problem, even if an optimal solution cannot be
obtained in a reasonable computing time. Other lower bounding procedures
are commented in Ahr and Reinelt (2014). Typically, exact methods can only
be used to solve small- and medium-size ARP instances (Bode and Irnich,
2015).

Problem-specific heuristics have been a common method for providing
reasonably good solutions to ARPs in extremely short computing times (just
a few seconds). Classical ARP heuristics consider vehicle allocation and
route sequence simultaneously. They include the construct-strike procedure,
the path-scanning method, and the augment-merge method (Golden et al.,
1983; Dror, 2000). The performance of these classical procedures is gener-
ally 10% to 20% worse than the best-known solutions (Wøhlk, 2008). Pearn
(1989) proposed improved versions of some heuristics by adding random-
ness, while Pearn (1991) introduced the augment-insert algorithm. Also,
Wøhlk (2005) proposed the double-outer-scan heuristic, which combines the
augment-merge and the path-scanning methods. Later, Gonzalez et al. (2012)
introduced the SHARP heuristic, which was able to outperform most of the
previously published ones. Prins (2014) reviews both heuristic and meta-
heuristic approaches for the ARP.

In recent years, most approaches for solving ARP variants are based on
metaheuristics. For instance, several tabu search algorithms have been pro-
posed to solve the ARP. One of the first ones, CARPET, was introduced in
Hertz et al. (2000). In this algorithm, infeasible solutions are allowed but
also penalized. A deterministic tabu search algorithm has been suggested by
Brando and Eglese (2008). Their algorithm penalizes infeasible solutions in
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the objective function and alternates between different neighborhood struc-
tures. Also, a combination of tabu search and scatter search was proposed in
Greistorfer (2003). Lacomme presented both a genetic algorithm (Lacomme
et al., 2001) and a memetic algorithm (Lacomme et al., 2004). The crossover
operations were performed on a giant tour, and fitness of a chromosome was
based on the partitioning of the tour into vehicle tours. Currently these al-
gorithms are among the very best performing approaches to the ARP. Other
approaches for the ARP are related to simulated annealing algorithms. For
instance, Li (1992) combined this metaheuristic with tabu search to a road
gritting problem. Likewise, Eglese (1994) designed a simulated annealing
approach for a multi-depot gritting problem with side constraints. Finally,
Wøhlk (2005) suggested a simulated annealing algorithm for the classical
ARP. In his approach, the order of the edges on a giant tour is changed
during the algorithm, and the optimal partitioning of the tour is computed
at each iteration. A younger generation of metaheuristics are those based on
ant colony systems, proposed by Lacomme et al. (2004) and Doerner et al.
(2003). In the former, the authors reported competitive results in terms
of quality of the solution, although employing longer computing times. A
guided local search algorithm has been presented for the ARP by Beullens
et al. (2003). In this work, the distance of each arc is penalized according
to some function, which is adjusted throughout the numerical experiments.
A variable neighborhood descent algorithm was proposed by Hertz and Mit-
taz (2001). Recently, a hybrid algorithm for the ARP has been introduced
in Chen et al. (2016). This algorithm is extremely efficient, both in terms
of the quality of the solutions it provide as well as in terms of computing
times. Finally, regarding non-smooth ARP variants, Gonzalez et al. (2014)
presented the non-smooth version of the ARP and proposed a multi-start
approach to solve it. They test its performance over a reduced set of ARP
instances. In this work, we significantly enhance and extend their approach
by introducing a formal model of the problem, a novel metaheuristic frame-
work, and an extensive set of computational experiments, which also include
the use of CPLEX to solve a truncated version of the problem.

Table 3 summarizes the main strengths and weaknesses of the works
mentioned above. More details can be found in the reviews of Bode and
Irnich (2015) and Prins (2014). The first part of the table corresponds to
exact methods, which could only be used to solve small- and medium-size
instances while requiring large computational times. The second part of the
table corresponds to heuristics, which could provide quality solutions for large
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Table 1: Analysis of related works’ strengths and weaknesses
Reference Strengths (•) and weaknesses (◦)

Exact methods

Hirabayashi
et al. (1992a,b)

• First algorithm in the literature addressing the capacitated ARP in an exact way
◦ Instances are not online available, and no further details are given by the authors on how
these instances were generated

Belenguer and
Benavent (2003)

• The method outperforms all the existing lower bounding procedures for the capacitated
ARP until 2003
◦ The method allows symmetric solutions. This fact causes serious problems in the
branch-and-cut algorithm
◦ The method only calculates lower bounds

Letchford and
Oukil (2009)

• First time that the fundamental idea of exploiting the sparsity was coined
◦ Running times are excessive for the val and egl instances

Ahr and Reinelt
(2014)

• The method is able to detect violated capacity constraints that were not found by the
heuristic separation routines of Belenguer and Benavent (2003)
◦ The method only calculates lower bounds

Heuristics

Golden et al.
(1983)

• The method is flexible, the heuristic can be adapted to more complex networks
◦ Poor performance compared to later heuristics (10% to 20% worse than the best-known
solutions)

Pearn (1989)
• The method outperforms the existing heuristics until 1989
◦ The method is only tested with dense networks considering small arc demands

Pearn (1991)
• The heuristic structure is easy to implement
• The method outperforms existing heuristics, i.e., Construct-Strike, Path Scanning,
Augment Merge, Modified-Construct-Strike, and Random Path Scanning
◦ The method is only tested with sparse networks considering some large arc demands

Wøhlk (2005)
• The method improves the Path-Scanning heuristic
◦ The method is able to provide some optimal solutions

Gonzalez et al.
(2012)

• The method requires few parameters
• The method outperforms most Path Scanning heuristic results
◦ Results are only compared with the Path Scanning heuristic results

Metaheuristics

Hertz et al.
(2000)

• The method outperforms all known heuristics until 2000 and often produces a proven
optimum
• Only one single parameter setting is needed

Hertz and
Mittaz (2001)

• The method provides small improvements over Hertz et al. (2000) requiring less
computational time

Lacomme et al.
(2001)

• The method provides improvements over Hertz et al. (2000) and Hertz and Mittaz (2001)
• Only one single parameter setting is needed
◦ The computational performance in terms of running time is not provided

Greistorfer
(2003)

• Merits of explicitly adding population components to a tabu search
• The method is competitive in terms of quality and running time

Doerner et al.
(2003)

• Results are superior to those reported Greistorfer (2003) and Hertz et al. (2000)
◦ The method is tested on few instances

Beullens et al.
(2003)

• First algorithm to find definitive solution values for the gdb instances
• The method provides fast solutions, in the range of a few seconds

Lacomme et al.
(2004)

• Only one single parameter setting is needed
• The method outperforms results by Doerner et al. (2003)
• The algorithm is already designed for tackling several extensions like mixed networks,
parallel arcs and turn penalties

Wøhlk (2005) • Innovative metaheuristic combining Dynamic Programming with Simulated Annealing
◦ The method does not outperforms previous ones, although is competitive for some set of
instances

Brando and
Eglese (2008)

• The method provides high quality results within a reasonable computing time
• Some new best solutions are reported for a set of test problems used in the literature

Gonzalez et al.
(2014)

• First and unique work addressing the non-smooth ARP up to now
◦ The algorithm is tested on a reduced number of instances

Chen et al.
(2016)

• The method is extremely efficient in terms of computing times
• The method outperforms previous works tackling the ARP
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instances within reasonable computation times. Finally, the last part of the
table corresponds to metaheuristics, which provide high quality solutions in
short times. As can be observed, only Gonzalez et al. (2014) addresses the
non-smooth version of the ARP.

A different strategy for solving the ARP is based on transforming the
problem into a VRP. Then, the ARP can be solved by state-of-the-art VRP
algorithms. A general transformation of the problem, using 3 nodes on each
arc, was described by Pearn et al. (1987). VRP-derived approaches include
Eglese and Letchford (2000), Longo et al. (2006), and Baldacci and Maniezzo
(2006). Results reported in those works are highly competitive compared
with the previously existing ones, which may reflect the comparatively more
developed nature of VRP techniques. Likewise, methods providing lower
bounds for the ARP were put forward by Pearn et al. (1987), Pearn (1988), Li
(1882), Benavent et al. (1992), Welz (1994), Amberg et al. (2000), and Wøhlk
(2006). There also exists a problem half-way between the ARP and the VRP,
called the stringed VRP (Oppen and Lkketangen, 2006). In this problem,
customers are to be served as in the VRP, but some of these customers
are located along the arcs. Stochastic versions of the ARP have been also
considered. Thus, for instance, Gonzalez et al. (2016) present a simulation-
optimization approach for solving a ARP variant in which customers demands
are modeled as random variables. Their solving method is based on the
concept of ‘simheuristics’ (Juan et al., 2015a). The authors also provide a
survey on similar works regarding stochastic versions of the ARP.

4. Modeling the non-smooth ARP

The goal of this section is twofold, on the one hand, it presents a formal
and high-level description of the NS-ARP and, on the other hand, it intro-
duces a more classical model that is used during the numerical experiments
to obtain lower-bounds to some instances.

4.1. A novel mathematical model for the NS-ARP

We consider a connected and undirected graph, G := (V,E), where V is a
set of vertices and E is a set of edges connecting some of these vertices. Also,
there is a finite and homogeneous fleet of |T | vehicles indexed in a set T , each
of them with capacity Q ≥ 0. Each edge e = {i, j} ∈ E, considers a demand
dij ≥ 0 and a traversing cost cij ≥ 0. Edges with positive demand form the
subset R ⊆ E. The goal is to find a minimal-cost complete system of routes
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for the vehicles such that each edge with positive demand is serviced. In
particular, the following constraints need to be satisfied:

(i) edges with a positive demand must be serviced by exactly one vehicle

(ii) all edges can be traversed multiple times

(iii) each vehicle starts and finishes its route at the depot

(iv) the total demand handled in any route is limited by Q

In graph theory, a direct path ρ of length r is a sequence of r + 1 nodes,
{i0, i1, . . . , ir}, together with a sequence of r arcs, {a1, a2, . . . , ar}, such that:

ak = (ik−1, ik) k = 1, 2, . . . , r

We will denote a direct path, ρ, as follows:

ρ : i0 → i1 → i2 → · · · → ir−1 → ir

where the node i0 is called the start node and the node ir is called the
end node of the path. Both of them are called terminal nodes of the path.
The other nodes in the path are called internal nodes. A finite cycle is a
path such that the start and the end nodes are the same. A path with no
repeated nodes is called a simple path, and a cycle with no repeated internal
nodes is called a simple cycle or tour. In our context, the set V includes a
depot node, represented by the node 0. Also, a route ρ of order r is a tour of
length r + 2 in which both the start node and the end node are the depot:

ρ : 0→ i1 → i2 → · · · → ir−1 → ir → 0

Based on the above notation, the cost of a route ρ for a given vehicle
k ∈ T is then given by:

cρ =
∑

(i,j)∈ρ

cij

While the total demand handled by a vehicle k ∈ T , qk, is given by:

qk =
∑

(i,j)∈A

qijx
k
ij

In the NS-ARP, we contemplate the possibility of relaxing some of the
constraints, i.e., we considered soft constraints instead of hard ones. As it
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often happens in real-life (Hashimoto et al., 2006), some constraints can be
violated by incurring in well-defined penalty costs that must be added to the
objective function. In our case, we will allow routes to exceed the maximum
route cost –which could either a distance- or a time-based cost. In practice,
if a given route exceeds a threshold cost, then some overhead must be added
to the total route cost. This overhead is likely to be defined as a piecewise
non-smooth function, i.e., the specific penalty to apply will depend (in a
discontinuous way) on the size of the gap between the actual route cost and
the threshold. Thus, we can generalize the cost function of any route, c∗ρ as
follows:

c∗ρ :=


cρ if cρ ≤ C,

cρ + λ (cρ, C) otherwise.

(1)

Where λ (cρ, C) is a non-smooth function which will be applied whenever
the actual route cost exceeds the maximum ‘recommended’ cost per route,
C. Accordingly, the optimization problem can be expressed as follows, where
CSR represents a complete set of routes:

minimize
∑
ρ∈S

c∗ρ,

subject to: S ∈ CSR∑
(i,j)∈ρ qijx

k
ij ≤ Q ∀ ρ ∈ S,∀ k ∈ T,

xkij(1− xkij) = 0 ∀ (i, j) ∈ ρ, ∀ ρ ∈ S,∀ k ∈ T.

(2)

During the experimental section of this article, some specific numerical values
have been assigned to the aforementioned penalty term. Thus, without loss
of generality and with the purpose of testing our approach, the computational
experiments carried out in this work will assume the following specific non-
smooth expression for the penalty factor:

λ (cρ, C) = min {θ (cρ, C) , P} (3)

where P > 0 is an upper bound for the penalty cost and

θ (cρ, C) = 5 + 5000

(
cρ − C
cρ

)4

(4)

Notice that the coefficients of the function (4) are just a ‘random’ choice to
illustrate our methodology with a numerical example of a non-smooth penalty
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function for the ARP problem. Nevertheless, other values and functions could
be considered within the NS-ARP to address other scenarios and real-world
cases.

4.2. A more classical MIP formulation

In order to assess the performance of approximate methods, a MIP for-
mulation is also used in this paper. The model is a truncated version of the
one proposed for the classical ARP in Baldacci and Maniezzo (2006). Those
authors present a reformulation of the problem as a VRP. In our case, the
penalty factor is linearized. This allow us to generate some bounds that
are helpful in order to evaluate the quality of our algorithmic approach. In
the proposed transformation, a graph G′ = (V ′, E ′) is considered, where the
nodes V ′ = {0, 1, ..., 2|R|} correspond to the endpoint nodes of the required
edges plus the depot node 0. Also, the set of edges E ′ is defined such in a
way that G′ is completely connected.

With the aim of making this paper self-contained, the MIP model is
described next. Let V ′′ = V ′/{0}. Let Π = {S : S ⊆ V ′′, |S| ≥ 2}. For
a given S ∈ Π, we denote by S the complementary set of nodes V ′/S. Let
r(S) be the minimum number of vehicles of capacity Q needed to satisfy
the demand of customers in S ∈ Π. Also, q′(S) is used to indicate the
total demand of the node subset S ⊆ V ′, i.e., q′(S) =

∑
i∈S q

′
i — note that

q′i is the transformed demand according to Baldacci and Maniezzo (2006).
Similarly, the transformation of the costs c′ij was followed in the same manner
as in described in Baldacci and Maniezzo (2006) also including the truncated
penalty function. Finally, let xij be an integer variable representing the
number of times a vehicle travels between vertices i and j. Now, the resulting
CVRP can be formulated as follows:

minimize
∑
{i,j}∈E′

c′ijxij (5)

subject to: ∑
j∈V ′,i<j

xij +
∑

j∈V ′,i>j

xji = 2,∀i ∈ V ′′ (6)

∑
i∈S

∑
j∈S,i<j

xij +
∑
i∈S

∑
j∈S,i<j

xij ≥ 2r(S), ∀S ∈ Π (7)

∑
j∈V ′′

x0j = 2|T | (8)
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xij ∈ {0, 1},∀{i, j} ∈ E ′/{{0, j} : j ∈ V ′′} (9)

x0j ∈ {0, 1, 2},∀{0, j} ∈ E ′, j ∈ V ′′ (10)

Constraints (6) are the degree constraints for each customer. Constraints
(7) are the capacity constraints (also called generalized subtour elimination
constraints). For any subset S of customers, these constraints impose that
r(S) vehicles enter and leave S. It should be noted that the formulation
remains valid if r(S) is replaced by a lower bound on its value, such as
dq′(s)/Q)e. Constraints (8) state that |T | vehicles must leave and return to
the depot while constraints (9) and (10) are the integrality constraints.

5. A BRILS approach for the NS-ARP

Our solving methodology for the NS-ARP is denoted as BRILS, since it
combines a biased-randomized (BR) procedure with an iterated local search
(ILS) metaheuristic. ILS is a well-tested framework that offers a balanced
combination of efficiency and relative simplicity (Juan et al., 2014b; Dominguez
et al., 2014; Juan et al., 2015b; Dominguez et al., 2016). Moreover, it can
be easily extended to a simheuristic algorithm (Grasas et al., 2016), which
can be specially useful when considering routing problems with stochastic
demands or variable transportation costs (Gonzalez et al., 2016; Juan et al.,
2014a). Algorithm 1 depicts our approach. It starts by generating an ini-
tial solution. Then, a searching procedure is repeated until a termination
condition is reached. This procedure is composed of three main phases: a
perturbation stage (which systematically changes the solution in order to
start from different points of the search space), a local search stage (which
aims at improving the solution by searching in its local neighborhood), and
an acceptance stage (which helps the algorithm to avoid getting trapped in
a local minimum). Each of these phases is described next in more detail:

• Initial solution: In order to generate an initial solution, we make use
of the RandSHARP probabilistic algorithm (line 1). This procedure
introduces a biased-randomized behavior into a savings-based heuristic,
as described in Gonzalez et al. (2012).

• Perturbation: The procedure used to perturbate the base solution (line
6) is a destruction-reconstruction strategy. Thus, given a base solution,
we select a random number of required edges and ‘destroy’ (delete) the
routes serving them. Then, we reconstruct those routes by applying
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Algorithm 1: Biased-Rand ILS algorithm

1 initSol ← getInitialSolution() % biased randomization
2 baseSol ← initSol
3 bestSol ← baseSol
4 t ← initialTemperature
5 while ((t > 0) and (time < limitTime)) do
6 newSol ← perturbate(baseSol) % biased randomization
7 newSol ← localSearch(newSol) % cache memory
8 delta ← cost(newSol) − cost(baseSol)
9 t ← t - alpha1 * random(0,1)

% acceptance criterion
10 if (delta < 0) then
11 t ← t + delta * alpha2 * random(0,1)
12 baseSol ← newSol
13 if (cost(newSol) < cost(bestSol)) then
14 bestSol ← newSol

end

else
15 if (random(0,1) < e(delta/t)) then
16 baseSol ← newSol

end

end

end
17 return bestSol

the biased-randomized RandSHARP procedure on them. After that, a
new solution emerges (Figure 3).

• Local search: Our local search stage (line 7) is based on the use of
a growing and continuously updated memory cache: for each set of
edges in a newly generated route, the best-found-so-far way of covering
them is stored in a hash-map data structure; the information in this
cache memory is quickly recovered / updated each time a cluster of
edges is selected, so that newly generated routes are quickly improved
as more information is stored in memory. Figure 4 shows an example
of improvement achieved through the use of the cache memory. In
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Figure 3: Perturbation

this example, it is assumed that the first solution has been obtained
in previous iterations and that the way arcs a, b, and c are visited has
been stored in the cache. If, during the current iteration, the second
solution is obtained before the local search stage, then the cache is
checked in order to improve the individual routes, obtaining the third
solution.

• Acceptance criterion: Every time a new solution is generated after
the perturbation and local search stages, the algorithm must decide
whether or not the base solution and the best solution have to be
updated. Even in those cases in which the new solution does not out-
performs the base solution, it might be convenient to update the latter
to avoid getting trapped in a local minimum. To regulate this process,
a simulated annealing procedure is employed (Kirkpatrick et al., 1983).
Firstly, the temperature is initialized (line 4), and then it is reduced at
each iteration using the alpha parameters (line 9 and line 11). Thus,
whenever a given probabilistic criterion is satisfied (line 15), the current
base solution is updated (line 16).
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Figure 4: Example of improvement through Local Search

6. Computational experiments

The aim of this section is twofold: on the one hand, it validates the
efficiency of the proposed algorithm for solving the proposed NS-ARP; on
the other hand, it illustrates the benefits of considering more realistic models
including non-smooth constraints. The numerical experiments are divided in
two parts:

• Firstly, we compare the results obtained by our BRILS approach for the
NS-ARP with soft constraints with the ones provided by the multi-start
approach introduced in Gonzalez et al. (2014), as well as with the best-
known solutions (BKS) for the classical ARP with hard constraints. In
the latter, a maximum route cost is not considered. Additionally, we
also consider the scenario with hard constraints –i.e., avoiding exceed-
ing the route cost threshold– with the purpose of illustrating how total
costs increase in comparison with the soft-constraints scenario.

• Secondly, we truncate the penalty function in order to make it linear
and, thus, make it possible to use CPLEX to solve the truncated version
of the NS-ARP. This way, we can obtain bounds for each instance,
which contribute to measure the quality of our approach.
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The BRILS algorithm has been implemented using Java SE 7 over the
Netbeans IDE. All tests were run using a standard personal computer, equiped
with an Intel Core2 Quad CPU Q9300 @ 2:50 GHz, 16 GB of RAM, and a
Windows 7 Pro operating system. A set of classical benchmarks –traditionally
used for the standard ARP– has been adapted by adding soft constraints as
well as a penalty term –as described in Section 4– in the objective function. In
particular, four different benchmarks have been used. These benchmarks are
available at http://www.uv.es/belengue/carp.html. They correspond to:
(a) the gdb dataset from Golden et al. (1983); (b) the egl dataset from Leon
Y. O. Li (1996); (c) the val dataset proposed in Benavent et al. (1992); and
(d) the kshs dataset proposed by Kiuchi et al. (1995). Table 3 summarizes
the main characteristics of these sets, which are described next:

• The egl dataset consists of 24 instances which are derived from real
world data. This data refers to winter gritting in the county of Lan-
cashire, United Kingdom. These instances contain both required and
not required arcs, so there are also arcs without associated demand.
The instances are grouped in two different network configurations with
very low arc density. The density of arcs is computed as the percentage
of arcs of the complete graph which conform the network of the given
instance.

• The gdb dataset consists of 23 instances of small and medium-size –
between 10 and 50 arcs– with a mixture of dense and sparse graph
networks. The instances are characterized by their number of nodes,
number of arcs, number of required arcs, and the density of arcs on the
network. These instances are artificially generated and contain only
arcs with associated demand.

• The kshs dataset instances consist of 6 instances of small size and a
medium- to high-density of arcs. They are artificially generated and all
the instances have the same number of arcs. All of the arcs are required
as they have an associated demand.

• Finally, the val dataset consists of 34 instances, modeled on 10 sparse
graph networks, with varying vehicle capacities for each network. Thus,
the same instance valX is to be solved with different capacity con-
straints, obtaining the variants valXY which conform the final in-
stances. These instances include only required arcs and are networks
with low arc density (around 10%).
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Set Instances Nodes Arcs Density

egl 24 109 144 2.65%

gdb 23 12 29 53.77%

kshs 6 8 15 55.95%

val 34 36 63 10.59%

Table 3: Base datasets for the ARP

In order to adapt these instances to the NS-ARP, we have introduced
a threshold parameter Cmax which determines the maximum route cost al-
lowed (or ‘recommended’ in the case of soft constraints). In our tests, this
parameter has been defined as the average route cost for each ARP instance
(rounded to a multiple of 10), considering the results obtained with our meta-
heuristic for the standard ARP. When this value is lower than the maximum
cost of visiting a single required edge using the shortest path, the parameter
takes this cost value. Instead of considering this parameter as a hard con-
straint, we have considered it as a soft one that could eventually be violated
by assuming a penalty cost. Following the penalty function (1), in our tests
we have used the specific non-linear function (3). The parameters in this
function depend on the cost structure of each instance. In this case, the
maximum route penalty Pmax due to exceeding Cmax can go up to a 10% of
the cost of a route when hard constraints are considered.

Regarding the parameters setting of our algorithm, after some quick tests
the initial temperature for the acceptance criterion has been set to 1.5,
and the decreasing factors alpha1 and alpha2 have been set to 0.01 and
0.002, respectively. Finally, the beta parameter associated with the biased-
randomization process takes random values in the interval [0.1, 0.3].

As mentioned before, in our computational experiments we have solved
the ARP with maximum cost per route both assuming soft and hard con-
straints. When considering soft constraints, the objective function becomes
non-smooth due to the introduction of penalty costs. Moreover, in order to
test the efficiency of our BRILS approach, we compare its results with the
results obtained using the multi-start (MS) approach introduced in Gonzalez
et al. (2014). Tables 4 - 11 show the results obtained for each of the described
settings. These tables are structured in several parts. The first one displays
information about every problem dataset, i.e., the name of the instance, the
maximum route cost allowed (Cmax), the maximum penalty allowed (Pmax),
and the BKS for the original ARP problem instance as given in Chen et al.
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(2016). Since these BKS do not consider a maximum cost per route, they
will act as a lower-bound for the NS-ARP considered here. The second part
of each table shows the results obtained using the MS algorithm, while the
third part shows the results obtained using our BRILS algorithm. For each
approach, our best and average solutions obtained after 10 executions of each
instance (with a maximum running time of 180 seconds per execution) are
depicted. The gap of these results with respect to the BKS is also provided.

6.1. Evaluation of the Solving Approaches for the NS-ARP

In order to assess the performance of our algorithm, Tables 4, 6, 8, and
10 report the solutions obtained for the NS-ARP when considering soft-
constraints (i.e., non-smooth objective functions with penalty costs). Sim-
ilarly, Tables 5, 7, 9, and 11 show the solutions obtained when considering
hard-constraints. Table 12 summarizes the gaps obtained for each approach.
Notice that there is an appreciable difference between considering hard and
soft constraints: in the latter case, solutions for the ARP with a maximum
cost per route are relatively close to the BKS for the standard ARP. In the
former case, solutions are much worse, since the existence of a hard limitation
on the maximum distance requires the use of additional routes.

Besides, notice that our BRILS algorithm improves the results provided
by the MS method proposed in Gonzalez et al. (2014), both for the scenario
with soft constraints as well as for the one with hard constraints. Figure 5
shows a multiple boxplot offering a visual comparison of the algorithms per-
formance. Notice that: (i) our BRILS approach clearly outperforms the MS
approach; and (ii) as expected, using soft constraints allows to obtain better
results than using hard constraints (i.e., the solution gets closer to the BKS
for the standard ARP, which does not impose a maximum cost per route).
Also, as depicted in Figure 6, the Fisher test for differences between pairs of
means shows significant differences between the BRILS and MS approaches,
as well as between the scenarios using hard and soft constraints.
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Table 12: Summary of obtained gaps w.r.t. BKS (standard ARP)

Instance Soft constraint (non-smooth) Hard constraint

MS BRILS MS BRILS

Best Avg Best Avg Best Avg Best Avg

egl 1.57 1.85 0.84 1.07 2.05 2.39 1.34 1.61

gdb 2.98 3.22 1.80 1.99 5.71 5.95 3.97 4.04

kshs 0.73 0.73 0.11 0.13 9.90 9.90 9.11 9.11

val 4.65 5.37 2.27 2.89 5.92 6.93 2.78 3.92

Average 3.07 3.61 1.25 1.52 5.90 6.29 4.30 4.67

Figure 5: Visual comparison of the different approaches

6.2. Evaluation of the Solving Approaches for the Truncated NS-ARP

After testing the performance of our BRILS algorithm for the NS-ARP
and analyzing the benefits of considering soft constraints, this section com-
pares the BRILS results with the ones generated by CPLEX for the truncated
version of the problem described in Section 4. As stated before, the model
needs to be truncated in order to be solved using CPLEX. Thus, the penalty
term has been linearized. By doing so, the total cost provided by CPLEX be-
comes an upper bound for the optimal cost associated with the non-smooth
model. The total running time for CPLEX has been fixed to one hour.
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Figure 6: Fisher test for differences of means

Tables 13 and 14 show the results for the small-size instances, kshs and
gdb. Their structure is the following: the first column corresponds to the
instance name, the next three columns correspond to the CPLEX results
for the truncated model (i.e., cost, computing time, and maximum gap with
respect to the optimal solution), and the final two columns show the solution
provided by our BRILS algorithm for the NS-ARP and the corresponding gap
with the one provided by CPLEX for the truncated model. Notice that our
BRILS approach reaches the value provided by CPLEX for some instances in
the kshs set (Table 13), while it is also able to obtain better results for other
instances by considering the non-smooth model instead of a truncated one.
For the next set of instances, gdb, CPLEX is not always able to report an
optimal solution after one hour of computing. In fact, it runs out of memory
for some of these instances (gdb8, gdb9, and gdb11). All in all, in those cases
in which CPLEX is able to find an optimal solution, BRILS is also able to
reach the same value. Moreover, in those cases in which CPLEX could not
even reach an optimal solution for the truncated model, BRILS is able to
improve the solution provided by CPLEX. Finally, it is worthy to mention
that the remaining sets of instances – val and egle – could not be solved
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Table 13: Comparison with exact results for kshs instances
Instance Truncated Model BRILS (non-smooth)

Opt Time (s.) Gap (%) Best Gap (%)

(1) (2) (1)-(2)

kshs1 14674.88 6.00 0.00 14666.00 -0.06

kshs2 9863.00 24.27 0.00 9863.00 0.00

kshs3 9320.00 5.70 0.00 9320.00 0.00

kshs4 11546.25 10.45 0.00 11508.59 -0.33

kshs5 11170.02 6.69 0.00 11010.68 -1.43

kshs6 10204.43 1.50 0.00 10202.00 -0.02

Table 14: Comparison with exact results for gdb instances
Instance Truncated Model BRILS (non-smooth)

Opt Time (s.) Gap (%) Best Gap (%)

(1) (2) (1)-(2)

gbd1 326 3600.00 8.10 321 -1.53

gbd2 349 3600.00 12.14 344 -1.43

gbd3 284 3600.00 5.69 280 -1.41

gbd4 292 0.00 495.38 292 0.00

gbd5 382 3600.00 9.95 382 0.00

gbd6 303 1052.21 0.36 303 0.00

gbd7 330 3600.00 12.44 330 0.00

gbd8 – – – 353 –

gbd9 – – – 312 –

gbd10 280 3600.00 5.71 280 0.00

gbd11 – – – 400 –

gbd12 497 3600.00 24.78 458 -7.85

gbd13 551 3600.00 4.72 541 -1.81

gbd14 105 3.92 0.00 105 0.00

gbd15 58 2.73 0.00 58 0.00

gbd16 127 223.15 0.00 127 0.00

gbd17 91 3600.00 4.40 91 0.00

gbd18 169 227.13 0.00 169 0.00

gbd19 60 1.00 0.00 60 0.00

gbd20 126 3600.00 5.55 123 -2.38

gbd21 156 3600.00 2.56 156 0.00

gbd22 210 3600.00 9.05 200 -4.76

gbd23 443 3600.00 48.53 240 -45.82

using CPLEX, since the computer run out of memory during the execution.
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7. Conclusions

This paper analyzes a non-smooth version of the well-known ARP (NS-
ARP). In this version, a realistic soft constraint regarding a maximum cost
per route is considered, and a penalty cost is added to the objective function
in order to account for violations of this constraint. The introduction of these
penalty costs makes the objective function to become a non-smooth one,
hindering the use of classical optimization methods. A novel mathematical
model is provided for the NS-ARP, and a hybrid metaheuristic is proposed
to solve it. Our BRILS algorithm integrates the biased-randomization of a
fast heuristic inside an iterated local search framework.

Through an extensive set of numerical experiments we have shown that
the introduction of a new hard constraint can severely affect the quality of
the solutions, and this effect is diminished when considering realistic soft
constraints, as we proposed. Our BRILS algorithm constitutes a system
able to address this issue and outperforms previously published methods
for solving the NS-ARP. Namely, regarding previous methods, the gap is
being reduced from 3.61 to 1.52 on average and regarding the hard constraint
consideration, the gap is being reduced from 4.67 to 1.52 on average. This
means that our proposal exhibits relevant advantages to solve the problem
at hand, in terms of both the way the problem is raised and the way it is
solved. Finally, we make use of general purpose solver (i.e., CPLEX) to solve
a truncated model of the problem in order to obtain tight upper bounds for
the NS-ARP. This allows us to illustrate that even the linearized problem
cannot be easily solved using exact methods. This shortcoming is overcome
by means of the BRILS algorithm which is always able to provide a feasible
solution for this non-smooth version – even for large-size instances –, where
the exact truncated model cannot provide any solution. This feature of our
approach is an important distinction, bearing in mind that the NS-ARP may
arise in real-world scenarios where non-smooth functions have to considered.

Counting with approaches as those provided in this paper, allows, on the
one hand, to compare the performance of a given decision support system
by using the truncated model, and on the other hand, to address dynamic
changes in integrative systems where a solution to the ARP is frequently
required in the context of re-planning and disturbance management. The
above requires fast and high-quality solutions making thus the BRILS ap-
proach a very suitable option as it provides solutions in the range of seconds.
Finally, thanks to the realistic constraints considered in the NS-ARP, the use
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of our proposed approaches can be incorporated into expert systems where
by means of friendly user interfaces – e.g., Heilig et al. (2017) – the user can
either provide and assess different parameter alternatives or machine-learning
systems – e.g., de León et al. (2017) – where among different solution ap-
proaches, that one providing a better performance for the problem at hand
is recommended.

Despite its relevance in real-life applications, soft constraints and non-
smooth objective functions have been rarely considered in the extensive lit-
erature on arc and vehicle routing problems. For that reason, as future work
we propose (i) to extend the analysis presented here to other combinatorial
optimization problems in the logistics and transportation field; (ii) to in-
tegrate this problem with related ones in order to provide decision makers
integrative and realistic solutions;(iii) to incorporate the solution approaches
and the problem consideration in specialized systems as the above-mentioned
ones in order to directly assist managers during the whole decision making
process; and (iv) to consider the stochasticity within the NS-ARP environ-
ment in order to study and provide robust solutions adapted to the scenario
at hand.
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