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Abstract

OO Semantic 3D mapping is one of the most important fields in robotics, and has been used in many applications, such as robot navi-
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gation, surveillance, and virtual reality. In general, semantic 3D mapping is mainly composed of 3D reconstruction and semantic
segmentation. As these technologies evolve, there has been great progress in semantic 3D mapping in recent years. Furthermore,
the number of robotic applications requiring semantic information in 3D mapping to perform high-level tasks has increased, and

many studies on semantic 3D mapping have been published. Existing methods use a camera for both 3D reconstruction and se-
mantic segmentation. However, this is not suitable for large-scale environments and has the disadvantage of high computational
LL complexity. To address this problem, we propose a multimodal sensor-based semantic 3D mapping system using a 3D Lidar com-
OO bined with a camera. In this study, we build a 3D map by estimating odometry based on a global positioning system (GPS) and an
(N inertial measurement unit (IMU), and use the latest 2D convolutional neural network (CNN) for semantic segmentation. To build
a semantic 3D map, we integrate the 3D map with semantic information by using coordinate transformation and Bayes’ update
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scheme. In order to improve the semantic 3D map, we propose a 3D refinement process to correct wrongly segmented voxels and

remove traces of moving vehicles in the 3D map. Through experiments on challenging sequences, we demonstrate that our method
D: outperforms state-of-the-art methods in terms of accuracy and intersection over union (IoU). Thus, our method can be used for
8 various applications that require semantic information in 3D map.

—IKeywords: Semantic mapping, Semantic reconstruction, 3D mapping, Semantic segmentation, 3D refinement.

S
— 1. Introduction
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O\l The inclusion of semantic information within a 3D map
is becoming increasingly important in many fields, especially

! robotics (Rogers, 2013; Kostavelis, 2016). Existing 3D maps
(\J only contain geometry, which limits the robot’s functionality to
O perform various tasks. To enable a robot to recognize an en-
vironment and act accordingly in a real 3D world, the robot

- ! needs to infer not only the geometry but also semantic informa-
= tion of surrounding environment. A semantic 3D map contains
*== both geometry information and semantic information, allowing
>< arobot to perform high-level tasks within the semantic 3D map.
In general, semantic 3D mapping involves geometric 3D
mapping (for building a 3D map) and semantic segmentation
(for obtaining semantic information); a semantic 3D map is
produced by combining these. In recent years, studies on se-
mantic 3D mapping have focused on camera-based systems.

In (Sunderhauf, 2017), 3D reconstruction was performed by
ORB-SLAM, and semantic information was extracted through

a deep learning-based single-shot detector which used an RGB-

D camera to build semantic 3D maps. In (Vineet, 2015), an
incremental 3D reconstruction was carried out using a stereo
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camera and a CRF was used for semantic segmentation. Fur-
thermore, in (Yang, 2017), a 3D reconstruction was produced
from a stereo camera and high order conditional random fields
(CRFs) were used for semantic labeling. McCormac et al. per-
formed visual simultaneous localization and mapping (SLAM)
with ElasticFusion and a CNN-based semantic segmentation
method(McCormac, 2017). Several other studies used similar
SLAM and CNN-based approaches (Cheng, 2017; Li, 2016).
However, existing approaches have focused on a camera-based
method for semantic 3D mapping, which have a limitation
for applying to large-scale environments. Furthermore, visual
SLAM cannot be performed in featureless environments.

In this study, we build a semantic 3D map with five labels:
road, sidewalk, vehicle, building, and vegetation. The reason
we consider five labels is that objects corresponding to these
labels occupy most of the urban environments. The odometry
of our system is estimated by integrating a GPS with an IMU,
and the 3D map is generated by registering point clouds ob-
tained from a 3D Lidar. For semantic segmentation, we use the
CNN model to obtain the distributions for five labels. Follow-
ing this, pixel label distributions on image are transferred to 3D
grid space through coordinate transformation and Bayesian up-
date schemes. Then, a 3D refinement process is performed to
correct misclassified labels and remove traces of moving vehi-
cles, thereby producing an accurate semantic 3D map. In the
3D refinement process, the segmentation accuracy is improved
by using a 2D count grid representation and Bayes’ rule, and



GPS/IMU

l Global consistent
) ) voxel grids (Py.) Correcting Refined
3D Lidar —— QERRER I — Labeled Semantic \ label distributions | o
Data voxels ) 3D map Ssmar.ltlc 3D map
.. — Accumulation Mapping
association Finished?
CNN-based Label scores / Removal of
Camera ——» . —_— . .
segmentation moving vehicles
Semantic 3D Mapping 3D Refinement

Figure 1: Flowchart of our semantic 3D mapping method.

moving vehicles are removed by combining the spatial context
and the clustering method.
In all, our main contributions are as follows:

e We proposed a multimodal sensor-based semantic 3D
mapping system for large-scale environments.

e We demonstrated that 3D segmentation accuracy is im-
proved against the state-of-the-art methods using the
KITTI dataset.

o We developed a 3D refinement process to correct label dis-
tributions and remove traces of moving vehicles.

The remainder of this paper is organized as follows: Related
work is reviewed in Section 2. Section 3 describes the proposed
method in detail. Section 4 describes experiments that compare
the proposed method against other state-of-the-art algorithms,
and analyzes experimental results. Conclusions are presented
in Section 5.

2. Related works

Semantic mapping is the process of attaching semantic infor-
mation to a map. It uses 3D reconstruction as a tool to build a
3D map, and semantic segmentation to obtain semantic infor-
mation. In this section, we briefly review other relevant stud-
ies. Geometric 3D mapping can be classified into three cate-
gories depending on the sensor for localization. The first is the
visual SLAM, which uses a camera for localization and map-
ping. A remarkable early visual SLAM system was presented
by Davison et al. (Davison, 2007). This system could estimate
3D trajectory of a monocular camera. Furthermore, in (Sthmer,
2010; Newcombe, 2011), researchers correctly estimated depth
using a monocular camera, but were hampered by the scala-
bility issues owing to memory requirements. In recent years,
many open source algorithms, such as ElasticFusion (Whelan,
2015) and ORB-SLAM (Mur-Artal, 2017) have become widely
available. Nonetheless, these camera-based approaches are not
applicable in featureless environment, and it is difficult to build
a 3D map in large-scale environments. The second 3D map-
ping category is the Lidar-based SLAM method. Bosse and
Zlot et al. used a 2-axis Lidar to produce a point cloud which
was registered by matching the geometric structures of local
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Figure 2: Drawbacks of semantic 3D map: (a) example of wrong segmentation
and (b) example of remaining traces

point clusters (Bosse, 2009). In (Zhang, 2014), researchers de-
veloped Lidar odometry and mapping (LOAM) method which
estimates odometry and builds a 3D map by using a 3D Lidar;
however, Lidar-based methods are difficult to apply in environ-
ments where there are no structural features. Finally, odometry
is estimated by integrating the GPS with the IMU, and the 3D
map is generated by accumulating point clouds measured from
the Lidar. This is the most commonly used method for gen-
erating large-scale 3D maps for autonomous vehicles (Puente,
2013). It is the most suitable method for large-scale environ-
ments because of short computation time. In this paper, we
choose this method for building a 3D map.

Many studies have been conducted on semantic segmenta-
tion, and many researchers solved this problem with Markov
Random fields (MRFs) (Shotton, 2006) and CRFs (Krhenbhl,
2011). In recent years, studies have addressed semantic label-
ing problems by using CNNs. Long et al. introduced transposed
convolutional layer and developed fully convolutional networks
for segmentation (Long, 2015). In (Badrinarayanan, 2015),
an encoder-decoder architecture with max unpooling layer and
transposed convolutional layer was proposed. The cutting-edge
method, namely, DilatedNet, achieved state-of-the-art perfor-
mance on semantic segmentation by introducing atrous convo-
lution, which extends the size of the receptive field without loss
of resolution (Yu, 2015). Lin et al. developed RefineNet that
receives information from different resolutions via long-range
connections, thereby being able to obtain fine and coarse re-
sults (Lin, 2016). This method showed the best performance
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Figure 3: 3D mapping: (a) incoming point cloud and (b) generated dense 3D
map.

among state-of-the-art algorithms. Semantic 3D mapping re-
quires fine and smooth semantic segmentation results; however,
CNN-based methods still have limitations for producing these
results.

Although many works on semantic 3D mapping exist, they
have focused on camera-based methods. In (Cheng, 2017),
ORB-SLAM was applied for building a 3D map while seman-
tic segmentation was performed through CRF-RNN, and both
were integrated to generate a semantic 3D map. Hermans et
al. proposed a novel label transfer method based on Bayesian
updates and dense pairwise 3D CRFs to transfer labels from
2D to 3D (Hermans, 2014). In (Sengupta, 2013), a straightfor-
ward solution was proposed to directly transfer 2D image labels
to 3D by using back-projection; however, it took considerable
time to run outdoors. Furthermore, Sengupta et al. proposed
a volumetric labeling approach, which simultaneously inferred
the 3D structure and object labeling (Sengupta, 2015). Vineet
et al. produced an incremental 3D reconstruction from stereo
pairs and used a random forest with a CRF for the semantic
segmentation (Vineet, 2015). In (Li, 2016), the semantic 3D
mapping problem was solved by combining deep learning and
semi-dense SLAM based on a monocular camera. Finally, in
(Yang, 2017), semantic 3D maps were built using a CRF model
with higher order. Nonetheless, these works are not suitable
for large-scale or featureless environments since they utilized
camera for SLAM.

3. Approach

3.1. System overview

Our semantic 3D mapping method uses a 3D Lidar and a
camera as its main sensors and focuses on large-scale envi-
ronments (particularly, urban environments). As illustrated in
Fig. 1, our method mainly consists of building and refining a
semantic 3D map. To build the semantic 3D map, geometric
reconstruction is performed using the 3D Lidar to generate a
globally consistent point cloud for each frame. In parallel, the
CNN for the semantic segmentation takes an image as input
and returns a set of per-pixel label probabilities. Following
this, data association is performed based on the Bayesian up-
date rule. This enables us to keep track of the label distributions
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Figure 4: 2D semantic segmentation: (a) incoming image and (b) prediction.

based on the CNN’s prediction and determines the final label of
each voxel in the 3D map. The semantic 3D map is built frame-
by-frame; however, there are some limitations. First, buildings
and vegetation are misclassified each other owing to inaccu-
rate performance of the CNN and projection errors, as shown
in Fig. 2(a). Second, traces of moving vehicles remain on the
3D map as shown in Fig. 2(b), owing to the presence of vehi-
cles that move concurrently with our platform. To solve these
problems, the 3D refinement process is applied to built seman-
tic 3D map. In the 3D refinement process, estimation of labels
based on the 2D count grid representation is performed to solve
misclassification. Furthermore, any traces of moving vehicles
are removed by combining the spatial context and the clustering
method.

3.2. Semantic 3D mapping

3.2.1. 3D mapping
3D mapping is a fundamental part of our framework (as pre-
viously mentioned, our map is built using a 3D Lidar), To build
a large-scale 3D map in real-time, we estimate the odometry for
each frame by combining a GPS with an IMU. This is an ideal
method for large-scale environments owing to its simple com-
putation process and short computation time. In our 3D map-
ping system, the odometry is composed of a three-dimensional
translation vector and a three-dimensional rotation matrix, and
it is estimated every frame. Each point cloud is transformed
using the estimated odometry for global 3D map generation as
shown in (1):
P = T;P; €]

R,‘ t;

0o 1y
the estimated translation vector, and P; is the point cloud of ith
frame. For memory and computational efficiency, transformed
point clouds are changed to voxel grids. Each grid stores oc-
cupancy status, and the grid size is set to 0.2m X 0.2m x 0.2m,
which is sufficient for generating dense 3D map in a large-scale
environment. As transformed voxel grids are accumulated for

where T; = R; is the estimated rotation matrix, #; is



Figure 5: Alignment of coordinate systems for projecting semantic information
onto voxel grids. Colored points depict labeled voxels.

entire frames as (2), dense 3D map is generated as shown in
Fig. 3.

A

M = {P]

i

i=1,2,..k} @)

where }A’IV is the voxel set obtained from ith point cloud, and
M., represents the 3D map from /st frame to kth frame.

3.2.2. Semantic segmentation

The goal of 2D semantic segmentation is to assign the
correct label for each pixel in an image. Along with the
success of CNNs in classification (Krizhevsky, 2012), CNN-
based approaches have shown remarkable improvements in var-
ious computer vision applications. In 2D semantic segmenta-
tion, many successful CNN architectures have been developed
(Long, 2015; Badrinarayanan, 2015; Yu, 2015; Paszke, 2016;
Lin, 2016). In this work, we chose RefineNet as our seman-
tic segmentation method. RefineNet exploits multi-level fea-
ture maps by using residual connections to generate a high-
resolution semantic feature map. The reason we choose the
RefineNet is that it is the open source and has the best perfor-
mance compared to state-of-the-art methods (Lin, 2016). We
used the network trained on the Cityscape dataset for our work,
and fine-tuned the network using the Camvid dataset. To gen-
erate a semantic 3D map on urban environments, we selected
five labels(road, sidewalk, vehicle, building, and vegetation).
Hence, the generated semantic 3D map also contains informa-
tion on these labels. In our framework, the semantic segmenta-
tion returns scores over five labels at each pixel for data associ-
ation. These scores had a size of W x H X 5, where W and H
are the width and height of the input image, respectively. Fur-
thermore, 5 represents the number of labels. Fig. 4 shows the
results of semantic segmentation.

3.2.3. Data association

The data association step determines the label of each voxel.
To achieve this, both globally consistent voxels (generated by
3D mapping) and label distributions (obtained by 2D semantic
segmentation) are combined; this combination is performed us-
ing two-stage pipelines. First, to align between a 3D Lidar co-
ordinate system and a camera coordinate system, the 3D Lidar
coordinate system is transformed to the camera coordinate sys-
tem using extrinsic parameter which represents the positional
relationship between two sensors. Following this, a label is as-
signed to each voxel by using the recursive Bayesian update
rule which estimates the label distributions of a 3D map. Trans-
formation from the 3D Lidar coordinate system to the camera

Figure 6:
(b)building. Points removed by the process are shown in red for better visu-
alization.

Results of correcting label distributions: (a)vegetation and

coordinate system is formulated as shown in (3) and (4).
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where (x,, y,, z,) are the x,y,z value of the voxel, respectively,
P;>c is the transformation matrix which converts the 3D Lidar
coordinate system into the camera coordinate system. u. and
v, are the camera pixel coordinates corresponding to (x,, yy, Zy)-
After aligning the two coordinate systems, the semantic infor-
mation is projected onto the corresponding voxels, as shown in
Fig. 5, thereby building the semantic 3D map. This is formu-
lated as shown in (5).

Ly(x,, Yvs zy) = Is(ue, VL‘) (5)

where I is a result image of semantic segmentation, and L,(-)
means the label of the voxel, (x,,y,,z,). However, since each
voxel could be observed as a different label in each frame, it is
necessary to fuse label observations. For the label fusion, the
Bayesian update rule is applied, as shown in (6).

, L, v
Pk, Prg) = Ep(lka, Pop_ k-1, Pra-1)  (6)

where Z is the normalization constant and /] denotes the labels
of voxel v at time k. I1.4—; and P;4_; are the images and point
clouds to k — 1, respectively. In equation (6), the label probabil-
ity distribution is simply multiplication followed by normaliza-
tion to update for each incoming image and point cloud. As a
result, the final label of each voxel is estimated by maximizing
label probability distribution as shown in (7)

Ly(v) = argmax p(I'|l, P) (N
r

where v is a voxel, and [" means labels which can be road,
sidewalk, vehicle, building and vegetation. After label fusion,
we can produce the semantic 3D map where each voxel con-
tains only one label information.



@

(b)

©

Figure 7: Results of moving vehicle removal: (a)vehicle 3D map, (b)after applying spatial context and (c)after clustering method

3.3. 3D refinement

There are several drawbacks to the built semantic 3D map.
First, results obtained from 2D semantic segmentation include
misclassified pixels, and the precise outline of objects cannot
be found. Also, inaccurate extrinsic parameter leads to projec-
tion errors. Consequently, some voxels with misclassification
are stored in the semantic 3D map, especially in building and
vegetation categories, as shown in Fig. 2(a). Second, traces
of moving vehicles remain in the semantic 3D map. To cor-
rect these, the 3D refinement process is performed for the en-
tire semantic 3D map in a batch. This process consists of two
steps. The first step corrects the label distributions by using
a 2D count grid representation in which each grid stores the
number of voxels belonging to the grid. The second step is to
remove traces and noises by using the spatial context and the
clustering method.

3.3.1. Correcting label distributions

In our semantic 3D map, some voxels corresponding to
building and vegetation are wrongly segmented owing to pro-
jection errors, while voxels classified as road, sidewalk, and
vehicle are segmented correctly. In this section, our goal is to
correct labels of misclassified voxels in building and vegetation.
Through analysis of voxels in building and vegetation, it is ver-
ified that most of voxels in building and vegetation are cor-
rectly segmented, and sparse voxels are misclassified as shown
in Fig. 2(a). To take advantage of this feature, the 2D count
grid representation is newly defined to correct errors of label
distributions. The 2D count grid representation is formulated
as (8).

Glx.y) = Y M'(xy,2) @®)

where M! denotes the 3D map corresponding to the label [ that
can be extracted from the semantic 3D map, and M has a value
of 1 if the grid is occupied. G.. means 2D count grids for the la-
bel I. To modify labels of 3D voxels in building and vegetation,
labels of 2D grids are inferred using count grids, which is based

on Bayes’ rule. It is formulated as (9).

PPPIGE,GY) = Zp(PP)p(GE, G IPP) ©)
where 1P is the label of 2D grids which can be either building
or vegetation. G2 and GY are 2D count grids of building and
vegetation, respectively. The label of each 2D grid can be de-
termined by maximizing the label probability distribution as
shown in (10).

L,p = argmax p(IZDIGf,GX) (10)

2D
Furthermore, in order to reflect 2D grids’ labels into 3D voxels,
we use the spatial assumption that voxels with the same x and y
values are likely to have the same label. That is, labels of voxels
in building and vegetation are corrected as shown in (11).

an

Using this process, we modify the label distributions for
building and vegetation. As shown in Fig. 6, the voxels corre-
sponding to building are removed from vegetation set, and the
voxels corresponding to vegetation are removed from building
set.

Lv(xv, Yvs ZV) = LZD(-xv, yv)

3.3.2. Moving vehicle removal

As shown in the built semantic 3D map, there are two cate-
gories in vehicle label. The first is parked vehicles, which are
static. These vehicles do not require removal. The second is
moving vehicles. They remain as traces or noises in the 3D
map and are needed to be removed for clarity. In addition, since
semantic segmentation cannot accurately detect the contour of
vehicles, few voxels are wrongly projected to adjacent objects
such as buildings or vegetation. To remove these voxels, the
spatial assumption that vehicles must be on the road is applied.
Because road is well-segmented in semantic 3D map, we could
erase voxels that are not on the road, and it is expressed by (12).

1,
0,

(x,y) € M®
otherwise

MY (x,y,2) ={ 12)



where MV and MR are the 3D maps corresponding to vehicle
and road, respectively. After this process, we can obtain a set
of voxels corresponding to static vehicles or moving vehicles.
Then, a clustering method is applied to group nearby voxels to-
gether. Among the numerous methods of clustering, we chose
density-based spatial clustering of applications with noise (DB-
SCAN) algorithm due to its low parametric characteristics (Es-
ter, 1996). The groups corresponding to moving vehicles are of
greater length and have more data than the groups of static ve-
hicles. Thus, we could remove the groups of moving vehicles
by using the number of data and length as constraints as shown
in (13).

- {stati.c, it (Di<np) A (L <) 13

moving, otherwise

where C; is a status of ith group, D; and L; are the number of
data and length of ith group, respectively. np and 5, are the
threshold values. This process leaves only static vehicles in the
semantic 3D map as shown in Fig. 7.

4. Experimental results

We conducted experiments on three sequences of the KITTI
dataset (Geiger, 2013), which is publicly available. The se-
quences were recorded in urban environments including road,
sidewalk, vehicle, building and vegetation. Our system was
evaluated on these sequences and compared with state-of-the-
art methods such as (Yang, 2017), (Vineet, 2015),(Sengupta,
2013), and (Sengupta, 2015). The experiments were imple-
mented with MATLAB, on an Intel Core i7 with 3.40GHz and
NVIDIA GeForce GTX 1080Ti.

4.1. Dataset

We evaluated our method using the KITTI dataset, which
contains a variety of outdoor sequences. All sequences in
the KITTI dataset were recorded using a vehicle which was
equipped with a 3D Lidar, stereo cameras, a GPS, and an IMU.
The KITTI dataset is challenging as it contains various objects,
moving vehicles, and changes in lighting conditions. We chose
the 15¢h, 18th, and 27th sequences for the demonstration be-
cause these sequences effectively describe urban environments.
The 15th sequence is a sequence of road environment with a
duration of 30 seconds and a total of 303 frames. The 18¢h se-
quence is a long sequence set in an urban environment, with a
duration of 276 seconds and a total of 2769 frames. Finally, the
27th sequence is a set in a road environment, with a duration of
111 seconds and a total of 1112 frames.

4.2. Implementation details

To build the 3D map, the odometry was estimated by inte-
grating the data of the GPS and IMU which were mounted on
the roof of a car. Furthermore, the data of a 3D Lidar (Velo-
dyne HDL-64E) was used for 3D mapping process. A voxel
grid representation was applied and the grid size was set to
0.2m x 0.2m x 0.2m for memory efficiency. For the semantic

segmentation, the data of a front color camera mounted on the
roof of the car was used. The segmentation was performed for
five labels (road, sidewalk, vehicle, building, and vegetation),
and we chose RefineNet as our semantic segmentation tool. In
the data association process, calibration parameters provided in
the KITTI dataset were used for coordinate transformation. To
remove traces of moving vehicles, 77p and r; were set to 1500
and 6m, respectively. These values were determined empiri-
cally through numerous experiments.

4.3. Qualitative evaluation

To objectively evaluate our multimodal sensor-based seman-
tic 3D mapping algorithm, three challenging sequences were
used. The qualitative results of our algorithm are presented in
Fig. 8, which shows one top view of the whole sequence and
three close-up views for each sequence. Our system was able to
reconstruct the surrounding environment and assign the correct
label for each voxel in challenging sequences well. Moreover,
experimental results showed that objects with low height (such
as road and sidewalk) were accurately segmented without ap-
plying a 3D refinement process, as projection errors were less
likely to occur. On the other hand, projection errors were oc-
curred with objects of greater height (such as building, vehicle,
and vegetation), which occasionally lead to incorrect segmen-
tation results, as shown in Fig. 2(a). Furthermore, vehicles that
move leave traces, which make the map messy as shown in
Fig. 2(b). To solve these problems, the 3D refinement process
was performed in a batch. Fig. 9 shows the results with and
without the 3D refinement process, respectively, and it demon-
strates the advantages of this process. As shown in Fig. 9, be-
fore the 3D refinement process, there are not only some voxels
which are wrongly segmented but also some voxels correspond-
ing to traces of moving vehicles. It is difficult to solve them
only from 2D images. However, it is possible to reassign labels
correctly and remove traces of moving vehicles effectively by
using the 3D refinement process. In addition, our multimodal
sensor-based 3D semantic mapping achieved good performance
in large-scale environments.

4.4. Quantitative evaluation

In this section, we quantitatively evaluate and compare the
3D segmentation accuracy with state-of-the-art methods. To
objectively evaluate our algorithm, we selected (Yang, 2017),
(Vineet, 2015), (Sengupta, 2013) and (Sengupta, 2015) as com-
parisons because these algorithms have shown reliable perfor-
mance in semantic 3D mapping for urban environments. How-
ever, it is important to note that these are all camera-based
methods, and are different from our multimodal sensor-based
method. We adopted the standard metric of label accuracy and
intersection over union (IoU) to evaluate the performance of our
3D segmentation method. These metrics are defined as follows:

TP
Accuracy = P Fp (14)

TP

U=z ——
U= 15 TP+ N

15)



Table 1: Quantitative results for our 3D segmentation approach on the KITTI dataset. The bold fonts indicate the best results.

‘ Method ‘ Road  Sidewalk  Vehicle Building  Vegetation H Average ‘
Yang (Yang, 2017) 98.7 93.8 95.5 98.2 98.7 96.9
Vineet(Vineet, 2015) 98.7 91.8 94.1 97.2 94.1 95.1
Accuracy | Sengupta(Sengupta, 2013) 97.8 86.5 88.5 96.1 86.9 91.1
Sengupta(Sengupta, 2015) 97.0 73.4 72.5 89.1 81.2 82.6
Ours 99.3 98.8 98.4 98.9 97.3 98.5
Yang (Yang, 2017) 96.6 90.0 94.6 95.4 91.0 93.5
Vineet(Vineet, 2015) 94.7 73.8 79.5 88.3 83.2 83.9
IoU Sengupta(Sengupta, 2013) 96.3 68.4 63.5 83.8 74.3 77.2
Sengupta(Sengupta, 2015) 87.8 49.1 55.8 73.8 65.2 66.3
Ours 98.4 96.9 96.8 97.4 96.3 97.1

where TP, FP and EN represent True Positive, False Positive
and False Negative, respectively. Comparison results are pre-
sented in Table 1; these results were obtained by conduct-
ing experiments on the KITTI dataset. As mentioned in Sec-
tion 1, we segmented on five classes that are majority of ur-
ban environments. From the Table 1, our method greatly out-
performs other semantic mapping algorithms in all categories.
For the class vehicle, there was a significant accuracy increase
of 3% over the state-of-the-art methods, and for the building,
we achieved 0.7% improvement. Overall, the average accuracy
was increased by 1.6%. In terms of IoU, there was a perfor-
mance improvement of 2.2% for vehicle, and 2% for building.
For vegetation, there was an increase of 5.3%. There are two
main reasons why our method outperforms existing methods.
First, we used the latest 2D CNN as a semantic segmentation
tool. RefineNet which we used has proved to have better per-
formance than other semantic segmentation methods. Second,
we developed a new 3D refinement process which improves ac-
curacy for the vehicle, building and vegetation classes. Further-
more, we would like to highlight the scalability of our seman-
tic 3D mapping pipelines. Because our algorithm has a small
amount of computation compared with the camera-based ap-
proaches, it is suitable for large-scale environments.

5. Conclusion

In this paper, a multimodal sensor-based semantic 3D map-
ping algorithm that uses a 3D Lidar for 3D mapping and a cam-
era for semantic segmentation is proposed. Existing works have
focused only on camera-based algorithms for semantic 3D map-
ping, which are difficult to apply in large-scale environments
as well as environments with few features. Furthermore, these
methods require a large amount of computation. To overcome
these difficulties, a simple method which estimates the odom-
etry by integrating a GPS and an IMU is used to build a 3D
map. This method is suitable for both large-scale and feature-
less environments. In addition, the latest 2D CNN method is
adopted for semantic segmentation. Following this, the seman-
tic information is combined with the 3D map by using coor-
dinate system transformation and a Bayesian update scheme.

Finally, a novel 3D refinement process is developed to reduce
errors caused by misprojection and moving vehicles. Compar-
isons with state-of-the-art algorithms on challenging sequences
demonstrate that our algorithm outperforms others in terms of
label accuracy and IoU.

Our paper offers many compelling avenues for future work.
One area of interest that we would like to explore is to build the
indoor semantic 3D maps. To achieve it, a Lidar-based SLAM
should be studied. A semantic SLAM method which SLAM
and semantics benefit each other could also an interesting area
worthy of future study.
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