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UNIVERSITY OF KWAZULU-NATAL

Abstract
Evolving Dynamic Fitness Measures for Genetic Programming

by Anisa RAGALO

This research proposes dynamic fitness measure genetic programming (DFMGP). DFMGP modifies the con-
ventional genetic programming (GP) approach: rather than applying a single fitness measure individually
throughout GP, a different fitness measure (or combination of fitness measures) is applied on each GP gen-
eration. A detailed review of the fitness measures used in GP is presented. The review demonstrates that
different fitness measures were introduced to overcome different shortcomings, e.g. escaping local optima,
reducing bloat, thereby improving on the performance of the GP algorithm. A subsequent analysis of the
fitness measures shows that there is no universal “best” fitness measure; rather, different fitness measures are
appropriate for different problems. The literature also anticipates that applying different fitness measures at
different points of the GP problem solving process should be more effective then applying a single fitness
measure throughout the algorithm. Hence the case for DFMGP.

Selecting the fitness measures to apply on each GP generation is in itself a combinatorial optimization
problem: the study investigates two approaches to serve this purpose, namely, a genetic algorithm and ge-
netic programming. The genetic algorithm (GA) derives a sequence of fitness measures to be applied, while
GP produces an arithmetic function combining the fitness measures. The performance of DFMGP applying
the evolved fitness measure sequences and DFMGP applying the evolved fitness measure combinations is
compared to the conventional GP approach on a number of benchmark and complex, real-world problems.

DFMGP is found to be more effective than standard GP. The study also reveals that both the sequences
and arithmetic combinations of the fitness measures are effective when applied to problem instances different
from those used to derive them. Hence, the sequences and arithmetic combinations are reusable, whereby
simpler problems are used for derivation, and DFMGP applying the derived fitness measures is then used to
solve more complex problems. Therefore the time necessary for the derivations is reduced. An analysis of the
evolved sequences and arithmetic combinations of the fitness measures shows that fitness measures applied
in the preliminary DFMGP generations support exploration while those applied in later DFMGP generations
support exploitation. GP search is a constant balance between exploration and exploitation, with the former
being more suited to the preliminary generations, and the latter, later generations. DFMGP’s performance ad-
vantage over standard GP is therefore justified by the premise that the fitness measure used on each generation
supports the more suitable search in the on-going phase of GP. DFMGP applying the fitness measure combi-
nations derived by GP is also found to perform better than DFMGP applying the fitness measure sequences
derived by the GA. The former approach facilitates combining explorative and exploitative fitness measures
on some of the DFMGP generations, whereby rather than simply switching between exploration and exploita-
tion, the fitness measure can drive the two processes to occur simultaneously when required. Hence it follows
that GP searching the space of fitness measure combinations is the preferred approach to generating dynamic
fitness measures for DFMGP.

Overall, the study reveals the effectiveness of DFMGP when applied to benchmark and real-world prob-
lems. Future work will look at a priori detecting the properties of complex problems, such that simpler prob-
lems with similar properties can be used to derive better dynamic fitness measures for DFMGP.
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Chapter 1

Introduction

1.1 Purpose of the study

Genetic programming (GP) is an evolutionary algorithm that explores a program space [1]. Evolutionary algo-
rithms (EAs) employ mechanisms inspired by biological evolution (that is, selection, recombination, mutation
and reproduction) to solve complex problems [1–3]. A wide variety of problems from different fields can be
recast as requiring a computer program that converts inputs into desired outputs [1]. GP breeds a population
of computer programs, and employs the metaphor of evolution to search the space of possible programs for
an optimal program that solves (or approximately solves) the problem at hand [1].

In GP, a fitness measure is used to distinguish “fit" candidate solutions [1]. The fit candidate solutions are
preferentially selected to parent subsequent generations in the iterative search for an optimal solution. As
a consequence, GP search becomes increasingly concentrated in regions of the search space that the fitness
measure has deemed to be promising. By utilizing a fitness measure to apply selective pressure, GP mandates
that mostly only fit candidate solutions are considered for future evolution [1]. Therefore, the fitness measure
steers the direction of search.

The convention in GP is to apply a single fitness measure individually throughout the course of the algo-
rithm. At the inception of GP [1], objective fitness (OF) was used as a fitness measure; a detailed description of
OF follows in chapter 3. As the field developed, various fitness measures emerged in an attempt to overcome
the shortcomings of GP, such as premature convergence and the growth of redundant code [4–13]. Neverthe-
less, it follows from Wolpert and Macready’s [14] No Free Lunch (NFL) theorems1 that there is no universal
“best” fitness measure. The NFL theorems state that all general-purpose search algorithms perform equally
well over the entire set of optimization problems. General-purpose search algorithms exploit little, if any,
knowledge concerning the problem being solved [14]. EAs are an example of general-purpose search algo-
rithms [14]. In particular, GP and most of its variants employing alternative fitness measures employ the same
executional steps regardless of the problem being solved [4–13]. The NFL theorems state that in this scenario,
if algorithm a1 outperforms algorithm a2 on a given set of problems, the converse is true on another set of
problems [14]. In the context of this study, if fitness measure f1 outperforms fitness measure f2 on a given set
of problems, the converse is true on another set of problems. Importantly, the literature also anticipates that
applying different fitness measures at different points of the GP problem solving process should be more ef-
fective then applying a single fitness measure individually throughout the algorithm [6, 15]. Given the above
arguments, what is required is some insight into the appropriateness of the different fitness measures; that is,
insight should be provided with respect to when to use which fitness measure.

This research proposes the use of different fitness measures at different points in the evolutionary process.
We refer to this alternation of fitness measures as dynamic fitness measures (DFMs), and a GP algorithm using
DFMs as dynamic fitness measure genetic programming (DFMGP). In related work, McKay [6, 15] prescribes
a ramped approach to applying two fitness measures, objective fitness (OF) and fitness sharing (FS), in GP. In

1The NFL theorems are derived under the assumption of a “finite world”, whereby the search space of candidate solutions, and the
mapping of the candidate solutions onto performance scores are finite [14]. These assumptions generally hold for search optimization
algorithms run on digital computers [14].

1
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the ramped approach, FS is applied in the initial 25% of the GP generations. In turn, OF is applied in the last
25% of the GP generations. In the intermediate GP generations, fitness is calculated as a linear ramp between
FS and OF [6, 15]. The ramped approach is observed to achieve a performance advantage over both OF and
FS applied individually throughout GP. Based on McKay’s [6, 15] findings, it is anticipated that DFMGP can
improve on the performance of the conventional GP approach. However, the arbitrary partitioning of the GP
generations in the ramped approach (first 25% - FS; subsequent 50% - ramped; subsequent 25% - OF) may not
achieve consistent results on varied problems; this is because different problems pose different challenges to
GP [16], and may require different shortcomings to be addressed on different generations. DFMGP will differ
from the ramped approach by using fitness measures drawn from a richer database of measures, and applying
a different fitness measure (or combination of fitness measures) on each generation, whereby a higher-level
search algorithm is used to approximate the best fitness measure to use on each generation for the given
problem (or set of problems).

Selecting the best fitness measure (or fitness measure combination) to apply on each GP generation is
in itself a combinatorial optimization problem, similar to selecting parameter values and operators for single
point and multi-point searches. Genetic algorithms (GAs) [3], a class of EA, and GP have proven to be effective
at solving such problems. For example, in the study conducted by Dioşan and Oltean [17], GAs are used to
select which genetic operator to apply at each point in the evolutionary process. Similarly, GAs are used
for parameter tuning of evolutionary algorithms in [18]. In addition, [19] and [20], are good examples of
using GP to construct optimal combinations of existing evolutionary algorithm components; both studies use
GP to evolve new, optimal crossover operators from the atomic elements that make up existing crossover
operators [19, 20]. This research employs GA and GP to search the space of DFMs for DFMGP. The GA
approach derives a sequence of fitness measures to be applied in DFMGP, while GP generates new fitness
measures by combining existing fitness measures. The distinguishing feature of the GA and GP approaches
is that they operate at the higher (or meta-) level to search the space of DFMs for DFMGP. At the lower level,
DFMGP attempts to solve the underlying problem.

Proceeding derivation of the DFMs, the effectiveness of DFMGP is determined. The performance of
DFMGP applying the DFMs is compared with that of standard GP. The study also investigates the reusabil-
ity of the evolved DFMs. DFMs are evolved for different problem classes2 using a training set and tested on
unseen instances of the class. The purpose is to evolve problem solvers that can generalize within a problem
class. DFMGP is also applied to complex, real-world problems. Here, DFMs evolved by training on the prob-
lem classes are tested on real-world problems from the same problem domain. The idea is to train on simpler
and less complex problems that will not take as much time to train on, and subsequently employ the evolved
DFMs on the more complex problems.

1.2 Research perspective

The research investigates the hypothesis that DFMGP is more effective than the conventional GP approach.
The performance of DFMGP is compared with standard GP on a broad spectrum of benchmark and real-world
problems. Importantly, insight into the best practices for deriving DFMs is gained by using two different
approaches to approximate optimal DFMs for GP: GA and GP.

The research also investigates the reusability of the derived DFMs within problem classes, and on more
complex problems from the same problem domain. The implications of reusability are that the DFMs are not
problem-specific, rather, GP practitioners can save time by deriving more general problem solvers.

2The literature [21] defines a problem class as a probability distribution over the instances of a given problem; this is the interpretation
of the term used in the study. The term problem domain is also used: a problem domain is a grouping of similar problems e.g. symbolic
regression problems, Boolean function synthesis problems, etc. [1].
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Lastly, an analysis of the DFMs that produce the biggest performance improvements will offer the oppor-
tunity to understand the GP problem solving process better, from the point of view of identifying the fitness
measures that are the most useful in the different phases of search for different problems.

1.3 Scope

The choice of fitness measure potentially affects every GP system. However, this dissertation focuses on using
DFMs to improve on abstract-syntax-tree GP, the canonical GP system proposed by Koza in [1]. Furthermore,
while other optimizers can be used, this study employs GA and GP to approximate optimal DFMs for DFMGP.

1.4 Objectives

The objectives of this research are:

1. Apply GAs for evolving DFMs for DFMGP.

2. Apply GP for evolving DFMs for DFMGP.

3. Compare the performance of DFMGP with the conventional GP approach.

4. Compare the performance of GAs and GP in evolving DFMs.

5. Assess the reusability of the evolved DFMs.

6. Analyse the best performing DFMs to identify the fitness measures that are most useful in the different
phases of search for different problems.

1.5 Contributions

This dissertation makes the following contributions:

1. A detailed survey of the fitness measures prescribed for GP is conducted. To the author’s knowledge,
such an extensive survey of the different fitness measures has not previously been conducted. The survey
discusses the fitness measures in detail, with respect to their motivations, advantages and disadvantages.
Based on the theory underlying the fitness measures, inferences are made with respect to the different
fitness measures that suit different problems.

2. A comparison of state-of-the-art fitness measures is conducted. The aim is to evaluate the effect that
the different fitness measures have for different problems. The study looks at how the different fitness
measures address each of the limitations they aim to overcome for different problems. There is currently
a lack of comparison between the different fitness measures proposed in the literature: most studies
simply compare against an OF measure, otherwise state-of-the-art fitness measures are not compared.
The comparison in this study verifies the NFL theorems: no one fitness measure achieves the best result
on all tackled problems, rather the performance of the fitness measures depends on the properties of the
specific problem being tackled.

3. The study shows that DFMGP is more effective than the conventional GP approach. An analysis of the
GA/GP-evolved DFMs reveals that fitness measures applied in the preliminary DFMGP generations
support exploration while those applied in later DFMGP generations support exploitation. Exploration
and exploitation are the two cornerstones of problem solving by search [22]: exploration, a de facto
global search, is used to promote coverage of the search space [22]; in turn, exploitation, a de facto local
search, is used to refine promising solutions when good points in the search space have been discovered
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[22]. GP search is a constant balance between exploration and exploitation, with the former being more
suited to the preliminary generations, and the latter, later generations. DFMGP’s performance advantage
over standard GP is therefore justified by the premise that the fitness measure used on each generation
supports the more suitable search in the on-going phase of GP.

4. The study compares the use of GP versus the use of a GA to evolve DFMs for DFMGP, and finds that the
former approach yields more effective DFMs. While GA derives a sequence of fitness measures to be ap-
plied in DFMGP, GP produces an arithmetic function combining the fitness measures. Therefore, rather
than simply switching between explorative and exploitative fitness measures, the latter approach offers
the opportunity to combine the two types of fitness measure, driving exploration and exploitation to oc-
cur simultaneously when required in DFMGP. This proves useful, because rather than moving between
strict explorative and exploitative phases, GP search ideally maintains a constant trade-off between the
two modes of search [22].

5. The study shows that the DFMs derived by GA and GP are reusable, i.e. DFMs can be evolved for a
problem class and yield good results on unseen problem instances of the class. The DFMs evolved for
a problem class can also be reused on unseen complex, real-world problems from the same problem
domain, where DFMGP is shown to achieve better results than standard GP.

1.6 Dissertation layout

This dissertation is organized as follows:

Chapter 2: An Introduction to Genetic Algorithms and Genetic Programming
Chapter 2 introduces genetic algorithms (GAs) and genetic programming (GP), and discusses the two EAs

in detail.

Chapter 3: A Survey of Fitness Measures in GP
Chapter 3 conducts a survey of the different fitness measures prescribed for GP. The fitness measures are

described with respect to their motivations, advantages, disadvantages and problem suitability.

Chapter 4: A Comparison of Fitness Measures in GP
Chapter 4 presents a comparison of state-of-the-art fitness measures. The fitness measures are compared

on benchmark problems with respect to different criteria, such as the best solution quality achieved, mitigating
bloat and overfitting, etc.

Chapter 5: Methodology
Chapter 5 outlines the methodology used to achieve the objectives of the study. The objectives of the study

are restated and details are provided with respect to how they will be achieved and measured. The details of
the benchmark and real-world problems tackled are given. Also, the details for statistical testing of DFMGP
are presented. Finally the technical specifications are provided.

Chapter 6: The DFMGP Algorithm
Chapter 6 presents the DFMGP algorithm. Details are given of the representation used, initial population

creation, fitness evaluation, selection method, genetic operators and termination conditions.

Chapter 7: A GA Approach for Deriving DFMs for DFMGP
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Chapter 7 presents the GA approach used for deriving DFMs for DFMGP. Details are given of the GA
representation used, initial population creation, fitness evaluation, selection method, genetic operators and
termination conditions.

Chapter 8: A GP Approach for Deriving DFMs for DFMGP
Chapter 8 presents the GP approach used to derive DFMs for DFMGP. This chapter follows the same format

as Chapter 7 providing details of the GP representation used, initial population creation, fitness evaluation,
selection method, genetic operators and termination conditions.

Chapter 9: Results and Discussion
Chapter 9 presents the results of the experiments described in Chapter 5. DFMGP and standard GP are

compared on benchmark and real-world problems with respect to the best solution quality achieved. Statisti-
cal tests are conducted to verify the significance of the empirical observations. Furthermore, the implications
of the results are discussed in detail.

Chapter 10: Conclusions and Future Work
Chapter 10 presents a summary of the findings from the research presented in this dissertation, and indi-

cates how the objectives presented in Chapter 1 have been met. Chapter 10 also provides directions for future
work.



Chapter 2

An Introduction to Genetic Algorithms
and Genetic Programming

2.1 Introduction

Genetic algorithms (GAs) and genetic programming (GP) differ principally with respect to the space that is
searched. GAs search a solution space, which means that they search a space of potential values of a set of
parameters or variables being optimized [3]. In turn, GP searches a program space, whereby the optimal pro-
gram is implemented to find a solution to the problem [1]. Hence in GP, the program behavior that produces
the desired solutions is evolved, rather than the solutions themselves being evolved [1]. Both GAs and GP
are classified as evolutionary algorithms (EAs). EAs model Darwinian evolution [23], by using the principles
of genetic variation and natural selection to approximate an optimal solution [1, 3]. In an EA, an initial pop-
ulation of candidate solutions is generated randomly. Subsequently, a fitness measure assigns each solution
a numerical “fitness” value. The fitness value is used to bias the selection of promising (or high-fitness) can-
didate solutions, while less promising solutions are systematically eliminated [1, 3]. Genetic operators, such
as mutation and crossover, are probabilistically applied to the high-fitness solutions to move the search to
different regions of the search space, globally (using mutation) and locally (using crossover) [1, 3]. The ge-
netic operators produce subsequent generations of candidate solutions. Subsequent generations are produced
either synchronously - whereby the old generation is completely replaced - or asynchronously - whereby the
generations overlap. The algorithm is considered successful if iterative cycles of fitness evaluation, selection
and regeneration evolve optimal (or near-optimal) solutions [1, 3].

The previous chapter established that a key focus area of the research is applying DFMs in GP. Here, GAs
and GP are employed at the higher (or meta-) level to approximate optimal DFMs for DFMGP. In this regard,
sections 2.2 and 2.3 lay a background for the research by describing the GA and GP algorithms in detail.
Finally, section 2.4 summarizes the information presented in the chapter.

2.2 Genetic algorithms

GAs, initiated by Holland [24], are one of the earliest implementations of evolutionary algorithm search. A GA
attempts to discover an optimal solution to a problem by genetically breeding a population of candidate solu-
tions over a sequence of generations of the algorithm [3, 24]. In GAs, the candidate solutions are represented
as “chromosomes” [3, 24]. Typically, a chromosome is a Boolean, character or numerical string, whereby each
locus within the string, referred to as a “gene”, denotes the value of a particular feature of the problem being
tackled [3, 24]. The term “allele” is used to refer to the value assigned to a gene within a chromosome.

This section provides an overview of GA. First, the overall GA approach is summarized. Subsequently,
a discussion is presented on the mechanics of GA: 1) representation scheme, 2) initial population creation, 3)
fitness evaluation and selection, and 4) genetic operators. Lastly, a critical analysis of GAs is presented.

6
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2.2.1 The genetic algorithm

The GA presented by Goldberg [3] is depicted in listing 2.1. This is considered to be one of the earliest for-
malizations of GAs [3]. The algorithm in listing 2.1 is referred to as canonical GA for the remainder of the
manuscript.

LISTING 2.1: Pseudocode for the Canonical GA; adapted from [3].

1 Begin
2 Create an initial population and evaluate.
3 While termination criteria are not met:
4 While creating a new population is not complete:
5 Select two individuals from the current population, i1 and i2.
6 If crossover probability, pc:
7 Perform crossover on i1 and i2→ creating offspring i3 and i4
8 Else:
9 Copy i1 and i2→ i3 and i4.

10 End If.
11 If mutation probability, pm:
12 Perform mutation on i3 and i4.
13 End If.
14 Evaluate i3 and i4.
15 Insert i3 and i4 into the new population.
16 End While.
17 Replace current population with the new population.
18 End While.
19 End.

The canonical GA begins by creating a random initial population, and evaluating the fitness of each indi-
vidual in the population (line 2). Next, while the user-specified termination criteria are not met, GAs iterate
through cycles of fitness-based selection and regeneration. Each cycle is called a generation. In listing 2.1, a
GA generation is depicted by a loop that repeats until creating a new population from the current population
of candidate solutions is complete (lines 4-16). The probability that an individual is selected to parent the new
population (line 5) is higher for more promising individuals. Also, parent selection is done with replacement,
such that the same individual can be selected more than once to become a parent. Genetic operators are ap-
plied to the selected parents, i1 and i2 (lines 6-13). Crossover is applied with probability pc: if a randomly
generated number in the interval [0, 1] is less than pc, i1 and i2 are crossed over to yield i3 and i4 (line 7); oth-
erwise if the random number is outside of the range of pc, i1 and i2 are copied into i3 and i4 (line 9). Following
crossover, mutation is applied with probability pm: if a randomly generated number in the interval [0, 1] is less
than pm, mutation is applied to both i3 and i4 (line 12); otherwise mutation is not applied. Next, the fitness of
the generated offspring is evaluated (line 14), and the offspring are added to the accumulating new population
(line 15).

The new population replaces the current population once the former has accumulated the same number of
individuals as the latter (line 17). Complete replacement of the current population with the new population,
as shown in listing 2.1, is know as the generational control model. The steady-state model is an alternative
control model for GAs [3]: in the steady-state model, a single overlapping population is maintained, whereby
the offspring repeatedly replace a proportion of the individuals in the population [3]. The steady-state model
requires an additional parameter, the number of individuals to be replaced on each generation, to be defined.
Goldberg [3] reverts to a generational control model to maintain the simplicity of canonical GAs.

GAs are inherently convergent [3]. The fitness-based selection of candidate solutions as the parents of fu-
ture generations leads to a more focussed search in the promising regions of the search space. This is such that
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the genetic material associated with high-fitness candidate solutions eventually dominates the GA popula-
tion, while the genetic material associated with low-fitness solutions is supplanted [3]. The simple procedure
shown in listing 2.1 is the basis for most applications of GAs. Nevertheless, there are a number of important
details to fill in, as discussed in the ensuing sections.

2.2.2 Representation scheme

At inception [3], the GA chromosomes used were fixed-length binary strings; i.e. fixed-length strings com-
prised of 0s and 1s, as depicted in figure 2.1.

FIGURE 2.1: GA fixed-length binary representation: Each bit (or group of bits) at a fixed locus
represents the value of a variable being evolved.

The binary encoding offers the advantage of a small alphabet (i.e. a two digit alphabet of 0s and 1s). Small
alphabets result in longer chromosomes required to represent the same range of values: an alphabet of cardi-
nality k can represent kl different values, whereby l is the length of the chromosome strings; it follows that the
smaller k is, the larger l must be in order for the encoding to represent the same range of values [3]. Longer
chromosomes are desirable because they potentially offer more opportunity for useful allele combinations to
occur along the length of the chromosomes, enhancing search [3]. The binary encoding is intuitive for prob-
lems where binary variables are being evolved, such that each bit in a chromosome string can represent the
value of a variable [3]. In the case of non-binary variables being evolved, a pre-processing step is required,
whereby preceding GA optimization, the variables are converted to binary form; here, some of the variables
may be represented as a sequences of bits within the chromosome strings, such that caution should be ex-
ercised to ensure that genetic operators working on the individual bits to not produce invalid values for the
variables [25]. After an optimal solution is found, post-processing is also required to map the solutions found
back onto the space of the original variables [25].

Alternatively, direct value encodings are also used, whereby the chromosomes can contain characters,
numbers or any objects directly connected to the problem [25], as depicted in figure 2.2.

FIGURE 2.2: GA fixed-length direct value representation: Each character or number at a fixed
locus represents the value of a variable being evolved.

In the current study, a higher (or meta-) level GA will be used to search the space of DFMs for DFMGP.
Similar studies that have used GAs to optimize the configuration of lower-level EAs have employed binary
[26–28], as well as direct value encodings [17, 29–31]. For example Grefenstette [26] used a binary encod-
ing in a secondary GA that tuned the numerical parameters of a primary GA, including the population size,
crossover rate and mutation rate of the latter. This involved pre-processing to translate the parameters evolved
by the secondary GA to binary form, and post-processing to translate the evolved solutions back to the origi-
nal parameters. Grefenstette’s secondary GA [26] was found to evolve parameters that produced a significant
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improvement in the performance of the primary GA [26]. More recent work has employed direct value en-
codings. For example, in [29], a secondary GA employing a direct value encoding is used to optimize the
numerical parameters of a primary GA. The secondary GA in [29] is found to derive optimal parameters for
the primary GA on a complex real-world problem. In [17], Dioşan and Oltean use a GA approach to design an
EA, whereby the GA optimizes the sequence of genetic operators utilized by the EA during a generation. The
GA chromosome representation in [17] consists of an array of integers that indicate the chromosome creation
and population altering operations performed by the EA being evolved; here, each possible EA operation is
associated with an integer - e.g. the integers 0 and 1 represent crossover and mutation respectively. Dioşan
and Oltean’s GA approach [17] is shown to evolve EAs that perform better than standard EA approaches
adopted in the literature. In general, direct value encodings have become more popular in recent applications
of GAs because they offer an intuitive representation of the search space, and a simplified GA implementation,
whereby pre-processing and post-processing steps are not required.

2.2.3 Initial population creation

In GAs, the initial population is generated randomly, whereby for each chromosome, the allele assigned to
each gene is drawn from the set of available values with uniform probability [3]. Random initial population
creation facilitates broad coverage of the search space of solutions, whereby the initial population samples
a significant proportion of the universe of allele combinations [3]. The randomly generated chromosomes
in the initial population are not likely to do very well; nevertheless, a large enough proportion of the initial
population should, by random chance, do better than the rest of the population [3]. GAs rely on this initial
fitness gradient, which provides a basis for “natural selection” [3].

2.2.4 Fitness evaluation and selection

In several problems, the objective of GA search is easily stated as the minimization of some cost function, or
the maximization of some utility or profit function [3]. This allows for the fitness measure to be specified as
the relevant objective function, whereby “fitter” solutions minimize (or maximize) the distance to the search
objective [3].

The objective fitness measure described above is used to select the most promising population individuals
as parents of subsequent generations. In canonical GA, Goldberg [3] applies fitness-proportionate selection.
The metaphor used for fitness-proportionate selection is a biased roulette wheel, whereby each individual in
the current population is allocated a slot on the wheel in proportion to the ratio of its fitness value to the total
fitness of the current population [3]: here, selection is akin to spinning the wheel, whereby the higher the
fitness of an individual, the more likely the individual is selected [3]. Alternatively, another popular selection
method used in the literature is tournament selection [32]. In tournament selection, the GA practitioner spec-
ifies a tournament size, k. To select a parent using tournament selection, k individuals are drawn from the
population at random; subsequently, only the individual with the highest fitness value is retained as the result
of the selection [32].

Fitness proportionate selection employs a strict favoritism of the high-fitness candidate solutions, poten-
tially driving search towards rapid convergence [32]. On the other hand, tournament selection is compara-
tively less strict: for small values of k, the probability that low-fitness individuals are also selected increases.
The effect is that tournament selection slows down the convergence of GAs. This is desirable because GAs
can make mistakes, whereby alleles with small contributions to the objective fitness become fixed at some of
the loci, due to early spurious associations with other highly fit alleles [3, 32]. In this case, rapid convergence
will also mean the proliferation of the low-fitness alleles at the expense of more useful alleles at the same loci.
Conversely, the slower convergence effected by employing tournament selection with small values of k miti-
gates the loss of potentially useful genetic material [32]. Overall, tournament selection offers the opportunity
to control the convergence rate of GA by manipulating the value of k [32].



10 Chapter 2. An Introduction to Genetic Algorithms and Genetic Programming

2.2.5 Genetic operators

Crossover is the principal genetic operator used in canonical GA [3]. In turn, mutation is a secondary genetic
operator also applied in canonical GA [3]. The GA genetic operators are discussed in detail in the text below.

Crossover

Given two parent chromosomes, crossover randomly selects the same point in both parents; subsequently, all
data beyond the selected point in either parent is swapped between the parents to yield two offspring [3, 25].
Figure 2.3 depicts crossover.

FIGURE 2.3: GA one-point crossover

Variants of the crossover operator described above include two-point and uniform crossover. Two-point
crossover calls for two random points to be selected in both parents, whereby all the data between the selected
points is swapped between the parents [25], as shown in figure 2.4.

FIGURE 2.4: GA two-point crossover

In uniform crossover, each gene in the first offspring originates from the first parent with probability pu,
and from the second parent with probability 1− pu. In turn, each gene in the second offspring originates from
the second parent with probability pu, and from the first parent with probability 1 − pu. If pu is set to 0.5, the
offspring have half of the genes from the first parent and the other half from the second parent [25]. Uniform
crossover is shown in figure 2.5.

Two-point and uniform crossover cause more disruption of the parent chromosomes, whereby given genet-
ically diverse parents, the offspring differ more from either parent [33]. This effect is argued to lead to a more
detailed search of the promising regions of the search space, whereby the two operators are more thorough
with respect to trying out different allele combinations [33]. A key advantage of uniform crossover is that the
genes are treated separately and inherited independently of position, encouraging a more detailed search of
the optimal alleles for each gene [33]. In an experiment conducted in [33], two-point and uniform crossover
are shown to consistently outperform one-point crossover on a number of benchmark problems.

Overall, the bulk of GA’s search power stems from fitness-based selection combined with crossover [3].
Fitness based selection ensures that candidate solutions that have performed well in previous generations are
repeatedly tested, whereas crossover facilitates the exchange of genetic information between the solutions [3].
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FIGURE 2.5: GA uniform crossover

Goldberg [3] draws a parallel to the manner in which innovation occurs in human interaction: innovation
most often occurs by combining different ideas that have worked well in the past to give birth to new ideas. In
the same way, fitness-based selection and crossover search the space of allele combinations that have worked
well in previous generations with the aim of improving on the allele combinations [3].

Mutation

Mutation produces variation in a single parent candidate solution, by modifying the allele at a randomly
selected point. For example, if the chromosomes used are binary strings, mutation flips the bit at the selected
mutation point [3, 25], as shown in figure 2.6.

FIGURE 2.6: GA one-point mutation of a bit string

If the chromosomes used are character strings, mutation involves replacing the character at a randomly
selected point with another character drawn with uniform probability from the alphabet of available characters
[25]. Figure 2.7 shows an example of mutation in a character representation.

FIGURE 2.7: GA one-point mutation of a character string

In turn, if the chromosomes used are numerical strings, mutation involves manipulating the number at a
randomly selected point e.g. by adding or subtracting a random number drawn from a Gaussian distribution
with a mean of zero [34]. Figure 2.8 shows an example of mutation in a numerical representation.

FIGURE 2.8: GA one-point mutation of a numerical string

Variants of the one-point mutation operators shown in the above figures include two-point and uniform
mutation. In two point mutation, two random points in a chromosome are selected, and the genes at the
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selected points mutated [35]. In turn, in uniform mutation, each gene in a chromosome string has a probability
pu of being mutated [35, 36]. Two-point and uniform mutation impose larger jumps in the search space,
whereby the offspring produced are more diverse from their parents.

GA mutation plays the important role of restoring lost diversity [32]. For example, in cases where low-
fitness alleles become fixed at a given locus, random mutation at the locus can lead to the rediscovery of more
useful alleles [32]. Hence mutation potentially rescues the search from converging to sub-optimal regions
of the search space [32]. Nevertheless, low mutation probabilities are typically applied in GAs, in order to
prevent the evolution from degenerating into a random search [3, 25].

2.2.6 A critical analysis of genetic algorithms

The convergent nature of GAs was established in section 2.2.1. In the literature [3, 25], the term “global op-
timum” is used to refer to the most optimal points in a search space. GA convergence is useful if search has
discovered solutions that are in the basin of a global optimum, such that population convergence leads to the
optimum [3, 25]. Conversely, a “local optimum” is an optimal point within a neighbourhood of candidate
solutions, which gives the false illusion of a global optimum within the neighbourhood [3, 25]. GA conver-
gence can lead to search becoming stuck at a local optimum. This undesirable occurrence is termed premature
convergence. Nevertheless, various measures can be undertaken to mitigate premature convergence, includ-
ing employing tournament selection with a small tournament size [32], and increasing the mutation rate [32].
More disruptive genetic operators, that effectively perturb the GA population out of the local optima, can also
be defined.

In another vein, GAs are stochastic in nature, whereby each run of a GA on a given problem produces a
different result [3]. This is because a number of steps in the GA algorithm involve random number genera-
tion: creating a random initial population, evaluating whether or not to apply the genetic operators based on
probability, as well as selecting random crossover and mutation points all involve the use of random numbers.
GAs use random choice as a tool to guide search towards regions of the search space with likely improvement;
this is because the exact path to improvement is not known, hence the purpose of search. Essentially, GAs
perform a directed search with the intervention of chance [3]. A repercussion of the stochastic nature of GAs
is that when reporting on the performance of a GA on a problem, it is common practice to conduct a num-
ber of runs of the algorithm, and subsequently report on the average performance over the total number of
runs conducted. Hence additional GA runs are required, which can be costly for computationally expensive
problems.

GAs also require parameter tuning, whereby the choice of genetic operator probabilities, selection method,
population size, as well as the termination criteria specified all impact on the performance of the algorithm.
Different parameter configurations suit different problems [30]; for example, tournament selection with a small
tournament size may be more appropriate for problems prone to local optima, rather than trivial problems.
Hence the GA practitioner is required to specify a suitable parameter configuration for each newly encoun-
tered problem. Parameter tuning is in itself a non-trivial problem [37]: optimal GA parameters can be esti-
mated empirically, where the practitioner experiments with different configurations and chooses the parame-
ters that produce the best result, or by the use of parameter tuning algorithms [38–40]. Hence parameter tuning
is also associated additional computation, required to find a suitable configuration for the given problem.

Despite the above-mentioned challenges, GAs demonstrate a number of advantages compared to other
search optimizers. GAs conduct the same executional steps of fitness-based selection and regeneration, re-
gardless of the specific problem being tackled [3, 24]. Therefore, GAs are general problem solvers, which can
be applied on different problems, as long as suitable chromosome representations and fitness measures are
defined. GAs have been applied to problems from different fields, including problems found in biology, com-
puter science, operations research, and the social sciences [3, 25]. GAs also offer an advantage over point-to-
point search methods, such as simulated annealing [41, 42], tabu search [41], and hill-climbing [41]. Goldberg
[3] argues that point-to-point search is dangerous because it is almost guarantees the location of local optima
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in multi-modal (many peaked) search spaces. By contrast, GAs adhere to the old adage that there is safety in
numbers, and maintain a population of candidate solutions [3]. GA search works from a database of multiple
search points, which give the algorithm the capability to climb multiple search space optima in parallel. As a
result, the probability of becoming stuck in local optima is reduced over point-to-point methods [3].

2.3 Genetic programming

GP, initiated by Koza [1], searches a program space. Therefore, rather than evolving parameters or variables
as in the case of GAs, GP evolves executable code. At inception [1], GP used an abstract syntax tree (AST)
representation. An AST is a parse tree model of an entire program, whereby each node of the tree denotes a
construct occurring in the program source code [1]. ASTs are “abstract” because they abbreviate the detail ap-
pearing in the concrete program: for example, a syntactic construct like an if-condition-then expression may be
denoted by means of a single tree node with three branches [1]. ASTs are easily manipulated and transformed,
while preserving the existence of a formally defined program through the transformations [1].

A key aspect of the GP paradigm is the use of a variable-length representation. The variable-length rep-
resentation allows the program structure to evolve in problems where it is difficult to a priori specify the size
and structure of the optimal program [1]. Drawing a parallel with GA, the syntax trees evolved by GP can also
be referred to as chromosomes. Nevertheless, the concept of a gene being a fixed locus within a chromosome,
as in canonical GA, does not apply. This is because the GP crossover operator exchanges genetic material
from different loci (see section 2.3.5). Hence there are no dedicated loci within the GP chromosomes; rather,
as stated above, the structure of the programs evolves. GP search aims to find a chromosome, which when
decoded into a candidate program and executed, yields the desired program behavior [1].

This section provides an overview of GP. First, the overall GP approach is summarized. Subsequently, a
discussion is presented on the mechanics of GP: 1) representation scheme, 2) initial population creation, 3)
fitness evaluation and selection, and 4) genetic operators. Lastly, a critical analysis of GP is presented.

2.3.1 The genetic programming algorithm

The GP algorithm presented by Koza [1] is depicted in listing 2.2. The algorithm in listing 2.2 is referred to as
canonical GP for the remainder of the manuscript.

The following difference is observed between canonical GP and canonical GA: in GP, pc and pm are genetic
operator application rates, and not application probabilities as in GAs. This is such that in GP, n% of the
population is created using a particular genetic operator. Nevertheless, GAs and GP employ the same cycles
of fitness evaluation, selection and regeneration. Canonical GP generally applies the generational control
model [1], however steady-state GPs have also been implemented in the literature [43, 44].

LISTING 2.2: Pseudocode for the Canonical GP; adapted from [1].

1 Begin
2 Create an initial population and evaluate.
3 While termination criteria are not met:
4 While creating a new population is not complete:
5 Create pc% of the new population using crossover:
6 Select two individuals from the current population, i1 and i2.
7 Perform crossover on i1 and i2→ creating offspring i3 and i4.
8 Evaluate i3 and i4.
9 Insert i3 and i4 into the new population.

10 Create pm% of the new population using mutation:
11 Select one individual from the current population, i1.
12 Perform mutation→ creating offspring i3.
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13 Evaluate i3.
14 Insert i3 into the new population.
15 Create (1 − (pc + pm))% of the new population using reproduction:
16 Select one individual from the current population, i1.
17 Copy i1→ i3.
18 Evaluate i3.
19 Insert i3 into the new population.
20 End If.
21 End While.
22 Replace current population with the new population.
23 End While.
24 End.

Like GAs, GP is an inherently convergent algorithm, whereby the fitness measure steers search towards
promising regions of the search space; here, the genetic material associated with high-fitness solutions even-
tually dominates the GP population, while the genetic material associated with low-fitness solutions is sup-
planted [1]. The procedure shown in listing 2.2 is the basis for most applications of GP. The ensuing sections
discuss the mechanics of GP in detail.

2.3.2 Representation scheme

The AST GP parse trees are built using primitive types called functions and terminals [1]. Functions that
require arguments make up the internal nodes of the parse trees. In turn, terminals can be constants, input
variables or functions that do not require arguments, and make up the terminal nodes of the trees. The term
“arity” is used to refer to the number of arguments input to a primitive. For example, the arithmetic function
“+” has an arity of 2 because it takes two arguments. Terminals have an arity of 0 because they have no
arguments.

Prior to applying GP, the GP practitioner specifies the function and terminal alphabets, referred to as the
function and terminal set respectively [1]. The choice of function and terminal set is usually problem specific.
For example, evolving a program to approximate an arithmetic function would require a function and terminal
set comprised of arithmetic primitives; in turn, evolving a program to approximate a Boolean function would
require a function and terminal set comprised of Boolean primitives [1]. Figure 2.9 shows an example of an
arithmetic parse tree, whereby {+, −, ×} represent arithmetic functions drawn from a function set, and the
constant 1 and variables {a, c, d} are drawn from a terminal set. The tree in figure 2.9 would be the same as the
inorder traversal (1− (1 + a)) + (a× (c× (d+ a))).

FIGURE 2.9: Example GP parse tree

Importantly, Koza [1] specifies that the function and terminal sets used for GP should satisfy the sufficiency
and closure properties. The sufficiency property requires that the functions and terminals provided to GP are
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capable of expressing a solution to the problem under consideration [1]; otherwise a solution cannot expected
to be found if the function and terminal sets used are “incomplete” in this respect [1].

The closure property has two components: 1) evaluation safety, and 2) type consistency [45]. Evaluation safety
ensures that all functions are well defined for any arguments received [1, 45]. This is achieved by modifying
the standard behavior of primitives. For example, it is common practice to use protected versions of arithmetic
functions that can throw exceptions, such as the division, logarithm and square root functions. As an illustra-
tion, the arithmetic division function always returns a number, unless the denominator of the division is 0, in
which case the result of division is undefined. To satisfy the evaluation safety constraint, the division operator
has to be redefined, such that an acceptable value is returned as a result of division by 0. In this vein, when
applying GP to solve arithmetic problems, Koza [1] defines a protected division operator (denoted by %), for
which the result of division by 0 is 1.

Type consistency is necessitated by the fact that the crossover operator used in GP arbitrarily selects a subtree
from one parent to place it in another [1, 45]. Therefore any function in the function set should accept as
any argument any terminal from the terminal set, as well as any value returned by any other function from
the function set [1, 45]. This means that all functions should return values of the same type, and that all
their arguments are constrained to that type as well [45]. Under the type consistency constraint, canonical
GP is not designed to handle a mixture of data types. In this vein, Koza [1] describes a way to relax the
constraint and incorporate different data types in GP, using the concept of constrained syntax structures [1].
Constrained syntax structures directly specify the child nodes that each function can have, whereby the child
nodes are restricted to a list of legal types for each function argument [1]. Strongly typed genetic programming
(STGP) [46] builds on the concept of enforcing type constraints. In STGP, the accepted data types for each
argument of each function are specified; furthermore, the data types returned by each function and terminal
are also specified [46]. Hence in STGP, legal programs are maintained by ensuring that the correct functions
and terminals are supplied as arguments to all functions. The random initial population creation routine
is modified such that random but valid arguments are supplied to all functions, hence only legal trees are
created. For crossover, the change means that only subtrees rooted at identical types can be exchanged between
individuals [46]. For mutation, the types of the selected mutation point and the root of the randomly generated
subtree substituted into the mutation point should match; furthermore, creating the random subtree is done
following the same method as the initial population creation to create a legal subtree [46].

In the current study, a higher (or meta-) level GP will be used to search the space of DFMs for DFMGP.
Examples of both STGP and canonical (i.e. untyped) GP are seen in meta-level search in the literature. In [47],
GP is used to search the space of search algorithms employed to solve the travelling salesman (TSP) problem.
The GP approach proposed in [47] is strongly-typed to accommodate the types of the various primitives useful
to the lower level search algorithms. The results in [47] show that GP evolves optimal search algorithms for the
TSP problem. In [48], GP is used to evolve the crossover operators used by a lower-level GA to solve function
optimization problems; here, each GP chromosome encodes a crossover operator which contains arithmetic
symbols (mathematical operators, constants and some variables). All functions defined in the GP function set
in [48] need only accept and return arithmetic types, such that typing is not required. The GP approach in [48]
is shown to perform well, evolving crossover operators that facilitate better GA performance on a number of
problems compared to standard GA operators adopted in the literature.

2.3.3 Initial population creation

As in the case with GAs, the GP initial population is generated randomly. Koza [1] specifies three methods for
initial population creation, namely full, grow and ramped half-and-half.
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Full

The full method is depicted in listing 2.3. In listing 2.3, each initial population individual is generated by using
a depth-first recursive approach to assign functions to all nodes that occur prior to reaching the maximum tree
depth, m; beyond that, only terminal nodes are assigned. Individuals created with this method will have the
same tree depth. The individuals are however likely to differ in shape and structure, unless all functions in the
function set have an equal arity. A key objective in creating the initial population is a diversity of shapes and
structures, facilitating broad coverage of the search space [1]. In this case, the range of program shapes and
structures produced by the full method may be quite limited, even with the use of mixed-arity function sets.

LISTING 2.3: Pseudocode for Full; adapted from [1].

1 Begin
2 Set the maximum tree depth, m.
3 For Each element of the population:
4 Set current depth = 1.
5 Set current node = the root node.
6 If current depth < m:
7 Select a function, f , from the function set with uniform probability.
8 Set the value of current node to f .
9 Assign n child nodes to the current node, whereby n is the arity of f .

10 Set current depth = current depth + 1.
11 For Each assigned child node c:
12 Set current node = c.
13 Recurse from line 6.
14 End For Each.
15 Else:
16 Select a terminal, t, from the terminal set with uniform probability.
17 Set the value of the current node to t.
18 End If.
19 End For Each.
20 End.

Grow

The grow method is depicted in listing 2.4. The grow method is similar to the full method. However the key
difference is that both function and terminal nodes can be selected at any depth. The grow method allows for
the creation of an initial population with more varied tree shapes and structures. Nevertheless, the number of
full trees occurring in the initial population may be limited.

LISTING 2.4: Pseudocode for Grow; adapted from [1].

1 Begin
2 Set the maximum tree depth, m.
3 For Each element of the population:
4 Set current depth = 1.
5 Set current node = the root node.
6 If current depth < m:
7 Select the node type from the set {F, T}, with uniform probability.
8 Else:
9 Set the node type to T .

10 End If.
11 If node type is F :
12 Select a function, f , from the function set with uniform probability.
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13 Set the value of current node to f .
14 Assign n child nodes to the current node, whereby n is the arity of f .
15 Set current depth = current depth + 1.
16 For Each assigned child node c:
17 Set current node = c.
18 Recurse from line 6.
19 End For Each.
20 Else If node type is T :
21 Select a terminal, t, from the terminal set with uniform probability.
22 Set the value of the current node to t.
23 End If.
24 End For Each.
25 End.

Ramped half-and-half

The ramped-half-and-half method is depicted in listing 2.5. Ramped-half-and-half is proposed because the
full and grow methods are incapable of providing a wide variety of tree shapes and structures on their own.
The proposed method combines the full and grow methods: using a range of depth-limits (hence the term
“ramped”), half the initial population is constructed using the full method, and the other half constructed
using the grow method. Ramped half-and-half is the sole method actually implemented by Koza in [1].

LISTING 2.5: Pseudocode for Ramped half-and-half; adapted from [1].

1 Begin
2 Set the maximum tree depth, m.
3 Partition the population evenly into m− 1 parts.
4 Set current partition = the first partition.
5 Set the partition tree depth d = 2.
6 While there are still empty partitions:
7 Generate half the individuals for the current partition using the full method with maximum tree depth d.
8 Generate the other half of the individuals for the current partition using the grow method with maximum tree depth d.
9 Set current partition = the next partition.

10 Set d = d+ 1.
11 End While.
12 End.

2.3.4 Fitness evaluation and selection

The fitness evaluation in canonical GP is identical to canonical GA, whereby the convention is to specify the fit-
ness measure as the minimization of some cost function, or the maximization of some utility or profit function
directly related to the search objective. Nevertheless, recall that since the inception of GP, different alternatives
to objective fitness measures have emerged in an attempt to overcome the different shortcomings of GP [4–13].
A key milestone in this research is the study of the different alternative fitness measures prescribed for GP in
the literature. Chapter 3 conducts a detailed survey of the fitness measures.

Tournament selection is the most popular selection method used in GP literature [49]. Fitness-proportionate
selection was also used at the inception of GP [1]. The implementations of tournament and fitness-proportionate
selection are the same as in GAs. The literature [49] motivates for the use of tournament selection in GP for the
same reasons as in GAs, whereby tournament selection offers the opportunity to control the convergence rate
of GP by manipulating the value of the tournament size, k, and small values of k are shown to slow down the
convergence of the GP population, mitigating premature convergence [49].
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2.3.5 Genetic operators

As in the case with GAs, crossover is the principal genetic operator used in canonical GP, while mutation is
also used as a secondary operator [1]. In addition to crossover and mutation, reproduction is an operator that
simply copies selected individuals into the next generation. The three operators are discussed in detail in the
text below.

Crossover

Given two parents, crossover selects a crossover point (i.e. a node) in each parent tree with random uniform
probability. Subsequently, the subtrees rooted at the selected nodes in each parent are swapped between the
parents to yield two offspring [1]. Figure 2.10 depicts crossover.

FIGURE 2.10: GP crossover

In practice, the standard GP crossover operator described above exchanges only small subtrees. Typical
GP primitive sets lead to trees with an average branching factor of at least two, such that there are more
nodes at depths occurring further down the trees [45]. Hence selecting crossover points with random uniform
probability will lead to crossover exchanging small subtrees that occur further down along the parent trees;
Langdon et. al. [45] argue that crossover can in fact be reduced to simply swapping terminal nodes between
the parent trees. To mitigate this effect, the widely adopted approach in the literature is to constrain the
selected crossover points to functions nodes 90% of the time, and terminal nodes 10% of the time [1, 45].

A number of crossover variants have been defined in the literature [50–53]. Uniform crossover [51] is an
interesting variant similar to the uniform crossover operator used in GAs. In GP, uniform crossover between
two parent trees requires the identification of a common region shared by the trees. Here, the common region
is identified by simultaneously traversing the pair of trees starting at the root nodes to find the contiguous
section in which the trees share the same arity in the nodes visited; the common region begins at and includes
the root nodes. Uniform crossover proceeds by jointly traversing the parent trees to identify the nodes in this
common region. Subsequently, similarly to the GA case, each node in the common region is swapped with the
node at the corresponding locus in the other parent tree, with probability pu. The nodes in the boundary of
the common region (i.e. nodes that are leaves of the tree fragment representing the common region) are also
identified; terminal nodes in this boundary region are also swapped with probability pu, while for function
nodes in the boundary region, the subtrees rooted at the function nodes are swapped with probability pu.
Figure 2.11 depicts uniform crossover.

In uniform crossover, the nodes and subtrees in the parent trees are treated separately and inherited in-
dependently of position, encouraging a more detailed search of the program space. Uniform crossover also
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FIGURE 2.11: GP uniform crossover

applies the notion of homology, whereby within common regions, the exchange of homologous primitives can
happen much like the same way it does in GAs. One-point crossover [51] is a similar operator that applies the
notion of homology. One-point crossover identifies a common region between two parent trees in the same
way as uniform crossover. Next a single crossover point within the common region is selected and the subtrees
occurring at the point are swapped between the parent trees. Uniform and one-point crossover are however
limited in their applicability: for problems with mixed-arity function sets, the chance of identifying a common
region shared between two selected parent trees is diminished, precluding crossover. The indication is that
the notion of homologous crossover is not easily transferred to GP.

Context-aware crossover is a more recent crossover variant proposed in the literature [53, 54]. In context
aware crossover, a subtree is randomly selected from one parent. Next, an exhaustive search is conducted
of the best position to place the subtree within the second parent. The exhaustive search produces a pool
of offspring, whereby an offspring is generated for each candidate placement of the subtree. Subsequently,
the fittest offspring in the pool is selected as the result of crossover. The aim in context-aware crossover is to
ensure that the exchanged subtrees are utilized in the best possible contexts in the produced children, rather
than the random placement of subtrees done by standard GP. Nevertheless, the exhaustive search on the pool
of possible offspring is costly, moreso for problems with expensive fitness computations. Majeed and Ryan
[53, 54] argue that this cost can be offset by applying standard crossover at the beginning of a GP run, and
restricting the use of context-aware crossover to refining the GP population in later generations. Nevertheless,
parameter tuning issues arise as to which is the best generation to introduce context-aware crossover, which
may differ for different problems.

Overall, as in the case of GAs, the bulk of GP’s search power stems from fitness-based selection combined
with crossover [1, 45]. Fitness-based selection ensures that high-performance individuals are repeatedly tested,
whereas crossover facilitates the exchange of genetic information between the solutions [1, 45].
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Mutation

Two mutation variants commonly used in the literature are subtree mutation [1] and point mutation [55].
Given a parent, subtree mutation selects a random mutation point in the parent tree. Subsequently, the sub-
tree rooted at the mutation point is replaced by a randomly generated subtree. Figure 2.12 depicts subtree
mutation.

FIGURE 2.12: GP subtree mutation

Point mutation also selects a random mutation point. Subsequently, if the selected point is a function node,
the function at the selected node is substituted with another function of the same arity; here, only the node is
substituted, and not the entire subtree rooted at the node. In turn, if the selected point is a terminal node, the
terminal at the selected point is substituted with another terminal. Figure 2.13 depicts point mutation. Note
that point mutation does not produce variation with respect to the size and shape of the GP parse trees. This
can be useful with respect to minimizing the increase in size of the parse trees during the course of GP [55].

FIGURE 2.13: GP point mutation

As in the case with GAs, GP mutation plays the important role of increasing the population diversity and
improving on the probability of escaping local optima [1].



Chapter 2. An Introduction to Genetic Algorithms and Genetic Programming 21

2.3.6 Reproduction

Reproduction is typically applied to produce only a fraction of the next generation. The operator simply copies
selected individuals into the next generation. The purpose of the reproduction operator is to make more copies
of fitter individuals in subsequent generations [1].

2.3.7 A critical analysis of genetic programming

The goal of computers being able to write their own programs, and hence solve problems autonomously, is
central to artificial intelligence and machine learning. Therefore GP plays a pivotal role in these fields. Since
inception, GP has been employed to solve many practical problems, both in industry and academia [45].

Nevertheless, like GAs, GP is susceptible to premature convergence on problems prone to local optima
[1, 4, 56–58]. McPhee and Hopper [58] report that canonical GP generally exhibits a rapid loss of diversity.
Particularly, canonical GP populations are observed to start converging to a common root structure as early
as the 16th generation [58]. Furthermore, only a handful of the initial population solutions are shown to
contribute genetic material to the final populations [58]. The indication is that canonical GP spends a lot of time
permuting a small number of individuals, rather than taking advantage of the diversity present in the initial
population [58]. This strong convergence is termed premature convergence when search finds and exploits
sub-optimal solutions. Hitchhiking and genetic drift are the likely culprits of premature convergence [58]. Not
all loci in the parse tree representation share the same significance; in general, nodes closer to the root of a tree
have more descendant nodes within the tree, and as such have more significance with respect to the expression
encoded by the tree and its fitness. As search progresses, the genetic material from individuals that contain
relatively fit genetic material in significant loci will tend to dominate future GP generations. Hitchhiking
occurs when low-fitness genetic material contained in the less significant loci dominates these loci as a result
of early spurious associations with the fit genetic material occupying significant loci [58]. In turn, genetic
drift refers to the change in the frequency of the primitives in a population due to random sampling [58].
Once the frequency of a primitive is low (e.g. due to the effects of hitchhiking), genetic drift plays the role of
further whittling down the occurrences of the primitive, which can be lead to the loss of useful primitives [58].
The measures undertaken to mitigate premature convergence in the literature include employing tournament
selection with a small tournament size [1], and increasing the mutation rate [58]. Alternatively, different fitness
measures have also been proposed to mitigate premature convergence; this discussed in detail in chapter 3 of
the thesis.

In another vein, like GAs, GP is also stochastic in nature. Because search incorporates random number
generation, each run of GP on a given problem yields a different result. Hence additional runs are required to
estimate the average performance of GP on a given problem, which can be costly for computationally expen-
sive problems. GP also requires parameter tuning, whereby like the GA case, the choice of genetic operator
probabilities, selection method, population size, as well as the termination criteria specified all impact on the
performance of the algorithm. Parameters are tuned empirically, where the practitioner experiments with
different configurations and chooses the parameters that produce the best result, or by the use of parameter
tuning algorithms. The cost of parameter tuning should also be taken into account when applying GP to solve
a given problem.

Despite the above-mentioned challenges, GP offers key advantages over other search optimizers. Like
GAs, GP conducts the same executional steps of fitness-based selection and regeneration, regardless of the
specific problem being tackled [1]. Hence, GP is a general problem solver, which can be applied on different
problems, as long as suitable chromosome representations and fitness measures are defined. GP also offers
the advantage of a population-based, rather than point-to-point search, reducing the chance of locating local
optima in multi-modal search spaces.
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Overall, canonical GA mimics nature more closely than GP, with respect to evolving fixed-length chromo-
somes and applying homologous crossover between matching genes [3]. Nevertheless, GP offers the opportu-
nity to directly evolve programs of high complexity, without having to define the structure of the program in
advance [1]; here, the GP variable-length representation allows the program structure to evolve in problems
where it is difficult to a priori specify the structure and size of the optimal solution.

2.4 Summary

This chapter has described GAs and GP in detail. GAs and GP were discussed in terms of the sequence
of steps executed by the algorithms, and details provided with respect to the mechanics of the algorithms,
including the representation scheme, initial population creation, fitness evaluation and selection, and genetic
operators employed in the algorithms. The chapter also presented a critical analysis of GAs and GP. The
discussion established that GAs and GP are ubiquitous and well-documented general-purpose optimizers
with the capability of solving problems from different application domains.



Chapter 3

A Survey of Fitness Measures in GP

3.1 Introduction

This chapter presents a survey of the fitness measures prescribed for GP. Following an extensive examination
of the literature, the fitness measures are categorized based on their modi operandi, as follows:

1. Objective fitness: These fitness measures assign worth to candidate solution programs based on con-
currence with a set of values representing the search objective. This involves evaluating each solution
against the complete search objective, on each generation of GP [1].

2. Divide-and-conquer fitness: These fitness measures modify objective fitness by applying a divide-and-
conquer strategy. The GP practitioner decomposes the complete search objective into useful sub-objectives
[59–65]. Alternatively, the fitness measure autonomously decomposes the problem [5, 66]. Subsequently,
the “simpler" sub-objectives are optimized with the aim of solving the complete problem [59–65].

3. Fitness sharing: These fitness measures modify objective fitness by incorporating a niching strategy, facil-
itating the investigation of multiple search space optima in parallel [6, 15, 67–70].

4. Dynamic fitness: These fitness measures modify objective fitness by actively varying the criteria for fitness
evaluation during the course of GP [8–11, 71]. This action prevents the population from settling down
and converging on local optima [8–11, 71].

5. Subjective fitness: These fitness measures assign worth to candidate solution programs based on com-
petition or collaboration with other solutions [13]. A solution’s subjective fitness is not absolute (or
objective), rather it is a function of the specific strategies that compete or collaborate with the solution in
the course of fitness determination [12, 13].

6. Novelty search: These fitness measures completely ignore the concept of a search objective [4, 72–76].
Instead, candidate solution programs are distinguished based on the extent to which they differ from
previous solutions [4, 72–76]. Fundamentally, novelty search ignores the pressure to achieve high objec-
tive fitness, rather the selective pressure is for the candidate solution programs to “do something new"
[4, 72–76].

The fitness measures that comprise the above-listed categories are surveyed according to the following format:

1. Motivation: The specific purpose underlying the fitness measure.

2. Implementation: The implementation of the fitness measure.

3. Variants: Existing variants of the fitness measure. This item is omitted where the literature does not
define variants.

4. Advantages: The advantages of the fitness measure.

23
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5. Disadvantages: The disadvantages of the fitness measure.

6. Discussion: Observations in the literature pertaining to the fitness measure. The observations are dis-
cussed in context of the theory underlying the fitness measure. In some cases, recommendations are
made towards improving the fitness measure. Finally, deductions are made as to the types of problems
to which the fitness measure is suited.

For the sake of uniformity, unless otherwise stated, the fitness measures in this thesis are formulated as
maximization functions. However, the discussion is also applicable to minimization. Both maximization and
minimization are classes of optimization [1]; for example, switching from maximization to minimization, or
vice versa can be achieved by simple negation of the numerical output resulting from the fitness evaluations
[1].

In formulating the fitness measures, the terminology “taken from” is used for equations copied directly
from the referenced text; however, the notation in these equations may differ from the referenced text, in
conformity with the uniform notation applied in the manuscript. The terminology “adapted from” is used for
equations that borrow from the referenced text; here, the equations in the referenced text are specific to the
problems evaluated in the text; the equations are restated to express a general formulation for the given fitness
measure. Lastly, where neither terminology is used, the equation is a formulation derived by the author, based
on the description of the given fitness measure in the literature.

3.2 Objective fitness

Objective fitness (OF) measures are the original fitness measures prescribed at the inception of GP [1]. OF
measures rate the candidate solution programs in a population based on their distance to the search objective.
In objective fitness GP (OF-GP), the candidate solution programs that are closer to achieving the objective are
considered to be better than solution programs that are further away.

Motivation

OF is motivated by the definition of fitness in nature [1]. In nature, fitness is associated with the quality (or
survivability) of an individual, which determines the probability that the individual reproduces [1]. In GP,
a candidate solution program achieves the best possible quality by reaching the search objective [1, 77, 78].
Accordingly, it is intuitive to perceive quality based on proximity to the objective [1]. Drawing a parallel with
nature, OF evaluation steers search towards high (objective) quality solution programs and their offspring [1,
77, 78].

Implementation

In quantitative problems, the widely adopted approach in the literature is to measure the OF of a candidate so-
lution program as the sum of the absolute (or squared) difference between the result produced by the solution
program and the expected result, over a set of input values [1, 77–84]. In the case of minimization, the lower
the sum of the differences, the fitter the solution program. This result can also be inverted for maximization.
The combinations of input values and expected results utilized for this purpose are known as fitness cases [1,
77, 78]. A fitness case takes the form (x, y), whereby x represents one or more program inputs, and y repre-
sents the expected result for x [1]. Fundamentally, fitness cases are a sampling of the independent variables
or the distinctive initial conditions of a system [1]. Numerous applications of GP employ a set of fitness cases
to teach GP how to solve a problem, namely a training set, and a different set of fitness cases to evaluate how
well GP has learnt how to solve the problem, namely a test set [1, 45].

Another common implementation of OF applied in quantitative and qualitative problems simply counts
the number of times a candidate solution program outputs a value that is within an acceptable tolerance of the
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corresponding expected result for the given fitness case; every such output value registers a “hit”. Here, the OF
counts the number of hits, such that a higher number of hits means a better solution program [1]. The hit ratio
measure described here only rewards perfect (or near perfect) achievement of the evolutionary objectives.
Therefore, this fitness measure is not suited to complex applications, such as in the evolutionary robotics
domain [63, 85–87], where given a challenging task, it is difficult to find solution programs that achieve the
objectives perfectly [63, 85–87]. In such scenarios, applying the hit ratio measure would lead to a lack of fitness
gradient information where there is no basis to distinguish between solution programs [85]. This occurrence
is termed the bootstrap problem [63, 85–88], where the lack of fitness gradient reduces GP to a random search.
In this vein, the sum of the absolute (or squared) difference to the target values may be a more appropriate
OF measure for these problems. Alternatively, a divide-and-conquer strategy that facilitates a piece-meal
achievement of the objectives can be applied, as discussed in section 3.3.

Equation 3.1 represents OF. Equation 3.1 is adapted from [1].

F1(i,m) =

|m|∑
n=1

δ(S(i, xn), yn) (3.1)

whereby:

i. F1(i,m) is i’s OF score.

ii. i is the candidate solution program.

iii. m is the set of fitness cases defined for the given problem. |m| is the size of m.

iv. S(i, xn) is the output value returned by i for the nth fitness case in m.

v. yn is the target value for the nth fitness case in m.

vi. δ(S(i, xn), yn) is a function computing the level of concurrence of S(i, xn) with yn.
Possible calculations for δ(S(i, xn), yn):
Absolute difference:
......δ(S(i, xn), yn) = −|S(i, xn)− yn| .(here, the negative sign induces maximization).
Hit count:

......δ(S(i, xn), yn) =

1, if S(i, xn) = yn.

0, if S(i, xn) 6= yn.

In the current study, a candidate solution program is said to solve a fitness case, (xn, yn), if the output
produced by the program for the fitness case equals or reaches within an acceptable tolerance of the target
value, yn. Note that in some problems, a single fitness case is defined, rather than a set of fitness cases. For
instance, in the Royal Tree [89, 90] and Max [91, 92] problems, a solution’s OF is measured as the difference
between the single numerical value produced as a result of evaluating the solution, and a single numerical
expected value.

Advantages

Two advantages have been identified for OF:

i. Intuitiveness: OF presents an intuitive approach to evaluating the quality of solutions [1, 77, 78].

ii. Ubiquity: Owing to their prescription at the origination of the algorithm [1], OF measures are the most
prevalent fitness measures applied in the literature. Therefore, GP practitioners benefit from standard-
ized concepts, such as fitness cases and the measurement of distances in objective space, as well as a
plethora of examples of the application of OF [1, 44, 77, 79–84, 89–98].

Disadvantages

Six disadvantages have been identified for OF:
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i) Symmetric view of the fitness cases: OF functions do not discriminate between “difficult" and “easy" fitness
cases. For example, the hit ratio OF measure considers all candidate solution programs that solve the
same number of fitness cases to be equally fit, no matter the specific fitness cases solved. Undoubtedly,
on problems where some fitness cases are inherently more difficult than others, it would be more ad-
vantageous for the candidate solution programs that solve the difficult fitness cases to receive a higher
reward.

ii) Premature convergence: Premature convergence is the convergence of the search algorithm to local optima,
resulting from the loss of useful population diversity [1, 4, 56–58]. OF influences premature convergence
in two ways:

a) Deception: Deception occurs when solutions that appear promising only have a weak or no relation-
ship to the search objective [1, 4, 56, 99]. By the same token, sometimes improving OF or making
progress towards the objective may require taking intermediate steps that may at first seem dele-
terious with respect to the objective [1, 4, 56, 99]. Lehman and Stanley [4] give the example of a
maze navigation problem in which there is an obstacle between the path-finding agent and the goal
position. In this scenario, the agent may be required to move away from the goal position in order
to circumvent the obstacle. However, OF does not allow the necessary transition [4]. Rather, an OF
measure will always show preference for solution programs that minimize the distance to the goal
position. Hence OF measures can fail to reward the stepping stones required to ultimately solve the
problem, and effectively prune the necessary stepping stones out of the GP population [4, 67, 91,
99].

b) Ignores useful subprograms: OF does not explicitly merit the useful information contained in the
internal structure of solutions [5, 100]. The OF score considers only the final output produced
by a solution program, such that useful intermediate output, produced at the subprogram level,
can be overlooked [5, 100]. Failure to merit a program’s intermediate results instigates the loss of
useful subprograms [5, 66, 100]. Hence premature convergence can occur due to the loss of useful
subprogram diversity [5, 66, 100].

iii) Bloat: Bloat is the uncontrolled and limitless increase in the size of the individuals in the GP population
[101–108]. Though it is not the only contributing factor [109–112], OF influences bloat [102, 103, 113]. In
later generations of GP, search reaches a quasi-stationery state [114]. At this stage of the evolution, the
possibility of fitness improvements is minimal, and most genetic operations will lead to fitness losses
as a result of disrupting the useful subprograms accumulated by the population individuals during
the evolution [114]. In the near-absence of fitness improvements, GP is reduced to a random search
for new representations of the best solution found so far [102, 103, 115]. OF-GP perceives different
representations of the same OF value to be of equal worth [102]. Unfavorably, the number of larger
programs with a given OF value is greater than the number of smaller programs [50, 115]: given a
program with a specific OF value, infinitely larger variations of the program can be created by adding
neutral code1 [109]. Therefore, in the quasi-stationery state, a random search of the space of programs
with the best OF value will lead to a predominance of long representations [102, 103, 113].

Langdon [102, 103, 113, 115] applies Price’s Covariance and Selection theorem [119] to program
length. According to the theorem, if an aspect of the genetic material is positively correlated with fit-
ness, it will be increased in next generation’s population; conversely, if the correlation is negative, it will
be reduced [115]. Langdon [102, 103, 113] empirically verifies positive correlation between OF and pro-
gram length. In practice, the correlation is not due to long solution programs having better than average
fitness, rather it is due to relatively short solution programs having a worse than average fitness [102,

1The growth of neutral code is the principal cause of bloat [109, 116–118]. The term “neutral” describes code that has no effect on the
fitness of the program that contains it [103].
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115]. In the quasi-stationary state, a short solution program produced by removing a large subtree from
a parent program is likely to have resulted from useful subprogram disruption [104, 109, 110, 117, 118].
On the other hand, programs retain their OF and increase their survivability by accumulating neutral
code [104, 109, 110, 117, 118].

iv) Computationally expensive: Fitness evaluation is the most computationally expensive aspect of GP [11,
120, 121]. OF evaluates the fitness of each candidate solution program on the complete set of fitness
cases (or the complete training set of fitness cases where training and test sets are used). Hence the time
for evolution, T , is proportional to the product of the population size, N , the number of generations
of GP, g, and the size of fitness case set, |m| (i.e. T ∝ (N × g × |m|)) [71, 120–122]. Large fitness case
sets therefore require a considerable amount of GP execution time; otherwise researchers would need to
implement the evolution on a distributed computing architecture [123]. Ultimately, an expensive fitness
measure limits the number of generations over which GP can be applied, curtailing the learning and
adaptation required to increase the possibility of reaching a global optimum [120, 124].

v) Overfitting: In data mining applications, GP is trained on a training set [9, 125, 126]. The result of the
evolution is a programmatic model of the underlying data, whereby the relationships in the data are
expressed as a functional relationship mapping inputs to outputs [9, 125, 126]. The practical usefulness
of the trained model lies in its capability to generalize to unseen data; that is, the model should be able
to map inputs it was not trained on to the correct outputs. Overfitting occurs when a model performs
well on the training set, but poorly on a test set of fitness cases [127–129]. By evaluating each candidate
solution program on the complete training set, OF steers search towards solutions that fit the training
data precisely, rather than solutions that achieve good generalization capability [129].

vi) Limited applicability: In several machine learning domains, the concept of OF fails simply because of the
lack of a suitable objective metric of performance [130]. Chiefly, this problem is encountered in evolving
competitive strategies [12, 13, 131–137]. In these problems, the only obvious way in which the worth of a
candidate solution program can be determined is through competition with other solution programs [13]:
this type of fitness evaluation is subjective and not objective [13]. The subjective fitness of a candidate
solution program is not absolute, rather it is a function of the specific strategies that compete with the
solution program in the course of fitness determination [12, 13]. In this context, true objective accuracy
can only be achieved by evaluating each member of the population against every imaginable strategy, to
gain significant knowledge about the search space [12]. This approach is computationally infeasible as it
would typically require a colossal amount of computation [12].

Discussion

Numerous applications of GP have used an OF measure. The literature shows that OF-GP discovers optimal
or near-optimal solutions on a broad spectrum of benchmark [1, 77] and real-world problems [1, 138–141].
Nevertheless, the performance of OF-GP ultimately depends on the structure of the fitness landscape. The
fitness landscape is a mapping of candidate solution programs onto fitness values by a fitness measure [142–
144]. The fitness landscape can be visualized as a three-dimensional plot; the candidate solution programs
are placed on a two-dimensional subspace according to a neighborhood structure; the third dimension of the
plot, which may contain peaks and valleys, is the fitness of the solution programs [142–144]. This landscape
informs on the correlation of fitness between parent candidate solution programs and their offspring: a weakly
correlated landscape is rugged and discontinuous, whereas a strongly correlated landscape is smooth [144].
Conventionally, an OF landscape (whereby an OF measure maps the candidate solution programs onto fitness
values) represents the difficulty of the problem being solved [143–147]: finding the global or even a local
optimum can be difficult in a rugged OF landscape, whereas it is quite easy to do so in a smooth OF landscape
[143–147]. Also, OF-landscapes prone to local optima entrap OF-GP: for example, premature convergence is
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seen in the maze [4], artificial ant [4] and 11-multiplexer [6, 67] problems. Fitness plateaus, which are flat areas
of the OF landscape in which the neighbouring solutions have the same fitness, are another source of difficulty
for OF-GP. Fitness plateaus reduce GP to a random search due to a lack of gradient information [99]: Langdon
and Poli [99] deduce that OF-GP encounters difficulty in the artificial ant problem due to an OF landscape that
contains several plateaus, peaks and deep valleys.

The above discussion motivates that OF-GP is suited to problems not prone to local optima and fitness
plateaus; examples include the simple Boolean 6-multiplexer [1], even-3,4 parity [1] and quartic polynomial
regression [1] problems. The ideal OF landscape is smooth, providing GP with consistent gradient information
to steadily guide search towards a global optimum.

3.3 Divide-and-conquer fitness

This category is comprised of layered learning (LL) [7, 59–65] and behavioral programming (BP) [5, 66, 100,
148–150].

3.3.1 Layered learning

Layered learning (LL) GP involves a bottom-up, iterative application of evolutionary search to reach a difficult
search objective [7, 59–65]. In the initial generations of GP, fitness is evaluated based on a simplified version
of the search objective. In subsequent generations, fitness is evaluated based on progressively difficult, inter-
mediate versions of the objective. Finally in the last stages of GP, fitness evaluation is based on the complete
search objective [7, 59–65].

Motivation

LL is motivated by the poor scalability of GP as problems increase in complexity [1, 60]. A number of complex
problems involve “chicken and egg" dilemmas [60], whereby it is the interaction of several goal behaviors that
contributes towards the accomplishment of the given task, rather than the individual behaviors. Winkeler
and Manjunath [60] provide the example of evolving a strategy for memory use. In the target strategy [60],
access to memory facilitates the existence of state, allowing time-varying responses to time-varied inputs. In
this case, a program that simply writes to memory, without being able to read from memory, does not achieve
any performance gain. Similarly, a program that simply reads from memory, without being able to write to
memory, does not achieve performance gain. In such scenarios, the progress of search becomes unpredictable,
and the development of complex behavior is left to chance [60]. To prevent this occurrence, LL tackles a
complex problem systematically, by gradually augmenting the problem definition, until the complete problem
is specified [60].

In [7] LL is used to mitigate overfitting in the symbolic regression domain. In symbolic regression prob-
lems, each candidate solution program is a regression model - a functional relationship between system inputs
(i.e. explanatory variables) and outputs (i.e. response variables) [7, 151]. The term “functional complexity”
refers to the smoothness of this response surface; i.e. functional complexity is a measure of the complexity of
the relationship between the explanatory and response variables [7, 151]. In real-world problems, the training
sets used to derive the regression models are typically corrupted by noise, due to lack of accuracy in measur-
ing the data samples [7, 152, 153]. Functional complexity correlates to overfitting, where overfitted models,
which fail to generalize to unseen data, match the random noise patterns found in noisy training data, such
that their complexity is increased [7]. To prevent GP from overfitting a given problem, Amir et. al. [7] train
GP on progressively more functionally complex problems, culminating in the original problem [7]. Amir et.
al. [7] also control the functional complexity of the candidate solution programs in each layer of the evolution,
increasing the allowed complexity with the progress of GP.
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Implementation

In LL, a complex problem is divided into incremental pieces [59–65]. LL begins with a random initial pop-
ulation and a simplified problem definition. Subsequently, each increment augments the problem definition,
where the problem is incrementally solved by building on the solution programs from previous increments [7,
60]. Equation 3.2 represents LL.

F2(i, θj) = Fτ (i,mθj ) (3.2)

whereby:

i. F2(i, θj) is the fitness assigned to i.

ii. i is the candidate solution program.

iii. θj is the current problem definition. θj is part of a series of progressively augmented problem definitions θ1 ⊂ θ2 ⊂
... ⊂ θj ⊂ ... ⊂ θC , whereby the symbol ⊂means ‘is simpler than’, and θC is the complete problem definition.

iv. Fτ is a function that can progressively evaluate θ1 ⊂ θ2 ⊂ ... ⊂ θj ⊂ ... ⊂ θC ; most implementations of LL use an
OF measure to evaluate Fτ .

v. mθj is the set of fitness cases used in the current problem definition, θj .

vi. Fτ (i,mθj ) is the fitness of i, given Fτ and mθj .

For example, if Fτ is an OF measure, Fτ (i,mθj ) is calculated as in equation 3.1, with the exception that θj dictates
the scope of fitness evaluation.

Variants

The division of a complex problem into increments is problem-specific. However the literature describes three
approaches that can be applied on a number of problems:

1. Variance-based LL [7]: This variant aims to mitigate overfitting in the symbolic regression domain. The
work done in [7] is based on the following premise: given a regression model f , f ’s functional complexity
can be measured by the variance of its output values over the training data [7, 154]. Here, less complex
models exhibit lower variance over the training data compared to overfitted, noise-hugging models [7,
154]. In [7], a sequence of training sets, T1, T2, ..., Tn, is generated from the original training set, T ,
to represent progressively more functionally complex regression problems for the incremental layers of
learning. For each Tj in T1, T2, ..., Tn, the input values of the fitness-cases are the same as the original
training set, but the output values are different. A function transformation is used to derive each Tj from
T : the transformation reduces the functional complexity of the original problem; in [7], the exponential
function is used, such that in each Tj , the variance of the output values is reduced, while preserving the
shape of the data [7]. The functional complexity of the candidate solution programs is also controlled in
each layer of the evolution. The variance of the output values is determined for each candidate solution
program, and the programs constrained not to exceed a variance threshold determined by the evolution
layer [7]. The variance threshold is increased with the progress of GP to allow more complexity in later
layers of the evolution [7].

2. Partitioning the fitness case set [65, 155–157]: In this variant, the fitness case set used for fitness evaluation
is partitioned into subsets. Fitness is evaluated on a small subset of the fitness cases in the initial gener-
ations [155, 156]. Subsequently, each increment considers an additional subset of the fitness cases in the
fitness calculation [155, 156].

3. Partitioning the fitness case vector [61, 155, 156]: This variant is used on problems with multiple outputs
(for example, in the two-by-two bit multiplier problem [156] each solution program outputs four bits).
The variant focuses on the different outputs in turn. Here, fitness is evaluated on fewer outputs in the



30 Chapter 3. A Survey of Fitness Measures in GP

initial generations [155, 156]. Subsequently, each increment considers an additional output in the fitness
calculation [155, 156].

LL can also be classified based on the criteria used for the termination of the increments:

1. Generation incremental LL [59, 60]: Each increment is run for a predefined (fixed) number of GP genera-
tions.

2. Performance-based incremental LL [60, 63]: Each increment is run until some threshold criteria are reached.
For example in [60], the increments are terminated when a threshold OF score is reached. In [7], the
increments are terminated when overfitting starts to occur: overfitting the initial increments impairs the
population with respect to the complete problem [7]. The performance-based termination of the increments
is based on feedback from the GP algorithm, and may therefore be more useful than running the incre-
ments for a fixed number of generations. In [7], performance is the main termination condition for the
increments; generation-based termination is applied as a secondary condition, to prevent long execution
times.

Advantages

Four advantages have been identified for LL:

i) Exploits modularity to improve search: A modular problem is a problem in which the global optima are
comprised of useful lower-order functions (or modules) that are clearly delineated from the optima [1,
158]. LL’s divide-and conquer approach improves on GP’s search capability: a complex problem that
comprises of identifiable subtasks can be tackled by solving the subtasks [59, 60].

ii) Mitigates the bootstrap problem: LL incorporates rewards for intermediate steps towards the objective.
This affords GP an adaptive fitness gradient, such that better candidate solution programs can be distin-
guished at different stages of the evolutionary process, mitigating the bootstrap problem [63].

iii) Mitigates overfitting: Variance-based LL [7] mitigates overfitting by progressively augmenting the func-
tional complexity of the problem definition.

iv) Reduces computational expense: In partitioning the fitness case set, the fitness of the candidate solution pro-
grams is predominantly evaluated on subsets of the fitness case set [65, 155–157]. Thus, fewer evaluations
are required to find solutions for simplified versions of the problem. As a result, it is computationally
less expensive to arrive at a given level of performance on the complete problem [60]. Furthermore, the
overall computational expense of fitness evaluation is reduced, increasing the speed of GP optimization
[60].

Disadvantages

One disadvantage has been identified for LL:

i) Configuration difficulty: LL increases the amount of user intervention required to run GP. Apart from
defining a fitness measure, the GP practitioner is mandated to specify a list of simplified subtasks [60,
159]; this involves both defining and ordering the subtasks [159]. Such specifications require extensive
problem knowledge, which is generally not available for complex real-world problems [159]. The GP
practitioner is also mandated to specify when to shift between increments [86]. LL is particularly sensi-
tive to the duration of the increments. Running too long increments can result in overfitting the initial
increments [7, 60]. Conversely, running too short increments curtails necessary learning on the individ-
ual increments [60]. Overall, LL’s configuration difficulty prevents the method from scaling up well to
more complex tasks. Notably, most implementations of LL in the literature involve only two or three
increments [60–64].
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Discussion

The literature shows that LL improves on the performance of OF-GP on tasks with difficult end-goals [7, 60,
62–64]. For example, Amir et. al. [7] outline a strategy for implementing LL in the symbolic regression domain:
this strategy mitigates overfitting and improves on the best solution found by OF-GP [7]. Nevertheless, imple-
menting an LL approach can be challenging: this is because partitioning a problem into increments requires a
considerable level of problem-specific knowledge [60, 62–64]. If the GP practitioner chooses to implement LL
by partitioning the fitness case set or partitioning the fitness case vector, arbitrary partitions may not suffice. In this
case, the practitioner may have to do several re-runs of LL, to gather problem-specific information on the best
way to partition the data. This may not be computationally feasible.

Modular problems permit more intuitive application of LL, whereby the initial increments can be run on
the modules comprising the problems [158]. For example, the performance of OF-GP in the Boolean even-
6 parity problem is improved by incorporating a preliminary layer of learning on the simpler even-2 parity
problem [61]; this works because in the Boolean even-n parity domain, higher-order functions are inherently
comprised of the lower-order functions [1, 77]. Intuitive assumptions of modularity have also helped in real-
world problems [60, 62–64]. In [60], a target tracking task that attempts to keep a moving object centered in the
field of view of a mounted camera is broken down into the simpler subtasks of: 1) tracking the depth of the
object, 2) tracking the velocity of the object, and finally 3) tracking both the depth and velocity of the object.
Barlow et. al. [62] also apply an intuitive decomposition. In [62] the task is to develop a navigation controller
for an unmanned aerial vehicle (UAV). The authors in [62] fragment the given task according to the lower-
order objectives delineated in the goal strategy: 1) navigating the UAV to a target position, and 2) circling the
UAV around the target position once located. Another example of intuitive problem decomposition is seen in
the keep-away soccer domain, where Hsu et. al. [63, 64] borrow from the hierarchical learning strategies of
human soccer teams to decompose the problem into two increments: teaching the soccer agents to pass a ball
1) without a defender present, and 2) with a defender present. The intuitive problem decompositions in the
mentioned examples are shown to improve on the best solutions found by OF-GP [60, 62–64].

The above discussion motivates that LL is suited to modular problems. Ultimately, it would be useful
if some heuristics are derived that can be used to detect modularity, and subsequently recommend LL as a
result. For example, Krawiec and Wieloch [158] propose a heuristic to detect modularity in Boolean function
synthesis GP. The authors [158] define the term “part quality function”; a part quality function is a subgoal
(or module) optimized by the subtrees of candidate solution programs, analogously to the way the complete
solution programs optimize an OF measure [158]. The authors [158] also coin the term “monotonicity": given
a problem instance, monotonicity is a measure of the correlation between a given part quality function and
the OF over a large sample of candidate solution programs; here, useful subgoals exhibit high monotonicity.
In [158], the extent of modularity is measured as the maximum monotonicity exhibited by the subgoals of
a problem instance. Without actually running the GP algorithm, the subgoals are sampled from the set of
all possible outputs over the fitness cases defined for the problem instance (e.g. given a 4-input Boolean
function with 24 = 16 fitness cases, the subgoals are sampled from the 216 = 65536 possible outputs over
the fitness cases), and the monotonicity of each subgoal determined. Krawiec and Wieloch [158] show that
the proposed heuristic is a useful measure of the modularity of Boolean problems. The proposed heuristic is
however not applicable to problems with continuous (i.e. non-discrete) outputs defined for the fitness cases,
where determining the subgoals proves difficult. Overall, more work is required with respect to detecting
modularity on different problems. Alternatively, the behavioral programming paradigm, discussed in the
ensuing section, proposes fitness measures that autonomously detect and exploit the modularity of a given
problem.
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3.3.2 Behavioral programming

In a number of recent publications [5, 66, 100, 148–150], Krawiec et. al. propose behavioral programming (BP).
In BP, the fitness of a candidate solution program is computed based on the OF of the complete program and
the usefulness of its constituent subprograms [5, 66].

Motivation

BP is motivated by the observation that OF ignores the useful information contained in the internal structure
of solution programs [5, 66, 100]. In BP, the loss of useful subprograms is mitigated by assessing fitness on
both the program and subprogram level. In essence, BP identifies and exploits modularity to improve on the
search efficiency of GP [5, 66, 100].

Implementation

BP identifies useful subprograms by recording the intermediate results of OF evaluation. To determine the
fitness of a candidate solution program, an OF measure iterates over fitness cases of the form (xn, yn) (see
section 3.2). For each fitness case, the input, xn, entered into the program tree [1]. Subsequently the program is
executed through traversal [1]: intermediate results incurred at the subprogram level are propagated upward
in the tree to yield the program output [1].

BP acquires a program trace for each candidate solution program during the process described above [5,
66]. At the beginning of OF evaluation, BP creates an empty list for each fitness case. Subsequently, as each
fitness case is evaluated, the intermediate result produced at each visited subprogram is appended to the list
corresponding to the fitness case. Table 3.1 is taken from [66] and represents the schematic of a program trace.
Each row in the table lists the intermediate outcomes of the OF evaluation of a single fitness case. The columns
in the table correspond to the subprograms that make up the candidate solution program. For example, the
entry S1(x1) represents the intermediate outcome of the OF evaluation of input x1 at subprogram S1.

TABLE 3.1: Schematic of a program trace in BP

Input Program trace Expected output
x1 S1(x1) S2(x1) S3(x1) ... ... y1
x2 S1(x2) S2(x2) S3(x2) ... ... y2
... ... ... ... ... ... ...
xn S1(xn) S2(xn) S3(xn) ... ... yn
... ... ... ... ... ... ...
xm S1(xm) S2(xm) S3(xm) ... ... ym

In BP, fitness is calculated as a function of OF and one or more measures resulting from an analysis of the
program trace data. Equation 3.3 represents BP.

F3(i,m) = α(F1(i,m), T1(i,m), T2(i,m), ..., Tt(i,m)) (3.3)

whereby:

i. F3(i,m) is the fitness assigned to i.

ii. i is the candidate solution program.

iii. m is the set of fitness cases defined for the given problem.

iv. F1(i,m) is the OF of i, determined according to equation 3.1.

v. The T1(i,m), T2(i,m), ..., Tt(i,m) are measures resulting from an analysis of i’s trace data; the measures used are
specific to the BP variant being implemented, as discussed in the ensuing section.
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vi. α(...) is a multi-objective fitness measure that facilitates the simultaneous optimization of F1(i,m) and the T1(i,m),

T2(i,m), ..., Tt(i,m).

Variants

Krawiec et. al. [5, 66, 148, 149] describe two approaches to BP. The approaches are:

1. Pattern Guided Evolutionary Algorithm (PANGEA) [5, 66, 149]: This approach transforms a candidate so-
lution program’s trace data into a data set input to a machine learning algorithm. The machine learning
algorithm is used to derive a model of the program’s intermediate execution [5, 66]. The trace data is
translated as follows; the last column of table 3.1 plays the role of the label (or dependent variable), and
each preceding column is an feature (or independent variable); in addition, each row in the table rep-
resents an example [5, 66]. In this manner, the program trace data defines a supervised learning task,
where the aim is to find a model that maps the independent variables onto the dependent variable (i.e the
expected output) for each example. If the expected output is categorical, the dependent variable contains
class labels and the machine learning task is data classification; on the other hand, if the expected output
is continuous, the dependent variable is a response variable and the machine learning task is regression.
Any inductive learning method can be used to model the trace data [66]: for example in [66], the C4.5
decision tree induction algorithm [160] is used as a machine learning classifier on categorical output.

Given a candidate solution program, i, the aim of using a machine learning algorithm to obtain a
model of i’s trace data, M(i), is to determine the extent to which each of i’s subprograms is useful with
respect to predicting the expected output. M(i) indirectly reveals a description of i’s intermediate execu-
tion. This information is conveyed in two measures; 1) c(M(i)) - the complexity of M(i), and 2) e(M(i))

- the error produced by M(i) [5, 66]; for example, in the case where decision trees are used to model the
program trace data, c(M(i)) and e(M(i)) are measured as the number of nodes, and the classification er-
ror of the resulting decision tree respectively [66]. Importantly, if the subprograms represent meaningful
information, the inductive learning method should be able to construct a model of minimal complexity
from the trace data [5, 66]; also the learning method should be able to construct a model that yields
minimal error over the trace data [5, 66]. In PANGEA, the candidate solution programs with useful sub-
programs are identified by incorporating c(M(i)) and e(M(i)) into the fitness measure. A multi-objective
fitness measure is employed to simultaneously optimize F1(i), c(M(i)) and e(M(i)): F1(i) is maximized,
whereas c(M(i)) and e(M(i)) are minimized.

PANGEA also incorporates a customized mutation operator [5]. The identified useful subprograms
from all candidate solution programs are copied into a global archive maintained throughout the course
of GP; given a candidate solution program, the customized mutation operator selects a subtree from the
program with uniform probability, and replaces the subtree with a useful subtree from the archive; the
most useful subtrees in the archive are prioritized for this replacement [5].

2. Behavioral Consistency GP [148]: This approach is based on the concept of equivalence classes: an equiv-
alence class is a group of fitness cases that map onto the same output value; two fitness cases, (xp, yp)

and (xq, yq), belong to the same equivalence class if yp = yq . If two inputs, xp and xq , are expected
to produce the same output, then a subprogram, Sk, that reaches the same state for xp and xq is an
important component of the program containing Sk, because the program should reach the same state
for xp and xq at some stage of its execution. Conversely, if the two inputs, xp and xq , are expected to
produce different outputs, then a subprogram, Sk, that reaches the same state for xp and xq has lost the
ability to distinguish between the inputs, which should be considered undesired and penalized. There-
fore a subprogram, Sk, is deemed useful if the equivalence classes induced at Sk are consistent with the
equivalence classes defined in the expected program output [148].
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Krawiec and Solar-Lezama [148] define the consistency of a subprogram as the extent to which the
subprogram output is the same as the expected output. This is summarized in two rules: 1) Given two
fitness cases (xp, yp) and (xq, yq), if yp = yq in the expected program output, a subprogram, Sk, at which
Sk(xp) 6= Sk(xq) is penalized, and 2) Given two fitness cases (xp, yp) and (xq, yq), if yp 6= yq in the
expected program output, a subprogram, Sk, at which Sk(xp) = Sk(xq) is penalized. Ideally, a candidate
solution program would contain a subprogram, Sk, that produces the expected output for all the fitness
cases; i.e. Sk(xp) = Sk(xq) if and only if yp = yq [148].

Krawiec and Solar-Lezama [148] employ the conditional entropy measure2 to assess the consistency
of a program trace with respect to the expected program output. The authors [148] associate a variable,
Sk, with the intermediate outcome of the OF evaluation at the kth subprogram [148]; Sk varies over the
fitness cases. In a similar way, a variable, Y , is associated with the expected output over the fitness
cases. Two measurements are determined: 1) H(Y |Sk); the amount of information that Y adds to Sk,
and 2) H(Sk|Y ); the amount of information that Sk adds to Y . Both H(Y |Sk) and H(Sk|Y ) attain values
of 0 if and only if Sk produces the expected output for all the fitness cases; otherwise, the lower the
measures, the higher the consistency of Sk with Y . The behavioral consistency of a candidate solution
program, I(i), is defined according to the subprogram at which the sum ofH(Y |Sk) andH(Sk|Y ) attains
its minimum, as shown in equation 3.4, taken from [148].

I(i) = mink(H(Y |Sk(i)) +H(Sk(i)|Y )) (3.4)

whereby:

i. I(i) is the behavioral consistency of the candidate solution program i.

ii. k is an index iterating through all the subprograms of i.

Krawiec and Solar-Lezama [148] apply a multi-objective fitness measure to simultaneously optimize
F1(i) and I(i): F1(i) is maximized, while I(i) is minimized.

Advantages

Three advantages have been identified for BP:

i) Exploits modularity to improve search: BP conveys information about the prospective quality of a candidate
solution program. In PANGEA, a candidate solution program with low error and low complexity of the
model obtained from its trace data comprises of useful intermediate results that can be mapped onto the
expected output [5, 149]. The GP algorithm need only put such a program through a small number of
transformations (e.g. mutations) to reach a global optimum [5, 149]. GP search is improved by combin-
ing OF with the model error and complexity measures to identify such promising solution programs.
A similar occurrence is seen in behavioral consistency GP: a candidate solution program containing sub-
programs that have a high level of consistency with the expected output requires few modifications to
reach the search objective [148]. Behavioral consistency GP facilitates the identification of such solution
programs [148]. Ultimately, assessing fitness on both the program and subprogram level mitigates the
loss of useful subprograms, which has positive implications for the search efficiency of GP [5, 148, 149].

ii) Autonomous optimization criteria in PANGEA: PANGEA invents the additional optimization criteria that it
employs [5]. Importantly, the GP practitioner does not have to decide what makes a subprogram useful.
Instead, by relying on a machine learning approach to describe the intermediate execution of candidate

2In information theory, the conditional entropy quantifies the amount of additional information needed to describe the outcome of a
variable, X , given that the value of another variable, Y , is known [161]. If the probability that X = x is denoted by p(x), then we denote
by p(x|y) the conditional probability that X = x given that we already know that Y = y. Then the conditional entropy, H(X|Y ), is just
the Shannon entropy [161] with p(x|y) replacing p(x), averaged over all possible Y ; i.e. H(X|Y ) = −

∑
xy p(x|y) log p(x|y)p(y).
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solution programs, the solution programs with useful subprograms are identified without the need for
additional human intervention [5].

iii) Easy to configure: BP is easy to configure because it does not incur additional parameters to the ones
required for OF-GP [5, 148].

Disadvantages

Two disadvantages have been identified for BP:

i) Computational and memory overhead: The cost of maintaining the program trace data during fitness eval-
uations increases with an increase in the number of fitness cases specified for the problem as well as an
increase in the program sizes. Whereas counter measures to reduce code bloat might contain the pro-
gram sizes, a modern big data problem with a large number of fitness cases may render the BP approach
impractical.

ii) Limited applicability of behavioral consistency GP: Behavioral consistency GP [148] is restricted to problems
where equivalence classes are induced over the fitness cases. Hence behavioral consistency GP will not be
effective on problems where each input is mapped onto a different expected output value. The approach
is also unlikely to yield benefits over OF-GP in continuous problems, because equivalence is not easily
determined over continuous data [148]. This inference is supported by the data in [148], where behavioral
consistency GP fails to yield a performance advantage on symbolic regression problems.

Discussion

PANGEA is shown to improve on the performance of OF-GP on a number of Boolean, categorical and symbolic
regression benchmark problems [5, 66]. PANGEA also solves a number of problems that prove unsolvable for
OF-GP, including the Boolean even-8 parity and Keijzer-4 regression problems [5]. Krawiec and O’Reilly [149]
justify the above observations by showing that PANGEA’s consideration of the internal structure of programs
provides a better estimate than OF-GP with respect to the distance to the global optima. In this vein, PANGEA
improves on the search efficiency of GP. Nevertheless, PANGEA has its limitations. For example, the approach
is shown to perform slightly worse than OF-GP on the Keijzer-1, Keijzer-5 and Keijzer-12 regression problems
in [5]; this may be an instance of the No Free Lunch (NFL) theorem, whereby PANGEA does not achieve the
best result on all problems in the universe of GP problems.

Behavioral consistency GP performs well on problems where useful modules can be detected [148]. For ex-
ample, the approach outperforms OF-GP on qualitative problems where equivalence classes are induced over
the fitness cases [148]. However, as anticipated, the performance of this BP variant is degraded on continuous
problems; in [148] behavioral consistency GP is shown not to achieve performance gain over OF-GP on a number
of symbolic regression problems.

Overall, the above arguments motivate that BP is suited to modular problems, where useful subprograms
can be found and exploited. PANGEA is more effective than behavioral consistency GP on continuous problems.
In PANGEA, the use of an embedded machine learning algorithm to induce models of the intermediate ex-
ecution of candidate solution programs removes the need for human-designed heuristics that inform on the
usefulness of subprograms. This is better than the human-designed behavioral consistency measure employed
in behavioral consistency GP, which has limited use on continuous problems.

3.4 Fitness sharing

Fitness sharing (FS) is based on the concept of niching [6, 15, 67–70, 162]. Niching methods promote the
existence of distinct stable subpopulations (or niches) within a main population [163]. According to [163],
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a niching method must be able to maintain these niches for an infinite time period. The candidate solution
programs occupying a niche possess a level of homogeneity, whereas disparate niches are heterogeneous with
respect to each other. FS modifies OF to generate selective pressure within, as opposed to across, regions of
the search space [6, 15, 67–70, 162].

Motivation

OF-GP systems tend to converge to a single search space optimum, which may or may not be a global opti-
mum (see section 3.2). This situation is undesirable in multi-modal (many peaked) search spaces. FS affords
GP the opportunity to investigate distinct OF optima in parallel [6, 67–70]. The approach is motivated by reg-
ulated competition in nature [164]. Nature does not converge to a single species; rather competition typically
occurs within species as opposed to across species [164]. Drawing a parallel, FS measures inhibit head to head
competition between widely disparate regions of the search space [164].

Implementation

FS is set up by modifying OF in such a way that candidate solution programs are penalized based on similar
programs occurring within the population [6, 67–70]. The manner in which the similarity of the solution pro-
grams is determined depends on the particular variant of FS being implemented, and is detailed in the ensuing
section. Penalizing the candidate solution programs on the basis of similarity divides an FS population into
distinct limited-size niches. Here, the number of solution programs occupying a niche is limited by the higher
penalty imposed on the fitness of programs in densely populated niches [6, 67–70]. On the other hand, the
solution programs in newly discovered niches incur a lower penalty (due to sparse population of the niches),
compared to solution programs with similar fitness in densely populated niches, favoring the exploitation of
new niches [6, 67–70]. Equation 3.5 represents FS. Equation 3.5 is taken from [165].

F4(i,m) =
F1(i,m)

ξ(i)
(3.5)

whereby:

i. F4(i,m) is the fitness assigned to i.

ii. i is the candidate solution program.

iii. m is the set of fitness cases defined for the given problem.

iv. F1(i,m) is the OF of i, determined according to equation 3.1.

v. ξ(i) is the niche count which measures the number of solution programs that share fitness with i. ξ(i) is calculated
by summing a sharing function over all members of the population; here, the sharing function used is specific to the
FS variant being implemented.

Variants

The literature proposes two main types of FS: semantic FS [6, 67] and structural FS [68–70]. Semantic FS demar-
cates niches in semantic space: whereas OF provides a coarse-grained view of the performance of a candidate
solution program (see section 3.2), semantic analysis is fine-grained; the semantics of a solution program is
the ordered set of outputs produced by the program over the |m| fitness cases input to GP, expressed as a
vector, S(i, xn) ∈ <|m| [166]; semantic space refers to the space of all possible such vectors [167]. Structural FS
demarcates niches in structural space. Structural (genotype) space is the space of encoded representations of
the candidate solution programs [168]. In the context of AST GP, the structural space is the space of all possible
parse trees, given the function set and terminal set defined for the problem tackled by GP [169]. Semantic FS
and structural FS are discussed below:
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1. Semantic FS [6, 15, 67]: This variant is applied on problems where a set of fitness cases is defined. In
semantic FS, the shared fitness of a candidate solution program is calculated by sharing the objective
payoff for each fitness case among all the solutions programs in the current population that solve the
fitness case, and summing over all fitness cases [6, 15, 67]. Therefore semantic FS penalizes solution
programs that solve the same fitness cases, such that selective pressure is exerted towards solving unique
fitness cases [6, 15, 67]. Equation 3.6 represents semantic FS. Equation 3.6 is taken from [170].

F4a(i,m) =
∑

(xn,yn)∈T (i)

1

|P (xn, yn)|
(3.6)

whereby:

i. F4a(i,m) is the fitness assigned to i.

ii. i is the candidate solution program.

iii. m is the set of fitness cases defined for the given problem.

iv. T (i) is the subset of the fitness cases in m solved by i.

v. (xn, yn) is the nth fitness case in T (i).

vi. P (xn, yn) is the subset of the solutions in the population that solve (xn, yn).
|P (xn, yn)| is the size of P (xn, yn).

2. Structural FS [68–70]: In this variant, a niche is defined as a group of parse trees that are within a thresh-
old distance from each other in structural space [68]. This threshold distance is dubbed the niche radius.
The shared fitness of a candidate solution program is determined by penalizing its OF value based on the
number and similarity of solution programs in the current population occurring within the same struc-
tural niche [68]. Therefore structural FS penalizes solution programs with similar structures, such that
selective pressure is exerted towards discovering different structures. Equations 3.7 and 3.8 represent
structural FS. Equations 3.7 and 3.8 are taken from [165] and [68, 165] respectively.

F4b(i,m) =
F1(i,m)∑

j S(dist(i, j))
(3.7)

whereby:

i. F4b(i,m) is the fitness assigned to i.

ii. i is the candidate solution program.

iii. F1(i,m) is the OF score of i.

iv. S(dist(i, j)) is a penalty incurred by i, based on the extent of structural similarity between i and the jth solution
program in the population.∑
j S(dist(i, j)) is the sum of the S(dist(i, j)) over all j 6= i in the current population.

Equation 3.8 details the calculation of S(dist(i, j)).

S(dist(i, j)) =

1− dist(i,j)
σ , if dist(i, j) ≤ σ

0, if dist(i, j) > σ
(3.8)

whereby:

i. dist(i, j) is the pairwise structural distance between i and j.
dist(i, j) is computed by simultaneously traversing the program trees of i and j to determine the extent to
which the nodes in the trees differ: e.g. the trees may contain different nodes at matching positions, or one tree
may have fewer nodes than the other. Essentially, dist(i, j) is the weighted sum of the penalties incurred as a
result of the differences between i and j at matching positions.

ii. σ is the user-specified structural niche radius.
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Advantages

Three advantages have been identified for FS:

i) Mitigates premature convergence: The maintenance of disparate niches in FS translates to the maintenance
of population diversity. Going by the theory that diversity mitigates premature convergence [1, 56, 58],
FS mitigates this occurrence [6]. Semantic FS promotes variety in the fitness cases solved by the candidate
solution programs in the population, curtailing rapid convergence to solution programs that solve only
the “easy” fitness cases [6]. In turn, structural FS inhibits structural convergence of the entire population
[68, 69].

ii) Appropriate fitness measure for multi-modal search: A GP practitioner may want to discover one or more of
the global and/or local optima in a given search space. FS facilitates this by investigating multiple search
space optima in parallel, such that the practitioner can retrieve the best solution programs pertaining to
different optima.

iii) Mitigates bloat: Semantic FS is anticipated to mitigate bloat: by penalizing candidate solution programs
that solve the same fitness cases, semantic FS assigns low fitness scores to offspring that solve the same
fitness cases as their parents; a number of these offspring result from genetic operations in neutral code
regions, such that preventing the spread of such solution programs curtails the spread of neutral code
and corresponding increases in code size. The data in [170] supports the premise that semantic FS miti-
gates bloat, although the authors stop short of commenting that: in [170] semantic FS is shown to evolve
small and fit solution programs on an image segmentation task when compared to other OF measures.
Ekárt and Németh [68] argue that structural FS mitigates bloat. Structural FS favors smaller candidate
solution programs because they are less likely to have a number of substructures in common with other
programs in the population [68]. In [68], structural FS is shown to evolve significantly smaller solution
programs on a symbolic regression task when compared to OF-GP.

Disadvantages

Three disadvantages have been identified for FS:

i) Limited applicability of semantic FS: Semantic FS demarcates the niches in a population based on a set of
fitness cases. However, recall some problems define a single fitness case, rather than a set of fitness cases.
Hence semantic FS does not conceptually apply to a number of problems.

ii) Configuration difficulty of structural FS: In structural FS, setting the user-specified structural niche radius
requires a priori knowledge of how far the search space optima are, such that the structural niches can
be demarcated based on the optima. However, information about the search space and the distance
between the optima is generally not available for real-world optimization problems.

iii) High computational cost: .In structural FS, .evaluating the fitness of a candidate solution program, i, .re-
quires calculation of the pairwise structural distances between i and every other solution program in the
population. Therefore, .on each generation, the cost of fitness evaluation is quadratic. .Furthermore, .the
cost of a pairwise structural distance computation increases with the progress of GP, due to increases in
program size [68, 69].

The computational expense of both FS variants also increases with a steady state GP: here, the mem-
bership of the population keeps changing as new offspring join the parent population [171]. As a result,
the shared fitness of each candidate solution program in the population, which is a function of the mem-
bership of the population, needs to be constantly updated. For this reason, most of the FS implementa-
tions use a generational control model [6, 15, 67–70, 172].
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Discussion

In work done by McKay [6, 15], semantic FS is shown to improve on the performance of OF-GP on the bench-
mark Boolean 6- and 11-multiplexer problems. McKay [6, 15] justifies his results by citing the ability of FS
measures to maintain population diversity, mitigating premature convergence. However, FS constantly en-
forces the maintenance of niches, such that convergence and exploitation of the solution programs occurs
within, and not across niches. As a result, widespread convergence of the GP population in later generations
is inhibited; yet widespread convergence is often necessary to involve more search points in exploiting the
promising solution programs discovered by search [6, 15]. To relax the niching constraints imposed by FS
in later generations, McKay [6, 15] prescribes a ramped approach. In the ramped approach, semantic FS is
applied in the initial 25% of the GP generations. OF is applied in the last 25% of the GP generations. In the
intermediate GP generations, fitness is calculated as a linear ramp between semantic FS and OF [6, 15]. The
ramped approach is shown to evolve higher-quality solution programs on different problems when compared
to both semantic FS and OF-GP applied individually throughout the course of GP [6, 15]. The implication is
that the ramped approach strikes a balance between mitigating premature convergence in the preliminary GP
generations, and subsequently allowing widespread convergence and exploitation in later GP generations.
Importantly, the results in [6, 15] highlight the fact that different fitness measures may be appropriate for dif-
ferent phases of GP search; hence the case for DFMGP, proposed in the current study. A potential drawback
of the ramped approach is that the exploration and exploitation phases may span different GP generations for
different problems, such that the arbitrary partitioning of generations (first 25% - semantic FS; subsequent 50%
- ramped; subsequent 25% - OF) does not achieve consistent results on different problems. Rather than the
arbitrary user-defined partitions in the ramped approach, it may be more advantageous to switch between the
fitness measures based on feedback from the GP algorithm. DFMGP will differ from the ramped approach by
using a higher-level search algorithm to approximate the best fitness measure to use on each generation, based
on the feedback from GP.

Ekárt and Németh [69] also propose an adaptive approach for structural FS. The adaptive approach is
based on the following observation: in structural FS, the population diversity is an increasing function of
the niche radius [69]: because FS limits the number of candidate solution programs occurring within a niche,
augmenting the niche radius increases the selective pressure for evolved solution programs to be further away
from each other [69]. Adaptive structural FS continually adjusts the niche radius, based on the feedback from
search: if a loss of population diversity is encountered, the niche radius is increased in order to restore the
diversity; on the other hand, if an increase in fitness is encountered, the niche radius is decreased in order
to increase convergence; if both an increase in fitness and a loss of diversity occur, the former overrules the
latter. Adaptive structural FS is shown to alter the population diversity to relevant levels at the different stages
of GP; that is, a large niche radius is seen to enforce high diversity in the preliminary GP generations, and
subsequently the niche radius is reduced with the progress of GP, permitting low diversity and exploitation
in later generations [69]. The authors in [69] stop short of comparing the quality of the solution programs
evolved by adaptive structural FS with those evolved by structural FS and OF-GP.

Overall, FS is suited to multi-modal search, where the fitness measure can be used to mitigate premature
convergence. Relaxing the niching constraints imposed by FS in later GP generations can help to improve on
exploitation once good points in the search space have been discovered.

3.5 Dynamic fitness

This category is comprised of dynamic subset (DS) measures [10, 11, 71, 120, 173] and stepwise adaptation of
weights (SAW) [8, 9].
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3.5.1 Dynamic subset measures

Dynamic subset (DS) measures are intended for use on problems where a set of fitness cases is defined. DS
measures modify OF by presenting GP with different subsets of the fitness case set for fitness evaluation at
different points in the algorithm [10, 11, 71, 120]. The fitness case subsets are dynamically adapted (or selected)
from the complete set of fitness cases with the progress of GP.

Motivation

DS measures present the problem of solving all fitness cases in the fitness case set as a series of distinct sub-
problems, throughout the course of GP [10, 11]. Thus the target of evolution keeps shifting, such that the GP
population is prevented from converging to a single region of the search space [10, 11, 71]. Ultimately, DS mea-
sures confer benefits with respect to mitigating premature convergence, bloat, overfitting and computational
expense, as detailed in this section.

Implementation

To set up a DS measure, the GP practitioner specifies an algorithm that dictates the adaptation (or selection)
of subsets of the fitness case set; here, the algorithm used is specific to the DS variant being implemented, as
detailed under the DS variants. Equation 3.9 represents DS measures.

F5(i, θj) = Fτ (i,mθj ) (3.9)

whereby:

i. F5(i, θj) is the fitness assigned to i.

ii. i is the candidate solution program.

iii. θj is the current problem definition. θj changes with the adaptation (or selection) of the fitness case subset used for
fitness evaluation, mθj . mθj , is continually adapted (or selected) from the fitness case set with the progress of GP.

iv. Fτ is a function that can evaluate the fitness of the candidate solutions programs over the θj ; most DS measures use
an OF measure to evaluate Fτ .

v. Fτ (i,mθj ) is the fitness of i, given Fτ and mθj .

For example, if Fτ is an OF measure, Fτ (i,mθj ) is calculated as in equation 3.1, with the exception that θj limits the
scope of fitness evaluation.

Variants

The literature describes a number of DS measures. The DS measures are listed below:

1. Random Subset Selection (RSS) [71]: In this variant, a different subset of fitness cases is drawn from the
fitness case set on each new generation of GP. The fitness cases that make up a subset are drawn from the
fitness case set with uniform probability. A similar variant is Random Sampling Technique (RST) described
in [129, 174], where a different fixed-size random subset of fitness cases is selected each time a user-
specified period of GP generations elapses.

2. Dynamic subset selection (DSS) [71]: As in the case with RSS, this variant selects a different subset of fitness
cases from the fitness case set on each generation of GP. Here, the fitness cases that make up a subset are
selected by conducting two passes through the fitness case set. The first pass applies a weight to each
fitness case in proportion to the weighted sum of 1) “difficulty”: the rate at which the candidate solution
programs failed to solve the fitness case on the generation it was last selected, and 2) “age”: the number
of generations since the fitness case was last selected. The second pass selects fitness cases for the subset;
selection is done without replacement, and is based on a probability biased towards highly-weighted
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fitness cases [71]. Therefore, DSS prioritizes the evaluation of “difficult" fitness cases, which are not
easily solved by the candidate solution programs. Focussing on “difficult” fitness cases reduces priority
on the evaluation of fitness cases that are easily solved, which in turn prevents search from converging to
solution programs that solve only the latter. DSS also prioritizes the evaluation of fitness cases that have
not been selected for the fitness case subsets for a significant number of generations; this action prevents
the fitness cases that are easily solved from being completely ignored in future fitness evaluations, which
can lead to the solution programs loosing the ability to solve these fitness cases. The overall aim in DSS
is to reduce priority on the evaluation of fitness cases that are easily solved while ensuring that the
candidate solution programs being evolved do not loose the ability to solve these fitness cases [71].

3. Topology-based selection (TBS) [11]: As in the case with DSS and RSS, this variant selects a different subset
of fitness cases from the fitness case set on each generation of GP. TBS uses the topological relationship
between fitness cases to determine the content of each subset [11]. According to Lasarczyk et. al. [11],
two fitness cases, (xp, yp) and (xq, yq), share a close topological relationship if the candidate solution
programs that solve (xp, yp) solve (xq, yq), and vice versa where the candidate solution programs that
solve (xq, yq) solve (xp, yp). Based on the performance of the programs in the population, TBS continually
adjusts the topological relationships between the fitness cases in the fitness case set with the progress of
GP [11]. On each generation of GP, the selected subset is comprised of fitness cases that are dissimilar
with respect to the induced topology. This is such that search is prevented from converging to solution
programs that solve only similar or related fitness cases [11].

4. Limited-error fitness (LEF) [10]: This variant is intended for use on supervised classification problems,
where a candidate solution program classifies a fitness case correctly if the program outputs the target
class label for the fitness case, otherwise the fitness case is misclassified [1, 10]. In LEF, fitness is evalu-
ated based on an ordering over the fitness case set. At the start of a GP run, the fitness case set is shuffled
into a random order; in subsequent generations, the fitness case set is ordered to prioritize the evaluation
of “difficult” fitness cases; this is described in the ensuing paragraph. The fitness evaluation of a can-
didate solution program involves traversal of the ordered set of fitness cases, where 1) the fitness cases
classified correctly by the program and 2) the fitness cases misclassified by the program, are counted
during the traversal. Here, the solution program’s fitness is related to how many of the ordered set of fit-
ness cases it classifies correctly preceding a threshold number of misclassifications. When the threshold
is reached, the fitness cases not yet evaluated in the course the traversal are regarded as misclassified.
Gathercole and Ross [10] determine the fitness score as the total number of misclassified cases; in the
case of maximization, the fitness is measured as the number of cases classified correctly prior to reaching
the threshold number of misclassifications.

LEF continually adjusts the threshold number of misclassifications that governs traversal of the or-
dered set of fitness cases. In so doing, LEF continually adjusts the subset of fitness cases used for fitness
evaluation [10]. Changes in the misclassification threshold are effected when search shows signs of
stagnation; that is, when there is no improvement in the best-of-generation solution program (i.e. the
best-of-generation individual - BOGI) for a threshold number of generations [10]. Each time a change
is made to the misclassification threshold, the ordered set of fitness cases is put through one pass of a
bubble sort algorithm; here, the most frequently misclassified fitness cases in the previous generation are
“bubbled” towards the beginning of the ordered set, such that the “difficult" fitness cases are prioritized
for fitness evaluation [10]. The changes to the misclassification threshold are determined based on the
number of fitness cases in the ordered set not evaluated by the BOGI, as follows. If the BOGI makes
fewer misclassifications than the threshold, the given problem is made harder by lowering the threshold
to reduce the number of fitness cases in the ordered set included in the fitness evaluations; this action
increases the focus of GP on the “difficult” fitness cases, which prevents the population from converging
to solution programs that solve only “easy” fitness cases. In turn, if the BOGI exceeds the threshold



42 Chapter 3. A Survey of Fitness Measures in GP

before evaluating all the fitness cases, the threshold is increased so that more fitness cases in the ordered
set are included in the fitness evaluations; this means that a wider variety of solution programs in the
next generation will have good fitness scores, which increases the probability that new programs will be
produced that move the GP algorithm away from the sub-optimal state.

Advantages

Three advantages have been identified for DS measures:

i) Mitigate premature convergence: LEF alters the fitness evaluation criteria when search stagnation is de-
tected in GP, such that the evolving population is not allowed to converge to sub-optimal solutions [10].
Also, LEF and DSS force the candidate solution programs to deal with “difficult” fitness cases; this action
reduces priority on the evaluation of fitness cases that are easily solved, which in turn prevents search
from converging to solution programs that solve only these fitness cases [10, 71].

TBS selects fitness cases that are dissimilar with respect to the induced topology to make up the
fitness case subsets used for fitness evaluation; hence search is prevented from converging to solution
programs that solve only similar or related fitness cases [11].

Overall, the DS strategy of varying the fitness evaluation criteria during the course of GP prevents
the population from settling down and converging on local optima [10, 11, 71].

ii) Mitigate overfitting: DS measures also confer benefits with respect to reducing overfitting on supervised
learning tasks [127, 129, 174, 175]. When different subsets of a training set of fitness cases are presented to
the evolving population during the course of GP, the solution programs that survive multiple generations
are capable of performing well on the different subsets; conversely, brittle solution programs which
cater for certain fitness cases only are not guaranteed survival [128, 129]. Surviving candidate solution
programs are thus likely to capture the underlying relationships in the training set without overfitting it
[128, 129, 174].

iii) Reduce computational expense: DSS, RSS and TBS are formulated for the specific purpose of reducing the
computational effort associated with fitness evaluation [11, 71, 120, 121]; here, evaluating only subsets of
the complete fitness case set at a time enhances the evolution speed of GP [11, 71, 120, 121].

On the other hand, the processing required to select the fitness case subsets in DSS, RSS and TBS
makes a small contribution to the GP runtime, when compared to the cost of fitness evaluation. The
fitness evaluation of each candidate solution program involves traversing the program tree for each
fitness case, which is exacerbated as program sizes increase with the progress of GP. On the other hand,
in RSS, the process of selecting the fitness case subset for evaluation is simple random selection. In DSS,
additional memory is required to keep track of the age and difficulty of each fitness case; processing
is also required to calculate the weight of each fitness case on each generation. TBS requires additional
memory to store the topological relationships between fitness cases. In TBS, the topological relationships
between fitness cases are represented by a weighted graph, where each edge of the graph denotes the
relationship between a pair of fitness cases [11]. Here, processing is required to adjust the weight of each
edge on each generation, based on the fitness cases solved by the candidate solution programs. Overall,
while there is an increase in the memory requirements, selecting the fitness case subsets in DSS and
TBS involves simple arithmetic, whereby the age, difficulty or topological relationships pertaining to the
fitness cases are incremented or decremented based on the feedback from GP; subsequently, the fitness
cases are selected based on the weights assigned to these quantities.

Disadvantages

One disadvantage has been identified for DS measures:
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i) Limited applicability: DS measures are formulated to work on problems where a set of fitness cases is de-
fined. Hence DS measures do not conceptually apply to problems where a single fitness case is defined,
rather than a set of fitness cases.

Discussion

The literature shows that DS measures improve on the performance of OF-GP on applications prone to local
optima; examples include the Boolean even-n parity problems [10] and the real-world thyroid data classifica-
tion problem [71].

The main concern when applying DS measures is a worst case scenario where resampling the fitness case
set during the course of GP makes fitness a moving target [176]. Here, changing the fitness case subset can lead
to the useful characteristics acquired by candidate solution programs on previous subsets becoming irrelevant
with respect to the new fitness evaluation criteria, such that the search is non-progressive. Ideally, the popula-
tion should retain the useful characteristics acquired from previous fitness case subsets. In this vein, Ross [176]
argues that fitness case subsets that adequately represent the complete fitness case set minimize the negative
effects on fitness during transitions between the subsets. With the use of sampling, the candidate solution pro-
grams with good fitness scores can be distant from the target strategy delineated in the complete fitness case
set; this will be acute for unrepresentative subsets. On the other hand, representative subsets ensure congru-
ence between high-fitness candidate solution programs and the target strategy, whereby such programs can
be retained during the transitions between the subsets. When using GP to evolve regular expressions, Ross
[176] observes that in the case of randomly sampled fitness case subsets, larger subsets are more representative
than the complete fitness case set; hence configuring a larger subset size leads to improved algorithm perfor-
mance [176]. However, larger subsets are associated with more computational effort required to evaluate the
fitness of candidate solution programs. Therefore, in [176], configuring the subset size is a trade-off between
adequately representing the complete fitness case set and the expense of a fitness computation. This dilemma
is addressed by some of the DS variants. TBS [11] can be applied to the given problem, whereby the topo-
logical relationships between fitness cases are used to discourage similarity between the fitness cases selected
for the subsets, such that small subsets can sufficiently represent the complete fitness case set. DSS can also
be applied, whereby the priority of cases not included in the fitness case subsets for a significant number of
generations is increased, such that the evolved candidate solution programs do not loose the ability to solve
these fitness cases.

Overall, DS measures are shown to mitigate premature convergence on problems prone to local optima.
DS measures are also shown to mitigate overfitting on supervised learning tasks. Furthermore, DS measures
can be used to reduce the computational effort of OF evaluation on problems with large fitness case sets.

3.5.2 Stepwise adaptation of weights

Stepwise adaptation of weights (SAW) measures are also intended for use on problems where a set of fitness
cases is defined. SAW modifies OF by assigning adaptive weights to the fitness cases in the fitness case set [8,
9]. The adaptive weights are used to increase or decrease the influence of the individual fitness cases on the
fitness evaluation.

Motivation

SAW is intended to mitigate premature convergence [8]. By employing adaptive weights, SAW effectively
varies the fitness evaluation criteria during the course of GP. Importantly, SAW increases the weights applied
to “difficult” fitness cases, which are not easily solved. This action increases the priority of the “difficult”
fitness cases, while reducing the priority of fitness cases that are easily solved. As a result, search is prevented
from converging to solution programs that solve only the latter class of fitness cases [8, 9].
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Implementation

To set up SAW, the GP practitioner assigns equal weights to the fitness cases in the initial generation [8, 9].
Subsequently, SAW periodically adapts the fitness case weights at an interval of λ generations, where λ is
a user-specified parameter. Here, SAW increases the weights of the fitness cases not solved by the current
best-of-generation solution program [8, 9]. Equation 3.10 represents SAW. Equation 3.10 is adapted from [8, 9].

F6(i,m) =

|m|∑
n=1

Wn × δ(S(i, xn), yn) (3.10)

whereby:

i. F6(i,m) is the fitness assigned to i.

ii. i is the candidate solution program.

iii. m is the set of fitness cases defined for the given problem. |m| is the size of m.

iv. S(i, xn) is the output value returned by i for the nth fitness case in m.

v. yn is the target value for the nth fitness case in m.

vi. Wn is the adaptive weight applied to the nth fitness case in m.

vii. δ(S(i, xn), yn) is a function computing the level of concurrence of S(i, xn) with yn.
As in equation 3.1, the possible calculations for δ(S(i, xn), yn) are:
Absolute difference:
......δ(S(i, xn), yn) = −|S(i, xn)− yn| (the negative sign induces maximization).
Hit count:

......δ(S(i, xn), yn) =

1, if S(i, xn) = yn.

0, if S(i, xn) 6= yn.

Variants

The literature defines two versions of SAW; classic SAW (CSAW) [8, 9] and precision SAW (PSAW) [8]. Both
CSAW and PSAW initialize the weights of all cases in the fitness case set to the numerical value of 1. Also,
both variants adapt the weights of the fitness cases on each generation, based on feedback from the current
best-of-generation solution program. The SAW variants are discussed below:

1. Classic SAW (CSAW) [8, 9]: CSAW increases the weights of the unsolved fitness cases by a constant factor
(for example 1).

2. Precision SAW (PSAW) [8]: For each unsolved fitness case, xn, PSAW increases the weight of xn by a factor
of |S(i, xn)− yn|, where S(i, xn) and yn are the output produced and the target value for xn respectively.
Therefore, PSAW increases the weight of a fitness case in proportion to the extent of error (i.e. the margin
between S(i, xn) and yn) on the fitness case.

PSAW is applied on quantitative problems, where the extent of error on a fitness cases can be ob-
tained. GP benchmark symbolic regression problems [1] are classic examples of quantitative problems.

Advantages

Two advantages have been identified for SAW:

i) Mitigates premature convergence: Like DSS and LEF, SAW forces the candidate solution programs to deal
with “difficult” fitness cases; this action reduces the priority of fitness cases that are easily solved, which
in turn prevents search from converging to solution programs that solve only these fitness cases [8, 9].



Chapter 3. A Survey of Fitness Measures in GP 45

ii) Mitigates overfitting: As in the case with DSS, SAW has the capability to mitigate overfitting on supervised
learning tasks. Given a training set defined for the problem tackled by GP, SAW continually adjusts
priority of fitness cases in the training set with the progress of GP, such that solution programs that
survive multiple generations are capable of performing well on different subsets of the training set.
Surviving solution programs are thus likely to capture the underlying relationships in the training set
without overfitting it.

Disadvantages

One disadvantage has been identified for SAW:

i) Limited applicability: SAW is formulated to work on problems where a set of fitness cases is defined.
Hence SAW does not conceptually apply to problems where a single fitness case is defined, rather than
a set of fitness cases.

Discussion

The literature [8, 9] shows that SAW can improve on the performance of OF-GP. In [8], PSAW produces bet-
ter results than OF-GP in the symbolic regression domain. Furthermore, PSAW consistently produces better
results than CSAW on symbolic regression problems [8]. PSAW increases the priority of each fitness case in
proportion to the extent of error on the fitness case. Hence in PSAW the fitness cases are prioritized in pro-
portion to their “difficulty”. Therefore, the performance advantage of PSAW over CSAW in [8] is justified by
the fact that PSAW imposes finer granularity with respect to how the fitness cases are prioritized, whereby
the more difficult fitness cases are assigned heavier weight in the fitness evaluations; this action leads to more
difficult fitness evaluation criteria, which mitigates convergence of the population even further.

CSAW generally improves on the performance of OF-GP when solving classification problems using su-
pervised learning [9]. Nevertheless, CSAW is seen to perform poorly on the heart disease classification task,
due to the way in which the equivalence classes are defined in the task [9]. From section 3.3.2, recall that an
equivalence class is a group of fitness cases that map onto the same output value; two fitness cases, (xp, yp)

and (xq, yq), belong to the same equivalence class if yp = yq . Two equivalence classes are specified in the
heart disease classification task: “heart disease absent" and “heart disease present" [9]. In such scenarios in-
volving highly sensitive data, a false diagnosis of “heart disease absent" is worse than a false diagnosis of
“heart disease present"; it is safer to say that everyone has a heart disease [9]. These types of classification
problems incorporate a cost matrix that biases the measurement of misclassifications. In this example, the
incorrect assignment of a fitness case to the “heart disease absent" class results in a higher penalty. In such
scenarios, SAW is not programmed to adhere to the different penalties associated with the fitness cases from
the different equivalence classes [9]: SAW increases the weights of all misclassified cases equally, regardless
of the contribution of the specific misclassifications to the fitness value. The result is that SAW can mislead
search by prioritizing the fitness cases from a low-penalty equivalence class [9]. Rather, it is preferable for the
weight on a fitness case to be increased in proportion to the type of error made on the case, where the fitness
cases from low-penalty equivalence classes are assigned less weight than the fitness cases from high-penalty
equivalence classes. This a worthwile consideration for extending the function of SAW in future.

Overall, SAW can mitigate premature convergence on problems prone to local optima. SAW can also be
applied to mitigate overfitting on supervised learning tasks. However, more work is needed with respect to
tailoring SAW to work on problems where biased cost matrices are used to evaluate the fitness of candidate
solution programs.

3.6 Subjective fitness

This category is comprised of competitive fitness (CF) [13, 177–181] and cooperative fitness (CoopF) [182–185].
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3.6.1 Competitive fitness

Competitive fitness (CF) is a long standing paradigm in machine learning [137, 186–189]. In competitive fitness
GP (CF-GP), candidate solution programs are optimized solely on the basis of competition with coevolving
solution programs [1, 12, 190, 191]. Here what is required is not necessarily a definition of the search objective,
but rather some concept of “better” [12].

Motivation

CF is motivated by the limited applicability of OF-GP. Particularly, CF is formulated for evolving competitive
strategies [12, 13, 132]: OF does not conceptually apply to this class of problems, due to the lack of a suitable
objective metric for measuring performance [12, 13]. Panait and Luke [13] give the example of using GP to
evolve a soccer playing program, whereby it is difficult to determine how the fitness of the candidate solution
programs will be assessed a priori. In this scenario, the only obvious way in which the fitness of a candidate
solution program can be determined is through competition with other solution programs [13]. If a suitable
“expert” strategy is available, the candidate solution programs can be measured against the strategy, however
in this case, the evolved solution programs would only be optimal with respect to this “expert”, rather than
being generally optimal with respect to a variety of opponents.

CF is also implemented on problems where there is a known OF measure [13, 177–181]. Here, a CF measure
replaces an OF measure, conferring advantages with respect to mitigating premature convergence, as detailed
in this section.

Implementation

In CF-GP, a fitness assessment topology is employed to facilitate fitness evaluation: a fitness assessment topol-
ogy details the fitness evaluation context for each candidate solution program, by specifying the nature and
number of competitions involved in a fitness computation [13]. The fitness assessment topologies specified in
the literature are detailed under the CF-GP variants. Equation 3.11 represents CF.

F7(i,m) = ϕ(i, µ0, ..., µn−1,m) (3.11)

whereby:

i. F7(i,m) is the fitness assigned to i.

ii. i is the candidate solution program.

iii. m is the set of fitness cases defined for the given problem.

iv. ϕ(...) is a function that represents competition between i and n coevolving candidate solutions, (µ0, ..., µn−1), over
the m fitness cases. The nature of ϕ(...) and the value of n depend on the implemented fitness assessment topology.

In CF-GP, the basis of competition is problem-specific. In game playing domains, a solution program, A,
is considered to be “better” than a solution program, B, if A outplays B, or wins the game [13, 132–134, 136,
191, 192]. Conversely, when implementing CF-GP on the intertwined spirals problem, Juillé and Pollack [177]
perceive “better” to be based on the extent to which a candidate solution program can solve the fitness cases
not solved by its opponent; here, the fittest candidate solutions are the ones that solve the largest number of
unique fitness cases, relative to the coevolving solutions [177]. According to Juillé and Pollack [177], the latter
approach implicitly incorporates a novelty search (see section 3.7); that is, the competing solutions programs
are constantly encouraged to solve unique fitness cases or “do something new”; this approach to measuring
the CF of candidate solution programs also has the advantage of being universally applicable on optimization
problems where a set of fitness cases is defined.
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Variants

Two main approaches to CF-GP are described in the literature:

1. Single-population CF-GP [12, 13, 132–134, 136, 177, 192–196]: In this approach, a single homogeneous
population is evolved. On each generation, the fitness of a candidate solution program is a function of
competition with solution programs from the same population. Single-population CF-GP is restricted to
single-population domains.

2. Coevolution (Multi-population CF-GP) [1, 178–181, 190, 191]: This approach involves the coupled evolu-
tion of two or more heterogeneous populations [1, 190, 191]. The evolutionary cycles in the populations
coincide, and the fitness of a candidate solution program is a function of competition with solution pro-
grams drawn from the coevolving population(s) [1, 190, 191]. The genetic operators are applied to the
opposing populations independently, such that the populations are genetically distinct, and commu-
nicate strictly to determine fitness [1, 190, 191]. Coevolution can also be implemented by applying the
host-parasite model proposed by Hillis [188] to single-population domains: here a population of candi-
date solution programs (the host population) coevolves with a population of different subsets of the
fitness case set (the parasite population) [188]. In each competition between a host, A, and a parasite, B,
A is rewarded based on the number of fitness cases (within B) solved; conversely, B is rewarded based
on the rate at which A fails to solve all of its fitness cases. This type of rating on the parasite population
favors an adaptation towards “difficult” fitness cases [188]. This action prevents search from converging
to solution programs that solve only “easy” fitness cases [188].

Both the above-mentioned approaches employ a fitness assessment topology to determine the CF. The
topologies described in the literature are listed below. In the listing below, a population size of N is assumed
for single-population CF-GP. In the case of coevolution, 2-population coevolution is assumed, where the coevolving
populations have the same population size of N . The topologies are:

1. Single elimination tournament (SET) [12, 13]: This topology is applied in single-population CF-GP. On each
generation, SET involves the entire current population in a binary knock-out tournament of log N (base
2) levels. The fitness of a candidate solution program is the maximum level attained by the program in
the tournament. Thus the overall tournament winner is assigned a fitness value equal to the maximum
tournament level (= log N (base 2)) [13]. The total number of competitions required per generation is
N/2 +N/4 + ....+ 2 + 1 = N − 1 [13]. Therefore, the computational complexity of this topology is linear,
as in the case with OF evaluation [13].

2. Round robin [1, 13]: This topology is applied in both single-population CF-GP and coevolution. In the single
population case, the fitness of a candidate solution program is a function of competition with every other
solution program in the same generation of the current population. In 2-population coevolution, the fitness
of a candidate solution program is a function of competition with every solution program in the same
generation of the coevolving population. Round robin provides the most thorough measurement of the
fitness of the candidate solution programs in a population with respect to each other [13]. Nevertheless,
the topology is computationally expensive, requiring order N2 competitions per generation [13]. The
quadratic complexity renders the topology unsuitable for problems where competitions are time con-
suming and require significant computational resources [132, 133]. Round robin is seldom applied in the
literature.

3. Random pairing [13, 132, 133, 190, 194]: This topology is applied in both single-population CF-GP and
coevolution. In the single population case, the fitness of a candidate solution program is a function of
competition with another solution program sampled with uniform probability from the same generation
of the current population. In 2-population coevolution, the fitness of a candidate solution program is a
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function of competition with a single solution program sampled with uniform probability from the same
generation of the coevolving population. Random pairing is computationally favorable, requiring orderN
competitions per generation [13]. The minimal computation renders the topology suitable to problems
with computationally expensive competitions [132, 133]. The main disadvantage of random pairing is
that the assigned fitness value is highly dependent on the luck of having a poor opponent, rather than
being dependent on the actual ability of the candidate solution program [13]. The topology is therefore
not suited to “noisy” problems, where there is lack of accuracy in measuring the scores resulting from
competitions between solutions [13]; CF evaluation on such problems should be based on competition
with a sizeable number of opponents, in order to average out the effects of noise [13].

4. K-random opponents [13, 179]: This topology is applied in both single-population CF-GP and coevolution.
In the single population case, the fitness of a candidate solution program is a function of competition
with K distinct solution programs sampled with uniform probability from the same generation of the
current population. In 2-population coevolution, the fitness of a candidate solution program is a function
of competition with K distinct solution programs sampled with uniform probability from the same gen-
eration of the coevolving population [179]. The K-random opponents topology conducts order N × K

competitions on each generation [13]. K-random opponents straddles the random pairing and round robin
topologies; when the value of K is set to 1, the approach is identical to random pairing; conversely, when
the value of K is set to N − 1, the approach is similar to round robin [13].

Advantages

Three advantages have been identified for CF:

i) Appropriate fitness measure for evolving competitive strategies: CF measures are appropriate for evolving
competitive strategies. This class of problems lacks a suitable metric for OF evaluation [130].

ii) Mitigates premature convergence: CF systems are open-ended: since competitors evolve simultaneously,
they continually present new challenges for each other [130]. This evolutionary scheme enforces an
“arms race", whereby innovation in a candidate solution program begets innovation in the competing
solution programs [197]. This dynamism mitigates premature convergence [137, 197].

iii) Mitigates the bootstrap problem: CF provides a “hittable” target in the initial generations of GP [130]. This
is because low-fitness candidate solution programs are assigned fitness based on competition with other
low-fitness solution programs. Watson and Pollack [130] illustrate this advantage by drawing a parallel
with a real-life chess tournament: if any two novice chess players play against a Grand Master, both
novice players will loose, such that their individual performances are indistinguishable. On the contrary,
if the two chess players play against each other, the relative performance of the chess players will be
evident. In similar fashion, competition between low-fitness candidate solution programs in the initial
population allows the GP algorithm to distinguish the differences in performance; this is preferable to
all the solution programs being measured against a difficult objective fitness measure.

Disadvantages

Three disadvantages have been identified for CF:

i) Relativism: Watson and Pollack [130] argue that CF-GP is vulnerable to relativism. Given that the candi-
date solution programs are the sole source of information with respect to each other’s performance, there
are no guarantees that evolution will proceed in a direction that maximizes the absolute fitness of the
solution programs [130]. For example, in cases where the genetic operators are equally likely to increase
or decrease the absolute fitness of the candidate solution programs, two high-fitness solution programs
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may register the same score in competition with each other as two low-fitness solution programs [130].
In such scenarios, the CF-GP is non-progressive.

ii) Focusing on the wrong things: Competing candidate solution programs focus on exploiting each other’s
weaknesses [130]. This may lead to solution programs that specialize in the weaknesses of their oppo-
nents, rather than general solutions to the task [130]. For example, in the predator-prey pursuit problem
[190], if the fitness of either population is limited by the choice of function and terminal set, the coevolv-
ing population is trained to defeat the limited population, as opposed to being trained to defeat a general
predator or prey strategy.

iii) Potential for loss of gradient information in coevolutionary systems: A coevolutionary system looses its adaptive
gradient in scenarios where one population becomes too good, compared to the coevolving population(s)
[130]. This is a likely scenario, because the coevolving populations do not share genetic material. The loss
of gradient once again results in an “unhittable” target [130]. The coevolving populations no longer exert
the mutual pressure to outperform each other, and are thus likely to drift with no improvement [130].
For example, in the predator-prey pursuit problem, Haynes and Sen [190] argue that better function and
terminal sets are required in the predators’ syntax, in order to evolve a strategy capable of tackling the
highly evasive algorithm developed by the prey population [190].

Discussion

CF-GP is shown to evolve effective competitive strategies on different problems; examples include evolving
soccer softbot teams [132], backgammon players [192] and chess players [134, 198].

CF-GP is also shown to outperform OF-GP on problems where there is a known OF measure [177–181]. In
[177], single-population CF-GP produces better results than OF-GP on the intertwined spirals problem: this
problem contains a number of local optima [144, 199]. In [179] and [180], host-parasite coevolution achieves
better classification accuracy than OF-GP when solving real-world classification problems using supervised
learning. Also, in [178, 181], host-parasite coevolution achieves a higher success rate than OF-GP on a symbolic
regression problem prone to local optima. CF-GP’s performance advantage is justified by the fact that CF
measures induce a competitive selective pressure to constantly innovate, mitigating premature convergence
[178, 180, 181]. Also, Pagie and Hogeweg [181] argue that by focussing on “difficult” fitness cases, host-parasite
coevolution imposes more efficient sampling of a given fitness case set, compared to OF-GP, which wastes
evaluation effort on fitness cases that have already been solved. Focusing on “difficult” fitness cases also
reduces the priority of fitness cases that are easily solved, which in turn prevents search from converging to
solution programs that solve only the latter class of fitness cases.

All the same, CF-GP has its shortcomings. A number of the fitness assessment topologies used in CF-GP
rely on a strong transitivity assumption: if A defeats B, and B defeats C, then A must be able to defeat C [13].
If this assumption is not necessarily true, any deductions made about the relative capabilities of candidate
solution programs without explicitly comparing the programs is unreliable [13, 130]. Intransitive problems
generally create problematic scenarios for CF-GP [130]. An example of intransitivity is seen in the game of
chess, where a player’s mastery of the game depends on different abilities (e.g. the ability to plan, the ability
to anticipate the opponent’s next move, etc.), and each player posseses different levels of skill with respect
to the different abilities; here, different abilities can be relevant to different opponents, such that a scenario
results in which a player A reliably beats B and B reliably beats C, yet A cannot beat C [130]. In this scenario,
if C beats A, a loop occurs, as in the “rock, scissors, paper” game [130]. In evolving competitive strategies, the
occurrence of such cyclic superiority relationships among candidate solution programs can lead GP to “chase
its own tail”, where the evolving population keeps revisiting the same regions of the search space, despite the
apparent improvements in fitness [130].

Ultimately, CF-GP is inherently suited to evolving competitive strategies; however, challenges are encoun-
tered on intransitive problems, where cyclic superiority relationships exist between the candidate solution
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programs. CF-GP can also be used to mitigate premature convergence on problems where there is a known
OF measure.

3.6.2 Cooperative fitness

In cooperative fitness (CoopF) GP, candidate solution programs are optimized on the basis of collaboration
with coevolving solution programs [182–185, 200].

Motivation

Cooperative Fitness (CoopF) GP uses a “divide-and-conquer” strategy to tackle complex multi-dimensional
problems: a multi-dimensional problem is a problem that can be broken down into components, such that
each of the components is a combinatorial optimization problem on its own [182–184]. Particularly, CoopF-GP
is used on multi-dimensional problems where the problem dimensions interact [182–185, 200]. An example is
seen in the multi-robot path planning domain [182], where the task is to compute the paths of various robots on
a shared grid, such that each robot has an optimal or near optimal path, and the overall path of all the robots
combined is also optimal. Here, generating an optimal path for each robot is a combinatorial optimization
problem on its own [182]. Also, coordinating the robots to generate an optimal overall path, where collisions
between the robots are minimized, is also a combinatorial optimization problem [182]. In such scenarios where
the different dimensions of a problem influence each other, it does not make sense to tackle each dimension
in isolation, rather the interaction between the problem dimensions forces them to be tackled simultaneously
[182–185, 200].

In CoopF-GP, the search objective is divided into components that represent the dimensions of the prob-
lem being tackled [182–185]. Subsequently, two or more distinct heterogeneous populations are coevolved,
such that each population optimizes a different component of the objective [182–184]. The coevolving popu-
lations interact to determine the fitness of their candidate solution programs. Essentially, CoopF-GP divides a
complex problem into smaller subspaces which are collectively searched to solve the complete problem.

Implementation

To set up CoopF-GP, the GP practitioner fragments the problem into components. The practitioner determines
the number of components, and the role that each component will play a priori [182–185]. The fragmentation
is problem-specific and requires a level of problem domain knowledge [182–184]. Proceeding fragmentation,
a random population is initialized for each component. The different populations are evolved in parallel, and
their solution programs evaluated in the context of each other [182–184]. Also, the populations are geneti-
cally isolated and communicate strictly to determine fitness [182–184]. To obtain an overall solution, CoopF
assembles representative members from each of the coevolving populations. At the population level, a solu-
tion program’s fitness depends on the fitness of the overall solution formed as a result of collaboration with
representatives from the coevolving populations [184]. The fitness of the overall solution is typically based on
an OF measure [182–185]. Equation 3.12 represents CoopF.

F8(i,m) = ϕ(i, µ0...µn−1,m) (3.12)

where

i. F8(i,m) is the fitness assigned to i.

ii. i is the candidate solution program.

iii. m is the set of fitness cases defined for the given problem.

iv. ϕ(...) is a function that represents collaboration between i and n representative solution programs, µ0...µn−1, drawn
from the coevolving population(s). The nature of ϕ(...) and the value of n depend on the configuration specified by
the user.
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Variants

In CoopF-GP, it is common practice to determine the fitness of each candidate solution program in a given
population by collaborating with the best solution programs from the coevolving populations [184]. Alterna-
tively, a fitness assessment topology, as described in section 3.6.1, can be used to specifying the nature and
number of collaborations involved in a fitness computation; here, the topologies are implemented the same
way as in CF-GP, with the exception that the candidate solution programs collaborate, rather than compete, in
the course of fitness determination.

Vanneschi et. al. [184] specify a further taxonomy for two-population CoopF-GP, which can be generalized
for a larger number of populations. The authors [184] apply the concept of “turns": a “turn" is the isolated
adaptation of one of the coevolving populations [184]. On a population A’s turn, the coevolving population is
suspended, such the effect of the coevolving population on the fitness of the overall solutions is held constant,
and A evolves uninterruptedly for a fixed number of generations [184]. The following strategies dictate the
respective turns:

1. Basic alternation [184]: In basic alternation, each coevolving population executes a turn for a pre-fixed,
user-configured number of generations. Population A’s turn is proceeded by population B’s turn. Sub-
sequently the strategy cycles back to population A’s turn.

2. Coevolve if no improvement (CINI) [184]: In this strategy, each coevolving population executes a turn only
when the other population does not yield significant improvement on the fitness of the overall solution
for a threshold number of turns.

3. Auto-alternation [184]: In this strategy, each coevolving population executes a turn for a pre-fixed, user-
configured number of generations. At the end of each turn, auto-alternation proceeds by evolving the
“most promising" population. Let δF represent the improvement of the best-overall-solution fitness at
the end of a turn. Then the population that produced the highest value of δF in its last turn will have the
next turn.

Advantages

Two advantages have been identified for CoopF:

i) Improves search on multi-dimensional problems: In CoopF-GP, employing distinct coevolving populations
to tackle a given problem results in more independent optimization of each of the specified dimensions
of the problem [182–185]. Particularly, CoopF improves on search by facilitating different step sizes in
the different dimensions of a given problem, where the coevolving populations are allowed to execute
turns spanning different generations [184]. This is useful in cases where the different dimensions of a
problem represent non-homogeneous objectives; for example, a more detailed search may be required in
one of the dimensions of a given problem relative to the other dimensions.

ii) Mitigates premature convergence: CoopF confers the advantage of speciation through the maintenance of
multiple genetically isolated populations evolving towards a common objective [58, 201]. Diversity is
therefore perpetuated, whereby the coevolving populations constantly present new challenges to each
other, mitigating premature convergence within the individual populations [201].

Disadvantages

Three disadvantages have been identified for CoopF:

i) Configuration difficulty: Configuring CoopF-GP is non-trivial. GP practitioners are confronted with the
credit assignment problem, whereby in addition to defining the different components of the search ob-
jective that will be optimized, they need to determine the weight of the contribution made by each
component to the fitness of the overall solutions [182].
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ii) Focusing on the wrong things: In CoopF-GP, the coevolving populations focus on performing well in rela-
tion to the collaborating partner(s). This may lead to solution programs that are specialized with respect
to the collaborating partner(s), rather than general solution programs that maximize the absolute fitness
of the populations [185].

iii) Loss of gradient information: CoopF systems are vulnerable to a loss of gradient information. This occurs
when one population severely dominates the collaborating populations, such that the solution programs
from the dominant population contribute disproportionately high scores to the fitness of the overall so-
lutions [185]. As a result, none of the collaborating populations will have sufficient gradient information
to facilitate learning [130, 185]. The populations are thus likely to drift with no improvement [130, 185].

Discussion

In general, CoopF demonstrates capability to improve on the performance of OF-GP on multi-dimensional
problems [182–184]. According to Wiegand [185], CoopF offers two augmentations to conventional OF eval-
uation. The first is the division of a problem into smaller subspaces in which to search [185]. The second,
facilitated by setting up different optimization systems for the different problem components, is the emphasis
of search on the individual components. Overall, CoopF’s “partitioning and focusing" strategy [185] increases
exploration of the individual problem components, improving on the search capability of GP. In [182], CoopF is
shown to solve the complex problem of multi-robot path planning. Also, in [183], CoopF achieves a high-level
of classification accuracy when solving a complex object detection task using supervised learning.

Vanneschi et. al. [184] implement CoopF in the symbolic regression domain. In [184], the task of symbolic
regression using GP is augmented to include a subtask of optimizing the values of the numeric terminal con-
stants used in the GP being executed. Hence two levels of optimization are implemented: 1) a GP is used to
optimize the given regression function, and 2) a GA is used to optimize the values of the numerical terminal
constants used in the GP; thus the evolutionary system is comprised of coevolving GP and GA populations
[184]. The authors in [184] experiment with different strategies with respect to the execution of “turns” in
the CoopF-GP. The data in [184] indicates that CoopF performs best when execution of the respective turns
is informed by feedback from the evolutionary process. Particularly, CINI and auto-alternation consistently
achieve on par or better success rates when compared to OF-GP on the tackled symbolic regression problems
[184]. In CINI, lack of improvement in the fitness of the overall solutions for a threshold number of genera-
tions is used as feedback to break the current turn and allow the coevolving population to execute its turn. In
auto-alternation, the extent of fitness improvement produced on each population’s turn is used as feedback to
select the population that will execute the next turn; this is such that the population with higher capability to
improve on the overall OF score can execute consecutive turns. On the other hand, basic alternation uncondi-
tionally executes alternate turns of the coevolving populations; here, the turn of a population, A, which has
capability to improve on the overall OF score, can be interrupted, and the fitness landscape changed, such
that the same improvements may no longer be achievable on A’s next turn [184]. Thus basic alternation can be
detrimental to coevolutionary search, and is seen to not to produce reliable results in [184].

Overall, CoopF is suited to multi-dimensional problems. CoopF offers the opportunity to tackle the differ-
ent dimensions of a given problem simultaneously in cases where the problem dimensions interact. CoopF is
also used on multi-dimensional problems where the different problem dimensions represent non-homogeneous
objectives; here, the use of distinct heterogeneous populations and alternate turns allows for different step-
sizes in the different problem dimensions.

3.7 Novelty search

In novelty search GP (NS-GP), candidate solution programs are optimized solely on the basis of how distinc-
tive they are in “behavior”, compared to current and prior solution programs: a behavior implicitly represents
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the fitness of an individual, providing a problem-specific, fine-grained perspective of its performance [4, 74].
For example in the maze navigation problem [4], where the search objective is to navigate an agent to a target
end-point, the behavior of a solution program is defined as the specific end-point reached when using the
program to navigate the agent, rather than the coarse-grained view of measuring performance as the distance
between the end-point reached and the target end-point. Fundamentally, NS promotes diversification from
current and prior behaviors by generating a constant selective pressure for the evolving solution programs to
“do something new" [4, 72–76].

Motivation

NS is motivated by the observation that OF-based systems are vulnerable to deception and premature conver-
gence [4]. NS ignores the pressure to achieve high objective fitness, thus opening up search [4, 72, 73]. Chiefly,
the method is inspired by natural evolution’s open-endedness and ability to keep producing novel organisms
[4]. The ambitious goal of NS is to replicate nature’s unbounded capacity for innovation [4]. The intuition is
that the perpetual search for novelty alone is a potent weapon against premature convergence [4].

Implementation

NS is set up by replacing an OF measure with a novelty metric [4, 72–76]. Use of the novelty metric requires
a prior problem-specific definition of behavior [4, 72–76]. Here, the behavior of a candidate solution program
is characterized by a behavior vector, v1, v2..., vb, ...vM , where the vb is the value of the bth behavior feature for
the given program. The term “behavior space” refers to the space of all possible such vectors. The novelty
metric measures a candidate solution program’s distance to its k-nearest neighbors in the behavior space [4,
72–76], where neighboring solution programs are drawn from the current population and a novelty archive.
Equation 3.13 represents the novelty metric. Equation 3.13 is taken from [4, 72–76].

F9(i,m, k) =
1

k

k∑
j=0

dist(i, j) (3.13)

whereby:

i. F9(i) is i’s novelty score.

ii. i is the candidate solution program.

iii. m is the set of fitness cases defined for the given problem.

iv. k is a user-configured parameter.

v. dist(i, j) is the distance in behavior between i and j, the jth solution among the i’s k-nearest neighbors.
The measurement of dist(i, j) is problem-specific. For example, in the maze problem [4], dist(i, j) is measured as
the Euclidean distance between the ending positions of i and j.

A key component of NS is the maintenance of a novelty-archive [4, 72–76]. On the initial generation of GP
the archive is empty. Subsequently on each generation, each population member is eligible for incorporation
into the archive; a candidate solution program is added to the archive if its behavior distance to the archive
exceeds a user-configured novelty threshold parameter, ρmin [4, 72]. The goal is for the archive to represent
the most distinctive behaviors encountered by GP so far; as a result, novelty is perpetuated when the fitness
of each candidate solution program in the population is assigned in proportion to the distance to its k-nearest
neighbors drawn from both the current population and the archive [4, 72]. The archive can be allowed to
increase in size indefinitely [72]. Alternatively, a fixed size can be specified for the archive, where the solution
programs added to the archive replace the least novel programs in the archive [72]. The latter strategy is
conservative with respect to the computational and memory requirements of GP. Particularly, determining a
solution program’s k-nearest neighbors calls for calculation of the pairwise behavior distance to each program
in both the current population and the archive, which is computationally expensive for large archives.
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Variants

In several optimization problems, NS’s complete abandonment of the search objective is too radical an ap-
proach [202]. For vast behavior spaces, search guided by novelty alone can run for a long time before finding
candidate solution programs that are relevant to the search objective [202]. Therefore, a number of NS vari-
ants attempt to minimize the time spent evaluating candidate solution programs with little or no relevance
to the objective: this is achieved by incorporating the objective into the novelty search. One such variant is
novelty-fitness aggregation [72]. In this variant, the fitness measure is a weighted sum of the OF and novelty
scores. Other NS variants are applied on different optimization platforms, but also conceptually apply to GP
[203–208]. These variants can also improve the NS [204–207]:

1. Novelty-Based Multi-objectivization [203, 204]: In this variant, a Pareto-based multi-objective fitness mea-
sure is employed, combining the OF and novelty scores. Pareto-based multi-objective measures are use-
ful when optimizing conflicting objectives: a Pareto-based measure is used to discover Pareto-optimal
solutions - the set of solutions in which none of the objectives can be improved in value without de-
grading the other objectives; essentially, all Pareto-optimal solutions are considered to be equally good
and cannot be ordered completely [209]. In novelty-based multi-objectivization, the Pareto dominance rela-
tion facilitates the discovery of solutions with high novelty but low OF scores, and also the discovery of
solutions with high OF but low novelty scores [203, 204].

2. Minimal Criteria NS [205]: This variant is applied in constrained optimization problems: in constrained
optimization, one or more variables are optimized in the presence of some constraints on the variables
[205, 207, 208]. Here, solutions that fail to satisfy the constraints are deemed as infeasible [205, 207,
208]. In minimal Criteria NS, the formula for fitness evaluation comprises of the novelty metric and a flag
indicating whether a solution meets the minimal feasibility criteria for the domain; the problem-specific
minimal feasibility criteria are configured a priori. Poor fitness scores are assigned to solutions that fail
to meet the feasibility criteria. Otherwise novelty scores are assigned to the solutions as normal.

3. Two population NS [207, 208]: This variant is also applied in constrained optimization. In two population
NS, two distinct populations are maintained, a feasible solution population and an infeasible solution
population. The solutions in the feasible population are selected based on the novelty metric; on the
other hand, the solutions in the infeasible population are selected based on a OF measure that minimizes
constraint violations. Proceeding selection, the genetic operators are applied independently in the differ-
ent populations to generate new solutions. The new solutions are tested for feasibility and placed in the
appropriate populations. Importantly, two population NS takes into account the possibility that infeasible
solutions can be the ancestors of feasible solutions.

Advantages

Three advantages have been identified for NS:

i) Does not rely on the structure of the OF landscape: Ignoring the search objective means that NS is not in-
fluenced by the structure of the OF landscape. Therefore, NS can avoid local optima in multi-modal
and deceptive problems. NS is also unlikely to stagnate on problems where the OF landscape contains
plateaus.

ii) Mitigates premature convergence: NS explicitly perpetuates the behavior diversity of a GP system. Going
by the theory that diversity mitigates premature convergence [1, 56, 58], NS mitigates this occurrence [4].

iii) Mitigates bloat: The data in [4, 210] indicates that NS mitigates bloat. Bloat is maladaptive to NS [4].
Particularly, neutral code protects against behavioral change, a phenomenon that is rewarded in NS.
Thus in contrast to OF-GP, the selective pressure in NS perpetually discourages the growth of neutral
code [4].
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Disadvantages

Five disadvantages have been identified for NS:

i) Configuration difficulty: Configuring NS is difficult, because the concept of behavior has not been stan-
dardized in the literature. An example is seen on the artificial ant problem, where a candidate solution
program controls an agent that collects a number of food pellets located on a trail. Here, Doucette and
Heywood [72] perceive a candidate solution program to be novel if the agent controlled by the program
consumes the pellets on the trail in a unique sequence. Conversely, for the same problem, Lehman and
Stanley [4] perceive novelty in terms of the number of pellets consumed by the agent at several even-
spaced time intervals. The results in [4] differ markedly from the results in [72]. In [4] NS outperforms
OF-GP, whereas in [72] the reverse occurs with OF-GP outperforming NS.

In general, choosing a behavior function requires prior problem-specific knowledge of the particular
behaviors that are relevant to the search objective [202, 211]. This expert knowledge may not be readily
available and its use contradicts one of the main goals of automated search: minimizing the level of
human involvement in the problem solving process [202, 211].

ii) Poor scalability: NS’s reliability is influenced by the size of the behavior search space. The approach
does not scale well to large or infinite behavior search spaces [202, 205, 212]. If the ratio of behavior
configurations that are not relevant to the search objective by far exceeds the ratio of configurations
relevant to the objective, the search for novelty alone may take a long time to discover the latter class of
configurations [204]. Nevertheless, this drawback is addressed by a number of the NS variants that have
been described in this section.

iii) Poor exploitation capability: Mouret [204] argues that NS is incapable of exploitation. Exploitation occurs
when GP converges on promising candidate solution programs, such that the search is concentrated on
the promising regions of the search space [1, 22]. NS inhibits population convergence, because the same
level of selective pressure in favor of diversification is maintained, even when near-optimal candidate so-
lution programs are found [204]. Thus NS lacks the ability to concentrate search on promising candidate
solution programs.

iv) Poor performance on trivial optimization problems: NS steers search away from the initial population [73,
74, 76]. The approach is therefore not suited to problems where the initial population contains partial
solutions. Rather, NS is suited to difficult problems, where there is more motivation for behavioral
exploration [73, 74, 76]. NS is however justified by the fact that most real-world optimization problems
are GP-hard [73, 74, 76].

v) Computational and memory overhead: NS incurs a computational overhead because computing the novelty
score of each solution program calls for calculation of the pairwise behavior distance to each program
in both the current population and the novelty archive, in order to determine the k-nearest neighbors.
This computation is expensive for large archives. A memory overhead is also incurred as a result of the
additional storage space required to maintain the novelty archive.

Discussion

NS is shown to outperform OF-GP on problems prone to deception and local optima [4, 74, 76]; these include
problems from the path-finding [4], supervised classification [74] and symbolic regression domains [76]. For
example, NS outperforms OF-GP on the artificial ant problem [4]; Langdon and Poli [99] have shown that on
this problem, the OF landscape contains several local optima and fitness plateaus; hence ignoring the search
objective proves worthwile on the problem.

In configuring behavior, it is important to consider that NS-GP does not purposefully traverse the behavior
space. Rather, as in canonical GP, new solution programs are generated by genetic operators applied in the
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genotype space. The novelty of the behaviors of the resulting offspring is then determined [202]. The relation-
ship between genotype and behavior is complex, and depends on the behavior configuration [202]. In NS-GP,
once a genotype is found, other genotypes that map onto the same (or similar) behavior will not be considered
novel, and are thus discounted by search [202]. This occurrence is beneficial if the genotypes that are mapped
onto the same (or similar) behavior have the same potential with respect to discovering useful novelty that can
advance the search [202]. Conversely, if the genotypes have different potential, important genotypes will be
overlooked [202]. Therefore, behavior should be specified in such a way that similarity in behavior correlates
to similarity in the potential of the genotypes [202]. However, measuring the potential of the genotypes is non-
trivial [202]: Kistemaker and Whiteson [202] argue that as a result, it is difficult to find a behavior function that
correlates the genotype and behavior spaces. In this vein, perhaps the best way to ensure congruence between
fitness assessment and the genetic operations in NS is to apply behavior-based genetic operators, whereby the
candidate solution programs are modified in the behavior space. Here, the behavior-based operators and the
fitness measure should employ the same characterization of behavior. To the author’s knowledge, no work
has been done with respect to defining behavior-based genetic operators. Hence this is a potential area for
future work.

Overall, a well-configured NS can improve the search capability of GP on problems with poorly formed
OF landscapes: that is, deceptive and multi-modal problems, as well as problems with fitness plateaus. By
ignoring the search objective, NS avoids the difficulty posed to OF-GP on such problems.

3.8 Summary

This chapter has identified the different fitness measures prescribed for GP. The fitness measures are surveyed
in detail, and their motivations, variants, advantages and disadvantages discussed. Based on the theory un-
derlying the fitness measures, inferences are made with respect to the different fitness measures that suit
different problems. Nevertheless, the information regarding problem suitability is only useful to a certain ex-
tent, because in real-world scenarios, GP practitioners are seldom aware of the properties underlying a newly
encountered problem. In this case, it is difficult to know a priori the fitness measures that will suit the given
problem.

There are a number of overlapping areas in this survey: in some cases, different fitness measures are identi-
fied as being suited to the same types of problems. For this reason, it is useful to know the fitness measures that
perform the best in a given scenario. Nevertheless, such deductions are hampered by the lack of comparisons
between the different fitness measures in literature: most studies simply compare against an OF measure. This
is an area that the GP community needs to look into. The subsequent chapter presents a comparison of the
following fitness measures: 1) objective fitness (OF) 2) behavioral programming (BP), 3) fitness sharing (FS),
4) dynamic subset selection (DSS), 5) host-parasite coevolution (HP), and 6) novelty search (NS). The listed
fitness measures are representative of the taxonomy of fitness measures presented in this chapter.



Chapter 4

A Comparison of Fitness Measures in GP

4.1 Introduction

Based on the literature surveyed in the previous chapter, the aim of this chapter is to test the hypothesis that
different fitness measures are suitable for different problems. This chapter also provides the justification for
the research in the thesis. An experiment is conducted to evaluate the effect that different fitness measures
have for different problems. In particular, the study looks at how the different fitness measures address each
of the limitations they aim to overcome for different problems. Six fitness measures are compared: 1) objec-
tive fitness (OF), 2) behavioral programming (BP), 3) fitness sharing (FS), 4) dynamic subset selection (DSS),
5) host-parasite coevolution (HP), and 6) novelty search (NS). The listed fitness measures improve on differ-
ent aspects of GP: in essence, the fitness measures are fundamentally different in their motivations and modi
operandi. The goal of selecting diverse fitness measures is to establish the different types of fitness that are
suited to different benchmark problems. The listed fitness measures are also state-of-the-art measures. From
the discussions in the previous chapter, OF is the original fitness measure applied at the inception of GP; most
GP practitioners have the habit of relying on OF measures. BP is a new paradigm shown to improve on the
performance of OF-GP. FS is the state-of-the-art in multi-modal function optimization. DSS mitigates prema-
ture convergence and overfitting; DSS also lowers the computational cost associated with fitness evaluation.
HP is a long standing paradigm in GP literature, shown to mitigate premature convergence and search stagna-
tion due to fitness plateaus. HP is also a competitive fitness measure: competitive fitness measures are argued
to mitigate the bootstrap problem. NS is the state-of-the-art with respect to mitigating premature convergence
on highly deceptive problems.

The previous chapter indicated a number of common observations pertaining to the above-listed fitness
measures. For example, BP, FS, DSS, HP and NS are all capable of improving on the quality of the solution
programs found by OF-GP. Furthermore, FS, DSS, HP and NS are all shown to maintain the diversity of GP,
mitigating premature convergence. In addition, both DSS and HP play a role in minimizing the computational
cost of GP. Also, both NS and FS are observed to mitigate bloat. This chapter makes an all-round comparison of
the fitness measures, whereby the fitness measures are all compared based on selected criteria (solution quality,
generalization, etc., the comparison criteria are detailed in section 4.2.2). This is done in order to provide a
complete picture of the respective capabilities of the fitness measures: for example, a fitness measure may
inadvertently influence some aspect of GP that it was not necessarily designed to improve on or mitigate.

This chapter is organized as follows. Sections 4.2 and 4.3 discuss the methodology and results of the
chapter’s experiment respectively. Finally, section 4.4 draws conclusions about the respective capabilities of
the fitness measures based on the results of the experiment.

4.2 Experimental methodology
This section details the implementation of the fitness measures analyzed in the experiment. The criteria used
for the comparison of the fitness measures are also discussed. Subsequently, a benchmark suite is specified for
the experiment. Then, the experimental set up is described in detail. Lastly, the technical specifications for the
experiment are outlined.
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4.2.1 Fitness measures

In this study, an experimental treatment, {Fα, p}, is the analysis of a given fitness measure, Fα, on a given
benchmark problem, p. In each treatment, canonical abstract-syntax-tree GP is implemented, with the excep-
tion that Fα is the fitness measure applied. The previous chapter described the fitness measures analyzed in
the experiment. Table 4.1 below provides the specifics of the fitness measures needed for the implementation.
Table 4.1 also makes reference to the sections in the previous chapter describing each fitness measure.

TABLE 4.1: Fitness measures

Measure Description Formula

OF See section 3.2

F1(i,m) =

|m|∑
n=1

δ(S(i, xn), yn) (4.1)

whereby:

i. F1(i,m) is i’s OF score.

ii. i is the candidate solution program.

iii. m is the fitness case set defined for the problem. |m| is the size
of m.

iv. (xn, yn) is the nth fitness case in m, with an input value xn and
target value yn.

v. S(i, xn) is the output value returned by i for xn.

vi. In quantitative problems: δ(S(i, xn), yn) = −|S(i, xn)− yn|.
Here, a fitness case, (xn, yn), is considered solved if |S(i, xn) −
yn|< 0.01.
.
In qualitative problems:

..δ(S(i, xn), yn) =

{
1, if S(i, xn) = yn.

0, if S(i, xn) 6= yn.

Here, a fitness case, (xn, yn), is considered solved if S(i, xn) =
yn.

BP
.

See section 3.3.2.

The Pattern-Guided Evolutionary Algorithm
(PANGEA)a variant of BP is implemented. Two
versions of PANGEA are analyzed: BP1 is canon-
ical GP, with the exception that equation 4.2
specifies the fitness measure used; BP2 is identical
to BP1 with the added functionality of archiving
useful subprograms, and employing an archive-
supplied mutation operator, as recommended in
[5].

aThe Waikato Environment for Knowledge
Analysis (WEKA) Java API [213] is used to im-
plement PANGEA. WEKA’s implementation of the
C4.5 algorithm [160] is used to model the program
trace data for qualitative (categorical) problems; in
turn WEKA’s implementation of non-linear regres-
sion is used to model the program trace data for
qualitative (numerical) problems.

The equation below is adapted from [66]: in the current study, the terms
containing l(i) and e(i) are inverted to maximize the BP score (rather
than minimize the score as in [66]).

F2(i,m) = F1(i,m)×
1

log2(l(i) + 1)
×
|m|+ 1

e(i) + 1
(4.2)

whereby:

i. F2(i,m) is i’s BP fitness score.

ii. i is the candidate solution program.

iii. m is the fitness case set defined for the problem.

iv. F1(i,m) is i’s OF score, determined according to equation 4.1.

v. l(i) and e(i) are the complexity and error (respectively) of the
model trained on i’s program trace.

.

FS See section 3.4.

Semantic FS is implemented.

F3(i,m) =
∑

(xn,yn)∈T (i)

1

|P (xn, yn)|
(4.3)

whereby:
i. F3(i,m) is i’s shared fitness score.

ii. i is the candidate solution program.

iii. m is the fitness case set defined for the problem.

iv. T (i) is the subset of the fitness cases in m solved by i.

v. (xn, yn) is the nth fitness case in T (i), with an input value xn
and target value yn.

vi. P (xn, yn) is the subset of the solution programs in the popula-
tion that solve (xn, yn). |P (xn, yn)| is the size of P (xn, yn).
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TABLE 4.1: Fitness measures (contd.)

Measure Description Formula

DSS See section 3.5.1. F4(i, θj) = F1(i,mθj ) (4.4)

whereby:

i. F4(i, θj) is i’s DSS fitness score.

ii. i is the candidate solution program.

iii. θj is the current problem definition given fitness case subset,
mθj . mθj is continually adapted from the complete fitness
case set with the progress of GP, as described in section 3.5.1.

iv. F1 is the OF measure defined in equation 4.1. F1(i,mθj ) is
calculated as in equation 4.1, with the exception that θj limits
the scope of fitness evaluation.

On each generation, the probability that a fitness case (xn, yn) is se-
lected for fitness evaluation is determined according to its weight,
W (xn, yn), calculated in equation 4.5, which is taken from [71]:

W (xn, yn) = D(xn, yn)
d +A(xn, yn)

a (4.5)

whereby:

i. W (xn, yn) is the weight of the fitness case.

ii. D(xn, yn) is the difficulty of the fitness case, exponentiated to
a user-specified power, d.

iii. A(xn, yn) is the age of the fitness case, exponentiated to a user-
specified power, a.

HP See section 3.6.1. F5(i, θj) = F1(i,mθj ) (4.6)

whereby:

i. F5(i, θj) is i’s HP fitness score.

ii. i is the candidate solution program.

iii. θj is the current problem definition given the fitness case sub-
set, mθj . mθj is coevolved with the GP candidate solution
programs, as described in section 3.6.1.

iv. F1 is the OF measure defined in equation 4.1. F1(i,mθj ) is
calculated as in equation 4.1, with the exception that θj limits
the scope of fitness evaluation.

NS See section 3.7.

Two versions of NS are implemented: the versions
differ with respect to the behavior descriptors used;
otherwise, the novelty score is calculated as in equation
4.7.

The first version of NS, NS1, applies a universal
behavior descriptor based on the accuracy descriptor
defined in [74]. The accuracy descriptor in [74] is for-
mulated to work on supervised classification problems,
where a candidate solution program solves a given
fitness case by producing the target value for the fitness
case. In the current study, the idea of solving a fitness case
is extended to matching or reaching within an acceptable
tolerance of the target value, such that the behavior
descriptor can be applied to qualitative and quantitative
problems likewise. Given a candidate solution program
i, i’s behavior is described as an |m|-length vector,
{B(i, x0), B(i, x1), ..., B(i, x|m|−1)}, where |m| is the
number of cases in the fitness case set. For each vector
element, B(i, xn): B(i, xn) = 1 if i solves the nth fitness
case; otherwise B(i, xn) = 0. In this scenario, i’s novelty
is based on the extent to which it solves the fitness cases
not solved by previous and existing solutions programs.
Note that this behavior descriptor is in effect a semantic
descriptor, whereby the novelty of the candidate solution
programs is measured in semantic space; here, the
higher-level concept of behavior has been simplified in
order to specify a descriptor that is universal to problems
that define fitness cases.

F6(i,m, k) =
1

k

k∑
j=0

dist(i, j) (4.7)

whereby:

i. F6(i) is i’s novelty score.

ii. i is the candidate solution program.

iii. m is the fitness case set defined for the given problem

iv. k is a user-specified parameter. i’s novelty is based on the be-
havior distance to its k-nearest neighbors.

v. dist(i, j) is the behavior distance between i and the jth so-
lution among i’s k-nearest neighbors. dist(i, j) is calculated
according to equation 4.8.

dist(i, j) =
1

M

M∑
n=1

|B(i, xn)−B(j, xn)| (4.8)

whereby:

i. B(i, xn) and B(j, xn) are the nth elements of i and j’s behav-
ior vectors respectively.

ii. The absolute difference, |B(i, xn)− B(j, xn)|, is used to mea-
sure the distance between B(i, xn) and B(j, xn).

.
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TABLE 4.1: Fitness measures (contd.)

Measure Description Formula

NS
(contd.)

The second version of NS, NS2, is used only
in the path-finding domain (see section 4.2.3).
Path-finding problems are known to be deceptive
[4], and as such can benefit from a novelty search
with problem-specific behavior descriptors. NS2
employs a problem-specific behavior descriptor
adapted from [4]: a candidate solution program i’s
behavior is described based on the path-finding
scores achieved by i at several evenly-spaced time
intervals. NS2 is described in more detail in section
4.2.3.

A novelty archive is maintained in both NS1
and NS2 [4]; on each GP generation, each popula-
tion member has a p% chance of being added to
the archive, where p is a user-specified parameter
[4].

SMAC (the Sequential Model-based Algorithm Configuration) [39], a parameter tuning algorithm, is used
to tune the parameters relevant to the experimental treatments. A number of parameter tuning algorithms
exist [37, 214]. SMAC was selected for the study because SMAC is ubiquitous, and well documented [39].
Hutter et. al. [39] demonstrate SMAC’s superiority to popular tuning algorithms like paramILS [38] and
GGA [40]. Also, SMAC can be used to tune continuous, discrete, and categorical parameters simultaneously
[39]. For each experimental treatment, SMAC is used to tune the parameters intrinsic to the given fitness
measure, and to tune the selection method and the genetic operator probabilities used with the fitness mea-
sure. In tuning the selection method, SMAC chooses between fitness proportionate selection and tournament
selection, and tunes the tournament size in the case of tournament selection. In tuning the genetic operator
probabilities, SMAC adjusts the probability of standard crossover, standard mutation and reproduction, as
well as the probability of archive supplied mutation when BP2 is the fitness measure used. The GP selection
method and genetic operator probabilities significantly influence the performance of the fitness measures. For
example, Lehman and Stanley [4] assert that when applying tournament selection in NS, a small tournament
size should be used, which reduces the selective pressure; this is important because in NS, the novelty of the
solution programs is based on comparison with the novelty archive, which contains representative solution
programs from previous generations of the GP run; as a result, high selective pressure would mean strict
favoritism of the solution programs that differ from previous generations, which has the undesirable con-
sequence that what is considered novel keeps changing drastically from one generation to the next. In this
regard, fitness-proportionate selection, which exerts a high selective pressure [1] is also incompatible with NS.
However fitness-proportionate selection or tournament selection with a large tournament size may be more
compatible with a different fitness measure. Also, Luke and Spector [215] assert that the configuration of the
genetic operator probabilities significantly influences the performance of GP in general. The goal of employing
SMAC is to obtain the optimal configuration for each experimental treatment; this is done in order to ensure
a fair comparison between the fitness measures, whereby the parametric configurations of the treatments do
not hamper the performance of GP.

Table 4.2 summarizes the SMAC tuned parameters for each treatment. A total of 500 SMAC iterations
[39] are run to tune each treatment: in general, the probability that SMAC finds the true optimal parameter
configuration, θ ∈ Θ (whereby Θ represents the universe of configurations), approaches 1 as the number of
iterations of the algorithm goes to infinity [39]; thus SMAC tuning is a trade-off between time constraints and
reaching the optimal parameter configuration: from the author’s observations, 500 iterations permit SMAC to
discover good quality configurations for the experimental treatments within a reasonable amount of time.
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TABLE 4.2: SMAC tuned parameters for the fitness measures

Fitness measure Control parameters

All fitness mea-
sures
(OF, BP1, BP2,
FS, DSS, HP, NS1,
NS2)

General parameters

1. Selection method (SMAC chooses between fitness proportionate selection and tournament selection,
and tunes the tournament size in the case of tournament selection).

2. Crossover, mutation, and reproduction probabilities.

BP2 Intrinsic parameters (See section 3.3.2)

1. Archive-supplied mutation probability.

2. Maximum size of the useful subprogram archive; when this threshold is reached, the new subprograms
to be added to the archive overwrite the least useful subprograms in the archive.

DSS Intrinsic parameters (See section 3.5.1)

1. Size of the fitness case subset used for OF evaluation.

2. Age exponent.

3. Difficulty exponent

The age and difficulty exponents increase the probability that a fitness case is added to the subset used for OF
evaluation, based on the last time the fitness case was selected (i.e. age) and the difficulty of the fitness case
respectively.

HP Intrinsic parameters (See section 3.6.1)

1. Size of the fitness case subset used for OF evaluation.

NS1, NS2 Intrinsic parameters (See section 3.7)

1. k: the number of nearest neighbors used to calculate the novelty score.

2. Probability that a candidate solution program within a generation is added to the novelty archive.

3. Maximum size of the novelty archive; when this threshold is reached, the new programs to be added
to the archive overwrite the least novel programs in the archive.

4.2.2 Criteria for comparison

This section lists the criteria used to compare the performance of the fitness measures. The selected criteria
are: 1) solution quality, 2) generalization, 3) population diversity, 4) structural complexity, and 5) time taken
to execute the experimental treatments. It is important to note that the choice of fitness measure is not the
only factor that influences the listed criteria: factors like the function and terminal set used, population size
and the number of GP generations are also important considerations [1, 58, 109, 129, 216]. However, this
study focusses on the extent to which the choice of fitness measure influences the listed criteria. Apart from
the fitness measure, as well as the SMAC-tuned selection method and genetic operator probabilities, the GP
control parameters used are identical for all experimental treatments, as detailed in section 4.2.4. The criteria
used for the comparison are discussed below.

Solution quality

Quality refers to the distance to the global optima. In the context of maximization, a high-quality candidate
solution program maximizes the raw OF score yielded over the fitness case set. Ultimately, GP aims to maxi-
mize the raw OF of the solution programs evolved [1]; thus even when a different fitness measure is used to
guide search, the raw OF of the candidate solution programs is still used as an indicator of the progress of GP.

The following is measured for each experimental treatment:

1. The OF score of the best solution program (BS) on each generation of GP: this is referred to as the gen-
erational BS-OF score. The OF score of the overall best solution program found by GP is also measured;
this is referred to as the final BS-OF score.

The problems tackled in the study include supervised classification, Boolean function synthesis and
path-finding problems, which exhibit different ranges in their raw OF scores: for example, raw OF scores
in the Boolean even-5 parity problem range from 0 to 32; on the other hand, raw OF scores in the tartarus
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problem range from 0 to 10. In order to compare the OF scores achieved on different problems, each raw
OF score is divided by the maximum possible raw OF score for the given problem, as shown in equation
4.9: this ensures that all reported BS-OF scores span the interval [0, 1], with higher values indicating
higher quality:

OF (i,m) =
F1(i,m)

F1max
(4.9)

whereby:

i. Given a candidate solution program i, OF (i,m) is i’s adjusted OF score, calculated as its raw OF score
(F1(i,m)) divided by the maximum possible raw OF score (F1max).

A number of symbolic regression problems are also tackled in the study. For the symbolic regression
problems, quality is measured as the sum of the absolute error over the fitness cases defined for the
given problem; the quality scores span the interval [0,∞), whereby lower scores indicate higher quality.
For the sake of uniformity with the classification, Boolean and path-finding problems, the transformation
function 1 − (x/(x + 1)) is applied to each symbolic regression quality score, x. Therefore, all reported
quality scores span the interval [0, 1], with higher values indicating higher quality.

2. The success rate of GP. This is the proportion of the total number of GP runs that find a global optimum
before the maximum number of generations have been reached [217].

Premature convergence is characterized by the inability of GP to make further gains with respect to OF [1,
57, 58]: the phenomenon is thus identified by a plateauing of the generational BS-OF scores for the remaining
generations of GP [1, 57, 58]; conversely, the ability to continually improve on OF scores is attributed to non-
occurrence, or mitigation (in the case where plateauing occurs in the other experimental treatments) of the
phenomenon. In turn, improvements in the quality of the solutions found by GP, as in the case with BP in [5,
148, 149], are detected by higher success rates and higher final BS-OF scores [5, 148, 149].

Generalization

GP is a machine learning (ML) algorithm [218]. An ML technique approximates a given process, by searching
through the data associated with the process to look for patterns and/or regularities in the data [219]. At the
origination of GP, Koza [1] tackled simplified instances of well-known ML problems1 by using a single dataset
(i.e. a fitness case set) to train GP how to solve a given problem, and reporting results on the same dataset that
was used to evaluate the fitness of the candidate solution programs during the course of the evolution. This
methodology is justifiable, if we take into account the fact that the problems tackled in [1] are simple problems,
used to demonstrate the potential of GP. Nevertheless, ML rarely aims to replicate the training data, but rather
to be able to make the correct predictions for data instances that were not involved in the training process [219].
In the ML community, it is a flawed methodology to report only on the training performance. This is because
a learning algorithm can overfit the training data, and perform poorly on unseen data from the same process
[219, 220]. In this regard, it is also important to evaluate the algorithm’s performance on data that was not used
in the course of learning. In the literature [219, 221], this is known as the two-datasets methodology, where a
training dataset is used in the course of learning, and a test dataset is used to report on the performance of the
learning algorithm on unseen data. The two-dataset methodology forms the backbone of empirical study in
ML [219]; however the GP community still continues to publish papers that report performance results based
on training data alone. Eiben and Jelasity [222], note that this is a methodological problem in evolutionary
computing research in general, which should not persist in future.

This study applies the two-dataset methodology. In GP literature, the two-dataset methodology has been
applied in studies that explicitly attempt to improve on generalization [151, 223, 224]: here, the use of training
and test sets is critical with respect to determining if generalization is actually improved. In chapter 3, it was

1The symbolic regression problems tackled in [1] are simplified instances of real-world regression problems; the artificial ant problem
[1] is a simplified instance of reinforcement learning; furthermore, the Boolean function synthesis problems tackled in [1] are simplified
instances of supervised binary classification.
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established that a number of the DS measures (e.g. DSS) were formulated to improve on GP’s generalization
capability. Training and test sets are also used in studies that aim to improve on GP’s overall performance [181,
225]. Here, the literature acknowledges the importance of testing GP’s generalization capability when it comes
to validating improvements on the algorithm [181, 225]. Also, in our case, a fitness measure that is designed to
improve some other aspect of GP, may implicitly improve on generalization. For example, in [181], HP, which
is designed to steer GP towards higher OF scores, is found to improve on GP’s generalization. Overall, despite
their diverse motivations, the different fitness measures are compared with respect to their performance on
both a training and test set.

The extent of generalization to a test set is determined for the best solution program on each GP generation.
This is referred to as the generational BS generalization index. Also, the extent of generalization to the test set
is measured for the overall best solution program found by GP and is referred to as the final BS generalization
index. The generalization index (GI) is measured as the difference in the OF scores produced on the training
and test sets:

GI = |F1(best,mt1)− F1(best,mt2)| (4.10)

whereby:

i. GI is the generalization index.

ii. F1(best,mt1) is the OF score of the candidate solution program on the training set, mt1.

iii. F1(best,mt2) is the OF score of the candidate solution program on the test set, mt2.

Population diversity

There is a lack of clear correlation between diversity and solution quality in the literature. Gustafson et. al. [56,
57, 226, 227] argue that there is a danger in assuming that high diversity always leads to better quality solution
programs. Rather, different levels of fitness diversity suit different problems [56]. For example, problems
that suffer from local optima benefit from high fitness diversity, whereby recombination with the lower-fitness
solution programs can help to get GP out of the local optima [56]. On the other hand, lowering the fitness
diversity can also be useful. Low fitness diversity may be associated with useful exploitation and convergence;
this occurs when the GP population contains solution programs that are in the basin of a global optimum, such
that population convergence leads to the optimum [56]. Ultimately, whether or not high diversity is useful
depends on the properties of the specific problem being tackled, as well as the phase of GP. High diversity is
associated with high selective pressure, which allows GP to distinguish the high-quality solution programs
in the explorative initial generations [1]. In turn, low diversity facilitates exploitation in later generations,
whereby convergence to high-quality solution programs can lead to a global optimum [1]. The exploration
and exploitation phases may span different generations on different problems, such that different problems
require different levels of diversity on the different generations.

The fitness measures will be compared based on semantic diversity. In section 3.4 of chapter 3, the seman-
tics of a program, i, is defined as the ordered set of outputs produced by i over the |m| fitness cases input to
GP, expressed as a vector, S(i, xn) ∈ <|m|. In the literature [228, 229], the pairwise semantic distance between
two candidate solution programs is measured as the mean absolute difference between the semantic vectors
produced by the programs. The literature does not define a measure for the semantic diversity of a popu-
lation. Most of the literature has focussed on designing genetic operators to control the semantic diversity
of subsequent GP generations [52, 228–231]; as such, the aim has not been to measure the semantic diversity
of a given population, but rather to measure the difference in semantics between parent solution programs
and their offspring produced by the genetic operators [52, 228–231]. Nevertheless defining a population se-
mantic diversity measure is paramount to the current study. Based on the formulae in table 4.1, FS, DSS, HP
and NS1 perpetuate the semantic diversity of GP populations. FS favors candidate solution programs that
solve unique fitness cases compared to the rest of the population; DSS and HP force the candidate solution
programs to deal with “difficult” fitness cases, curtailing rapid convergence to solution programs that solve
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only the “easy” fitness cases; also, NS1 favors candidate solution programs that have the highest semantic
distance to their k-nearest neighbours. In this study, semantic diversity is defined as the diversity of the se-
mantic vectors (S(i, xn) ∈ <|m|) in the population. The population semantic diversity measure used borrows
from the work of Burke et. al. [56, 57, 226, 227]. Here, the authors [56, 57, 226, 227] estimate the structural
diversity of a given population by averaging over the pairwise structural distance between each candidate
solution program in the population and the best solution program found by GP so far; in similar fashion, the
semantic diversity of a given population is estimated by averaging over the pairwise semantic distance be-
tween each candidate solution program in the population and the best solution program found by GP so far.
The population semantic diversity calculation is shown in equations 4.11 and 4.12.

δs(g) =

∑N
i=1 dist(i, best(g))

N
(4.11)

whereby:

i. δs(g) is the semantic diversity of the population on generation g.

ii. dist(i, best(g)) is the pairwise semantic distance between the ith candidate solution program in the population and
best(g), the best solution program found by GP so far on generation g. dist(i, best(g)) is calculated according to
equation 4.12.

iii.
∑N
i=1 represents the summation of the dist(i, best(g)) over all candidate solution programs contained in the popu-

lation of size N on generation g. The summation is divided by N to compute an average.

dist(i, j) =

∑|m|
n=1 δ(S(i, xn), S(j, xn))

|m|
(4.12)

whereby:

i. dist(i, j) is the pairwise semantic distance between i and j.

ii. m is the fitness case set defined for the given problem. |m| is the size of m.

iii. S(i, xn) represents the output value returned by i for the nth fitness case in m.

iv. In quantitative problems: δ(S(i, xn), S(j, xn)) = 0 if |S(i, xn)− S(j, xn))| < 0.01. Otherwise δ(S(i, xn), S(j, xn)) = 1.
In qualitative problems: δ(S(i, xn), S(j, xn)) = 0 if S(i, xn) = S(j, xn)). Otherwise δ(S(i, xn), S(j, xn)) = 1.

The fitness measures are also compared based on fitness diversity. Fitness diversity refers to the diversity
of OF scores in the GP population [56, 57, 226]. Fitness diversity is an important aspect of this study, because
most of the fitness measures are OF-based; BP, FS, DSS and HP all modify OF (see table 4.1). Monitoring the
fitness diversity informs on the presence (or absence) of a fitness gradient [56, 57, 226]. The entropy measure,
defined in [56, 57, 226], will be used as an indicator of the fitness diversity of a population: this measure not
only describes the number of unique fitness values in a population, but also how the existing fitness values are
distributed over the population [56, 57, 226]. Equation 4.13, taken from [56, 57, 226], depicts the calculation of
a population’s entropy:

δe(g) = −
∑
k

pk × log(pk) (4.13)

whereby:

i. δe(g) is the fitness diversity (entropy) of the population on generation g.

ii. pk is the proportion of the population that occupies the kth partition of the population: in discrete problems, a
partition represents each possible OF score; in continuous problems, a partition is defined to include a subset of OF
scores.
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Structural complexity

Structural complexity refers to the size of the candidate solution programs evolved by GP. Previous studies
have indicated that NS and FS mitigate bloat [4, 68, 170]: hence the fitness measures should yield solutions
programs of low structural complexity. The following is measured for each experimental treatment:

1. The mean size of the candidate solution programs in the population on each GP generation.

2. The size of the best solution program found by GP.

Time taken

Fitness evaluation is the most time consuming aspect of GP [11, 120, 121]. In this vein, the experiment also
measures the time taken (in seconds) to execute a single GP run.

4.2.3 Benchmark suite

This section specifies the benchmark suite used in the experiment. The suite incorporates a number of the
problems described at the origination of GP [1]. Nevertheless, White et. al. [232] argue that a benchmark suite
that comprises only of the problems in [1] is inadequate: the problems in [1] are simple “toy" problems, used
to demonstrate the capability of GP. In this vein, the majority of the problems in the suite come from the new
benchmarks that have been proposed for GP in [16, 232]. The “older" problems in the suite provide the benefit
of familiarity: they are widely implemented in the literature, such that information about the properties of
these problems is readily accessible. A number of the new benchmarks are also well documented [151, 181,
223, 229, 233, 234].

The benchmark suite employed in this study consists of 4 classes of problems: symbolic regression prob-
lems, supervised classification problems, Boolean function synthesis problems and path-finding problems.
Symbolic regression problems are the most common benchmarks tackled in GP literature [232]. Supervised
classification problems also popular benchmarks [232]. Also, a number of supervised classification problems
are based on challenging real-world datasets [232]. In turn, Boolean function synthesis problems are good
tests for techniques designed to exploit functional redundancy in a problem. Functional redundancy refers to
the reuse of input or intermediate values and functionality; most Boolean function synthesis problems require
the reuse of intermediate modules [1]. BP is relevant to such problems because the BP fitness measure exploits
modularity to improve on the performance of GP [5, 66]. Path-finding problems do not deal with the arith-
metic (or Boolean) input/output typical of the other 3 listed problem domains; rather, in these problems, each
fitness case is an environment for training or testing real or simulated robot behaviors [1]. The path-finding
domain is included to ensure that non-arithmetic problems are also tackled. Note that FS, DSS, and HP are
formulated to work on problems where a set of fitness cases is defined. In this vein, the problems selected for
the study are problems in which a set of fitness cases is defined, rather than a single fitness case.

The ensuing sections detail the symbolic regression, supervised classification, Boolean function synthesis
and path-finding problems incorporated in the benchmark suite.

Symbolic regression benchmarks

In the symbolic regression domain, each candidate solution program is a regression model - a functional rela-
tionship between system inputs and outputs [1]. The aim of search is to find the solution program that best
approximates the target outputs over a set of example inputs [1]. The candidate solution programs are evolved
on m fitness cases, whereby each fitness case, (xn, yn), is a real-valued input-output pair. The solution quality
is measured as shown in the quantitative case in equation 4.1, where the m real-valued outputs produced by
a candidate solution program are compared with real-valued target outputs.



66 Chapter 4. A Comparison of Fitness Measures in GP

For each regression problem tackled in the study, the arithmetic function set {+, −, ×, %, sin, cos, log,
exp} [1] is employed: here, the division (%) and logarithm (log) functions used are protected, such that the
result of division is 1 whenever the denominator is 0, and the argument of the logarithm is always converted
to its absolute value [1]. The terminal set used represents the inputs to the given problem, and as such, the
number of terminals in the terminal set depends on the number of inputs to the problem. Table 4.3 details
the problems tackled in the study. In the table, a target function is specified for the synthetic problems (sextic,
Keijzer-6, Nguyen-7, Vladislavleva-4, Pagie-1) a priori; on the other hand, the target function is not known in
the real-world case (i.e. Dow-Chemical dataset). For the training and testing sets defined in table 4.3, U [a, b, c]

represents c random numbers drawn with uniform probability from the interval [a, b]. In turn, E[a, b, c] repre-
sents a grid of points evenly spaced with a gap of c, drawn from the interval [a, b]. The training and test sets
are taken from [1, 181, 232]. A suitable test set is generated in cases where the literature does not specify a test
set.

TABLE 4.3: Symbolic regression benchmarks, adapted from [232]

Benchmark problem Target function No. of inputs
Terminal set

Training set
Test set

Sextic [77] x6 − 2x4 + x2 1
{x}

E[-1, 1, 0.04]
E[-1, 1, 0.06]

Nguyen-7 [229, 232]
(abbrev. Nguyen) In(x+ 1) + ln(x2 + 1) 1

{x}
U[0, 2, 20]
U[0, 2, 30]

Pagie-1 [181, 232]
(abbrev. Pagie)

1
1+x−4

0

+ 1
1+x−4

1

2
{x0, x1}

E[-5, 5, 0.4]
E[-5, 5, 0.1]

Keijzer-6 [223, 232]
(abbrev. Keijzer)

∑x
j=1

1
j

1
{x}

E[1, 50, 1]
E[1, 120, 1]

Vladislavleva-4 [151, 232]
(abbrev. Vlad.)

10
5+

∑4
j=0(xj−3)2

5
{x0, x1, x2, x3, x4}

U[0.05, 6.05, 1024]
U[-0.25, 6.35, 5000]

Dow Chemical dataset [232]
(Real-world problem)
(abbrev. Dow)

Not known 57
{x0, x1, x2, x3, ..., x56}

747 points
319 points

The problems in table 4.3 vary with respect to the degree of difficulty. The sextic polynomial is a simple
problem tackled in the early years of GP [77]. The Nguyen problem is also a simple problem, where OF-GP
solves the problem in [229]. In turn, the Pagie problem is a harder problem, which is not solved by OF-GP, but
is solved by employing host-parasite coevolution in [181]. The Keijzer problem is considered to be a simple
problem, but the difficulty is raised with the test data, whereby a number of the test fitness cases are drawn
from outside the interval of the training set inputs, as shown in table 4.3; therefore, the solution programs may
perform poorly on the test instances drawn from outside the training set domain [232, 235]. The Vladislavleva
problem has a reputation for being difficult to solve with GP [151, 232]; also, as in the Keijzer case, a number of
the test fitness cases fall outside the interval of the training set inputs [232]. Finally, the Dow Chemical dataset
represents a challenging real-world problem that was the subject of the symbolic regression EvoCompetitions
event of the 2010 EvoStar conference [236].

Table 4.3 lists the test sets specified in the literature for the Keijzer [223, 232], Vladislavleva [151, 232], Pagie
[15] and Dow Chemical dataset [232, 236] problems. No test sets are specified in the literature for the sextic
[77] and Nguyen [232] problems. According to White et. al. [232], in cases where the test sets are not explicitly
defined, a testing protocol can still be implemented by using a test set containing data points not used for
training. This is done in the case of the sextic and Nguyen problems in table 4.3.
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Supervised classification benchmarks

In the supervised classification domain, a candidate solution program predicts the value of a categorical at-
tribute (the class attribute), based on the values of other attributes (predicting attributes) [237, 238]. The aim
of search is to find the solution program that best approximates the target class attributes over a set of exam-
ple predicting attributes [1]. The candidate solution programs are evolved on m fitness cases, whereby each
fitness case, (xn, yn), is an input-output pair with real-, integer- and/or categorical-valued inputs and categor-
ical output. The solution quality is measured as shown in the qualitative case in equation 4.1, where the m
categorical outputs produced by a candidate solution program are compared with target categorical outputs.

When solving supervised classification problems, an arithmetic parse tree representation is arguably the
simplest encoding for the candidate solution programs [238]; here, the problem inputs are first converted into
real numbers (e.g. categorical inputs are coded as numerical factors), and then input to an arithmetic tree;
subsequently, the real-valued output returned from traversing the tree is translated into a class label [238], as
detailed in the ensuing paragraph. Previous investigations have also used GP to generate decision tree classi-
fiers [239, 240]. A decision tree is a tree structure in which each internal node represents a “test” on a predicting
attribute, each branch represents the outcome of the test, and each terminal node represents a class label (i.e.
the class assignment determined after computing all predicting attributes) [239, 240]. Decision trees adopt a
more literal approach to representing classifications; hence it becomes difficult to represent classifications that
involve complex interactions between the predicting attributes [238]. Logical trees are another alternative for
representing the candidate solution programs [241]. A logical tree is a logical expression that assigns a class
label to a given instance, based on how the predicting attributes of the instance conform to the conditions en-
coded in the tree [242, 243]. Logical trees offer a less constrained representation than decision trees, whereby
the internal nodes are Boolean functions (e.g. IF -THEN -ELSE, AND, OR, NOT ) connecting tests on the pre-
dicting attributes, and the terminal nodes are class labels and the different values that the predicting attributes
can assume [242]. In supervised classification problems, each data instance should be classified as belonging
to one and only one class [243]. However a logical tree may contain conflicting conditional clauses that assign
two or more different classes to a single instance [243]. On the other hand an instance that does not satisfy any
of the clauses in the tree will not be assigned a class label [243]. Such scenarios call for additional mechanisms
to be incorporated into GP to mitigate their occurrence [241–243], thus deviating from canonical GP.

Based on the above arguments, the current study adopts an arithmetic parse tree representation for the
tackled supervised classification problems. The term static range selection (SRS) is used to describe the pro-
cess of converting real-valued output from the arithmetic trees into class labels [238]. In SRS, each candidate
solution program is an arithmetic expression combining the standard arithmetic operators (+,−, ∗,%) and the
predicting attributes of the given problem. Hence the function set {+,−, ∗,%} is used, whereas the terminal
set depends on the tackled problem - see table 4.4. A candidate solution program returns a real-valued out-
put for each fitness case, whereby the real-valued output is the result of evaluating the arithmetic expression
on the fitness case. SRS calls for arbitrary class boundaries to be defined on the real number line [238]. For
example, the following boundaries can be defined for a binary classification problem: Class1 = [−inf, 0],
Class2 = [0, inf ], whereby inf abbreviates infinity. Here, a candidate solution program makes the pre-
diction “Class 1" by returning a value in the interval [−inf, 0], and the prediction “Class2" by returning a
value in the interval [0, inf ] [238]. Nevertheless, it becomes less intuitive to define such boundaries for a
multi-class classification. Loveard and Ciesielski [238] propose the following ranges for a 6-class classification:
Class1 = [−inf,−5], Class2 = [−5,−1], Class3 = [−1, 0], Class4 = [0, 1], Class5 = [1, 5], Class6 = [5, inf ]. In
this scenario, the classes are not assigned equal ranges; this may (or may not) affect the classification. Loveard
and Ciesielski [238] argue that a classifier will only be able to perform as well as the ranges that are arbitrarily
chosen.

In the current study, the class assignment is generated by applying the modulus (mod) operator, such that:

class_assignment = (real_valued_output) mod (number_of_classes)



68 Chapter 4. A Comparison of Fitness Measures in GP

For example, given a problem with 6 classes, the class assignment will take on any of the values 0, 1, 2,
3, 4 or 5, (real_valued_output) mod 6, depending on the real-valued output. The modulus operator removes
the need to define arbitrary ranges, and ensures uniform distribution of the classes for numeric outputs in the
interval [−inf, inf ]. The author has examined the scale of the attributes for each problem tackled, and ensured
that the programs have the ability to output all of the relevant classes.

Most of the supervised classification problems tackled in the study are taken from the CHIRP suite [232,
244]. Table 4.4 lists the problems tackled in the study. In table 4.4, the columns Ca, Int,Re andMi describe the
predicting attributes, indicating true (T ), when a dataset contains categorical attributes (Ca), integer attributes
(Int), real attributes (Re) and missing data (Mi) respectively, and false (F ) otherwise.

TABLE 4.4: Supervised classification benchmarks, adapted from [232]

Benchmark
problem

No. of predicting attributes
Terminal set

No. of classes Ca Int Re Mi

Size of training set
Training set distribution
Size of test set
Test set distribution

Iris [245] 4
{d0, d1, d2, d3}

3 F F T F

105
(35 instances per class)
45
(15 instances per class)

Credit [244] 14
{d0, d1, d2, ..., d13}

2 T T T T

345
(Class 1: 153, Class 2: 192)
345
(Class 1: 154, Class 2: 191)

Wine [245] 13
{d0, d1, d2, ..., d12}

3 F T T F

123
(Class 1: 41, Class 2: 50, Class 3: 32)
55
(Class 1: 18, Class 2: 21, Class 3: 16)

Segment [244] 19
{d0, d1, d2, ..., d18}

7 F F T F

210
(30 instances per class)
2100
(300 instances per class)

Vowel [244] 10
{d0, d1, d2, ..., d9}

11 F T T F

528
(48 instances per class)
462
(42 instances per class)

Opt [244] 64
{d0, d1, d2, ..., d63}

10 F T F F

3823
(≈382 instances per class)
1797
(≈180 instances per class)

The problems in table 4.4 are selected based on the structural variety of their datasets, where the datasets
pose different challenges to classifiers. For example, the iris dataset contains a small number of predicting
attributes. Conversely the opt dataset has a large number of predicting attributes. The segment dataset has a
small training set in relation to the test set used. The credit dataset contains a mix of categorical and continuous
variables; here, the categorical inputs are coded as numerical factors for input into the arithmetic trees. The
credit dataset also contains missing data; in the current study, each numerical missing value is replaced with
the mean of the corresponding attribute over the fitness cases in the dataset [246]; also, each categorical missing
value is replaced with the most common value of the corresponding attribute in the dataset [246]. Importantly,
the problems listed in table 4.4 vary with respect to the degree of difficulty. The iris and wine datasets represent
“exceedingly” simple problems [232, 245], whereas the segment, opt and credit datasets pose more difficulty
to GP [232]. Further information on the datasets is available from the UCI Machine Learning Repository [245].
The repository [245] does not explicitly define test sets for the iris, credit and wine problems; in this case, the
training set is delineated as 70% of the complete fitness case set, whereas the remaining 30% makes up the test
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set. Here, care is taken to retain the class distribution, whereby both the training and test sets have the same
class distribution as the complete fitness case set, as shown in table 4.4.

Boolean function synthesis benchmarks

Boolean function synthesis is an instance of supervised classification [1]. In this problem domain, both the
predicting attributes and the class attributes are of the binary data type; that is, the attributes assume the
values TRUE or FALSE [1]. The aim is to find the solution program that can best approximate the target
binary class attributes over a set of example binary predicting attributes [1]. The candidate solution programs
are evolved onm fitness cases of the form (xn, yn). The solution quality is measured as shown in the qualitative
case in equation 4.1, where them binary outputs produced by a candidate solution program are compared with
target binary outputs.

The function and terminal sets used are specific to the tackled problem. In general, the function sets are
comprised of Boolean operators (e.g. AND, OR, NOT ). In turn, the terminal set used represents the binary
inputs to the problem; hence the number of terminals in the terminal set depends on the number of inputs
to the problem. The two-datasets methodology is not the standard practice in this domain. Therefore, the
following rule is applied to define the training and test sets: for each problem, the training set is generated by
drawing 70% of the fitness cases with uniform probability from the complete fitness case set; the remaining
30% of the fitness case set makes up the test set. Table 4.5 details the problems tackled in the study.

TABLE 4.5: Boolean function synthesis benchmarks

Benchmark problem Function set No. of inputs
Terminal set

Original training set (θ0)
Training set
Test set

Even-5 parity [1, 77]
(abbrev. Par-5) {AND, OR, NAND, NOR} 5

{d0, d1, d2, d3, d4}

θ0: 25 binary numbers ∈ [0, 25−1]
70% of θ0
30% of θ0

Even-7 parity [1, 77]
(abbrev. Par-7) {AND, OR, NAND, NOR} 7

{d0, d1, d2, d3, d4, d5, d6}

θ0: 27 binary numbers ∈ [0, 27−1]
70% of θ0
30% of θ0

Even-9 parity [1, 77]
(abbrev. Par-9) {AND, OR, NAND, NOR}

9
{d0, d1, d2, d3, d4, d5, d6, d7,
d8}

θ0: 29 binary numbers ∈ [0, 29−1]
70% of θ0
30% of θ0

11-multiplexer [1, 77]
(abbrev. Mux-11) {IF, AND, OR, NOT}

11
{d0, d1, d2, d3, d4, d5, d6, d7,
a0, a1, a2}

θ0: 211 binary numbers ∈ [0, 211−1]
70% of θ0
30% of θ0

3-bit multiplier [234]
(abbrev. Mult-3) {AND, ANDI, OR, XOR} 6

{d0, d1, d2, d3, d4, d5}

θ0: 26 binary numbers ∈ [0, 26−1]
70% of θ0
30% of θ0

4-bit multiplier [234]
(abbrev. Mult-4) {AND, ANDI, OR, XOR} 8

{d0, d1, d2, d3, d4, d5, d6, d7}

θ0: 28 binary numbers ∈ [0, 28−1]
70% of θ0
30% of θ0

The problems in table 4.5 vary with respect to the degree of difficulty for GP. In the literature [1, 77], it is
common practice to tackle Boolean problems with different input sizes. For example: the Boolean even-5, even-
7 and even-9 parity problems are all instances of the same problem; the problems become progressively more
difficult for GP as the input size increases [1, 77, 232]. The main differentiator in table 4.5 is that the parity and
multiplexer problems are simple problems tackled at the origination of GP [1], while the multiplier problems
represent more difficult benchmarks [234]. Modelling digital multipliers is a difficult task for evolutionary
techniques, especially when the number of bits in the multiplicands is greater than three [234].
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Path-finding benchmarks

In the path-finding domain, a candidate solution program encodes a set of rules to follow in different path-
finding scenarios [1, 212, 247–249]. The aim is to find the solution program that achieves the goal path-finding
behavior. The candidate solution programs are evolved on m fitness cases, whereby each fitness case, (xn, yn),
is an environment for training or testing the behaviors [1, 212, 247–249]. The solution quality is measured as
shown in the quantitative case in equation 4.1: here, the quality of a candidate solution program, i, is the sum
over the m fitness cases of the negative difference between the number of path-finding points that i earns,
S(i, xn), and the maximum possible path-finding points for the given fitness case, yn.

The function and terminal sets used are specific to the tackled problem. In the artificial ant problem [1], a
candidate solution program controls an agent that collects a number of food pellets located on a trail. Here,
the aim is to find a solution program that collects the maximum number of food pellets from the trail within a
limited number of time-steps. In the tartarus [212, 247–249] and deceptive tartarus [212] problems, an agent is
placed in a cell of anM×M grid-based world; the grid also contains a number of blocks. In these problems, the
aim is to find a solution program that controls the agent to navigate the blocks to the boundary of the world
within a limited number of moves [248, 250]. In general, the path-finding terminal sets contain instructions
on the actions to be carried out by the agents (e.g. Move, TurnLeft, TurnRight). In turn, the path-finding
function sets contain connective functions, whose arguments are executed in order (e.g. PROGN2(x, y) de-
notes executing subtree x, and then y). The function sets also contain problem-specific logical (or branching)
functions that instruct on the action that the path-finding agent should take, based on the current state of its
environment (e.g. IF -FOOD-AHEAD(x, y) denotes executing the subtree x if the given condition is satisfied,
otherwise y is executed); in the tartarus and deceptive tartarus problems, the logical functions assume the form
IF -POSITION -IS-STATE(x, y); whereby POSITION refers to a cell in the immediate 3 × 3 neighbourhood
of the tartarus agent e.g. UR = upper right, ML = middle left, LM = lower middle, etc.; and STATE refers to
the state of the indicated cell i.e. E = is empty, B = contains a block, and W = contains a wall [248, 250]. The
tartarus and deceptive tartarus path finding logic is further enhanced by the use of indexed memory to keep
track of the agent’s location and orientation on the grid [248, 250]: the read/write functions {READ0, READ1,

READ2,STORE0, STORE1, STORE2} provide access to 3 storage locations (0, 1 and 2) [248]. Furthermore, the
simple logical functions {IF , NOT , EQ} are incorporated into the function set to influence the agent’s actions
based on its current state stored in memory [248]. Table 4.6 details the path-finding problems tackled in the
study [248, 250]. The function and terminal sets specified in the table are taken from [1] and [248].

TABLE 4.6: Path-finding benchmarks

Benchmark
problem

Function set Terminal set Training set
Test set

Artificial Ant
[1, 77, 251]
(abbrev. Ant)

1. Connective functions: {PROGN2, PROGN3}.

2. Problem-specific logical function: {IF -FOOD-
AHEAD}.

1. Actions: {Left,
Right,Move}.

7 San Mateo Trail
fitness cases.
2 San Mateo Trail
fitness cases.

Tartarus
[212, 247–249]
(abbrev. Tart)

1. Connective function: {PROGN2}.

2. Problem-specific logical functions:
{IF -POSITION -IS-STATE} whereby
POSITION ∈ {UM , UR, MR, LR, LM , LL, ML, UL},
and STATE ∈ {E,B,W }.

3. Simple logical functions: {NOT ,EQ, IF }.

4. Read/write functions: {READi,WRITEi} whereby i∈
{1, 2, 3}.

1. Constants (used for
comparison): {Zero,
One, Two}.

2. Actions: {TurnLeft,
TurnRight,Move-
Forward}.

40 randomly
generated grid-
worlds.
10 randomly
generated
grid-worlds.

Deceptive
Tartarus [212]
(abbrev. Dec. Tart)

In this study, the artificial ant agent navigates the San Mateo Trail [77, 251]. According to Koza [77], the
San Mateo Trail represents a more difficult problem for GP when compared to the Santa Fe trail used at the



Chapter 4. A Comparison of Fitness Measures in GP 71

origination of GP in [1]. The San Mateo trail is made up of nine parts (or fitness cases), each consisting of a
square 13 by 13 grid containing different irregularities in the sequence of food pellets; for example, some of
the fitness cases contain single and double gaps between the food pellets. For each fitness case, the movement
of the ant is terminated when either of the following 4 conditions occur [77, 251]: 1) the ant touches the outer
boundary of the 13 by 13 grid, 2) the ant has executed a total of 120 right or left turns, 3) the ant has moved
forward 80 times, or 4) the ant has consumed all the pellets on the trail. In the current study, GP is trained on
7 of the San Mateo fitness cases, while the other 2 cases make up the test set.

NS2, defined in table 4.1, is implemented on the path-finding problems in the experiment. To implement
NS2, a problem-specific definition of behavior is required. In the artificial ant problem, the “behavior" of inter-
est is collecting food pellets: therefore, in a novelty search, a novel individual should do something different
with respect to collecting the food pellets. The NS2 behavior descriptor is adapted from [4] and specified as
follows: the behavior of a candidate solution program is the number of food pellets consumed by an ant agent
executing the program after every 40 time steps. In this study, a single time step elapses each time the ant turns
or moves forward. Different configurations for the period of time steps on which to measure behavior were
tested, and an interval of 40 gave the best result. Given a training set of 7 fitness cases, the behavior vector
of a candidate solution program, i, is the concatenation of 7 vectors, B(i, x0), B(i, x1), ..., B(x, 7). Here, each
vector, B(i, xn), is of length 5 (the value 5 was obtained by empirical tuning), and represents the number of
food pellets consumed after every 40 time steps on the nth fitness case. Therefore, each B(i, xn) is an ordered
vector of 5 numbers {B(i, xn, 40), B(i, xn, 80), B(i, xn, 120), B(i, xn, 160), B(i, xn, 200)}, which represents the
number of food pellets consumed at 40, 80, 120, 160 and 200 time steps. Fixing the length of the B(i, xn) vec-
tors permits comparison of the behavior of different solution programs, whose execution may span different
time steps depending on when the termination criteria are met. For each fitness case, the behavior of the ant
agent is not recorded after 200 time steps. Also, if the movement of the ant agent is terminated before 200
time steps have elapsed, each of the remaining entries in the corresponding vector B(i, xn) is set to the total
number of food pellets consumed by the ant so far.

The tartarus problem is taken from [248, 250]. As in [248, 250], the dimensions of the path-finding grid-
world used are 6 × 6. The grid-world is bounded by impenetrable walls, and contains 6 blocks that are ran-
domly placed in its inner 4 by 4 locations; that is, the grid world is initialized such that none of the blocks touch
the walls. The agent is also initially placed at a random location in the world one cell away from the bound-
ary. Only one object can occupy a given location at any one time. The aim is to find a solution program that
controls the agent to navigate the blocks to the boundary of the world within a limited number of moves: the
ideal solution program navigates 1 block to each of the 4 corners (2 points are earned for each block navigated
to a corner), and 2 blocks to any other location near the boundary (1 point is earned for each block navigated to
any other location near the boundary), to achieve a maximum score of 10. The training set consists of 40 such
randomly generated worlds. In turn, the test set consists of 10 such randomly generated worlds. Following
[212], the maximum number of moves allowed in each grid world is 80. The tartarus problem is observed to be
difficult for GP [248]. Based on the data in [248], the best solution program found by GP achieves only slightly
above average fitness.

In the tartarus problem, the “behavior" of interest is navigating the blocks to the desired positions in order
to accumulate a high score. The NS2 behavior descriptor for this problem is specified as follows: the behavior
of a candidate solution program is the sequence of scores recorded at intervals of 20 time steps; a single time
step elapses each time the agent executes one of the instructions in the terminal set (for example: turn, move
forward, read register, etc.). The interval value of 20 time steps was obtained by empirical tuning. Given the
training set of 40 fitness cases, the behavior vector of a candidate solution program, i, is the concatenation of
40 vectors, B(i, x0), B(i, x1), ..., B(x, 40). Here, each vector, B(i, xn), is of length 4, and represents the score
achieved by the agent after every 20 time steps on the nth fitness case. Therefore, each B(i, xn) is an ordered
vector of 4 numbers {B(i, xn, 20), B(i, xn, 40), B(i, xn, 60), B(i, xn, 80)}, which represents the scores recorded
at 20, 40, 60 and 80 time steps.
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The deceptive tartarus problem is identical to the tartarus problem, with the only exception being the
way that the candidate solution programs are scored [212]. In the deceptive version, blocks lying against the
boundary (but not at a corner) receive a score of -1, and the corners are still worth 2 points each, such that
optimal solution programs navigate 4 blocks to the corners, and the other 2 blocks away from the walls to a
central position, to achieve a maximum score of 8. Here, the subgoal of navigating a block against the wall is
penalized, to make the problem harder [212]. As in the case with the tartarus problem, the training and test
sets consist of 40 and 10 such randomly generated worlds respectively. The NS2 behavior descriptor used on
this problem is specified in the same way as in the tartarus problem.

4.2.4 Experiment set-up

The fitness measures in table 4.1 are compared based on their performance on the benchmark problems listed
in section 4.2.3. Seven treatments (OF, BP1, BP2, FS, DSS, HP and NS1) are run for each of the problems in the
symbolic regression, supervised classification and Boolean function synthesis domains. An additional treat-
ment, NS2, is run to make a total of 8 treatments for the problems in the path-finding domain. The following
baseline configuration is common to all experimental treatments: each treatment consists of 50 independent
runs of GP. Each GP run evolves a population of 500 candidate solutions for 101 generations (i.e. an initial
random generation 0 plus 100 additional generations). 101 generations are selected in order to allow GP to
improve on the performance criteria over an extended period of time (the convention used in the literature [1,
252] is 51 GP generations). Also, the standard population size is fixed at 500 because from the author’s obser-
vations, population sizes above 500 did not yield significant improvements in the best solutions found by the
treatments. For all treatments, the initial population individuals are generated using the ramped half-and-half
method, with the parse trees ranging from depths of 2 to 6, as prescribed in [1].

4.2.5 Technical specifications

The algorithms tested in this study were developed using Java SE (Oracle, version 8; [253]). The java.util.Rand-
om pseudorandom number generator (PRNG) was used to generate random numbers: to achieve true ran-
domness, the PRNG is seeded using the java.security.SecureRandom class2. The programs were developed on
a computer with the following specifications: Intel(R) Celeron(R) N2840 @ 2.16GHz, 2.00 GB RAM, Windows
8 Enterprise OS. Simulations (trial and final) were run on the Center for High Performance Computing, South
Africa3. The analysis of the results was performed using Microsoft Excel 2010 [254] and Wolfram Mathematica
10.0 [255].

4.3 Results and discussion

A discussion of the results ensues. The results are organized according to the criteria specified in section
4.2.2. Overall, the results show that the different fitness measures largely address the intended limitations.
Nevertheless, the No Free Lunch (NFL) theorems [14] apply: no one fitness measure achieves the best result on
all problems with respect to a given criterion. For example, no one fitness measure achieves the best solution
quality on all problems: a fitness measure, fα, may be designed to improve on solution quality, but the extent
to which fα can achieve this depends on the properties of the specific problem being solved. Ultimately, the
benchmark problems exhibit different properties: thus different fitness measures achieve the best results on
different problems.

2The SecureRandom class achieves true randomness by seeding itself from sources of entropy (or environmental noise) available from
the local machine, such as timings of input/output events [253].

3See https://www.chpc.ac.za/index.php/resources/lengau-cluster for cluster specifications.
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4.3.1 Solution quality

A presentation of the solution quality results from each domain ensues.

Symbolic regression benchmarks

An overview of the performance in the domain is presented. A detailed breakdown of the results follows.
In the detailed results, a comparison is drawn among the fitness measures on each problem; subsequently,
statistical tests are conducted to confirm the significance of the observations.

Performance overview

Figures 4.1 and 4.2 indicate the mean final BS-OF scores achieved on the training and test sets respectively. The
mean final BS-OF scores are also listed in tables 4.7 and 4.8, where the best scores achieved on each problem
are highlighted. In turn, figure 4.3 shows the mean generational BS-OF scores achieved on the training set. In
the figures and tables below, higher scores indicate better performance of GP. All scores are averaged over the
30 GP runs.

The results show that the fitness measures generally achieve high training and test scores on the trivial
sextic problem, but low scores on the difficult Vlad and Dow problems. In general, the more difficult the
problem, the poorer the performance of the fitness measures; a discussion on the relative difficulty of the
problems was included in section 4.2.3. Critically, different fitness measures achieve the best result on the
different problems. For example, BP2 achieves the highest training and test scores on the sextic problem,
but among the lowest test scores on the Pagie, Keijzer, Vlad and Dow problems. Also, HP achieves the best
training and test scores on the Pagie problem, as well as the highest test scores on the Vlad and Dow problems,
but is only the second best performing fitness measure on the sextic, Nguyen and Keijzer test sets. On the other
hand, DSS achieves the highest test score on the Nguyen problem, but only achieves a moderate test score on
the Pagie problem. Furthermore, NS1 typically achieves the lowest training and test scores on most problems,
but achieves better test scores than BP1 and BP2 on the Keijzer problem. Overall, the performance of a given
fitness measure is shown to depend on the particular problem being tackled.

FIGURE 4.1: Symbolic regression benchmarks: Mean final BS-OF scores - training set
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FIGURE 4.2: Symbolic regression benchmarks: Mean final BS-OF scores - test set

TABLE 4.7: Symbolic regression
benchmarks: Mean final BS-OF

scores - training set

OF BP1 BP2 FS DSS HP NS1

Sextic 0.86 0.84 0.91 0.80 0.85 0.86 0.80

Nguyen 0.93 0.76 0.90 0.87 0.90 0.71 0.85

Pagie 0.54 0.59 0.59 0.70 0.74 0.75 0.47

Keijzer 0.62 0.59 0.66 0.67 0.67 0.65 0.49

Vlad 0.38 0.39 0.37 0.44 0.35 0.40 0.36

Dow 0.36 0.37 0.37 0.36 0.39 0.39 0.34

TABLE 4.8: Symbolic regression
benchmarks: Mean final BS-OF

scores - test set

OF BP1 BP2 FS DSS HP NS1

Sextic 0.84 0.84 0.88 0.79 0.84 0.85 0.75

Nguyen 0.46 0.56 0.60 0.52 0.66 0.63 0.50

Pagie 0.20 0.20 0.21 0.35 0.36 0.45 0.11

Keijzer 0.29 0.22 0.25 0.40 0.37 0.37 0.29

Vlad 0.11 0.10 0.10 0.13 0.13 0.15 0.03

Dow 0.10 0.09 0.09 0.12 0.13 0.14 0.02
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Detailed results

The benchmarks are discussed in the following order: A) Sextic, B) Nguyen, C) Pagie, D) Keijzer, E) Vlad, and
F) Dow.

A. Sextic (highest solution quality = BP2)

Tables 4.9 and 4.10 list the best (b) and mean (µ) final BS-OF scores achieved on the training and test sets
respectively; the standard deviation of the final BS-OF scores (σ) is also shown. In addition, the tables list the
success rates (SR) achieved. The best performing fitness measures are highlighted in the tables. Note that the
mean scores shown in tables 4.9 and 4.10 are the same scores shown for the sextic problem in tables 4.7 and
4.8; the analysis in this section looks at the scores achieved on the sextic problem in detail.

TABLE 4.9: Sextic: Final BS-OF
scores - training set

OF BP1 BP2 FS DSS HP NS1

SR 0.07 0.03 0.13 0.00 0.00 0.00 0.00

b 1.00 1.00 1.00 0.91 0.93 0.90 0.91

µ 0.86 0.84 0.91 0.80 0.85 0.86 0.80

σ 0.03 0.04 0.04 0.04 0.06 0.06 0.06

TABLE 4.10: Sextic: Final BS-OF
scores - test set

OF BP1 BP2 FS DSS HP NS1

SR 0.00 0.00 0.00 0.00 0.00 0.00 0.00

b 0.92 0.90 0.94 0.84 0.94 0.91 0.82

µ 0.84 0.84 0.88 0.79 0.84 0.85 0.75

σ 0.07 0.06 0.06 0.05 0.04 0.04 0.07

Statistical tests are conducted to verify the significance of the observations in tables 4.9 and 4.10. The
statistical tests include:

1. A single factor ANOVA [256] conducted on the training BS-OF scores. In the ANOVA, the null hypothe-
sis, HO, is that µOF = µBP1 = µBP2 = µFS = µDSS = µHP = µNS1; the alternate hypothesis, HA, is that
at least one of the means is different. The single factor ANOVA is repeated for the test BS-OF scores.

2. A series of pairwise one-tail z-tests [256] comparing the training BS-OF scores for each pair of the fitness
measures. In each pairwise z-test, the null hypothesis HO is that µ1 = µ2; the alternate hypothesis HA is
that µ1 > µ2, whereby µ1 is the greater of the two means in the data. The pairwise z-tests are repeated
for the test BS-OF scores.

Tables 4.11 and 4.12 list the p-values resulting from the statistical tests. The p-values that indicate statistical
significance (at a significance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the tables.

TABLE 4.11: Sextic: Statistical tests
on final BS-OF scores - training set

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.02

BP2 0.00 0.00

FS 0.00 0.01 0.00

DSS 0.23 0.00 0.00 0.00

HP 0.25 0.01 0.00 0.00 0.27

NS1 0.00 0.00 0.00 0.29 0.00 0.00

TABLE 4.12: Sextic: Statistical tests
on final BS-OF scores - test set

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.35

BP2 0.00 0.03

FS 0.00 0.00 0.00

DSS 0.30 0.39 0.00 0.00

HP 0.07 0.11 0.02 0.00 0.17

NS1 0.00 0.00 0.00 0.00 0.00 0.00

The results indicate that BP2 yields the best solution quality. BP2 achieves significantly higher training and
test scores than the other fitness measures. Furthermore, BP2 achieves the highest success rate on the training
set. Conversely, NS1 achieves significantly lower training scores than most fitness measures, as well as the
lowest test scores on the problem.
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B. Nguyen (highest solution quality = OF, DSS)

Tables 4.13 and 4.14 list the best (b) and mean (µ) final BS-OF scores achieved on the training and test sets
respectively; the standard deviation of the final BS-OF scores (σ) is also shown. In addition, the tables list the
success rates (SR) achieved. The best performing fitness measures are highlighted in the tables.

TABLE 4.13: Nguyen: Final BS-OF
scores - training set

OF BP1 BP2 FS DSS HP NS1

SR 0.03 0.00 0.00 0.00 0.00 0.00 0.00

b 1.00 0.81 0.95 0.96 0.94 0.82 0.89

µ 0.93 0.76 0.90 0.87 0.90 0.71 0.85

σ 0.04 0.06 0.04 0.06 0.07 0.09 0.03

TABLE 4.14: Nguyen: Final BS-OF
scores - test set

OF BP1 BP2 FS DSS HP NS1

SR 0.00 0.00 0.00 0.00 0.00 0.00 0.00

b 0.50 0.63 0.68 0.61 0.74 0.70 0.61

µ 0.46 0.56 0.60 0.52 0.66 0.63 0.50

σ 0.07 0.07 0.06 0.08 0.05 0.05 0.07

Statistical tests are conducted to verify the significance of the observations in tables 4.13 and 4.14. Tables
4.15 and 4.16 list the p-values resulting from the statistical tests. The p-values that indicate statistical signifi-
cance (at a significance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the tables.

TABLE 4.15: Nguyen: Statistical
tests on final BS-OF scores - training

set

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.00

BP2 0.00 0.00

FS 0.00 0.00 0.02

DSS 0.02 0.00 0.29 0.00

HP 0.00 0.00 0.00 0.00 0.00

NS1 0.00 0.00 0.00 0.05 0.00 0.00

TABLE 4.16: Nguyen: Statistical
tests on final BS-OF scores - test.....

set

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.00

BP2 0.00 0.00

FS 0.00 0.00 0.00

DSS 0.00 0.00 0.00 0.00

HP 0.00 0.00 0.02 0.00 0.01

NS1 0.00 0.00 0.00 0.07 0.00 0.00

The results indicate that OF achieves significantly higher training scores than the other fitness measures,
but the lowest test scores. In turn, DSS achieves significantly higher test scores than the other fitness measures
on the problem.

C. Pagie (highest solution quality = DSS, HP)

Tables 4.17 and 4.18 list the best (b) and mean (µ) final BS-OF scores achieved on the training and test sets
respectively; the standard deviation of the final BS-OF scores (σ) is also shown. In addition, the tables list the
success rates (SR) achieved. The best performing fitness measures are highlighted in the tables.

TABLE 4.17: Pagie: Final BS-OF
score - training set

OF BP1 BP2 FS DSS HP NS1

SR 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Max 0.59 0.63 0.64 0.73 0.82 0.84 0.55

µ 0.54 0.59 0.59 0.70 0.74 0.75 0.47

σ 0.04 0.03 0.03 0.04 0.05 0.04 0.06

TABLE 4.18: Pagie: Final BS-OF
score - test set

OF BP1 BP2 FS DSS HP NS1

SR 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Max 0.28 0.27 0.29 0.41 0.43 0.49 0.20

µ 0.20 0.20 0.21 0.35 0.36 0.45 0.11

σ 0.07 0.06 0.06 0.05 0.07 0.05 0.09

Statistical tests are conducted to verify the significance of the observations in tables 4.17 and 4.18. Tables
4.19 and 4.20 list the p-values resulting from the statistical tests. The p-values that indicate statistical signifi-
cance (at a significance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the tables.
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TABLE 4.19: Pagie: Statistical tests
on final BS-OF scores - training set

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.00

BP2 0.00 0.34

FS 0.00 0.00 0.00

DSS 0.00 0.00 0.00 0.00

HP 0.00 0.00 0.00 0.00 0.20

NS1 0.00 0.00 0.00 0.00 0.00 0.00

TABLE 4.20: Pagie: Statistical tests
on final BS-OF scores - test set

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.00

BP2 0.00 0.19

FS 0.00 0.00 0.00

DSS 0.00 0.00 0.00 0.22

HP 0.00 0.00 0.00 0.00 0.00

NS1 0.00 0.00 0.00 0.00 0.00 0.00

The results indicate that DSS and HP achieve significantly higher training scores than the other fitness
measures on the problem. Also, HP achieves the highest test scores. Conversely, NS1 achieves the significantly
lower training and test scores than the other fitness measures.

D. Keijzer (highest solution quality = BP2, FS, DSS, HP)

Tables 4.21 and 4.22 list the best (b) and mean (µ) final BS-OF scores achieved on the training and test sets
respectively; the standard deviation of the final BS-OF scores (σ) is also shown. In addition, the tables list the
success rates (SR) achieved. The best performing fitness measures are highlighted in the tables.

TABLE 4.21: Keijzer: Final BS-OF
score - training set

OF BP1 BP2 FS DSS HP NS1

SR 0.00 0.00 0.00 0.00 0.00 0.00 0.00

b 0.69 0.71 0.76 0.76 0.75 0.73 0.61

µ 0.62 0.59 0.66 0.67 0.67 0.65 0.49

σ 0.08 0.09 0.09 0.09 0.07 0.07 0.11

TABLE 4.22: Keijzer: Final BS-OF
score - test set

OF BP1 BP2 FS DSS HP NS1

SR 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Max 0.40 0.32 0.34 0.49 0.45 0.46 0.37

µ 0.29 0.22 0.25 0.40 0.37 0.37 0.29

σ 0.10 0.12 0.11 0.10 0.09 0.09 0.12

Statistical tests are conducted to verify the significance of the observations in tables 4.21 and 4.22. Tables
4.23 and 4.24 list the p-values resulting from the statistical tests. The p-values that indicate statistical signifi-
cance (at a significance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the tables.

TABLE 4.23: Keijzer: Statistical tests
on final BS-OF scores - training set

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.01

BP2 0.00 0.00

FS 0.00 0.00 0.25

DSS 0.00 0.00 0.22 0.32

HP 0.04 0.00 0.21 0.19 0.23

NS1 0.00 0.00 0.00 0.00 0.00 0.00

TABLE 4.24: Keijzer: Statistical tests
on final BS-OF scores - test set

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.01

BP2 0.00 0.00

FS 0.00 0.00 0.00

DSS 0.00 0.00 0.00 0.00

HP 0.00 0.00 0.00 0.00 0.32

NS1 0.42 0.00 0.00 0.00 0.00 0.00

The results indicate that BP2, FS, DSS and HP achieve significantly higher training scores than the other
fitness measures on the problem. In turn, FS achieves significantly higher test scores than the other fitness
measures on the problem.
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E. Vlad (highest solution quality = FS, DSS, HP)

Tables 4.25 and 4.26 list the best (b) and mean (µ) final BS-OF scores achieved on the training and test sets
respectively; the standard deviation of the final BS-OF scores (σ) is also shown. In addition, the tables list the
success rates (SR) achieved. The best performing fitness measures are highlighted in the tables.

TABLE 4.25: Vlad: Final BS-OF
scores - training set

OF BP1 BP2 FS DSS HP NS1

SR 0.00 0.00 0.00 0.00 0.00 0.00 0.00

b 0.41 0.43 0.40 0.48 0.39 0.45 0.42

µ 0.38 0.39 0.37 0.44 0.35 0.40 0.36

σ 0.03 0.03 0.04 0.03 0.04 0.04 0.07

TABLE 4.26: Vlad: Final BS-OF
scores - test set

OF BP1 BP2 FS DSS HP NS1

SR 0.00 0.00 0.00 0.00 0.00 0.00 0.00

b 0.14 0.15 0.15 0.18 0.17 0.21 0.08

µ 0.11 0.10 0.10 0.13 0.13 0.15 0.03

σ 0.04 0.07 0.07 0.06 0.07 0.05 0.04

Statistical tests are conducted to verify the significance of the observations in tables 4.25 and 4.26. Tables
4.27 and 4.28 list the p-values resulting from the statistical tests. The p-values that indicate statistical signifi-
cance (at a significance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the tables.

TABLE 4.27: Vlad: Statistical tests
on final BS-OF scores - training set

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.22

BP2 0.25 0.13

FS 0.00 0.00 0.00

DSS 0.10 0.00 0.17 0.00

HP 0.15 0.32 0.05 0.00 0.00

NS1 0.13 0.03 0.19 0.00 0.37 0.00

TABLE 4.28: Vlad: Statistical tests
on final BS-OF scores - test set

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.11

BP2 0.12 0.42

FS 0.07 0.01 0.01

DSS 0.07 0.00 0.00 0.41

HP 0.00 0.00 0.00 0.09 0.09

NS1 0.00 0.00 0.00 0.00 0.00 0.00

The results indicate that a number of the fitness measures achieve on par training and test scores on this
difficult problem. FS achieves significantly higher training scores than the other fitness measures, but performs
on par with DSS and HP on the test set.

F. Dow (highest solution quality = FS, DSS, HP)

Tables 4.29 and 4.30 list the best (b) and mean (µ) final BS-OF scores achieved on the training and test sets
respectively; the standard deviation of the final BS-OF scores (σ) is also shown. In addition, the tables list the
success rates (SR) achieved. The best performing fitness measures are highlighted in the tables.

TABLE 4.29: Dow: Final BS-OF
scores - training set

OF BP1 BP2 FS DSS HP NS1

SR 0.00 0.00 0.00 0.00 0.00 0.00 0.00

b 0.40 0.40 0.39 0.39 0.42 0.43 0.39

µ 0.36 0.37 0.37 0.36 0.39 0.39 0.34

σ 0.03 0.03 0.02 0.02 0.02 0.03 0.03

TABLE 4.30: Dow: Final BS-OF
scores - test set

OF BP1 BP2 FS DSS HP NS1

SR 0.00 0.00 0.00 0.00 0.00 0.00 0.00

b 0.19 0.16 0.16 0.17 0.17 0.18 0.09

µ 0.10 0.09 0.09 0.12 0.13 0.14 0.02

σ 0.06 0.07 0.07 0.07 0.07 0.06 0.04

Statistical tests are conducted to verify the significance of the observations in tables 4.29 and 4.30. Tables
4.31 and 4.32 list the p-values resulting from the statistical tests. The p-values that indicate statistical signifi-
cance (at a significance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the tables.
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TABLE 4.31: Dow: Statistical test on
final BS-OF scores - training set

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.22

BP2 0.23 0.39

FS 0.41 0.23 0.29

DSS 0.01 0.00 0.00 0.00

HP 0.00 0.00 0.00 0.00 0.34

NS1 0.01 0.00 0.00 0.01 0.00 0.00

TABLE 4.32: Dow: Statistical tests
on final BS-OF scores - test set

One-way ANOVA p-value = 0.03

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.25

BP2 0.22 0.37

FS 0.05 0.00 0.00

DSS 0.00 0.00 0.00 0.09

HP 0.00 0.00 0.00 0.05 0.13

NS1 0.00 0.00 0.00 0.00 0.00 0.00

The results indicate that as in the previous problem, a number of the fitness measures achieve on par
training and test scores on this difficult problem. HP and DSS achieve significantly higher training scores than
the other fitness measures. In turn, FS, DSS and HP achieve the best test scores.

.. ..

Supervised classification benchmarks

An overview of the performance in the domain is presented. A detailed breakdown of the results follows.

Performance overview

Figures 4.4 and 4.5 indicate the mean final BS-OF scores achieved on the training and test sets respectively.
The mean final BS-OF scores are also listed in tables 4.33 and 4.34, where the best scores on each problem are
highlighted. In turn, figure 4.6 shows the mean generational BS-OF scores achieved on the training set. In the
figures and tables below, higher scores indicate better performance of GP. All scores are averaged over the 30
GP runs.

The results show that the fitness measures generally achieve high training and test scores on the trivial iris
classification problem, but low scores on the difficult vowel and opt classification problems. In general, the
more difficult the problem, the poorer the performance of the fitness measures; a discussion on the relative
difficulty of the problems was included in section 4.2.3. Critically, different fitness measures achieve the best
result on the different problems. For example, NS1 achieves among the highest training and test scores on the
segment problem but performs poorly when compared to the other fitness measures on the remaining prob-
lems. Also, FS and DSS achieve among the highest training and test scores on the wine and segment problems,
but perform moderately when compared to the other fitness measures on the credit problem. Furthermore,
BP1 and BP2 achieve competitive training and test scores on the credit problem, but the lowest training and
test scores on the segment problem. Overall, the performance of a given fitness measure is shown to depend
on the particular problem being tackled.
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FIGURE 4.4: Supervised classification benchmarks: Mean final BS-OF scores - training set

FIGURE 4.5: Supervised classification benchmarks: Mean final BS-OF scores - test set

TABLE 4.33: Supervised classifica-
tion benchmarks: Mean final BS-OF

scores - training set

OF BP1 BP2 FS DSS HP NS1

Iris 0.99 1.00 1.00 1.00 1.00 0.99 0.96

Credit 0.92 0.92 0.92 0.88 0.87 0.89 0.82

Wine 0.66 0.63 0.62 0.70 0.70 0.66 0.57

Segment 0.46 0.44 0.43 0.52 0.51 0.45 0.51

Vowel 0.41 0.40 0.39 0.39 0.44 0.40 0.39

Opt 0.34 0.32 0.33 0.32 0.35 0.32 0.32

TABLE 4.34: Supervised classifica-
tion benchmarks: Mean final BS-OF

scores - test set

OF BP1 BP2 FS DSS HP NS1

Iris 0.95 0.95 0.96 0.96 0.96 0.95 0.95

Credit 0.84 0.84 0.84 0.83 0.82 0.88 0.78

Wine 0.57 0.52 0.54 0.63 0.65 0.55 0.48

Segment 0.36 0.34 0.34 0.41 0.39 0.36 0.40

Vowel 0.24 0.24 0.24 0.29 0.23 0.23 0.23

Opt 0.32 0.31 0.32 0.31 0.32 0.30 0.30
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Detailed results

The benchmarks are discussed in the following order: A) Iris, B) Credit, C) Wine, D) Segment, E) Vowel, and
F) Opt.

A. Iris (highest solution quality = N/A)

Tables 4.35 and 4.36 list the best (b) and mean (µ) final BS-OF scores achieved on the training and test sets
respectively; the standard deviation of the final BS-OF scores (σ) is also shown. In addition, the tables list
the success rates (SR) achieved. Note that the mean scores shown in tables 4.35 and 4.36 are the same scores
shown for the iris problem in tables 4.33 and 4.34; the analysis in this section looks at the scores achieved on
the iris problem in detail.

TABLE 4.35: Iris: Final BS-OF scores
- training set

OF BP1 BP2 FS DSS HP NS1

SR 0.30 0.47 0.57 0.73 0.43 0.47 0.03

b 1.00 1.00 1.00 1.00 1.00 1.00 1.00

µ 0.99 1.00 1.00 1.00 1.00 0.99 0.96

σ 0.02 0.01 0.01 0.01 0.01 0.02 0.01

TABLE 4.36: Iris: Final BS-OF scores
- test set

OF BP1 BP2 FS DSS HP NS1

SR 0.00 0.00 0.00 0.00 0.00 0.00 0.00

b 0.98 0.98 0.98 0.98 0.98 0.98 0.98

µ 0.95 0.95 0.96 0.96 0.96 0.95 0.95

σ 0.04 0.06 0.04 0.04 0.03 0.05 0.04

Statistical tests are conducted to verify the significance of the observations in tables 4.35 and 4.36. Tables
4.37 and 4.38 list the p-values resulting from the statistical tests. The p-values that indicate statistical signifi-
cance (at a significance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the tables.

TABLE 4.37: Iris: Statistical tests on
final BS-OF scores - training set

One-way ANOVA p-value = 0.07

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.25

BP2 0.29 0.42

FS 0.15 0.11 0.13

DSS 0.27 0.40 0.33 0.15

HP 0.14 0.20 0.18 0.10 0.27

NS1 0.00 0.00 0.00 0.00 0.00 0.00

TABLE 4.38: Iris: Statistical tests on
final BS-OF scores - test set

One-way ANOVA p-value = 0.72

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.38

BP2 0.10 0.12

FS 0.14 0.15 0.42

DSS 0.32 0.27 0.19 0.25

HP 0.42 0.33 0.16 0.21 0.42

NS1 0.50 0.37 0.08 0.12 0.30 0.41

The results indicate that the fitness measures achieve high and on par training and test scores on this trivial
problem. NS1 achieves significantly lower training scores than the other fitness measures. Apart from NS1,
the ANOVA p-value of 0.07 (whereby 0.07 > α) and the p-values resulting from the pairwise comparisons in
table 4.37 show that the remaining fitness measures achieve on par performance on the training set. Similarly,
the ANOVA p-value of 0.72 in table 4.38 indicates that all the fitness measures achieve on par performance on
the test set.

B. Credit (highest solution quality = OF, BP1, BP2, HP)

Tables 4.39 and 4.40 list the best (b) and mean (µ) final BS-OF scores achieved on the training and test sets
respectively; the standard deviation of the final BS-OF scores (σ) is also shown. In addition, the tables list the
success rates (SR) achieved. The best performing fitness measures are highlighted in the tables.

Statistical tests are conducted to verify the significance of the observations in tables 4.39 and 4.40. Tables
4.41 and 4.42 list the p-values resulting from the statistical tests. The p-values that indicate statistical signifi-
cance (at a significance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the tables.
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TABLE 4.39: Credit: Final BS-OF
scores - training set

OF BP1 BP2 FS DSS HP NS1

SR 0.00 0.00 0.00 0.00 0.00 0.00 0.00

b 0.93 0.95 0.95 0.94 0.93 0.94 0.86

µ 0.92 0.92 0.92 0.88 0.87 0.89 0.82

σ 0.03 0.06 0.04 0.07 0.07 0.09 0.08

TABLE 4.40: Credit: Final BS-OF
scores - test set

OF BP1 BP2 FS DSS HP NS1

SR 0.00 0.00 0.00 0.00 0.00 0.00 0.00

b 0.88 0.86 0.88 0.86 0.86 0.93 0.86

µ 0.84 0.84 0.84 0.83 0.82 0.88 0.78

σ 0.07 0.03 0.05 0.08 0.09 0.10 0.12

TABLE 4.41: Credit: Statistical tests
on final BS-OF scores - training set

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.47

BP2 0.38 0.42

FS 0.00 0.00 0.00

DSS 0.00 0.00 0.00 0.02

HP 0.03 0.04 0.08 0.21 0.00

NS1 0.00 0.00 0.00 0.00 0.00 0.00

TABLE 4.42: Credit: Statistical tests
on final BS-OF scores - test set

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.45

BP2 0.24 0.23

FS 0.04 0.02 0.01

DSS 0.00 0.00 0.00 0.07

HP 0.01 0.01 0.02 0.00 0.00

NS1 0.00 0.00 0.00 0.00 0.00 0.00

The results indicate that OF, BP1 and BP2 largely achieve significantly higher training scores than the
rest of the fitness measures on the problem. HP achieves the highest test scores. Conversely NS1 achieves
significantly lower training and test scores than the other fitness measures.

C. Wine (highest solution quality = FS, DSS)

Tables 4.43 and 4.44 list the best (b) and mean (µ) final BS-OF scores achieved on the training and test sets
respectively; the standard deviation of the final BS-OF scores (σ) is also shown. In addition, the tables list the
success rates (SR) achieved. The best performing fitness measures are highlighted in the tables.

TABLE 4.43: Wine: Final BS-OF
score - training set

OF BP1 BP2 FS DSS HP NS1

SR 0.00 0.00 0.00 0.00 0.00 0.00 0.00

b 0.70 0.68 0.67 0.73 0.73 0.71 0.61

µ 0.66 0.63 0.62 0.70 0.70 0.66 0.57

σ 0.03 0.03 0.02 0.02 0.02 0.03 0.05

TABLE 4.44: Wine: Final BS-OF
score - test set

OF BP1 BP2 FS DSS HP NS1

SR 0.00 0.00 0.00 0.00 0.00 0.00 0.00

b 0.69 0.73 0.71 0.71 0.71 0.69 0.59

µ 0.57 0.52 0.54 0.63 0.65 0.55 0.48

σ 0.05 0.06 0.06 0.04 0.04 0.05 0.07

Statistical tests are conducted to verify the significance of the observations in tables 4.43 and 4.44. Tables
4.45 and 4.46 list the p-values resulting from the statistical tests. The p-values that indicate statistical signifi-
cance (at a significance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the tables.

The results indicate that FS and DSS achieve significantly higher training and test scores than the other
fitness measures. On the other hand, NS1 achieves significantly lower training scores than the other fitness
measures; also, NS1 achieves significantly lower test scores than FS and DSS.
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TABLE 4.45: Wine: Statistical tests
on final BS-OF scores - training set

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.02

BP2 0.01 0.32

FS 0.00 0.00 0.00

DSS 0.00 0.00 0.00 0.37

HP 0.40 0.03 0.02 0.00 0.00

NS1 0.00 0.00 0.00 0.00 0.00 0.00

TABLE 4.46: Wine: Statistical tests
on final BS-OF scores - test set

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.00

BP2 0.06 0.01

FS 0.04 0.00 0.00

DSS 0.00 0.00 0.00 0.05

HP 0.25 0.09 0.00 0.01 0.00

NS1 0.00 0.06 0.00 0.00 0.00 0.00

D. Segment (highest solution quality = FS, DSS, NS1)

Tables 4.47 and 4.48 list the best (b) and mean (µ) final BS-OF scores achieved on the training and test sets
respectively; the standard deviation of the final BS-OF scores (σ) is also shown. In addition, the tables list the
success rates (SR) achieved. The best performing fitness measures are highlighted in the tables.

TABLE 4.47: Segment: Final BS-OF
score - training set

OF BP1 BP2 FS DSS HP NS1

SR 0.00 0.00 0.00 0.00 0.00 0.00 0.00

b 0.55 0.53 0.51 0.70 0.61 0.57 0.61

µ 0.46 0.44 0.43 0.52 0.51 0.45 0.51

σ 0.06 0.06 0.05 0.05 0.06 0.05 0.05

TABLE 4.48: Segment: Final BS-OF
score - test set

OF BP1 BP2 FS DSS HP NS1

SR 0.00 0.00 0.00 0.00 0.00 0.00 0.00

b 0.50 0.44 0.41 0.57 0.53 0.46 0.53

µ 0.36 0.34 0.34 0.41 0.39 0.36 0.40

σ 0.07 0.05 0.07 0.07 0.05 0.05 0.06

Statistical tests are conducted to verify the significance of the observations in tables 4.47 and 4.48. Tables
4.49 and 4.50 list the p-values resulting from the statistical tests. The p-values that indicate statistical signifi-
cance (at a significance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the tables.

TABLE 4.49: Segment: Statistical
tests on final BS-OF scores - training

set

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.07

BP2 0.01 0.22

FS 0.00 0.00 0.00

DSS 0.00 0.00 0.00 0.34

HP 0.25 0.18 0.03 0.00 0.00

NS1 0.00 0.00 0.00 0.22 0.35 0.00

TABLE 4.50: Segment: Statistical
tests on final BS-OF scores - test

....set

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.03

BP2 0.02 0.49

FS 0.00 0.00 0.00

DSS 0.03 0.00 0.00 0.06

HP 0.40 0.02 0.01 0.00 0.03

NS1 0.00 0.00 0.00 0.30 0.13 0.00

The results indicate that FS, DSS and NS1 achieve on par training and test scores. Furthermore, FS, DSS
and NS1 achieve significantly higher training and test scores than the other fitness measures on the problem.



86 Chapter 4. A Comparison of Fitness Measures in GP

E. Vowel (highest solution quality = FS, DSS)

Tables 4.51 and 4.52 list the best (b) and mean (µ) final BS-OF scores achieved on the training and test sets
respectively; the standard deviation of the final BS-OF scores (σ) is also shown. In addition, the tables list the
success rates (SR) achieved. The best performing fitness measures are highlighted in the tables.

TABLE 4.51: Vowel: Final BS-OF
scores - training set

OF BP1 BP2 FS DSS HP NS1

SR 0.00 0.00 0.00 0.00 0.00 0.00 0.00

b 0.46 0.46 0.45 0.43 0.51 0.47 0.45

µ 0.41 0.40 0.39 0.39 0.44 0.40 0.39

σ 0.06 0.05 0.05 0.04 0.06 0.06 0.05

TABLE 4.52: Vowel: Final BS-OF
scores - test set

OF BP1 BP2 FS DSS HP NS1

SR 0.00 0.00 0.00 0.00 0.00 0.00 0.00

b 0.31 0.29 0.31 0.35 0.32 0.31 0.29

µ 0.24 0.24 0.24 0.29 0.23 0.23 0.23

σ 0.05 0.07 0.09 0.09 0.10 0.10 0.11

Statistical tests are conducted to verify the significance of the observations in tables 4.51 and 4.52. Tables
4.53 and 4.54 list the p-values resulting from the statistical tests. The p-values that indicate statistical signifi-
cance (at a significance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the tables.

TABLE 4.53: Vowel: Statistical tests
on final BS-OF scores - training set

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.11

BP2 0.01 0.11

FS 0.01 0.25 0.17

DSS 0.03 0.00 0.00 0.00

HP 0.06 0.38 0.15 0.37 0.00

NS1 0.01 0.24 0.18 0.47 0.00 0.35

TABLE 4.54: Vowel: Statistical tests
on final BS-OF scores - test set

One-way ANOVA p-value = 0.04

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.43

BP2 0.47 0.39

FS 0.03 0.02 0.02

DSS 0.42 0.32 0.45 0.01

HP 0.16 0.09 0.19 0.00 0.19

NS1 0.30 0.22 0.34 0.00 0.36 0.32

The results indicate that a number of the fitness measures achieve on par training and test scores on this
difficult problem. DSS achieves significantly higher training scores than the other fitness measures. In turn,
FS achieves significantly higher test scores than the other fitness measures. Apart from FS, all the other fitness
measures perform on par on the test set.

F. Opt (highest solution quality = N/A)

Tables 4.55 and 4.56 list the best (b) and mean (µ) final BS-OF scores achieved on the training and test sets
respectively; the standard deviation of the final BS-OF scores (σ) is also shown. In addition, the tables list the
success rates (SR) achieved.

TABLE 4.55: Opt: Final BS-OF
scores - training set

OF BP1 BP2 FS DSS HP NS1

SR 0.00 0.00 0.00 0.00 0.00 0.00 0.00

b 0.40 0.38 0.39 0.38 0.42 0.45 0.36

µ 0.34 0.32 0.33 0.32 0.35 0.32 0.32

σ 0.15 0.11 0.11 0.09 0.13 0.18 0.06

TABLE 4.56: Opt: Final BS-OF
scores - test set

OF BP1 BP2 FS DSS HP NS1

SR 0.00 0.00 0.00 0.00 0.00 0.00 0.00

b 0.39 0.41 0.41 0.41 0.41 0.45 0.34

µ 0.32 0.31 0.32 0.31 0.32 0.30 0.30

σ 0.14 0.18 0.18 0.11 0.16 0.20 0.07
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Statistical tests are conducted to verify the significance of the observations in tables 4.55 and 4.56. Tables
4.57 and 4.58 list the p-values resulting from the statistical tests. The p-values that indicate statistical signifi-
cance (at a significance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the tables.

TABLE 4.57: Opt: Statistical tests on
final BS-OF scores - training set

One-way ANOVA p-value = 0.06

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.01

BP2 0.06 0.14

FS 0.03 0.23 0.34

DSS 0.13 0.00 0.00 0.00

HP 0.02 0.48 0.17 0.27 0.00

NS1 0.01 0.40 0.14 0.26 0.00 0.43

TABLE 4.58: Opt: Statistical tests on
final BS-OF scores - test set

One-way ANOVA p-value = 0.14

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.14

BP2 0.36 0.25

FS 0.22 0.34 0.36

DSS 0.43 0.12 0.31 0.18

HP 0.03 0.21 0.07 0.10 0.02

NS1 0.01 0.16 0.03 0.05 0.01 0.47

The results indicate that most of the fitness measures achieve on par training and test scores on this difficult
problem. The ANOVA p-values of 0.06 (whereby 0.06 > α) and 0.14 (whereby 0.14 > α) shown in tables 4.57
and 4.58 respectively indicate that the fitness measures largely achieve on par performance on both the training
and test sets.

.. ..

Boolean function synthesis benchmarks

An overview of the performance in the domain is presented. A detailed breakdown of the results follows.

Performance overview

Figures 4.7 and 4.8 indicate the mean final BS-OF scores achieved on the training and test sets respectively.
The mean final BS-OF scores are also listed in tables 4.59 and 4.60, where the best scores on each problem are
highlighted. In turn, figure 4.9 shows the mean generational BS-OF scores achieved on the training set. In the
figures and tables below, higher scores indicate better performance of GP. All scores are averaged over the 30
GP runs.

A key observation made from figures 4.7 and 4.8 is that the fitness measures incur high overfitting on the
even-n parity problems: the test BS-OF scores are significantly lower than the training BS-OF scores. This is
discussed in detail in section 4.3.2. The results also demonstrate that different fitness measures achieve the
best result on the different problems. For example, FS and DSS achieve the highest test scores on the mux-11
problem, whereas BP1 and BP2 achieve the highest test scores on the mult-3 problem. FS and DSS achieve high
training and test scores on the mux-11 problem, but low test scores on the par-5, par-7 and par-9 problems. BP1
and BP2 achieve high training and test scores on most problems, but also achieve low test scores on the par-5,
par-7 and par-9 problems. Also, HP is shown to achieve among the best test scores on the mult-4 problem, but
the worst test score on the mux-11 problem. Overall, the performance of a given fitness measure is shown to
depend on the particular problem being tackled.
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.. ..

FIGURE 4.7: Boolean function synthesis benchmarks: Mean final BS-OF scores - training set

.. ..

FIGURE 4.8: Boolean function synthesis benchmarks: Mean final BS-OF scores - test set

.. ..

TABLE 4.59: Boolean function syn-
thesis benchmarks: Mean final BS-

OF scores - training set

OF BP1 BP2 FS DSS HP NS1

Par-5 0.91 0.86 0.93 0.90 0.91 0.77 0.66

Par-7 0.65 0.58 0.65 0.56 0.66 0.54 0.58

Par-9 0.60 0.62 0.63 0.57 0.63 0.55 0.56

Mux-11 0.95 0.96 0.97 1.00 0.99 0.66 0.66

Mult-3 0.89 0.90 0.92 0.93 0.93 0.88 0.71

Mult-4 0.85 0.84 0.85 0.84 0.84 0.81 0.66

TABLE 4.60: Boolean function syn-
thesis benchmarks: Mean final BS-

OF scores - test set

OF BP1 BP2 FS DSS HP NS1

Par-5 0.11 0.15 0.15 0.13 0.09 0.25 0.23

Par-7 0.16 0.24 0.21 0.22 0.15 0.19 0.29

Par-9 0.31 0.27 0.30 0.34 0.26 0.38 0.37

Mux-11 0.94 0.95 0.97 1.00 0.99 0.63 0.65

Mult-3 0.82 0.87 0.86 0.80 0.79 0.83 0.68

Mult-4 0.75 0.76 0.74 0.80 0.76 0.80 0.63
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Detailed results

The benchmarks are discussed in the following order: A) Even-5 parity, B) Even-7 parity, C) Even-9 parity, D)
11-multiplexer, E) 3-bit multiplier, and F) 4-bit multiplier.

A. Even-5 parity (highest solution quality = BP2, HP, NS1)

Tables 4.61 and 4.62 list the best (b) and mean (µ) final BS-OF scores achieved on the training and test sets
respectively; the standard deviation of the final BS-OF scores (σ) is also shown. In addition, the tables list the
success rates (SR) achieved. The best performing fitness measures are highlighted in the tables. Note that the
mean scores shown in tables 4.61 and 4.62 are the same scores shown for the par-5 problem in tables 4.59 and
4.60; the analysis in this section looks at the scores achieved on the par-5 problem in detail.

TABLE 4.61: Even-5 parity: Final
BS-OF scores - training set

OF BP1 BP2 FS DSS HP NS1

SR 0.10 0.13 0.43 0.07 0.07 0.00 0.00

b 1.00 1.00 1.00 1.00 1.00 0.91 0.70

µ 0.91 0.86 0.93 0.90 0.91 0.77 0.66

σ 0.04 0.04 0.03 0.02 0.02 0.03 0.02

TABLE 4.62: Even-5 parity: Final
BS-OF scores - test set

OF BP1 BP2 FS DSS HP NS1

b 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Max 0.33 0.33 0.22 0.33 0.33 0.67 0.44

µ 0.11 0.15 0.15 0.13 0.09 0.25 0.23

σ 0.09 0.09 0.07 0.10 0.09 0.12 0.09

Statistical tests are conducted to verify the significance of the observations in tables 4.61 and 4.62. Tables
4.63 and 4.64 list the p-values resulting from the statistical tests. The p-values that indicate statistical signifi-
cance (at a significance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the tables.

TABLE 4.63: Even-5 parity: Statis-
tical tests on final BS-OF scores -

training set

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.00

BP2 0.16 0.00

FS 0.17 0.00 0.03

DSS 0.50 0.00 0.13 0.12

HP 0.00 0.00 0.00 0.00 0.00

NS1 0.00 0.00 0.00 0.00 0.00 0.00

TABLE 4.64: Even-5 parity: Statisti-
cal tests on final BS-OF scores - test

set

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.06

BP2 0.03 0.42

FS 0.27 0.14 0.08

DSS 0.12 0.00 0.00 0.04

HP 0.00 0.00 0.00 0.00 0.00

NS1 0.00 0.00 0.00 0.00 0.00 0.20

The results indicate that OF, BP2, FS and DSS achieve on par training scores. However, BP2 achieves the
highest success rate on the training set. Table 4.63 indicates that NS1 achieves significantly lower training
scores than the other fitness measures on the problem. On the other hand, table 4.64 indicates that HP and
NS1 achieve significantly higher test scores than the other fitness measures on the problem.

B. Even-7 parity (highest solution quality = OF, BP2, DSS, NS1)

Tables 4.65 and 4.66 list the best (b) and mean (µ) final BS-OF scores achieved on the training and test sets
respectively; the standard deviation of the final BS-OF scores (σ) is also shown. In addition, the tables list the
success rates (SR) achieved. The best performing fitness measures are highlighted in the tables.

Statistical tests are conducted to verify the significance of the observations in tables 4.65 and 4.66. Tables
4.67 and 4.68 list the p-values resulting from the statistical tests. The p-values that indicate statistical signifi-
cance (at a significance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the tables.
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TABLE 4.65: Even-7 parity: Final
BS-OF scores - training set

OF BP1 BP2 FS DSS HP NS1

SR 0.00 0.00 0.00 0.00 0.00 0.00 0.00

b 0.73 0.62 0.75 0.59 0.72 0.58 0.60

µ 0.65 0.58 0.65 0.56 0.66 0.54 0.58

σ 0.05 0.02 0.05 0.01 0.03 0.01 0.01

TABLE 4.66: Even-7 parity: Final
BS-OF scores - test set

OF BP1 BP2 FS DSS HP NS1

SR 0.00 0.00 0.00 0.00 0.00 0.00 0.00

b 0.34 0.34 0.29 0.32 0.21 0.26 0.42

µ 0.16 0.24 0.21 0.22 0.15 0.19 0.29

σ 0.04 0.03 0.04 0.05 0.03 0.03 0.07

TABLE 4.67: Even-7 parity: Statis-
tical tests on final BS-OF scores -

training set

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.00

BP2 0.46 0.00

FS 0.00 0.01 0.00

DSS 0.32 0.00 0.29 0.00

HP 0.00 0.00 0.00 0.09 0.00

NS1 0.00 0.47 0.00 0.00 0.00 0.00

TABLE 4.68: Even-7 parity: Statisti-
cal tests on final BS-OF scores - test

set

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.00

BP2 0.00 0.01

FS 0.00 0.05 0.14

DSS 0.41 0.00 0.00 0.00

HP 0.01 0.00 0.03 0.00 0.00

NS1 0.00 0.00 0.00 0.00 0.00 0.00

The results indicate that OF, BP2 and DSS achieve significantly higher training scores than the other fitness
measures on the problem. Also, NS1 achieves significantly higher test scores than the other fitness measures
on the problem.

C. Even-9 parity (highest solution quality = BP1, BP2, DSS, HP, NS1)

Tables 4.69 and 4.70 list the best (b) and mean (µ) final BS-OF scores achieved on the training and test sets
respectively; the standard deviation of the final BS-OF scores (σ) is also shown. In addition, the tables list the
success rates (SR) achieved. The best performing fitness measures are highlighted in the tables. Statistical tests

TABLE 4.69: Even-9 parity: Final
BS-OF scores - training set

OF BP1 BP2 FS DSS HP NS1

SR 0.00 0.00 0.00 0.00 0.00 0.00 0.00

b 0.63 0.66 0.70 0.58 0.69 0.56 0.56

µ 0.60 0.62 0.63 0.57 0.63 0.55 0.56

σ 0.02 0.02 0.04 0.02 0.02 0.01 0.00

TABLE 4.70: Even-9 parity: Final
BS-OF scores - test set

OF BP1 BP2 FS DSS HP NS1

SR 0.00 0.00 0.00 0.00 0.00 0.00 0.00

b 0.36 0.31 0.33 0.41 0.33 0.39 0.40

µ 0.31 0.27 0.30 0.34 0.26 0.38 0.37

σ 0.03 0.02 0.03 0.03 0.03 0.02 0.01

are conducted to verify the significance of the observations in tables 4.69 and 4.70. Tables 4.71 and 4.72 list the
p-values resulting from the statistical tests. The p-values that indicate statistical significance (at a significance
level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the tables.

The results indicate that BP1, BP2 and DSS achieve significantly higher training scores than the other fitness
measures on the problem. Also, HP and NS1 achieve significantly higher test scores than the other fitness
measures on the problem.
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TABLE 4.71: Even-9 parity: Statis-
tical tests on final BS-OF scores -

training set

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.00

BP2 0.00 0.10

FS 0.00 0.00 0.00

DSS 0.03 0.29 0.06 0.00

HP 0.03 0.00 0.00 0.22 0.00

NS1 0.00 0.00 0.00 0.00 0.00 0.27

TABLE 4.72: Even-9 parity: Statisti-
cal tests on final BS-OF scores - test

set

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.00

BP2 0.35 0.00

FS 0.00 0.00 0.00

DSS 0.00 0.29 0.02 0.00

HP 0.00 0.00 0.00 0.00 0.00

NS1 0.00 0.00 0.00 0.00 0.00 0.20

D. 11-multiplexer (highest solution quality = FS, DSS)

Tables 4.73 and 4.74 list the best (b) and mean (µ) final BS-OF scores achieved on the training and test sets
respectively; the standard deviation of the final BS-OF scores (σ) is also shown. In addition, the tables list the
success rates (SR) achieved. The best performing fitness measures are highlighted in the tables.

TABLE 4.73: 11-multiplexer: Final
BS-OF scores - training set

OF BP1 BP2 FS DSS HP NS1

SR 0.13 0.37 0.50 0.97 0.73 0.00 0.00

b 1.00 1.00 1.00 1.00 1.00 0.69 0.69

µ 0.95 0.96 0.97 1.00 0.99 0.66 0.66

σ 0.03 0.03 0.03 0.01 0.01 0.02 0.03

TABLE 4.74: 11-multiplexer: Final
BS-OF scores - test set

OF BP1 BP2 FS DSS HP NS1

SR 0.13 0.37 0.50 0.97 0.73 0.00 0.00

b 1.00 1.00 1.00 1.00 1.00 0.68 0.69

µ 0.94 0.95 0.97 1.00 0.99 0.63 0.65

σ 0.04 0.04 0.04 0.02 0.02 0.03 0.03

Statistical tests are conducted to verify the significance of the observations in tables 4.73 and 4.74. Tables
4.75 and 4.76 list the p-values resulting from the statistical tests. The p-values that indicate statistical signifi-
cance (at a significance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the tables.

TABLE 4.75: 11-multiplexer: Statis-
tical tests on final BS-OF scores -

training set

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.21

BP2 0.01 0.00

FS 0.00 0.00 0.00

DSS 0.00 0.00 0.00 0.27

HP 0.00 0.00 0.00 0.00 0.00

NS1 0.00 0.00 0.00 0.00 0.00 0.40

TABLE 4.76: 11-multiplexer: Statis-
tical tests on final BS-OF scores - test

set

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.21

BP2 0.01 0.05

FS 0.00 0.00 0.00

DSS 0.00 0.00 0.00 0.25

HP 0.00 0.00 0.00 0.00 0.00

NS1 0.00 0.00 0.00 0.00 0.00 0.12

The results indicate that FS and DSS achieve significantly higher training and test scores than the other
fitness measures on the problem. FS and DSS also achieve the highest success rates on the training and test
sets. Conversely, NS1 and HP achieve the lowest training and test scores on the problem.
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E. 3-bit multiplier (highest solution quality = BP1, BP2, FS, DSS)

Tables 4.77 and 4.78 list the best (b) and mean (µ) final BS-OF scores achieved on the training and test sets
respectively; the standard deviation of the final BS-OF scores (σ) is also shown. In addition, the tables list the
success rates (SR) achieved. The best performing fitness measures are highlighted in the tables.

TABLE 4.77: 3-bit multiplier: Final
BS-OF scores - training set

OF BP1 BP2 FS DSS HP NS1

SR 0.00 0.00 0.00 0.00 0.00 0.00 0.00

b 0.93 0.93 0.96 0.95 0.95 0.92 0.74

µ 0.89 0.90 0.92 0.93 0.93 0.88 0.71

σ 0.02 0.02 0.01 0.01 0.01 0.02 0.02

TABLE 4.78: 3-bit multiplier: Final
BS-OF scores - test set

OF BP1 BP2 FS DSS HP NS1

SR 0.00 0.00 0.00 0.00 0.00 0.00 0.00

b 0.92 0.89 0.90 0.89 0.86 0.89 0.77

µ 0.82 0.87 0.86 0.80 0.79 0.83 0.68

σ 0.06 0.02 0.04 0.03 0.03 0.03 0.04

Statistical tests are conducted to verify the significance of the observations in tables 4.77 and 4.78. Tables
4.79 and 4.80 list the p-values resulting from the statistical tests. The p-values that indicate statistical signifi-
cance (at a significance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the tables.

TABLE 4.79: 3-bit multiplier: Sta-
tistical tests on final BS-OF scores -

training set

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.10

BP2 0.00 0.04

FS 0.00 0.00 0.19

DSS 0.00 0.00 0.17 0.35

HP 0.09 0.02 0.00 0.00 0.00

NS1 0.00 0.00 0.00 0.00 0.00 0.00

TABLE 4.80: 3-bit multiplier: Statis-
tical tests on final BS-OF scores - test

set

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.00

BP2 0.02 0.37

FS 0.01 0.00 0.00

DSS 0.01 0.00 0.00 0.34

HP 0.32 0.01 0.03 0.00 0.00

NS1 0.00 0.00 0.00 0.00 0.00 0.00

The results indicate that BP2, FS and DSS achieve significantly higher training scores than the other fitness
measures on the problem. Also, BP1 and BP2 achieve significantly higher test scores than the other fitness
measures on the problem.

F. 4-bit multiplier (highest solution quality = OF, BP1, BP2, FS, DSS, HP)

Tables 4.81 and 4.82 list the best (b) and mean (µ) final BS-OF scores achieved on the training and test sets
respectively; the standard deviation of the final BS-OF scores (σ) is also shown. In addition, the tables list the
success rates (SR) achieved. The best performing fitness measures are highlighted in the tables.

TABLE 4.81: 4-bit multiplier: Final
BS-OF scores - training set

OF BP1 BP2 FS DSS HP NS1

SR 0.00 0.00 0.00 0.00 0.00 0.00 0.00

b 0.88 0.86 0.88 0.87 0.87 0.85 0.68

µ 0.85 0.84 0.85 0.84 0.84 0.81 0.66

σ 0.06 0.07 0.02 0.03 0.06 0.04 0.06

TABLE 4.82: 4-bit multiplier: Final
BS-OF scores - test set

OF BP1 BP2 FS DSS HP NS1

SR 0.00 0.00 0.00 0.00 0.00 0.00 0.00

b 0.80 0.81 0.77 0.84 0.81 0.84 0.66

µ 0.75 0.76 0.74 0.80 0.76 0.80 0.63

σ 0.07 0.05 0.02 0.03 0.04 0.04 0.06

Statistical tests are conducted to verify the significance of the observations in tables 4.81 and 4.82. Tables
4.83 and 4.84 list the p-values resulting from the statistical tests. The p-values that indicate statistical signifi-
cance (at a significance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the tables.
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TABLE 4.83: 4-bit multiplier: Sta-
tistical tests on final BS-OF scores -

training set

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.29

BP2 0.27 0.32

FS 0.23 0.29 0.27

DSS 0.18 0.17 0.29 0.22

HP 0.00 0.00 0.00 0.00 0.00

NS1 0.00 0.00 0.00 0.00 0.00 0.00

TABLE 4.84: 4-bit multiplier: Statis-
tical tests on final BS-OF scores - test

set

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.27

BP2 0.29 0.09

FS 0.03 0.00 0.00

DSS 0.17 0.30 0.11 0.04

HP 0.00 0.00 0.00 0.11 0.00

NS1 0.00 0.00 0.00 0.00 0.00 0.00

The results indicate that OF, BP1, BP2, FS and DSS achieve on par and higher training scores compared to
HP and NS1. Also, FS and HP achieve significantly higher test scores than the other fitness measures on the
problem.

Path-finding benchmarks

An overview of the performance in the domain is presented. A detailed breakdown of the results follows.

Performance overview

Figures 4.10 and 4.11 indicate the mean final BS-OF scores achieved on the training and test sets respectively.
The mean final BS-OF scores are also listed in tables 4.85 and 4.86, where the best scores on each problem are
highlighted. In turn, figure 4.12 shows the mean generational BS-OF scores achieved on the training set. In
the figures and tables below, higher scores indicate better performance of GP. All scores are averaged over the
30 GP runs.

The results show that the fitness measures generally achieve high training and test scores on the trivial
ant problem, and lower scores on the more difficult tart. and dec. tart. problems. Critically, different fitness
measures achieve the best result on the different problems. For example, BP1 and BP2 achieve the highest
training and test scores on the dec. tart. problem, but achieve only moderate training and test scores on the
tart. problem. Conversely, NS2 achieves the highest training and test scores on the tart. problem, but achieves
only moderate training and test scores on the dec. tart. problem. Overall, the performance of a given fitness
measure is shown to depend on the particular problem being tackled.

TABLE 4.85: Path-finding bench-
marks: Mean final BS-OF scores -

training set

OF BP1 BP2 FS DSS HP NS1 NS2

Ant 0.98 0.98 0.98 0.95 0.98 0.96 0.95 0.98

Tart. 0.51 0.52 0.51 0.14 0.57 0.48 0.14 0.59

Dec.
tart.

0.49 0.66 0.67 0.46 0.50 0.48 0.46 0.56

TABLE 4.86: Path-finding bench-
marks: Mean final BS-OF scores -

test ....... set

OF BP1 BP2 FS DSS HP NS1 NS2

Ant 0.90 0.90 0.90 0.90 0.92 0.90 0.89 0.90

Tart. 0.39 0.41 0.37 0.11 0.46 0.42 0.11 0.48

Dec.
tart.

0.46 0.55 0.58 0.46 0.47 0.45 0.45 0.51
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FIGURE 4.10: Path-finding benchmarks: Mean final BS-OF scores - training set

FIGURE 4.11: Path-finding benchmarks: Mean final BS-OF scores - test set
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Detailed results

The benchmarks are discussed in the following order: A) Artificial Ant, B) Tartarus, and C) Deceptive Tartarus.

A. Artificial Ant (highest solution quality = OF, BP1, BP2, DSS, NS2)

Tables 4.87 and 4.88 list the best (b) and mean (µ) final BS-OF scores achieved on the training and test sets
respectively; the standard deviation of the final BS-OF scores (σ) is also shown. In addition, the tables list the
success rates (SR) achieved. The best performing fitness measures are highlighted in the tables. Note that the
mean scores shown in tables 4.87 and 4.88 are the same scores shown for the ant problem in tables 4.85 and
4.86; the analysis in this section looks at the scores achieved on the ant problem in detail.

TABLE 4.87: Artificial Ant: Final
BS-OF scores - training set

OF BP1 BP2 FS DSS HP NS1 NS2

SR 0.50 0.73 0.57 0.57 0.67 0.30 0.40 0.40

b 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

µ 0.98 0.98 0.98 0.95 0.98 0.96 0.95 0.98

σ 0.03 0.03 0.04 0.07 0.03 0.05 0.05 0.05

TABLE 4.88: Artificial Ant: Final
BS-OF scores - test set

OF BP1 BP2 FS DSS HP NS1 NS2

SR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07

b 0.96 0.96 0.96 0.96 0.99 0.95 0.94 1.00

µ 0.90 0.90 0.90 0.90 0.92 0.90 0.89 0.90

σ 0.04 0.05 0.05 0.05 0.04 0.05 0.05 0.05

Statistical tests are conducted to verify the significance of the observations in tables 4.87 and 4.88. Tables
4.89 and 4.90 list the p-values resulting from the statistical tests. The p-values that indicate statistical signifi-
cance (at a significance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the tables.

TABLE 4.89: Artificial Ant: Statis-
tical tests on final BS-OF scores -

training set

One-way ANOVA p-value = 0.01

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1 NS2

OF

BP1 0.38

BP2 0.38 0.29

FS 0.03 0.03 0.05

DSS 0.23 0.36 0.16 0.02

HP 0.03 0.02 0.07 0.23 0.01

NS1 0.02 0.01 0.03 0.45 0.01 0.24

NS2 0.38 0.48 0.27 0.02 0.30 0.01 0.01

TABLE 4.90: Artificial Ant: Statisti-
cal tests on final BS-OF scores - test

set

One-way ANOVA p-value = 0.09

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1 NS2

OF

BP1 0.34

BP2 0.26 0.43

FS 0.40 0.44 0.37

DSS 0.02 0.06 0.07 0.04

HP 0.45 0.30 0.23 0.36 0.02

NS1 0.06 0.05 0.02 0.06 0.00 0.08

NS2 0.25 0.39 0.44 0.33 0.12 0.22 0.04

The results indicate that OF, BP1, BP2, DSS and NS2 achieve on par training scores; the 5 fitness measures
outperform FS, HP and NS1 on the training set. In turn, the ANOVA p-value of 0.09 (0.09 > α) in table 4.90
indicates that the fitness measures achieve on par performance on the test set; the ant problem is trivial [232],
such that all the fitness measures achieve high quality on the test set.

B. Tartarus (highest solution quality = DSS, NS2)

Tables 4.91 and 4.92 list the best (b) and mean (µ) final BS-OF scores achieved on the training and test sets
respectively; the standard deviation of the final BS-OF scores (σ) is also shown. In addition, the tables list the
success rates (SR) achieved. The best performing fitness measures are highlighted in the tables.

Statistical tests are conducted to verify the significance of the observations in tables 4.91 and 4.92. Tables
4.93 and 4.94 list the p-values resulting from the statistical tests. The p-values that indicate statistical signifi-
cance (at a significance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the tables.
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TABLE 4.91: Tartarus: Final BS-OF
scores - training set

OF BP1 BP2 FS DSS HP NS1 NS2

SR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

b 0.67 0.64 0.66 0.30 0.74 0.65 0.25 0.68

µ 0.51 0.52 0.51 0.14 0.57 0.48 0.14 0.59

σ 0.06 0.09 0.06 0.02 0.06 0.07 0.02 0.04

TABLE 4.92: Tartarus: Final BS-OF
scores - test set

OF BP1 BP2 FS DSS HP NS1 NS2

SR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07

b 0.69 0.55 0.65 0.25 0.70 0.64 0.34 0.63

µ 0.39 0.41 0.37 0.11 0.46 0.42 0.11 0.48

σ 0.07 0.09 0.07 0.04 0.08 0.08 0.04 0.05

TABLE 4.93: Tartarus: Statistical
tests on final BS-OF scores - training

set

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1 NS2

OF

BP1 0.47

BP2 0.41 0.35

FS 0.00 0.00 0.00

DSS 0.01 0.00 0.00 0.00

HP 0.07 0.02 0.05 0.00 0.00

NS1 0.00 0.00 0.00 0.35 0.00 0.00

NS2 0.00 0.00 0.00 0.00 0.14 0.00 0.00

TABLE 4.94: Tartarus: Statistical
tests on final BS-OF scores - test

....set

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1 NS2

OF

BP1 0.26

BP2 0.25 0.03

FS 0.00 0.00 0.00

DSS 0.02 0.02 0.00 0.00

HP 0.13 0.22 0.01 0.00 0.03

NS1 0.00 0.00 0.00 0.48 0.00 0.00

NS2 0.00 0.00 0.00 0.00 0.28 0.02 0.00

The results indicate that DSS and NS2 achieve significantly higher training and test scores than the other
fitness measures. Conversely FS and NS1 achieve significantly lower training and test scores than the other
fitness measures on the problem.

C. Deceptive Tartarus (highest solution quality = BP1, BP2)

Tables 4.95 and 4.96 list the best (b) and mean (µ) final BS-OF scores achieved on the training and test sets
respectively; the standard deviation of the final BS-OF scores (σ) is also shown. In addition, the tables list the
success rates (SR) achieved. The best performing fitness measures are highlighted in the tables.

TABLE 4.95: Deceptive Tartarus: Fi-
nal BS-OF scores - training set

OF BP1 BP2 FS DSS HP NS1 NS2

SR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

b 0.59 0.76 0.78 0.52 0.65 0.61 0.52 0.68

µ 0.49 0.66 0.67 0.46 0.50 0.48 0.46 0.56

σ 0.04 0.03 0.03 0.02 0.03 0.04 0.02 0.03

TABLE 4.96: Deceptive Tartarus: Fi-
nal BS-OF scores - test set

OF BP1 BP2 FS DSS HP NS1 NS2

SR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07

b 0.54 0.69 0.75 0.54 0.58 0.52 0.51 0.64

µ 0.46 0.55 0.58 0.46 0.47 0.45 0.45 0.51

σ 0.05 0.04 0.04 0.03 0.05 0.05 0.02 0.04

Statistical tests are conducted to verify the significance of the observations in tables 4.95 and 4.96. Tables
4.97 and 4.98 list the p-values resulting from the statistical tests. The p-values that indicate statistical signifi-
cance (at a significance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the tables.

The results indicate that BP1 and BP2 achieve significantly higher training and test scores than the other
fitness measures. In turn, FS and NS1 achieve the lowest training scores, and among the lowest test scores.
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TABLE 4.97: Deceptive Tartarus:
Statistical tests on final BS-OF

scores - training set

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1 NS2

OF

BP1 0.00

BP2 0.00 0.29

FS 0.00 0.00 0.00

DSS 0.31 0.00 0.00 0.00

HP 0.24 0.00 0.00 0.01 0.11

NS1 0.00 0.00 0.00 0.32 0.00 0.03

NS2 0.00 0.00 0.00 0.00 0.00 0.00 0.00

TABLE 4.98: Deceptive Tartarus:
Statistical tests on final BS-OF

scores - test set

One-way ANOVA p-value = 0.04

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1 NS2

OF

BP1 0.00

BP2 0.00 0.04

FS 0.49 0.00 0.00

DSS 0.14 0.00 0.00 0.14

HP 0.16 0.00 0.00 0.15 0.02

NS1 0.36 0.00 0.00 0.35 0.06 0.21

NS2 0.00 0.01 0.00 0.00 0.00 0.00 0.00

Summary of the solution quality results

The results show that the NFL theorems apply: no one fitness measure achieves the best solution quality on
all the tackled problems. The tackled problems differ with respect to the challenges posed to GP. Therefore,
different fitness measures are suited to different problems. In some cases, the best performing fitness measure
on a problem, A, is the worst performing fitness measure on another problem, B; the results demonstrate that
this can occur even if A and B come from the same problem domain.

While results on training and test sets are included in the study, the following conclusions are based on
performance on the test set:

i) OF, prescribed at the origination of GP, achieves competitive performance on trivial problems, such as
the sextic, iris, par-5 and ant problems.

ii) BP1 and BP2 achieve high performance on a number of the problems, including modular problems. In
section 3.3 of chapter 3, and in [1, 158], a modular problem is defined a problem in which the global op-
tima are comprised of useful lower-order functions (or modules) that are clearly delineated from the op-
tima. The sextic problem is modular, because useful lower-order functions, such as x2, are reused to con-
struct the sextic function [1]. The Boolean function synthesis problems are also modular: Koza [1] asserts
that the Boolean even-n parity functions are characteristically comprised of lower-order parity functions;
furthermore, the Boolean 11-multiplexer function is comprised of the lower-order 3-multiplexer and 6-
multiplexer functions [1]; also, the data in [257] indicates that the Boolean n-bit multiplier functions are
comprised of lower-order functions. Section 3.3.2 of chapter 3 established that BP assesses fitness on
both the program and subprogram level, such that the loss of useful subprograms is mitigated. As a
result, the subprograms that represent useful modules are retained, which has positive implications for
the search efficiency of GP on modular problems. BP2 can improve the search even further, whereby
the archive supplied mutation operator is used to substitute the useful subprograms discovered by the
search into the candidate solution programs. The above arguments justify the high test scores achieved
by BP1 and BP2 on the sextic problem and on the mux-11, mult-3 and mult-4 problems. On the other
hand, all the fitness measures are shown to achieve poor test scores on the even-n parity problems due
to overfitting, which discussed in detail in section 4.3.2.

BP1 and BP2 also achieve the highest test scores on the deceptive tartarus problem. This version
of the tartarus problem is deceptive because the intermediate steps to achieving the goal behavior are
penalized. By scoring programs based on useful intermediate results, BP1 and BP2 retain useful modules
which would otherwise be discarded by OF measures on the deceptive problem.

iii) FS also achieves high performance on a number of problems, including problems susceptible to prema-
ture convergence. According to the literature [67], the 11-multiplexer problem is highly susceptible to
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premature convergence. The wine problem is also susceptible to premature convergence: this is because
the wine dataset contains both separable and non-separable classes [245]; when solving classification
problems using supervised learning, a separable class is a classification of the fitness cases clearly de-
marcated by a boundary that separates the predicting attributes of the class from the remaining classes
[258]; this property simplifies a classifier’s task of identifying all of the fitness cases belonging to the
already demarcated class [258]. The wine classification problem is susceptible to premature convergence
because GP may converge rapidly to solution programs that only distinguish the separable classes (that
is, solution programs that solve only the “easy” fitness cases in the dataset). Section 3.4 of chapter 3
established that FS promotes variety in the fitness cases solved, curtailing rapid convergence to solu-
tion programs that solve only the “easy” fitness cases. The results show that FS achieves superior test
performance on the wine and 11-multiplexer problems.

iv) DSS and HP also achieve high performance on a number of problems. Sections 3.5.1 and 3.6.1 of chapter 3
established that DSS and HP increase GP’s focus on “difficult” fitness cases, curtailing rapid convergence
to solution programs that solve only the “easy” fitness cases. Furthermore, the DSS and HP strategy of
resampling the training set during the course of GP mitigates overfitting; hence the expectation is that
DSS and HP retain the performance advantage on the test set. DSS and HP are seen to achieve high test
performance on the Pagie, wine and 11-multiplexer problems.

v) NS1 is shown to perform well on the segment problem from the supervised classification domain. Sec-
tion 3.7 of chapter 3 established that NS is suited to difficult problems, where there is motivation for
exploring the behavior space. The segment, vowel and opt problems from the supervised classification
domain are part of the CHIRP suite (see [244]), recommended in [232] to pose more of a challenge to GP.
Based on the NS1 behavior descriptor defined in table 4.1 of section 4.2.1: given a training set with |m|
fitness cases, the behavior space is the space of all possible behavior vectors of length |m| on the tackled
problem; hence the size of the behavior space is proportional to |m|. Due to a smaller training set (see
table 4.4 in section 4.2.3), a smaller behavior space is demarcated on the segment problem compared to
the vowel and opt problems. The results obtained from the supervised classification benchmarks show
that NS1 is more effective on the segment problem, compared to the vowel and opt problems. This is in
line with the literature, whereby NS’s reliability is argued to depend on the size of the behavior space
[202, 205, 212]; the results indicate that the fitness measure performs well on the segment problem but
does not scale well to the larger behavior spaces demarcated on the vowel and opt problems.

NS1 is also shown to perform poorly in the path-finding domain, whereas NS2 performs well in the
domain. NS2 performs better than NS1 in the path-finding domain, because former fitness measure
applies problem-specific behavior descriptors: each NS2 descriptor takes into account the specific path-
finding behavior that is relevant to increasing the OF scores on the problem being tackled. Conversely,
the universal behavior descriptor used in NS1 does not incorporate the specific behaviors that can lead to
quality improvements in the path-finding problems. The discrepancy in the performance between NS1
and NS2 is justified by the premise that NS’s reliability depends on the choice of a behavior descriptor
that is relevant to the search objective [202, 211].

4.3.2 Generalization

In the current study, generalization is observed with similar training and test quality scores. Equation 4.10 in
section 4.2.2 shows that given a best of generation (or overall best) solution program, the generalization index
(GI) is measured as the absolute difference between the OF scores achieved by the solution program on the
training and test sets, both of which span the interval [0, 1]. Hence the GI in turn spans the interval [0, 1], with
lower scores indicating a better result. A presentation of the generalization results from each problem domain
ensues.
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Symbolic regression benchmarks

An overview of the performance in the domain is presented. A detailed breakdown of the results follows.
In the detailed results, a comparison is drawn among the fitness measures on each problem; subsequently,
statistical tests are conducted to confirm the significance of the observations.

Performance overview

Figure 4.13 shows the mean final BS GI. The mean final BS GI scores are also listed in table 4.99, where the best
results achieved on each problem are highlighted. In turn, figure 4.14 shows the mean generational BS GI. In
the figures and tables below, lower scores indicate better performance of GP. All scores are averaged over the
30 GP runs.

The results show that the fitness measures generalize well on the sextic problem; this follows because the
sextic problem is trivial, such that all the fitness measures achieve high training and test quality scores on the
problem, as shown in the solution quality results in section 4.3.1. The fitness measures do not generalize as
well on the remaining problems. The training and test sets in these problems are deliberately set up to make it
difficult for GP to generalize to the test data [232]; this is done so as to determine the approaches that perform
as well as possible on difficult problems, rather than simply rewarding good performance on trivial problems
[232]. For example, generalization is a challenge on the Nguyen and Pagie problems, due to relatively sparse
training sets that do not contain as much information as the test sets with respect to the target function being
approximated. In turn, generalization is a challenge on the Keijzer and Vlad problems due to some of the test
fitness cases being drawn from outside the training set domain. Furthermore, generalization is a challenge
on the Dow problem as a result of the noisy real-world training data. The training and test sets used for the
problems are shown in table 4.3 of section 4.2.3.

FIGURE 4.13: Symbolic regression benchmarks: Mean final BS GI

TABLE 4.99: Symbolic regression benchmarks: Mean final BS GI

OF BP1 BP2 FS DSS HP NS1

Sextic 0.02 0.00 0.03 0.01 0.01 0.01 0.05

Nguyen 0.47 0.20 0.30 0.35 0.24 0.08 0.35

Pagie 0.34 0.39 0.38 0.35 0.38 0.30 0.36

Keijzer 0.33 0.37 0.41 0.27 0.30 0.28 0.20

Vlad 0.27 0.29 0.27 0.31 0.22 0.25 0.33

Dow 0.26 0.28 0.28 0.24 0.26 0.25 0.32
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The results show that HP generalizes well on the Nguyen problem, despite the sparse training set used.
HP also achieves the best performance on the Pagie problem. Overall, HP is among the best performing fitness
measures on most problems, including the Keijzer problem. NS1 appears to achieve the best generalization
on the Keijzer problem. Nevertheless, based on the solution quality results shown in section 4.3.1, the low GI
score reported for NS1 is a result of the fitness measure achieving low quality scores on the training set, such
that the low training scores are similar to the low test scores achieved. HP generalizes better than NS1 because
the fitness measure achieves competitive quality scores on both the training and test sets on the problem. FS
and DSS also generalize well on the Keijzer problem, whereby the fitness measures achieve competitive scores
on both the training and test sets on the problem. A further observation made is the low spread in the GI
scores achieved on the Vlad and Dow problems. The solution quality results in section 4.3.1 show that this is
due to all the fitness measures achieving low training and test scores on the difficult problems.

Overall, HP is shown to generalize well on the problems in this domain. HP, FS and DSS also generalize
better than the other fitness measures on the Keijzer problem.

Detailed results

The benchmarks are discussed in the following order: A) Sextic, B) Nguyen, C) Pagie, D) Keijzer, E) Vlad, and
F) Dow.

A. Sextic (best GI = N/A)

Table 4.100 lists the best (b) and mean (µ) final BS GI; the standard deviation of the final BS GI (σ) is also shown.
Note that the mean scores shown in table 4.100 are the same scores shown for the sextic problem in table 4.99;
the analysis in this section looks at the scores achieved on the sextic problem in detail.

TABLE 4.100: Sextic: Final BS GI

OF BP1 BP2 FS DSS HP NS1

b 0.01 0.00 0.01 0.00 0.01 0.00 0.02

µ 0.02 0.00 0.03 0.01 0.01 0.01 0.05

σ 0.01 0.01 0.01 0.01 0.02 0.02 0.01

Statistical tests, similar to the tests done on the solution quality results, are conducted to verify the sig-
nificance of the observations in table 4.100. Table 4.101 lists the p-values resulting from the statistical tests.
The p-values that indicate statistical significance (at a significance level of α = 0.05 ; i.e. p-val < 0.05) are
highlighted in the table.

TABLE 4.101: Sextic: Statistical tests on final BS GI

One-way ANOVA p-value = 0.20

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.05

BP2 0.17 0.00

FS 0.15 0.17 0.05

DSS 0.20 0.19 0.05 0.47

HP 0.18 0.16 0.06 0.49 0.49

NS1 0.00 0.00 0.00 0.00 0.00 0.00

The ANOVA p-value of 0.20 (whereby 0.20 > α) in table 4.101 indicates that the fitness measures largely
achieve on par generalization. All the fitness measures achieve low GI scores on the trivial sextic problem.
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B. Nguyen (best GI = HP)

Table 4.102 lists the best (b) and mean (µ) final BS GI; the standard deviation of the final BS GI (σ) is also shown.
The best performing fitness measures are highlighted in the table.

TABLE 4.102: Nguyen: Final BS GI

OF BP1 BP2 FS DSS HP NS1

b 0.40 0.15 0.22 0.27 0.16 0.01 0.24

µ 0.47 0.20 0.30 0.35 0.24 0.08 0.35

σ 0.03 0.02 0.02 0.02 0.03 0.04 0.04

Statistical tests are conducted to verify the significance of the observations in table 4.102. Table 4.103 lists
the p-values resulting from the statistical tests. The p-values that indicate statistical significance (at a signifi-
cance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the table.

TABLE 4.103: Nguyen: Statistical tests on final BS GI

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.00

BP2 0.00 0.00

FS 0.00 0.00 0.00

DSS 0.00 0.01 0.00 0.00

HP 0.00 0.00 0.00 0.00 0.00

NS1 0.00 0.00 0.00 0.38 0.00 0.00

The results indicate that HP achieves the best generalization on the problem. In turn, OF is the worst
performing fitness measure on the problem.

C. Pagie (best GI = HP)

Table 4.104 lists the best (b) and mean (µ) final BS GI; the standard deviation of the final BS GI (σ) is also shown.
The best performing fitness measures are highlighted in the table.

TABLE 4.104: Pagie: Final BS GI

OF BP1 BP2 FS DSS HP NS1

b 0.28 0.30 0.30 0.27 0.28 0.19 0.25

µ 0.34 0.39 0.38 0.35 0.38 0.30 0.36

σ 0.02 0.03 0.03 0.03 0.03 0.02 0.03

Statistical tests are conducted to verify the significance of the observations in table 4.104. Table 4.105 lists
the p-values resulting from the statistical tests. The p-values that indicate statistical significance (at a signifi-
cance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the table.

The results indicate that HP achieves the best generalization on the problem.
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TABLE 4.105: Pagie: Statistical tests on final BS GI

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.00

BP2 0.00 0.15

FS 0.19 0.00 0.00

DSS 0.00 0.17 0.40 0.00

HP 0.00 0.00 0.00 0.00 0.00

NS1 0.05 0.00 0.03 0.19 0.03 0.00

D. Keijzer (best GI = NS1)

Table 4.106 lists the best (b) and mean (µ) final BS GI; the standard deviation of the final BS GI (σ) is also shown.
The best performing fitness measures are highlighted in the table.

TABLE 4.106: Keijzer: Final BS GI

OF BP1 BP2 FS DSS HP NS1

b 0.28 0.29 0.30 0.19 0.22 0.21 0.12

µ 0.33 0.37 0.41 0.27 0.30 0.28 0.20

σ 0.03 0.05 0.04 0.03 0.02 0.02 0.04

Statistical tests are conducted to verify the significance of the observations in table 4.106. Table 4.107 lists
the p-values resulting from the statistical tests. The p-values that indicate statistical significance (at a signifi-
cance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the table.

TABLE 4.107: Keijzer: Statistical tests on final BS GI

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.00

BP2 0.00 0.00

FS 0.00 0.00 0.00

DSS 0.00 0.00 0.00 0.00

HP 0.00 0.00 0.00 0.17 0.05

NS1 0.00 0.00 0.00 0.00 0.00 0.00

The results indicate that NS1 achieves the lowest GI scores on the problem.

E. Vlad (best GI = DSS)

Table 4.108 lists the best (b) and mean (µ) final BS GI; the standard deviation of the final BS GI (σ) is also shown.
The best performing fitness measures are highlighted in the table.

TABLE 4.108: Vlad: Final BS GI

OF BP1 BP2 FS DSS HP NS1

b 0.20 0.21 0.20 0.22 0.15 0.17 0.23

µ 0.27 0.29 0.27 0.31 0.22 0.25 0.33

σ 0.02 0.04 0.03 0.03 0.01 0.02 0.03
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Statistical tests are conducted to verify the significance of the observations in table 4.108. Table 4.109 lists
the p-values resulting from the statistical tests. The p-values that indicate statistical significance (at a signifi-
cance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the table.

TABLE 4.109: Vlad: Statistical tests on final BS GI

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.01

BP2 0.49 0.02

FS 0.00 0.01 0.00

DSS 0.00 0.00 0.00 0.00

HP 0.03 0.00 0.05 0.00 0.01

NS1 0.00 0.00 0.00 0.05 0.00 0.00

The results indicate that DSS achieves the lowest GI scores on the problem.

F. Dow (best GI = OF, FS, DSS, HP)

Table 4.110 lists the best (b) and mean (µ) final BS GI; the standard deviation of the final BS GI (σ) is also shown.
The best performing fitness measures are highlighted in the table.

TABLE 4.110: Dow: Final BS GI

OF BP1 BP2 FS DSS HP NS1

b 0.18 0.20 0.18 0.15 0.17 0.18 0.25

µ 0.26 0.28 0.28 0.24 0.26 0.25 0.32

σ 0.03 0.04 0.05 0.05 0.05 0.03 0.06

Statistical tests are conducted to verify the significance of the observations in table 4.110. Table 4.111 lists
the p-values resulting from the statistical tests. The p-values that indicate statistical significance (at a signifi-
cance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the table.

TABLE 4.111: Dow: Statistical tests on final BS GI

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.05

BP2 0.05 0.47

FS 0.06 0.00 0.00

DSS 0.37 0.05 0.06 0.05

HP 0.20 0.00 0.00 0.23 0.19

NS1 0.00 0.00 0.00 0.00 0.00 0.00

The results indicate that a number of the fitness measures achieve on par generalization. Nevertheless,
OF, FS, DSS and HP largely achieve better generalization compared to the remaining fitness measures on the
problem.

Supervised classification benchmarks

An overview of the performance in the domain is presented. A detailed breakdown of the results follows.
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Performance overview

Figure 4.15 shows the mean final BS GI. The mean final BS GI scores are also listed in table 4.112, where the
best results achieved on each problem are highlighted. In turn, figure 4.16 shows the mean generational BS GI.
In the figures and tables below, lower scores indicate better performance of GP. All scores are averaged over
the 30 GP runs.

The results show that the fitness measures largely achieve better generalization on the problems in this
domain compared to the previous domain. The fitness measures generalize well on the iris problem; this
follows because the iris problem is trivial, such that all the fitness measures achieve high training and test
quality scores on the problem, as shown in the solution quality results in section 4.3.1. The fitness measures
also achieve low GI scores on the opt problem; however, the results in section 4.3.1 show that this is due to
low quality scores achieved on both the training and test sets on the difficult opt problem.

NS1 appears to achieve the best generalization on the iris problem. Nevertheless, based on the solution
quality results shown in section 4.3.1, the low GI score reported for NS1 occurs due the fitness measure achiev-
ing relatively low quality scores on the training set, such that the lower training scores are similar to the low
test scores achieved. On the other hand, HP achieves the best generalization on the credit problem, whereby
the low GI score shown is a result of high quality scores achieved on both the training and test sets. In turn,
DSS achieves the best generalization on the wine problem, with high scores also achieved on both the training
and test sets. FS achieves the best generalization on the vowel problem. The solution quality results in section
4.3.1 show that when compared to the other fitness measures, FS achieves competitive quality scores on the
training set, and the highest test scores on the problem.

Overall, the fitness measures are shown to generalize well on the supervised classification benchmarks,
with FS, DSS and HP achieving superior performance on the vowel, wine and credit problems respectively.

FIGURE 4.15: Supervised classification benchmarks: Mean final BS GI

TABLE 4.112: Supervised classification benchmarks: Mean final BS GI

OF BP1 BP2 FS DSS HP NS1

Iris 0.04 0.05 0.04 0.04 0.04 0.04 0.01

Credit 0.08 0.08 0.08 0.05 0.05 0.01 0.04

Wine 0.09 0.11 0.08 0.07 0.05 0.11 0.09

Segment 0.10 0.10 0.09 0.11 0.12 0.09 0.11

Vowel 0.17 0.16 0.15 0.10 0.21 0.17 0.16

Opt 0.02 0.01 0.01 0.01 0.03 0.02 0.02
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Detailed results

The benchmarks are discussed in the following order: A) Iris, B) Credit, C) Wine, D) Segment, E) Vowel and,
F) Opt.

A. Iris (best GI = NS1)

Table 4.113 lists the best (b) and mean (µ) final BS GI; the standard deviation of the final BS GI (σ) is also shown.

TABLE 4.113: Iris: Final BS GI

OF BP1 BP2 FS DSS HP NS1

b 0.00 0.01 0.01 0.02 0.01 0.01 0.00

µ 0.04 0.05 0.04 0.04 0.04 0.04 0.01

σ 0.02 0.02 0.02 0.01 0.01 0.02 0.03

Statistical tests are conducted to verify the significance of the observations in table 4.113. Table 4.114 lists
the p-values resulting from the statistical tests. The p-values that indicate statistical significance (at a signifi-
cance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the table.

TABLE 4.114: Iris: Statistical tests on final BS GI

One-way ANOVA p-value = 0.21

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.18

BP2 0.40 0.13

FS 0.29 0.29 0.19

DSS 0.35 0.25 0.24 0.42

HP 0.38 0.24 0.28 0.40 0.48

NS1 0.00 0.00 0.00 0.00 0.00 0.00

The results show that NS1 achieves significantly lower GI scores compared to all the other fitness measures
on the problem. Apart from NS1, the ANOVA p-value of 0.21 (whereby 0.21 > α) and the p-values resulting
from the pairwise comparisons in table 4.114 indicate that the remaining fitness measures achieve on par
generalization on this trivial problem.

B. Credit (best GI = HP)

Table 4.115 lists the best (b) and mean (µ) final BS GI; the standard deviation of the final BS GI (σ) is also shown.
The best performing fitness measures are highlighted in the table.

TABLE 4.115: Credit: Final BS GI

OF BP1 BP2 FS DSS HP NS1

b 0.05 0.04 0.03 0.00 0.00 0.00 0.02

µ 0.08 0.08 0.08 0.05 0.05 0.01 0.04

σ 0.04 0.03 0.04 0.04 0.03 0.01 0.03

Statistical tests are conducted to verify the significance of the observations in table 4.115. Table 4.116 lists
the p-values resulting from the statistical tests. The p-values that indicate statistical significance (at a signifi-
cance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the table.

The results indicate that HP achieves the best generalization on the problem. HP achieves significantly
lower GI scores than the other fitness measures on the problem.
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TABLE 4.116: Credit: Statistical tests on final BS GI

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.43

BP2 0.20 0.25

FS 0.00 0.00 0.00

DSS 0.00 0.00 0.00 0.24

HP 0.00 0.00 0.00 0.00 0.00

NS1 0.00 0.00 0.00 0.13 0.16 0.00

C. Wine (best GI = DSS)

Table 4.117 lists the best (b) and mean (µ) final BS GI; the standard deviation of the final BS GI (σ) is also shown.
The best performing fitness measures are highlighted in the table.

TABLE 4.117: Wine: Final BS GI

OF BP1 BP2 FS DSS HP NS1

b 0.03 0.02 0.02 0.01 0.00 0.01 0.01

µ 0.09 0.11 0.08 0.07 0.05 0.11 0.09

σ 0.03 0.04 0.03 0.02 0.02 0.02 0.03

Statistical tests are conducted to verify the significance of the observations in table 4.117. Table 4.118 lists
the p-values resulting from the statistical tests. The p-values that indicate statistical significance (at a signifi-
cance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the table.

TABLE 4.118: Wine: Statistical tests on final BS GI

One-way ANOVA p-value = 0.03

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.05

BP2 0.28 0.02

FS 0.27 0.12 0.11

DSS 0.03 0.00 0.04 0.05

HP 0.20 0.23 0.09 0.37 0.00

NS1 0.35 0.04 0.45 0.18 0.00 0.14

The results indicate that DSS achieves the best generalization. FS achieves on par generalization to DSS.
Otherwise DSS generalizes better than the other fitness measures on the problem.

D. Segment (best GI = N/A)

Table 4.119 lists the best (b) and mean (µ) final BS GI; the standard deviation of the final BS GI (σ) is also shown.
The best performing fitness measures are highlighted in the table.

Statistical tests are conducted to verify the significance of the observations in table 4.119. Table 4.120 lists
the p-values resulting from the statistical tests. The p-values that indicate statistical significance (at a signifi-
cance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the table.
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TABLE 4.119: Segment: Final BS GI

OF BP1 BP2 FS DSS HP NS1

b 0.05 0.03 0.03 0.02 0.04 0.01 0.03

µ 0.10 0.10 0.09 0.11 0.12 0.09 0.11

σ 0.06 0.04 0.06 0.05 0.04 0.04 0.04

TABLE 4.120: Segment: Statistical tests on final BS GI

One-way ANOVA p-value = 0.42

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.23

BP2 0.40 0.18

FS 0.05 0.07 0.08

DSS 0.38 0.33 0.29 0.29

HP 0.13 0.05 0.21 0.22 0.08

NS1 0.05 0.07 0.06 0.39 0.31 0.12

The ANOVA p-value of 0.42 (whereby 0.42 > α) and the p-values resulting from the pairwise comparisons
in table 4.120 indicate that the fitness measures achieve on par generalization on the problem.

E. Vowel (best = FS)

Table 4.121 lists the best (b) and mean (µ) final BS GI; the standard deviation of the final BS GI (σ) is also shown.
The best performing fitness measures are highlighted in the table.

TABLE 4.121: Vowel: Final BS GI

OF BP1 BP2 FS DSS HP NS1

b 0.09 0.09 0.10 0.03 0.13 0.09 0.08

µ 0.17 0.16 0.15 0.11 0.21 0.17 0.16

σ 0.10 0.09 0.06 0.06 0.05 0.07 0.08

Statistical tests are conducted to verify the significance of the observations in table 4.119. Table 4.120 lists
the p-values resulting from the statistical tests. The p-values that indicate statistical significance (at a signifi-
cance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the table.

TABLE 4.122: Vowel: Statistical tests on final BS GI

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.18

BP2 0.06 0.24

FS 0.00 0.00 0.00

DSS 0.09 0.01 0.00 0.00

HP 0.41 0.20 0.05 0.00 0.03

NS1 0.22 0.43 0.17 0.01 0.01 0.25

The results indicate that FS achieves the best generalization on the problem. FS is shown to achieve signif-
icantly lower GI scores than the other fitness measures.
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F. Opt (best GI = N/A)

Table 4.123 lists the best (b) and mean (µ) final BS GI; the standard deviation of the final BS GI (σ) is also shown.
The best performing fitness measures are highlighted in the table.

TABLE 4.123: Opt: Final BS GI

OF BP1 BP2 FS DSS HP NS1

Max 0.00 0.00 0.00 0.00 0.00 0.01 0.01

µ 0.02 0.01 0.01 0.01 0.03 0.02 0.02

Min 0.01 0.02 0.02 0.01 0.01 0.01 0.01

Statistical tests are conducted to verify the significance of the observations in table 4.123. Table 4.124 lists
the p-values resulting from the statistical tests. The p-values that indicate statistical significance (at a signifi-
cance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the table.

TABLE 4.124: Opt: Statistical tests on final BS GI

One-way ANOVA p-value = 0.57

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.16

BP2 0.12 0.49

FS 0.41 0.07 0.10

DSS 0.33 0.19 0.22 0.22

HP 0.39 0.11 0.10 0.33 0.29

NS1 0.39 0.09 0.07 0.39 0.27 0.47

The ANOVA p-value of 0.57 (whereby 0.57 > α) and the p-values resulting from the pairwise comparisons
in table 4.124 indicate that the fitness measures achieve on par generalization on the problem. This is because
all the fitness measures achieve low training and test scores on the difficult opt problem.

Boolean function synthesis benchmarks

An overview of the performance in the domain is presented. A detailed breakdown of the results follows.

Performance overview

Figure 4.17 shows the mean final BS GI incurred. The mean final BS GI scores are also listed in table 4.125,
where the best outcomes on each problem are highlighted. In turn, figure 4.18 shows the mean generational
BS GI. In the figures and tables below, lower scores indicate better performance of GP. All scores are averaged
over the 30 GP runs.

The results show that the fitness measures achieve poor generalization on the even-n parity problems.
From the discussion on the benchmark suite in section 4.2.3, recall that the two-datasets methodology is not
the standard practice in the Boolean function synthesis domain. For this reason, the training and test sets
used on each Boolean problem were drawn with uniform probability from the complete set of fitness cases. A
possible reason for poor generalization on the even-n parity problems is that the complete set of fitness cases
on each of these problems contains disparate information, such that partitioning such a set results in dissimilar
training and test sets, where the training sets do not sufficiently represent the information contained in the test
sets, and vice versa. Poor generalization is inevitable with dissimilar training and test sets. On the other
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hand, the results show that the fitness measures generalize better on the mux-11, mult-3 and mult-4 problems,
indicative of similar training and test sets on these problems.

NS1 appears to generalize well on the even-n parity and n-bit multiplier problems. Nevertheless, based on
the solution quality results shown in section 4.3.1, the low GI scores reported for NS1 occur due to low quality
scores achieved on both the training and test sets. In turn, HP achieves the best generalization on the mult-4
problem. The solution quality results in section 4.3.1 show that the low GI score reported for HP is a result of
high quality scores achieved on both the training and test sets on the mult-4 problem.

Overall, no one fitness measure achieves the best generalization on all problems. The extent to which a
fitness measure can improve on GP’s generalization is also influenced by the similarity between the training
and the test sets, which differs for the different problems.

FIGURE 4.17: Boolean function synthesis benchmarks: Mean final BS GI

..

..

TABLE 4.125: Boolean function synthesis benchmarks: Mean final BS GI

OF BP1 BP2 FS DSS HP NS1

Par-5 0.80 0.73 0.78 0.77 0.82 0.52 0.43

Par-7 0.59 0.45 0.49 0.45 0.60 0.44 0.33

Par-9 0.29 0.35 0.31 0.21 0.37 0.16 0.18

Mux-11 0.01 0.01 0.00 0.00 0.00 0.03 0.02

Mult-3 0.11 0.09 0.11 0.16 0.17 0.09 0.06

Mult-4 0.10 0.08 0.11 0.04 0.08 0.01 0.03
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Detailed results

The benchmarks are discussed in the following order: A) Even-5 parity, B) Even-7 parity, C) Even-9 parity, D)
11-multiplexer, E) 3-bit multiplier and, F) 4-bit multiplier.

A. Even-5 parity (best GI = NS1)

Table 4.126 lists the best (b) and mean (µ) final BS GI; the standard deviation of the final BS GI (σ) is also shown.
The best performing fitness measures are highlighted in the table.

TABLE 4.126: Even-5 parity: Final BS GI

OF BP1 BP2 FS DSS HP NS1

b 0.57 0.45 0.56 0.58 0.54 0.25 0.21

µ 0.80 0.73 0.78 0.77 0.82 0.52 0.43

σ 0.10 0.09 0.09 0.11 0.09 0.13 0.08

Statistical tests are conducted to verify the significance of the observations in table 4.126. Table 4.127 lists
the p-values resulting from the statistical tests. The p-values that indicate statistical significance (at a signifi-
cance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the table.

TABLE 4.127: Even-5 parity: Statistical tests on final BS GI

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.02

BP2 0.21 0.06

FS 0.15 0.10 0.39

DSS 0.22 0.00 0.05 0.03

HP 0.00 0.00 0.00 0.00 0.00

NS1 0.00 0.00 0.00 0.00 0.00 0.00

The results indicate that NS1 achieves the lowest GI scores on the problem.

B. Even-7 parity (best GI = NS1)

Table 4.128 lists the best (b) and mean (µ) final BS GI; the standard deviation of the final BS GI (σ) is also shown.
The best performing fitness measures are highlighted in the table.

TABLE 4.128: Even-7 parity: Final BS GI

OF BP1 BP2 FS DSS HP NS1

b 0.34 0.27 0.40 0.38 0.45 0.37 0.20

µ 0.59 0.45 0.49 0.45 0.60 0.44 0.33

σ 0.05 0.03 0.04 0.05 0.04 0.04 0.07

Statistical tests are conducted to verify the significance of the observations in table 4.128. Table 4.129 lists
the p-values resulting from the statistical tests. The p-values that indicate statistical significance (at a signifi-
cance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the table.
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TABLE 4.129: Even-7 parity: Statistical tests on final BS GI

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.00

BP2 0.00 0.01

FS 0.00 0.48 0.00

DSS 0.35 0.00 0.00 0.00

HP 0.00 0.23 0.00 0.14 0.00

NS1 0.00 0.00 0.00 0.00 0.00 0.00

The results indicate that NS1 achieves the lowest GI scores on the problem.

C. Even-9 parity (best GI = HP, NS1)

Table 4.130 lists the best (b) and mean (µ) final BS GI; the standard deviation of the final BS GI (σ) is also shown.
The best performing fitness measures are highlighted in the table.

TABLE 4.130: Even-9 parity: Final BS GI

OF BP1 BP2 FS DSS HP NS1

b 0.20 0.29 0.28 0.15 0.28 0.15 0.16

µ 0.29 0.35 0.31 0.21 0.37 0.16 0.18

σ 0.04 0.03 0.04 0.05 0.04 0.02 0.02

Statistical tests are conducted to verify the significance of the observations in table 4.130. Table 4.131 lists
the p-values resulting from the statistical tests. The p-values that indicate statistical significance (at a signifi-
cance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the table.

TABLE 4.131: Even-9 parity: Statistical tests on final BS GI

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.00

BP2 0.17 0.01

FS 0.00 0.00 0.00

DSS 0.00 0.09 0.01 0.00

HP 0.00 0.00 0.00 0.00 0.00

NS1 0.00 0.00 0.00 0.00 0.00 0.15

The results indicate that HP and NS1 achieve the lowest GI scores on the problem.

D. 11-multiplexer (best GI = N/A)

Table 4.132 lists the best (b) and mean (µ) final BS GI; the standard deviation of the final BS GI (σ) is also shown.
The best performing fitness measures are highlighted in the table.

Statistical tests are conducted to verify the significance of the observations in table 4.132. Table 4.133 lists
the p-values resulting from the statistical tests. The p-values that indicate statistical significance (at a signifi-
cance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the table.
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TABLE 4.132: 11-multiplexer: Final BS GI

OF BP1 BP2 FS DSS HP NS

b 0.00 0.00 0.00 0.00 0.00 0.00 0.00

µ 0.01 0.01 0.00 0.00 0.00 0.03 0.02

σ 0.01 0.01 0.01 0.01 0.01 0.01 0.01

TABLE 4.133: 11-multiplexer: Statistical tests on final BS GI

One-way ANOVA p-value = 0.20

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS

OF

BP1 0.49

BP2 0.22 0.20

FS 0.23 0.19 0.20

DSS 0.22 0.13 0.47 0.42

HP 0.17 0.10 0.14 0.13 0.14

NS 0.19 0.19 0.16 0.10 0.19 0.27aaaaaaa

The ANOVA p-value of 0.20 (whereby 0.20 > α) and the p-values resulting from the pairwise comparisons
in table 4.133 indicate that the fitness measures achieve on par generalization on the problem.

E. 3-bit multiplier (best GI = NS1)

Table 4.134 lists the best (b) and mean (µ) final BS GI; the standard deviation of the final BS GI (σ) is also shown.
The best performing fitness measures are highlighted in the table.

TABLE 4.134: 3-bit multiplier: Final BS GI

OF BP1 BP2 FS DSS HP NS1

b 0.03 0.06 0.03 0.06 0.10 0.03 0.00

µ 0.11 0.09 0.11 0.16 0.17 0.09 0.06

σ 0.05 0.03 0.04 0.03 0.03 0.03 0.05

Statistical tests are conducted to verify the significance of the observations in table 4.134. Table 4.135 lists
the p-values resulting from the statistical tests. The p-values that indicate statistical significance (at a signifi-
cance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the table.

TABLE 4.135: 3-bit multiplier: Statistical tests on final BS GI

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.03

BP2 0.32 0.05

FS 0.00 0.00 0.00

DSS 0.00 0.00 0.00 0.29

HP 0.04 0.37 0.08 0.00 0.00

NS1 0.00 0.03 0.00 0.00 0.00 0.02

The results indicate that NS1 achieves the lowest GI scores on the problem.
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F. 4-bit multiplier (best GI = HP)

Table 4.136 lists the best (b) and mean (µ) final BS GI; the standard deviation of the final BS GI (σ) is also shown.
The best performing fitness measures are highlighted in the table.

TABLE 4.136: 4-bit multiplier: Final BS GI

OF BP1 BP2 FS DSS HP NS1

b 0.04 0.03 0.05 0.00 0.02 0.00 0.00

µ 0.10 0.08 0.11 0.04 0.08 0.01 0.03

σ 0.05 0.04 0.02 0.03 0.04 0.04 0.05

Statistical tests are conducted to verify the significance of the observations in table 4.136. Table 4.137 lists
the p-values resulting from the statistical tests. The p-values that indicate statistical significance (at a signifi-
cance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the table.

TABLE 4.137: 4-bit multiplier: Statistical tests on final BS GI

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.00

BP2 0.12 0.00

FS 0.00 0.00 0.00

DSS 0.02 0.24 0.00 0.00

HP 0.00 0.00 0.00 0.00 0.00

NS1 0.00 0.00 0.00 0.13 0.02 0.00

The results indicate that HP achieves the lowest GI scores on the problem.

Path-finding benchmarks

An overview of the performance in the domain is presented. A detailed breakdown of the results follows.

Performance overview

Figure 4.19 shows the mean final BS GI. The mean final BS GI scores are also listed in table 4.138, where the
best results achieved on each problem are highlighted. In turn, figure 4.20 shows the mean generational BS GI.
In the figures and tables below, lower scores indicate better performance of GP. All scores are averaged over
the 30 GP runs.

The results show that the fitness measures achieve on par generalization on the artificial ant problem. The
ant problem is trivial, such that all the fitness measures achieve high training and test quality scores on the
problem, as shown in the solution quality results in section 4.3.1. FS and NS1 appear to generalize well on the
tartarus and deceptive tartarus problems. Nevertheless, based on the solution quality results shown in section
4.3.1, the low GI scores reported for FS and NS1 occur due to low training and test scores. DSS and NS2
generalize better than FS and NS1. The solution quality results in section 4.3.1 show that DSS and NS2 achieve
the highest quality scores on both the training and test sets on the tartarus problem. HP also generalizes well
on the tartarus problem, whereby competitive quality scores are achieved on both the training and test sets.
Furthermore, NS2 generalizes well on the deceptive tartarus problem, whereby the fitness measure achieves
competitive quality scores on both the training and test sets.
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Overall, the fitness measures generalize well on the path-finding tasks. Most of the fitness measures that
achieve performance advantages on the training sets maintain the same on the test sets.

..

FIGURE 4.19: Path-finding benchmarks: Mean final BS GI

..

..

TABLE 4.138: Path-finding benchmarks: Mean final BS GI

OF BP1 BP2 FS DSS HP NS1 NS2

Ant 0.08 0.08 0.08 0.09 0.07 0.08 0.09 0.09

Tart. 0.12 0.11 0.14 0.04 0.11 0.07 0.05 0.11

Dec.
tart.

0.04 0.11 0.11 0.02 0.03 0.04 0.01 0.05
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Detailed results

The benchmarks are discussed in the following order: A) Artificial Ant, B) Tartarus, and C) Deceptive Tartarus.

A. Artificial Ant (best GI = N/A)

Table 4.139 lists the best (b) and mean (µ) final BS GI; the standard deviation of the final BS GI (σ) is also shown.

TABLE 4.139: Artificial Ant: Mean final BS GI

OF BP1 BP2 FS DSS HP NS1 NS2

b 0.01 0.01 0.00 0.01 0.01 0.00 0.00 0.00

µ 0.08 0.08 0.08 0.09 0.07 0.08 0.09 0.09

σ 0.02 0.02 0.02 0.04 0.02 0.02 0.02 0.02

Statistical tests are conducted to verify the significance of the observations in table 4.139. Table 4.140 lists
the p-values resulting from the statistical tests. The p-values that indicate statistical significance (at a signifi-
cance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the table.

TABLE 4.140: Artificial Ant: Statistical tests on mean final BS GI

One-way ANOVA p-value = 0.52

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1 NS2

OF

BP1 0.45

BP2 0.42 0.38

FS 0.15 0.18 0.12

DSS 0.22 0.19 0.31 0.05

HP 0.30 0.27 0.38 0.08 0.42

NS1 0.19 0.24 0.16 0.39 0.06 0.10

NS2 0.24 0.28 0.20 0.36 0.09 0.13 0.46

The ANOVA p-value of 0.52 (whereby 0.52 > α) and the p-values resulting from the pairwise comparisons
in table 4.140 indicate that the fitness measures achieve on par generalization on the trivial problem.

B. Tartarus (best GI = FS, NS1)

Table 4.141 lists the best (b) and mean (µ) final BS GI; the standard deviation of the final BS GI (σ) is also shown.
The best performing fitness measures are highlighted in the table.

TABLE 4.141: Tartarus: Mean final BS GI

OF BP1 BP2 FS DSS HP NS1 NS2

b 0.00 0.01 0.01 0.00 0.01 0.00 0.00 0.01

µ 0.12 0.11 0.14 0.04 0.11 0.07 0.05 0.11

σ 0.04 0.03 0.04 0.01 0.04 0.02 0.02 0.04

Statistical tests are conducted to verify the significance of the observations in table 4.141. Table 4.142 lists
the p-values resulting from the statistical tests. The p-values that indicate statistical significance (at a signifi-
cance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the table.

The results indicate that FS and NS1 achieve the lowest GI scores on the problem.
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TABLE 4.142: Tartarus: Statistical tests on mean final BS GI

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1 NS2

OF

BP1 0.21

BP2 0.23 0.05

FS 0.00 0.00 0.00

DSS 0.23 0.46 0.06 0.00

HP 0.00 0.00 0.00 0.00 0.00

NS1 0.00 0.00 0.00 0.04 0.00 0.04

NS2 0.28 0.45 0.10 0.00 0.48 0.00 0.00

C. Deceptive tartarus (best GI = FS, NS1)

Table 4.143 lists the best (b) and mean (µ) final BS GI; the standard deviation of the final BS GI (σ) is also shown.
The best performing fitness measures are highlighted in the table.

TABLE 4.143: Deceptive Tartarus: Mean BS GI

OF BP1 BP2 FS DSS HP NS NS2

b 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00

µ 0.04 0.11 0.11 0.02 0.03 0.04 0.01 0.05

σ 0.03 0.04 0.04 0.01 0.03 0.03 0.01 0.03

Statistical tests are conducted to verify the significance of the observations in table 4.143. Table 4.144 lists
the p-values resulting from the statistical tests. The p-values that indicate statistical significance (at a signifi-
cance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the table.

TABLE 4.144: Deceptive Tartarus: Statistical tests on mean BS GI

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS NS2

OF

BP1 0.00

BP2 0.00 0.40

FS 0.03 0.00 0.00

DSS 0.42 0.00 0.00 0.04

HP 0.47 0.00 0.00 0.04 0.46

NS 0.00 0.00 0.00 0.02 0.00 0.00

NS2 0.02 0.00 0.00 0.00 0.01 0.02 0.00

The results indicate that FS and NS1 achieve the lowest GI scores on the problem.

Summary of the generalization results

The results indicate that no one fitness measure achieves the best generalization on all benchmarks. The extent
to which a fitness measure can improve on GP’s generalization is also influenced by the similarity between the
training and the test sets, which differs for the different problems. A number of the synthetic problems from
the symbolic regression domain were deliberately set up with disparate training and test sets. In addition, the
even-n parity problems from the Boolean function synthesis domain were also observed to contain disparate
training and test sets. Overall, the aim is to determine the approaches that generalize as well as possible on
difficult problems. The following general observations are made:
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i) DSS and HP achieve the best generalization on a number of the problems. Sections 3.5.1 and 3.6.1 of
chapter 3 established that DSS and HP repeatedly resample the training set during the course of GP,
such that the solution programs being evolved capture the underlying relationships in the training set
without overfitting it. DSS generalizes well on the credit, wine and mux-11 problems. HP generalizes
well on the Nguyen, Pagie, credit and mult-4 problems.

ii) FS also demonstrates the capability to improve on GP’s generalization. A possible justification for this is
that FS mitigates overfitting the training set as a result of the niching strategy used. Section 3.4 of chapter
3 established that the niching strategy promotes diversity in the fitness cases solved by the solution
programs; the ability to solve diverse fitness cases improves on the chances of solving unseen fitness
cases. FS generalizes the best on the vowel problem. FS also achieves competitive generalization results
on the Keijzer and wine problems.

iii) DSS, HP and FS do not always reliably improve on GP’s generalization. The extent of generalization
achieved is also influenced by the similarity between the training and the test sets, which differs for the
different problems. Poor generalization is inevitable with dissimilar training and test sets. For example,
none of the fitness measures generalizes well on the even-n parity problems.

4.3.3 Population diversity

This section reports on the semantic and fitness diversity levels maintained by the fitness measures. Due
to the lack of clear correlation between diversity and solution quality, both the lowest and highest diversity
scores achieved on each problem are highlighted in the results. A presentation of the results from each domain
ensues.

Symbolic regression benchmarks

An overview of the performance in the domain is presented. A detailed breakdown of the results follows.

Performance overview

Figures 4.21 and 4.22 show the mean semantic diversity and entropy of the final GP populations; tables 4.145
and 4.146 contain the same data, whereby the highest and lowest diversity scores are highlighted in the tables.
Figures 4.23 and 4.24 show the change in the mean population semantic diversity and the mean population
entropy through the generations of GP. The values in the figures and tables below are averaged over the 30 GP
runs.

The results show that FS and NS1 exhibit among the highest semantic diversity and entropy scores on
most problems in the domain. DSS exhibits relatively high entropy on the sextic problem, and relatively high
semantic diversity on the sextic and Nguyen problems. Also, HP exhibits the highest semantic diversity and
entropy on the Pagie problem. Conversely, BP1 and BP2 exhibit among the lowest semantic diversity and
entropy scores on most problems. Overall, FS, DSS, HP and NS1 are shown to exhibit relatively high diversity
while BP1 and BP2 exhibit low diversity.
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FIGURE 4.21: Symbolic regression benchmarks: Mean final population semantic diversity

FIGURE 4.22: Symbolic regression benchmarks: Mean final population entropy

TABLE 4.145: Symbolic regression
benchmarks: Mean final population

semantic diversity

OF BP1 BP2 FS DSS HP NS1

Sextic 0.29 0.25 0.23 0.38 0.35 0.31 0.43

Nguyen 0.29 0.28 0.21 0.39 0.35 0.30 0.44

Pagie 0.29 0.26 0.22 0.28 0.31 0.39 0.30

Keijzer 0.25 0.23 0.20 0.39 0.27 0.28 0.39

Vlad 0.14 0.15 0.15 0.20 0.16 0.14 0.16

Dow 0.14 0.15 0.15 0.13 0.16 0.17 0.13

TABLE 4.146: Symbolic regression
benchmarks: Mean final population

entropy

OF BP1 BP2 FS DSS HP NS1

Sextic 1.55 1.43 1.50 1.97 1.77 1.46 1.96

Nguyen 2.21 1.51 1.19 2.11 1.60 1.40 2.08

Pagie 1.43 1.13 1.29 1.41 1.55 1.75 1.52

Keijzer 1.26 1.13 1.13 1.81 1.36 1.40 1.90

Vlad 0.74 0.74 0.77 0.84 0.79 0.70 0.67

Dow 0.35 0.37 0.38 0.33 0.40 0.43 0.36
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Detailed results

The benchmarks are discussed in the following order: A) Sextic, B) Nguyen, C) Pagie, D) Keijzer, E) Vlad, and
F) Dow.

A. Sextic
(highest semantic diversity = NS1; lowest semantic diversity = BP2; highest entropy = FS, NS1; lowest entropy = OF,
BP1, BP2, HP)

Table 4.147 lists the best (b), mean (µ) and standard deviation (σ) of the final population semantic diversity.
In turn, table 4.148 lists the best (b), mean (µ) and standard deviation (σ) of the final population entropy. The
highest and lowest diversity scores are highlighted in the tables. Note that the mean scores shown in tables
4.147 and 4.148 are the same scores shown for the sextic problem in tables 4.145 and 4.146 respectively; the
analysis in this section looks at the scores achieved on the sextic problem in detail.

TABLE 4.147: Sextic: Final popula-
tion semantic diversity

OF BP1 BP2 FS DSS HP NS1

b 0.44 0.39 0.36 0.50 0.52 0.45 0.60

µ 0.29 0.25 0.23 0.38 0.35 0.31 0.43

σ 0.05 0.04 0.03 0.04 0.04 0.04 0.03

TABLE 4.148: Sextic: Final popula-
tion entropy

OF BP1 BP2 FS DSS HP NS1

b 2.13 2.05 2.19 2.59 2.25 1.99 2.62

µ 1.55 1.43 1.50 1.97 1.77 1.46 1.96

σ 0.07 0.06 0.06 0.05 0.04 0.04 0.07

Statistical, similar to the tests done on the solution quality results, tests are conducted to verify the signif-
icance of the observations in tables 4.147 and 4.148. Tables 4.149 and 4.150 list the p-values resulting from the
statistical tests. The p-values that indicate statistical significance (at a significance level of α = 0.05 ; i.e. p-val
< 0.05) are highlighted in the tables.

TABLE 4.149: Sextic: Statistical tests
on final population semantic diver-

sity

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.00

BP2 0.00 0.00

FS 0.00 0.00 0.00

DSS 0.00 0.00 0.00 0.00

HP 0.05 0.00 0.00 0.00 0.00

NS1 0.00 0.00 0.00 0.03 0.00 0.00

TABLE 4.150: Sextic: Statistical tests
on final population

entropy

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.05

BP2 0.17 0.12

FS 0.00 0.00 0.00

DSS 0.00 0.00 0.00 0.00

HP 0.06 0.26 0.22 0.00 0.00

NS1 0.00 0.00 0.00 0.48 0.00 0.00

The results indicate that NS1 exhibits significantly higher semantic diversity than the other fitness mea-
sures. In turn, FS and NS1 exhibit the highest entropy. Furthermore, BP2 exhibits the lowest semantic diversity,
whereas OF, BP1, BP2 and HP exhibit on par entropy on the problem.

B. Nguyen
(highest semantic diversity = NS1; lowest semantic diversity = BP2; highest entropy = OF, FS, NS1; lowest entropy =
BP2)

Table 4.151 lists the best (b), mean (µ) and standard deviation (σ) of the final population semantic diversity.
In turn, Table 4.152 lists the best (b), mean (µ) and standard deviation (σ) of the final population entropy. The
highest and lowest diversity scores are highlighted in the tables.
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TABLE 4.151: Nguyen: Final popu-
lation semantic diversity

OF BP1 BP2 FS DSS HP NS1

b 0.44 0.46 0.36 0.53 0.52 0.48 0.56

µ 0.29 0.28 0.21 0.39 0.35 0.30 0.44

σ 0.06 0.06 0.05 0.04 0.05 0.05 0.03

TABLE 4.152: Nguyen: Final popu-
lation entropy

OF BP1 BP2 FS DSS HP NS1

b 2.42 1.78 1.44 2.40 1.81 1.64 2.39

µ 2.21 1.51 1.19 2.11 1.60 1.40 2.08

σ 0.06 0.05 0.06 0.06 0.04 0.04 0.07

Statistical tests are conducted to verify the significance of the observations in tables 4.151 and 4.152. Ta-
bles 4.153 and 4.154 list the p-values resulting from the statistical tests. The p-values that indicate statistical
significance (at a significance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the tables.

TABLE 4.153: Nguyen: Statistical
tests on final population semantic

diversity

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.42

BP2 0.00 0.00

FS 0.00 0.00 0.00

DSS 0.00 0.00 0.00 0.00

HP 0.00 0.00 0.00 0.00 0.00

NS1 0.00 0.00 0.00 0.00 0.00 0.00

TABLE 4.154: Nguyen: Statistical
tests on final population

entropy

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.00

BP2 0.00 0.00

FS 0.05 0.00 0.00

DSS 0.00 0.06 0.00 0.00

HP 0.00 0.05 0.00 0.00 0.00

NS1 0.00 0.00 0.00 0.32 0.00 0.00

The results indicate that NS1 exhibits significantly higher semantic diversity than the other fitness mea-
sures. In turn, OF, FS and NS1 exhibit the highest entropy. Furthermore, BP2 exhibits significantly lower
semantic diversity and entropy than the other fitness measures on the problem.

C. Pagie
(highest semantic diversity = HP; lowest semantic diversity = BP2; highest entropy = HP; lowest entropy = BP1)

Table 4.155 lists the best (b), mean (µ) and standard deviation (σ) of the final population semantic diversity.
In turn, Table 4.156 lists the best (b), mean (µ) and standard deviation (σ) of the final population entropy. The
highest and lowest diversity scores are highlighted in the tables.

TABLE 4.155: Pagie: Final popula-
tion semantic diversity

OF BP1 BP2 FS DSS HP NS1

b 0.45 0.41 0.40 0.44 0.48 0.57 0.52

µ 0.29 0.26 0.22 0.28 0.31 0.39 0.30

σ 0.05 0.07 0.06 0.04 0.05 0.06 0.05

TABLE 4.156: Pagie: Final popula-
tion entropy

OF BP1 BP2 FS DSS HP NS1

b 1.61 1.31 1.44 1.70 1.75 2.05 1.71

µ 1.43 1.13 1.29 1.41 1.55 1.75 1.52

σ 0.06 0.05 0.05 0.07 0.05 0.07 0.05

Statistical tests are conducted to verify the significance of the observations in tables 4.155 and 4.156. Ta-
bles 4.157 and 4.158 list the p-values resulting from the statistical tests. The p-values that indicate statistical
significance (at a significance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the tables.

The results indicate that HP exhibits significantly higher semantic diversity and entropy than the other
fitness measures. In turn, BP2 exhibits the lowest semantic diversity while BP1 exhibits the lowest entropy.
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TABLE 4.157: Pagie: Statistical tests
on final population semantic diver-

sity

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.00

BP2 0.00 0.00

FS 0.46 0.00 0.00

DSS 0.00 0.00 0.00 0.00

HP 0.00 0.00 0.00 0.00 0.00

NS1 0.04 0.00 0.00 0.00 0.40 0.00

TABLE 4.158: Pagie: Statistical tests
on final population

entropy

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.00

BP2 0.00 0.00

FS 0.43 0.00 0.00

DSS 0.00 0.00 0.00 0.00

HP 0.00 0.00 0.00 0.00 0.00

NS1 0.05 0.00 0.00 0.00 0.46 0.00

D. Keijzer
(highest semantic diversity = FS, NS1; lowest semantic diversity = BP2; highest entropy = FS, NS1; lowest entropy =
BP1, BP2)

Table 4.159 lists the best (b), mean (µ) and standard deviation (σ) of the final population semantic diversity.
In turn, Table 4.160 lists the best (b), mean (µ) and standard deviation (σ) of the final population entropy. The
highest and lowest diversity scores are highlighted in the tables.

TABLE 4.159: Keijzer: Final popu-
lation semantic diversity

OF BP1 BP2 FS DSS HP NS1

b 0.44 0.44 0.38 0.51 0.52 0.49 0.55

µ 0.25 0.23 0.20 0.39 0.27 0.28 0.39

σ 0.09 0.07 0.06 0.07 0.08 0.07 0.05

TABLE 4.160: Keijzer: Final popu-
lation entropy

OF BP1 BP2 FS DSS HP NS1

b 1.67 1.40 1.39 2.10 1.57 1.89 2.19

µ 1.26 1.13 1.13 1.81 1.36 1.40 1.90

σ 0.10 0.09 0.07 0.07 0.09 0.11 0.07

Statistical tests are conducted to verify the significance of the observations in tables 4.159 and 4.160. Ta-
bles 4.161 and 4.162 list the p-values resulting from the statistical tests. The p-values that indicate statistical
significance (at a significance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the tables.

TABLE 4.161: Keijzer: Statistical
tests on final population semantic

diversity

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.00

BP2 0.00 0.00

FS 0.00 0.00 0.00

DSS 0.00 0.00 0.00 0.00

HP 0.00 0.00 0.00 0.00 0.05

NS1 0.00 0.00 0.00 0.36 0.00 0.00

TABLE 4.162: Keijzer: Statistical
tests on final population

entropy

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.00

BP2 0.00 0.49

FS 0.00 0.00 0.00

DSS 0.00 0.00 0.00 0.00

HP 0.00 0.00 0.00 0.00 0.23

NS1 0.00 0.00 0.00 0.05 0.00 0.00

The results indicate that FS and NS1 exhibit significantly higher semantic diversity and entropy than the
other fitness measures. In turn, BP2 exhibits the lowest semantic diversity, while BP1 and BP2 exhibit the
lowest entropy.
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E. Vlad
(highest semantic diversity = FS; lowest semantic diversity = N/A; highest entropy = N/A; lowest entropy = N/A)

Table 4.163 lists the best (b), mean (µ) and standard deviation (σ) of the final population semantic diversity.
In turn, Table 4.164 lists the best (b), mean (µ) and standard deviation (σ) of the final population entropy. The
highest and lowest diversity scores are highlighted in the tables.

TABLE 4.163: Vlad: Final popula-
tion semantic diversity

OF BP1 BP2 FS DSS HP NS1

b 0.25 0.25 0.25 0.35 0.30 0.27 0.22

µ 0.14 0.15 0.15 0.20 0.16 0.14 0.16

σ 0.03 0.03 0.03 0.04 0.04 0.03 0.02

TABLE 4.164: Vlad: Final popula-
tion entropy

OF BP1 BP2 FS DSS HP NS1

b 0.89 0.87 0.90 0.99 0.94 0.85 0.75

µ 0.74 0.74 0.77 0.84 0.79 0.70 0.67

σ 0.04 0.04 0.03 0.05 0.04 0.04 0.03

Statistical tests are conducted to verify the significance of the observations in tables 4.163 and 4.164. Ta-
bles 4.165 and 4.166 list the p-values resulting from the statistical tests. The p-values that indicate statistical
significance (at a significance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the tables.

TABLE 4.165: Vlad: Statistical tests
on final population semantic diver-

sity

One-way ANOVA p-value = 0.47

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.47

BP2 0.46 0.50

FS 0.00 0.00 0.00

DSS 0.39 0.41 0.34 0.00

HP 0.49 0.42 0.37 0.00 0.25

NS1 0.30 0.41 0.39 0.00 0.27 0.20

TABLE 4.166: Vlad: Statistical tests
on final population

entropy

One-way ANOVA p-value = 0.52

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.50

BP2 0.47 0.41

FS 0.04 0.04 0.05

DSS 0.26 0.26 0.32 0.05

HP 0.25 0.25 0.17 0.00 0.03

NS1 0.05 0.05 0.03 0.00 0.00 0.29

The results indicate that FS exhibits significantly higher semantic diversity than the other fitness measures.
Apart from FS, the remaining fitness measures exhibit on par semantic diversity. In turn, FS exhibits signif-
icantly higher entropy than OF, BP1, HP and NS1. Otherwise, the fitness measures largely exhibit on par
entropy on the problem.

F. Dow
(highest semantic diversity = N/A; lowest semantic diversity = N/A; highest entropy = N/A; lowest entropy = N/A)

Table 4.167 lists the best (b), mean (µ) and standard deviation (σ) of the final population semantic diversity.
In turn, Table 4.168 lists the best (b), mean (µ) and standard deviation (σ) of the final population entropy. The
highest and lowest diversity scores are highlighted in the tables.

TABLE 4.167: Dow: Final popula-
tion semantic diversity

OF BP1 BP2 FS DSS HP NS1

b 0.27 0.27 0.27 0.22 0.29 0.29 0.22

µ 0.14 0.15 0.15 0.13 0.16 0.17 0.13

σ 0.03 0.03 0.03 0.03 0.04 0.04 0.03

TABLE 4.168: Dow: Final popula-
tion entropy

OF BP1 BP2 FS DSS HP NS1

b 1.61 1.31 1.44 1.70 1.75 2.05 1.71

µ 0.35 0.37 0.38 0.33 0.40 0.43 0.36

σ 0.06 0.05 0.05 0.07 0.05 0.07 0.05

Statistical tests are conducted to verify the significance of the observations in tables 4.167 and 4.168. Ta-
bles 4.169 and 4.170 list the p-values resulting from the statistical tests. The p-values that indicate statistical
significance (at a significance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the tables.
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TABLE 4.169: Dow: Statistical tests
on final population semantic diver-

sity

One-way ANOVA p-value = 0.77

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.47

BP2 0.47 0.50

FS 0.45 0.40 0.40

DSS 0.41 0.45 0.45 0.47

HP 0.37 0.42 0.42 0.37 0.40

NS1 0.45 0.40 0.40 0.50 0.40 0.37

TABLE 4.170: Dow: Statistical tests
on final population

entropy

One-way ANOVA p-value = 0.79

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.47

BP2 0.46 0.49

FS 0.41 0.40 0.39

DSS 0.41 0.45 0.47 0.39

HP 0.33 0.40 0.42 0.37 0.46

NS1 0.48 0.47 0.47 0.47 0.40 0.38

The results indicate that the fitness measures exhibit on par semantic diversity and entropy on the difficult
Dow problem.

Supervised classification benchmarks

An overview of the performance in the domain is presented. A detailed breakdown of the results follows. .. ..

Performance overview

Figures 4.25 and 4.26 show the mean semantic diversity and entropy of the final GP populations; tables 4.171
and 4.172 contain the same data, whereby the highest and lowest diversity scores are highlighted in the tables.
Figures 4.27 and 4.28 show the change in the mean population semantic diversity and the mean population
entropy through the generations of GP. The values in the figures and tables below are averaged over the 30 GP
runs.

As in the previous domain, the results show that FS and NS1 exhibit among the highest semantic diversity
and entropy scores on most problems in the domain. OF exhibits the highest entropy on the credit problem,
while DSS exhibits the highest entropy on the wine problem. In turn, BP1 and BP2 exhibit the lowest semantic
diversity and entropy scores on most problems in the domain. Also, HP exhibits the lowest entropy on the
credit problem. Overall, FS, DSS and NS1 are shown to exhibit relatively high diversity, while BP1 and BP2
exhibit low diversity.

TABLE 4.171: Supervised classifica-
tion benchmarks: Mean final popu-

lation semantic diversity

OF BP1 BP2 FS DSS HP NS1
Iris 0.21 0.11 0.12 0.20 0.19 0.16 0.53

Credit 0.07 0.02 0.02 0.19 0.23 0.19 0.50

Wine 0.18 0.10 0.13 0.23 0.28 0.17 0.38

Segment 0.10 0.05 0.05 0.37 0.22 0.21 0.42

Vowel 0.09 0.03 0.02 0.35 0.13 0.16 0.36

Opt 0.08 0.01 0.01 0.29 0.13 0.15 0.29

TABLE 4.172: Supervised classifica-
tion benchmarks: Mean final popu-

lation entropy

OF BP1 BP2 FS DSS HP NS1
Iris 3.15 2.39 2.50 3.09 3.23 2.81 3.91

Credit 3.33 1.94 1.80 1.61 1.44 1.08 2.35

Wine 3.19 2.71 2.81 3.40 3.60 3.09 3.38

Segment 3.26 2.52 2.30 3.82 3.45 3.46 4.04

Vowel 3.86 1.92 1.48 4.67 3.54 3.24 4.77

Opt 4.49 2.05 1.89 5.56 5.13 4.76 5.61
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FIGURE 4.25: Supervised classification benchmarks: Mean final population semantic diversity

FIGURE 4.26: Supervised classification benchmarks: Mean final population entropy
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Detailed results

The benchmarks are discussed in the following order: A) Iris, B) Credit, C) Wine, D) Segment, E) Vowel, and
F) Opt.

A. Iris
(highest semantic diversity = NS1; lowest semantic diversity = BP1, BP2; highest entropy = NS1; lowest entropy = BP1,
BP2)

Table 4.173 lists the best (b), mean (µ) and standard deviation (σ) of the final population semantic diversity.
In turn, Table 4.174 lists the best (b), mean (µ) and standard deviation (σ) of the final population entropy. The
highest and lowest diversity scores are highlighted in the tables.

TABLE 4.173: Iris: Final population
semantic diversity

OF BP1 BP2 FS DSS HP NS1

b 0.31 0.21 0.19 0.48 0.29 0.28 0.59

µ 0.21 0.11 0.12 0.20 0.19 0.16 0.53

σ 0.06 0.05 0.05 0.11 0.06 0.07 0.04

TABLE 4.174: Iris: Final population
entropy

OF BP1 BP2 FS DSS HP NS1

b 3.59 3.05 3.21 4.01 3.61 3.51 4.25

µ 3.15 2.39 2.50 3.09 3.23 2.81 3.91

σ 0.05 0.05 0.04 0.06 0.05 0.05 0.04

Statistical tests are conducted to verify the significance of the observations in tables 4.173 and 4.174. Ta-
bles 4.175 and 4.176 list the p-values resulting from the statistical tests. The p-values that indicate statistical
significance (at a significance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the tables.

TABLE 4.175: Iris: Statistical tests
on final population semantic diver-

sity

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.00

BP2 0.00 0.19

FS 0.26 0.00 0.00

DSS 0.04 0.00 0.00 0.29

HP 0.00 0.00 0.00 0.03 0.02

NS1 0.00 0.00 0.00 0.00 0.00 0.00

TABLE 4.176: Iris: Statistical tests
on final population

entropy

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.00

BP2 0.00 0.11

FS 0.28 0.00 0.00

DSS 0.14 0.00 0.00 0.07

HP 0.00 0.00 0.00 0.00 0.00

N1S 0.00 0.00 0.00 0.00 0.00 0.00

The results indicate that NS1 exhibits significantly higher semantic diversity and entropy than the other
fitness measures. Furthermore, BP1 and BP2 exhibit the lowest semantic diversity and entropy.

B. Credit
(highest semantic diversity = NS1; lowest semantic diversity = BP1, BP2; highest entropy = OF; lowest entropy = HP)

Table 4.177 lists the best (b), mean (µ) and standard deviation (σ) of the final population semantic diversity.
In turn, Table 4.178 lists the best (b), mean (µ) and standard deviation (σ) of the final population entropy. The
highest and lowest diversity scores are highlighted in the tables.

Statistical tests are conducted to verify the significance of the observations in tables 4.177 and 4.178. Ta-
bles 4.179 and 4.180 list the p-values resulting from the statistical tests. The p-values that indicate statistical
significance (at a significance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the tables.

The results indicate that NS1 exhibits significantly higher semantic diversity than the other fitness mea-
sures. Furthermore, BP1 and BP2 exhibit the lowest semantic diversity. OF exhibits the highest entropy.
Conversely, HP exhibits the lowest entropy.
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TABLE 4.177: Credit: Final popula-
tion semantic diversity

OF BP1 BP2 FS DSS HP NS1

b 0.11 0.04 0.03 0.47 0.50 0.53 0.51

µ 0.07 0.02 0.02 0.19 0.23 0.19 0.50

σ 0.02 0.01 0.01 0.13 0.09 0.15 0.01

TABLE 4.178: Credit: Final popula-
tion entropy

OF BP1 BP2 FS DSS HP NS1

b 3.79 2.78 2.52 3.36 3.78 3.58 2.89

µ 3.33 1.94 1.80 1.61 1.44 1.08 2.35

σ 0.03 0.05 0.06 0.09 0.10 0.11 0.04

TABLE 4.179: Credit: Statistical
tests on final population semantic

diversity

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.00

BP2 0.00 0.01

FS 0.00 0.00 0.00

DSS 0.00 0.00 0.00 0.15

HP 0.00 0.00 0.00 0.48 0.19

NS1 0.00 0.00 0.00 0.00 0.00 0.00

TABLE 4.180: Credit: Statistical
tests on final population

entropy

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.00

BP2 0.00 0.13

FS 0.00 0.09 0.23

DSS 0.00 0.05 0.15 0.33

HP 0.00 0.00 0.01 0.06 0.19

NS1 0.00 0.00 0.00 0.00 0.00 0.00

C. Wine
(highest semantic diversity = NS1; lowest semantic diversity = BP1, BP2; highest entropy = DSS; lowest entropy = BP1,
BP2)

Table 4.181 lists the best (b), mean (µ) and standard deviation (σ) of the final population semantic diversity.
In turn, Table 4.182 lists the best (b), mean (µ) and standard deviation (σ) of the final population entropy. The
highest and lowest diversity scores are highlighted in the tables.

TABLE 4.181: Wine: Final popula-
tion semantic diversity

OF BP1 BP2 FS DSS HP NS1

b 0.28 0.18 0.20 0.32 0.40 0.30 0.40

µ 0.18 0.10 0.13 0.23 0.28 0.17 0.38

σ 0.06 0.03 0.04 0.06 0.07 0.03 0.01

TABLE 4.182: Wine: Final popula-
tion entropy

OF BP1 BP2 FS DSS HP NS

b 3.72 3.23 3.63 3.95 3.94 3.63 3.67

µ 3.19 2.71 2.81 3.40 3.60 3.09 3.38

σ 0.04 0.03 0.05 0.05 0.05 0.04 0.02

Statistical tests are conducted to verify the significance of the observations in tables 4.181 and 4.182. Ta-
bles 4.183 and 4.184 list the p-values resulting from the statistical tests. The p-values that indicate statistical
significance (at a significance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the tables.

TABLE 4.183: Wine: Statistical tests
on final population semantic diver-

sity

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.00

BP2 0.00 0.00

FS 0.00 0.00 0.00

DSS 0.00 0.00 0.00 0.00

HP 0.28 0.00 0.00 0.00 0.00

NS1 0.00 0.00 0.00 0.00 0.00 0.00

TABLE 4.184: Wine: Statistical tests
on final population

entropy

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.00

BP2 0.00 0.09

FS 0.02 0.00 0.00

DSS 0.00 0.00 0.00 0.01

HP 0.11 0.00 0.00 0.00 0.00

NS1 0.01 0.00 0.00 0.38 0.00 0.00
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The results indicate that NS1 exhibits significantly higher semantic diversity than the other fitness mea-
sures. Also DSS exhibits the highest entropy. Furthermore, BP1 and BP2 exhibit significantly lower semantic
diversity and entropy than the other fitness measures.

D. Segment
(highest semantic diversity = NS1; lowest semantic diversity = BP1, BP2; highest entropy = NS1; lowest entropy = BP2)

Table 4.185 lists the best (b), mean (µ) and standard deviation (σ) of the final population semantic diversity.
In turn, Table 4.186 lists the best (b), mean (µ) and standard deviation (σ) of the final population entropy. The
highest and lowest diversity scores are highlighted in the tables.

TABLE 4.185: Segment: Final popu-
lation semantic diversity

OF BP1 BP2 FS DSS HP NS1

b 0.17 0.08 0.36 0.47 0.51 0.39 0.48

µ 0.10 0.05 0.05 0.37 0.22 0.21 0.42

σ 0.04 0.02 0.12 0.07 0.14 0.11 0.03

TABLE 4.186: Segment: Final popu-
lation entropy

OF BP1 BP2 FS DSS HP NS1

b 4.03 3.04 2.88 4.23 4.09 4.06 4.25

µ 3.26 2.52 2.30 3.82 3.45 3.46 4.04

σ 0.05 0.04 0.04 0.03 0.06 0.08 0.01

Statistical tests are conducted to verify the significance of the observations in tables 4.185 and 4.186. Ta-
bles 4.187 and 4.188 list the p-values resulting from the statistical tests. The p-values that indicate statistical
significance (at a significance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the tables.

TABLE 4.187: Segment: Statistical
tests on final population semantic

diversity

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.00

BP2 0.00 0.24

FS 0.00 0.00 0.00

DSS 0.00 0.00 0.00 0.00

HP 0.00 0.00 0.00 0.00 0.33

NS1 0.00 0.00 0.00 0.00 0.00 0.00

TABLE 4.188: Segment: Statistical
tests on final population

entropy

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.00

BP2 0.00 0.01

FS 0.00 0.00 0.00

DSS 0.03 0.00 0.00 0.00

HP 0.04 0.00 0.00 0.00 0.48

NS1 0.00 0.00 0.00 0.00 0.00 0.00

The results indicate that NS1 exhibits significantly higher semantic diversity and entropy than the other
fitness measures. Furthermore, BP1 and BP2 exhibit the lowest semantic diversity, while BP2 exhibits the
lowest entropy.

E. Vowel
(highest semantic diversity = FS, NS1; lowest semantic diversity = BP1, BP2; highest entropy = FS, NS1; lowest entropy
= BP2)

Table 4.189 lists the best (b), mean (µ) and standard deviation (σ) of the final population semantic diversity.
In turn, Table 4.190 lists the best (b), mean (µ) and standard deviation (σ) of the final population entropy. The
highest and lowest diversity scores are highlighted in the tables.

Statistical tests are conducted to verify the significance of the observations in tables 4.189 and 4.190. Ta-
bles 4.191 and 4.192 list the p-values resulting from the statistical tests. The p-values that indicate statistical
significance (at a significance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the tables.
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TABLE 4.189: Vowel: Final popula-
tion semantic diversity

OF BP1 BP2 FS DSS HP NS1

b 0.18 0.08 0.09 0.39 0.27 0.38 0.38

µ 0.09 0.03 0.02 0.35 0.13 0.16 0.36

σ 0.03 0.01 0.01 0.02 0.05 0.10 0.01

TABLE 4.190: Vowel: Final popula-
tion entropy

OF BP1 BP2 FS DSS HP NS1

b 4.43 3.39 2.88 4.94 4.64 4.69 4.97

µ 3.86 1.92 1.48 4.67 3.54 3.24 4.77

σ 0.04 0.01 0.06 0.02 0.06 0.03 0.01

TABLE 4.191: Vowel: Statistical
tests on final population semantic

diversity

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.00

BP2 0.00 0.03

FS 0.00 0.00 0.00

DSS 0.00 0.00 0.00 0.00

HP 0.00 0.00 0.00 0.00 0.07

NS1 0.00 0.00 0.00 0.01 0.00 0.00

TABLE 4.192: Vowel: Statistical
tests on final population

entropy

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.00

BP2 0.00 0.03

FS 0.00 0.00 0.00

DSS 0.01 0.00 0.00 0.00

HP 0.00 0.00 0.00 0.00 0.10

NS1 0.00 0.00 0.00 0.00 0.00 0.00

The results indicate that FS and NS1 exhibit significantly higher semantic diversity and entropy than the
other fitness measures. Furthermore, BP1 and BP2 exhibit the lowest semantic diversity, while BP2 exhibits
the lowest entropy.

F. Opt
(highest semantic diversity = FS, NS1; lowest semantic diversity = BP1, BP2; highest entropy = FS, NS1; lowest entropy
= BP1, BP2)

Table 4.193 lists the best (b), mean (µ) and standard deviation (σ) of the final population semantic diversity.
In turn, Table 4.194 lists the best (b), mean (µ) and standard deviation (σ) of the final population entropy. The
highest and lowest diversity scores are highlighted in the tables.

TABLE 4.193: Opt: Final population
semantic diversity

OF BP1 BP2 FS DSS HP NS1

b 0.16 0.03 0.02 0.37 0.17 0.45 0.33

µ 0.08 0.01 0.01 0.29 0.13 0.15 0.29

σ 0.03 0.01 0.01 0.05 0.03 0.10 0.03

TABLE 4.194: Opt: Final population
entropy

OF BP1 BP2 FS DSS HP NS1

b 5.49 2.72 2.72 5.80 5.54 5.30 5.74

µ 4.49 2.05 1.89 5.56 5.13 4.76 5.61

σ 0.01 0.04 0.05 0.02 0.03 0.01 0.04

Statistical tests are conducted to verify the significance of the observations in tables 4.193 and 4.194. Ta-
bles 4.195 and 4.196 list the p-values resulting from the statistical tests. The p-values that indicate statistical
significance (at a significance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the tables.

The results indicate that FS and NS1 exhibit significantly higher semantic diversity and entropy than the
other fitness measures. Furthermore, BP1 and BP2 exhibit the lowest semantic diversity and entropy.

..

..

..

..

..
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TABLE 4.195: Opt: Statistical tests
on final population semantic diver-

sity

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.00

BP2 0.00 0.38

FS 0.00 0.00 0.00

DSS 0.00 0.00 0.00 0.00

HP 0.00 0.00 0.00 0.00 0.08

NS1 0.00 0.00 0.00 0.42 0.00 0.00

TABLE 4.196: Opt: Statistical tests
on final population

entropy

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.00

BP2 0.00 0.24

FS 0.00 0.00 0.00

DSS 0.00 0.00 0.00 0.00

HP 0.07 0.00 0.00 0.00 0.00

NS1 0.00 0.00 0.00 0.06 0.00 0.00

..

..

..

Boolean function synthesis benchmarks

An overview of the performance in the domain is presented. A detailed breakdown of the results follows.

Performance overview

Figures 4.29 and 4.30 show the mean semantic diversity and entropy of the final GP populations; tables 4.197
and 4.198 contain the same data, whereby the highest and lowest diversity scores are highlighted in the tables.
Figures 4.31 and 4.32 show the change in the mean population semantic diversity and the mean population
entropy through the generations of GP. The values in the figures and tables below are averaged over the 30 GP
runs.

The results show that NS1 exhibits the highest semantic diversity and entropy scores on most problems.
HP also exhibits among the highest semantic diversity scores on the par-5, par-7, par-9 and mux-11 problems.
In turn, FS exhibits relatively high semantic diversity and entropy on the par-7, par-9 and mult-4 problems.
Conversely, BP1 and BP2 exhibit the lowest semantic diversity and entropy on most problems. Also, OF
exhibits among the lowest semantic diversity and entropy scores on the mult-3 and mult-4 problems. Overall,
FS, HP and NS1 are shown to exhibit relatively high diversity, while BP1 and BP2 exhibit low diversity.

TABLE 4.197: Boolean function syn-
thesis benchmarks: Mean final pop-

ulation semantic diversity

OF BP1 BP2 FS DSS HP NS1

Par-5 0.12 0.07 0.05 0.23 0.09 0.39 0.49

Par-7 0.06 0.02 0.01 0.41 0.05 0.47 0.48

Par-9 0.07 0.01 0.00 0.45 0.04 0.47 0.49

Mux-11 0.08 0.08 0.07 0.09 0.07 0.51 0.49

Mult-3 0.01 0.01 0.01 0.08 0.01 0.04 0.47

Mult-4 0.01 0.01 0.16 0.22 0.02 0.05 0.46

TABLE 4.198: Boolean function syn-
thesis benchmarks: Mean final pop-

ulation entropy

OF BP1 BP2 FS DSS HP NS1

Par-5 1.99 1.53 1.14 1.86 1.76 1.34 1.25

Par-7 2.26 1.04 1.02 2.25 1.90 2.34 2.29

Par-9 2.59 0.95 0.51 2.69 2.29 2.59 2.94

Mux-11 4.12 3.49 3.67 3.88 3.87 4.76 5.01

Mult-3 1.46 1.58 1.71 3.07 1.85 2.68 3.83

Mult-4 2.61 2.51 2.40 4.36 2.93 3.62 4.83
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FIGURE 4.29: Boolean function synthesis benchmarks: Mean final population semantic diversity

..

..

..

..

..

..

FIGURE 4.30: Boolean function synthesis benchmarks: Mean final population entropy
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Detailed results

The benchmarks are discussed in the following order: A) Even-5 parity, B) Even-7 parity, C) Even-9 parity, D)
11-multiplexer, E) 3-bit multiplier, and F) 4-bit multiplier.

A. Even-5 parity
(highest semantic diversity = NS1; lowest semantic diversity = BP2; highest entropy = OF; lowest entropy = BP2)

Table 4.199 lists the best (b), mean (µ) and standard deviation (σ) of the final population semantic diversity.
In turn, Table 4.200 lists the best (b), mean (µ) and standard deviation (σ) of the final population entropy. The
highest and lowest diversity scores are highlighted in the tables.

TABLE 4.199: Even-5 parity: Final
population semantic diversity

OF BP1 BP2 FS DSS HP NS1

b 0.15 0.11 0.14 0.36 0.15 0.77 0.90

µ 0.12 0.07 0.05 0.23 0.09 0.39 0.49

σ 0.03 0.03 0.04 0.07 0.03 0.19 0.20

TABLE 4.200: Even-5 parity: Final
population entropy

OF BP1 BP2 FS DSS HP NS1

b 2.19 1.94 1.57 2.25 1.88 1.82 1.81

µ 1.99 1.53 1.14 1.86 1.76 1.34 1.25

σ 0.01 0.03 0.04 0.02 0.01 0.03 0.03

Statistical tests are conducted to verify the significance of the observations in tables 4.199 and 4.200. Ta-
bles 4.201 and 4.202 list the p-values resulting from the statistical tests. The p-values that indicate statistical
significance (at a significance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the tables.

TABLE 4.201: Even-5 parity: Sta-
tistical tests on final population se-

mantic diversity

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.00

BP2 0.00 0.00

FS 0.00 0.00 0.00

DSS 0.00 0.00 0.00 0.00

HP 0.00 0.00 0.00 0.00 0.00

NS1 0.00 0.00 0.00 0.00 0.00 0.01

TABLE 4.202: Even-5 parity: Statis-
tical tests on final population

entropy

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.00

BP2 0.00 0.00

FS 0.00 0.00 0.00

DSS 0.00 0.00 0.00 0.00

HP 0.00 0.01 0.01 0.00 0.00

NS1 0.00 0.00 0.00 0.00 0.00 0.00

The results indicate that NS1 exhibits significantly higher semantic diversity than the other fitness mea-
sures. Also, OF exhibits the highest entropy. Furthermore, BP2 exhibits the lowest semantic diversity and
entropy.

B. Even-7 parity
(highest semantic diveristy = HP, NS1; lowest semantic diversity = BP1, BP2; highest entropy = OF, FS, HP, NS1;
lowest entropy = BP1, BP2)

Table 4.203 lists the best (b), mean (µ) and standard deviation (σ) of the final population semantic diversity.
In turn, Table 4.204 lists the best (b), mean (µ) and standard deviation (σ) of the final population entropy. The
highest and lowest diversity scores are highlighted in the tables.

Statistical tests are conducted to verify the significance of the observations in tables 4.203 and 4.204. Ta-
bles 4.205 and 4.206 list the p-values resulting from the statistical tests. The p-values that indicate statistical
significance (at a significance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the tables.
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TABLE 4.203: Even-7 parity: Final
population semantic diversity

OF BP1 BP2 FS DSS HP NS1

b 0.10 0.04 0.04 0.51 0.14 0.73 0.51

µ 0.06 0.02 0.01 0.41 0.05 0.47 0.48

σ 0.02 0.01 0.01 0.07 0.03 0.19 0.02

TABLE 4.204: Even-7 parity: Final
population entropy

OF BP1 BP2 FS DSS HP NS1

b 2.64 1.60 1.50 2.56 2.32 2.74 2.47

µ 2.26 1.04 1.02 2.25 1.90 2.34 2.29

σ 0.03 0.03 0.04 0.02 0.03 0.03 0.01

TABLE 4.205: Even-7 parity: Sta-
tistical tests on final population se-

mantic diversity

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.00

BP2 0.00 0.01

FS 0.00 0.00 0.00

DSS 0.00 0.00 0.00 0.00

HP 0.00 0.00 0.00 0.03 0.00

NS1 0.00 0.00 0.00 0.00 0.00 0.30

TABLE 4.206: Even-7 parity: Statis-
tical tests on final population

entropy

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.00

BP2 0.00 0.39

FS 0.43 0.00 0.00

DSS 0.00 0.00 0.00 0.00

HP 0.09 0.00 0.00 0.05 0.00

NS1 0.22 0.00 0.00 0.12 0.00 0.15

The results indicate that HP and NS1 exhibit significantly higher semantic diversity than the other fitness
measures. Furthermore, BP1 and BP2 exhibit the lowest semantic diversity and entropy. In turn, OF, FS, HP
and NS1 exhibit on par entropy on the problem.

C. Even-9 parity
(highest semantic diversity = FS, HP, NS1; lowest semantic diversity = BP1, BP2; highest entropy = NS1; lowest entropy
= BP2)

Table 4.207 lists the best (b), mean (µ) and standard deviation (σ) of the final population semantic diversity.
In turn, Table 4.208 lists the best (b), mean (µ) and standard deviation (σ) of the final population entropy. The
highest and lowest diversity scores are highlighted in the tables.

TABLE 4.207: Even-9 parity: Final
population semantic diversity

OF BP1 BP2 FS DSS HP NS1

b 0.10 0.03 0.01 0.49 0.12 0.70 0.50

µ 0.07 0.01 0.00 0.45 0.04 0.47 0.49

σ 0.01 0.00 0.00 0.03 0.03 0.11 0.01

TABLE 4.208: Even-9 parity: Final
population entropy

OF BP1 BP2 FS DSS HP NS1

b 2.91 2.03 1.05 2.88 2.83 3.18 3.09

µ 2.59 0.95 0.51 2.69 2.29 2.59 2.94

σ 0.03 0.05 0.15 0.01 0.04 0.04 0.01

Statistical tests are conducted to verify the significance of the observations in tables 4.207 and 4.208. Ta-
bles 4.209 and 4.210 list the p-values resulting from the statistical tests. The p-values that indicate statistical
significance (at a significance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the tables.

The results indicate that FS, HP and NS1 exhibit significantly higher semantic diversity than the other
fitness measures. Also, NS1 exhibits significantly higher entropy than the other fitness measures. Furthermore,
BP1 and BP2 exhibit the lowest semantic diversity, while BP2 exhibits the lowest entropy.



Chapter 4. A Comparison of Fitness Measures in GP 145

TABLE 4.209: Even-9 parity: Sta-
tistical tests on final population se-

mantic diversity

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.00

BP2 0.00 0.02

FS 0.00 0.00 0.00

DSS 0.00 0.00 0.00 0.00

HP 0.00 0.00 0.00 0.29 0.00

NS1 0.00 0.00 0.00 0.00 0.00 0.17

TABLE 4.210: Even-9 parity: Statis-
tical tests on final population

entropy

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.00

BP2 0.00 0.03

FS 0.00 0.00 0.00

DSS 0.00 0.00 0.00 0.00

HP 0.49 0.00 0.00 0.08 0.00

NS1 0.00 0.00 0.00 0.00 0.00 0.00

D. 11-multiplexer
(highest semantic diversity = HP, NS1; lowest semantic diversity = OF, BP1, BP2, FS, DSS; highest entropy = NS1;
lowest entropy = BP1, BP2)

Table 4.211 lists the best (b), mean (µ) and standard deviation (σ) of the final population semantic diversity.
In turn, Table 4.212 lists the best (b), mean (µ) and standard deviation (σ) of the final population entropy. The
highest and lowest diversity scores are highlighted in the tables.

TABLE 4.211: 11-multiplexer: Final
population semantic diversity

OF BP1 BP2 FS DSS HP NS1

b 0.15 0.19 0.19 0.18 0.12 0.52 0.50

µ 0.08 0.08 0.07 0.09 0.07 0.51 0.49

σ 0.04 0.04 0.04 0.04 0.03 0.01 0.01

TABLE 4.212: 11-multiplexer: Final
population entropy

OF BP1 BP2 FS DSS HP NS1

b 4.52 4.50 4.37 4.97 4.45 4.85 5.11

µ 4.12 3.49 3.67 3.88 3.87 4.76 5.01

σ 0.05 0.04 0.05 0.03 0.03 0.04 0.04

Statistical tests are conducted to verify the significance of the observations in tables 4.211 and 4.212. Ta-
bles 4.213 and 4.214 list the p-values resulting from the statistical tests. The p-values that indicate statistical
significance (at a significance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the tables.

TABLE 4.213: 11-multiplexer: Sta-
tistical tests on final population se-

mantic diversity

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.40

BP2 0.40 0.34

FS 0.05 0.17 0.05

DSS 0.39 0.34 0.48 0.03

HP 0.00 0.00 0.00 0.00 0.00

NS1 0.00 0.00 0.00 0.00 0.00 0.27

TABLE 4.214: 11-multiplexer: Sta-
tistical tests on final population

entropy

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.10

BP2 0.00 0.30

FS 0.01 0.20 0.08

DSS 0.00 0.20 0.07 0.47

HP 0.00 0.01 0.00 0.00 0.00

NS1 0.00 0.01 0.00 0.00 0.00 0.00

The results indicate that HP and NS1 exhibit significantly higher semantic diversity than the other fitness
measures. In turn, NS1 exhibits significantly higher entropy than the other fitness measures. OF, BP1, BP2, FS
and DSS exhibit on par semantic diversity. On the other hand, BP1 and BP2 exhibit the lowest entropy.
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E. 3-bit multiplier
(highest semantic diversity = NS1; lowest semantic diversity = OF, BP1, BP2, DSS; highest entropy = NS1; lowest
entropy = OF, BP1, BP2)

Table 4.215 lists the best (b), mean (µ) and standard deviation (σ) of the final population semantic diversity.
In turn, Table 4.216 lists the best (b), mean (µ) and standard deviation (σ) of the final population entropy. The
highest and lowest diversity scores are highlighted in the tables.

TABLE 4.215: 3-bit multiplier: Final
population semantic diversity

OF BP1 BP2 FS DSS HP NS1

b 0.02 0.02 0.02 0.10 0.02 0.07 0.50

µ 0.01 0.01 0.01 0.08 0.01 0.04 0.47

σ 0.00 0.00 0.00 0.01 0.00 0.01 0.01

TABLE 4.216: 3-bit multiplier: Final
population entropy

OF BP1 BP2 FS DSS HP NS1

b 2.25 2.27 2.06 3.35 2.44 3.03 3.98

µ 1.46 1.58 1.71 3.07 1.85 2.68 3.83

σ 0.04 0.05 0.03 0.02 0.04 0.02 0.03

Statistical tests are conducted to verify the significance of the observations in tables 4.215 and 4.216. Ta-
bles 4.217 and 4.218 list the p-values resulting from the statistical tests. The p-values that indicate statistical
significance (at a significance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the tables.

TABLE 4.217: 3-bit multiplier: Sta-
tistical tests on final population se-

mantic diversity

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.47

BP2 0.45 0.47

FS 0.00 0.00 0.00

DSS 0.42 0.39 0.35 0.00

HP 0.00 0.00 0.00 0.00 0.00

NS1 0.00 0.00 0.00 0.00 0.00 0.00

TABLE 4.218: 3-bit multiplier: Sta-
tistical tests on final population

entropy

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.08

BP2 0.00 0.05

FS 0.00 0.00 0.00

DSS 0.00 0.00 0.02 0.00

HP 0.00 0.00 0.00 0.00 0.00

NS1 0.00 0.00 0.00 0.00 0.00 0.00

The results indicate that NS1 exhibits significantly higher semantic diversity and entropy than the other
fitness measures. OF, BP1, BP2 and DSS exhibit the lowest semantic diversity. Also, OF, BP1 and BP2 exhibit
the lowest entropy.

F. 4-bit multiplier
(highest semantic diversity = NS1; lowest semantic diversity = OF, BP1, DSS; highest entropy = NS1; lowest entropy =
OF, BP1, BP2)

Table 4.219 lists the best (b), mean (µ) and standard deviation (σ) of the final population semantic diversity.
In turn, Table 4.220 lists the best (b), mean (µ) and standard deviation (σ) of the final population entropy. The
highest and lowest diversity scores are highlighted in the tables.

TABLE 4.219: 4-bit multiplier: Final
population semantic diversity

OF BP1 BP2 FS DSS HP NS1

b 0.03 0.02 0.17 0.27 0.04 0.08 0.48

µ 0.01 0.01 0.16 0.22 0.02 0.05 0.46

σ 0.00 0.01 0.15 0.20 0.01 0.02 0.42

TABLE 4.220: 4-bit multiplier: Final
population entropy

OF BP1 BP2 FS DSS HP NS1

b 3.13 3.30 2.90 4.59 3.51 4.08 5.00

µ 2.61 2.51 2.40 4.36 2.93 3.62 4.83

σ 1.97 1.84 1.76 4.21 2.21 3.06 4.66
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Statistical tests are conducted to verify the significance of the observations in tables 4.219 and 4.220. Ta-
bles 4.221 and 4.222 list the p-values resulting from the statistical tests. The p-values that indicate statistical
significance (at a significance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the tables.

TABLE 4.221: 4-bit multiplier: Sta-
tistical tests on final population se-

mantic diversity

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.16

BP2 0.00 0.00

FS 0.00 0.00 0.00

DSS 0.02 0.00 0.00 0.00

HP 0.00 0.00 0.00 0.00 0.00

NS1 0.00 0.00 0.00 0.00 0.00 0.00

TABLE 4.222: 4-bit multiplier: Sta-
tistical tests on final population

entropy

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.13

BP2 0.01 0.12

FS 0.00 0.00 0.00

DSS 0.00 0.00 0.00 0.00

HP 0.00 0.00 0.00 0.00 0.00

NS1 0.00 0.00 0.00 0.00 0.00 0.00

The results indicate that NS1 exhibits significantly higher semantic diversity and entropy than the other
fitness measures. OF, BP1 and DSS exhibit the lowest semantic diversity. Also, OF, BP1 and BP2 exhibit the
lowest entropy.

Path-finding benchmarks

An overview of the performance in the domain is presented. A detailed breakdown of the results follows.

Performance overview

Figures 4.33 and 4.34 show the mean semantic diversity and entropy of the final GP populations; tables 4.223
and 4.224 contain the same data, whereby the highest and lowest diversity scores are highlighted in the tables.
Figures 4.35 and 4.36 show the change in the mean population semantic diversity and the mean population
entropy through the generations of GP. The values in the figures and tables below are averaged over the 30 GP
runs.

The results show that unlike in the previous domains, FS and NS1 exhibit the lowest semantic diversity
and entropy on the tartarus and deceptive tartarus problems. On the other hand, NS2, which employs task-
specific behavior descriptors, exhibits the highest semantic diversity and entropy on these problems. BP1 and
BP2 also exhibit higher semantic diversity and entropy than FS and NS1 on the tartarus and deceptive tartarus
problems. Overall, NS2 is seen to exhibit high semantic diversity and entropy, whereas FS and NS1 exhibit
low semantic diversity and entropy on the tartarus and deceptive tartarus problems.

TABLE 4.223: Path-finding bench-
marks: Mean final population se-

mantic diversity

OF BP1 BP2 FS DSS HP NS1 NS2

Ant 0.38 0.48 0.48 0.58 0.46 0.47 0.56 0.47

Tart. 0.06 0.06 0.02 0.00 0.07 0.03 0.00 0.22

Dec.
tart.

0.02 0.19 0.11 0.00 0.02 0.02 0.00 0.31

TABLE 4.224: Path-finding bench-
marks: Mean final population

entropy

OF BP1 BP2 FS DSS HP NS1 NS2

Ant 2.96 3.26 3.41 3.32 3.27 3.42 3.45 3.73

Tart. 3.75 3.78 1.67 0.96 3.42 3.63 1.07 4.50

Dec.
tart.

1.85 3.35 2.08 1.01 2.12 1.75 1.00 3.39
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FIGURE 4.33: Path-finding benchmarks: Mean final population semantic diversity

FIGURE 4.34: Path-finding benchmarks: Mean final population entropy



Chapter 4. A Comparison of Fitness Measures in GP 149

FI
G

U
R

E
4.

35
:P

at
h-

fin
di

ng
be

nc
hm

ar
ks

:G
en

er
at

io
na

lp
op

ul
at

io
n

se
m

an
ti

c
di

ve
rs

it
y



150 Chapter 4. A Comparison of Fitness Measures in GP

FI
G

U
R

E
4.

36
:P

at
h-

fin
di

ng
be

nc
hm

ar
ks

:G
en

er
at

io
na

lp
op

ul
at

io
n

en
tr

op
y



Chapter 4. A Comparison of Fitness Measures in GP 151

Detailed results

The benchmarks are discussed in the following order:A) Artificial ant, B) Tartarus, and C) Deceptive tartarus.

A. Artificial ant
(highest semantic diversity = FS, NS1; lowest semantic diversity = OF; highest entropy = NS2; lowest entropy = OF)

Table 4.225 lists the best (b), mean (µ) and standard deviation (σ) of the final population semantic diversity.
In turn, Table 4.226 lists the best (b), mean (µ) and standard deviation (σ) of the final population entropy. The
highest and lowest diversity scores are highlighted in the tables.

TABLE 4.225: Artificial ant: Final
population semantic diversity

OF BP1 BP2 FS DSS HP NS1 NS2

b 0.53 0.65 0.73 0.71 0.67 0.70 0.69 0.53

µ 0.38 0.48 0.48 0.58 0.46 0.47 0.56 0.47

σ 0.05 0.06 0.07 0.04 0.06 0.06 0.09 0.05

TABLE 4.226: Artificial ant: Final
population entropy

OF BP1 BP2 FS DSS HP NS1 NS2

b 3.45 3.66 3.80 3.95 3.76 3.86 3.93 3.90

µ 2.96 3.26 3.41 3.32 3.27 3.42 3.45 3.73

σ 0.10 0.09 0.09 0.14 0.09 0.11 0.09 0.06

Statistical tests are conducted to verify the significance of the observations in tables 4.225 and 4.226. Ta-
bles 4.227 and 4.228 list the p-values resulting from the statistical tests. The p-values that indicate statistical
significance (at a significance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the tables.

TABLE 4.227: Artificial ant: Statisti-
cal tests on final population seman-

tic diversity

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.00

BP2 0.00 0.48

FS 0.00 0.00 0.00

DSS 0.00 0.19 0.22 0.00

HP 0.00 0.39 0.41 0.00 0.32

NS1 0.00 0.00 0.00 0.20 0.00 0.00

NS2 0.00 0.22 0.28 0.00 0.34 0.41 0.00

TABLE 4.228: Artificial ant: Statisti-
cal tests on final population

entropy

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1 NS2

OF

BP1 0.00

BP2 0.00 0.02

FS 0.00 0.21 0.13

DSS 0.00 0.40 0.05 0.31

HP 0.00 0.01 0.47 0.11 0.04

NS1 0.00 0.02 0.33 0.09 0.04 0.35

NS2 0.00 0.00 0.00 0.00 0.00 0.00 0.00

The results indicate that FS and NS1 exhibit significantly higher semantic diversity than the other fitness
measures. Also NS2 exhibits the highest entropy. Furthermore, OF exhibits significantly lower semantic di-
versity and entropy than the other fitness measures.

B. Tartarus
(highest semantic diversity = NS2; lowest semantic diversity = FS, NS1; highest entropy = NS2; lowest entropy = FS)

Table 4.229 lists the best (b), mean (µ) and standard deviation (σ) of the final population semantic diversity.
In turn, Table 4.230 lists the best (b), mean (µ) and standard deviation (σ) of the final population entropy. The
highest and lowest diversity scores are highlighted in the tables.

TABLE 4.229: Tartarus: Final popu-
lation semantic diversity

OF BP1 BP2 FS DSS HP NS1 NS2

b 0.22 0.24 0.12 0.00 0.26 0.21 0.00 0.41

µ 0.06 0.06 0.02 0.00 0.07 0.03 0.00 0.22

σ 0.05 0.06 0.03 0.00 0.06 0.06 0.00 0.06

TABLE 4.230: Tartarus: Final popu-
lation entropy

OF BP1 BP2 FS DSS HP NS1 NS2

b 4.35 4.19 3.68 1.18 4.26 4.15 1.23 4.81

µ 3.75 3.78 1.67 0.96 3.42 3.63 1.07 4.50

σ 0.20 0.10 0.23 0.07 0.19 0.14 0.05 0.08
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Statistical tests are conducted to verify the significance of the observations in tables 4.229 and 4.230. Tables
4.231 and 4.232 list the p-values resulting from the statistical tests. The p-values that indicate statistical signif-
icance (at a significance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the tables. The results indicate

TABLE 4.231: Tartarus: Statistical
tests on final population semantic

diversity

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1 NS2

OF

BP1 0.46

BP2 0.00 0.00

FS 0.00 0.00 0.10

DSS 0.38 0.33 0.00 0.00

HP 0.04 0.03 0.06 0.00 0.02

NS1 0.00 0.00 0.01 0.50 0.00 0.00

NS2 0.00 0.00 0.00 0.00 0.00 0.00 0.00

TABLE 4.232: Tartarus: Statistical
tests on final population

entropy

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1 NS2

OF

BP1 0.35

BP2 0.00 0.00

FS 0.00 0.00 0.00

DSS 0.01 0.00 0.00 0.00

HP 0.16 0.07 0.00 0.00 0.06

NS1 0.00 0.00 0.00 0.00 0.00 0.00

NS2 0.00 0.00 0.00 0.00 0.00 0.00 0.00

that NS2 exhibits significantly higher semantic diversity and entropy than the other fitness measures. In turn,
FS and NS1 exhibit the lowest semantic diversity, while FS exhibits the lowest entropy.

C. Deceptive tartarus
(highest semantic diversity = NS2; lowest semantic diversity = OF, FS, DSS, HP, NS1; highest entropy = BP1, NS2;
lowest entropy = FS, NS1)

Table 4.233 lists the best (b), mean (µ) and standard deviation (σ) of the final population semantic diversity.
In turn, Table 4.234 lists the best (b), mean (µ) and standard deviation (σ) of the final population entropy. The
highest and lowest diversity scores are highlighted in the tables.

TABLE 4.233: Deceptive tartarus:
Final population semantic diversity

OF BP1 BP2 FS DSS HP NS1 NS2

b 0.14 0.40 0.33 0.14 0.32 0.12 0.00 0.40

µ 0.02 0.19 0.11 0.00 0.02 0.02 0.00 0.31

σ 0.02 0.06 0.06 0.02 0.09 0.03 0.00 0.02

TABLE 4.234: Deceptive tartarus:
Final population entropy

OF BP1 BP2 FS DSS HP NS1 NS2

b 3.44 4.24 3.68 3.47 3.42 3.27 1.15 4.16

µ 1.85 3.35 2.08 1.01 2.12 1.75 1.00 3.39

σ 0.20 0.22 0.31 0.40 0.42 0.45 0.04 0.21

Statistical tests are conducted to verify the significance of the observations in tables 4.233 and 4.234. Ta-
bles 4.235 and 4.236 list the p-values resulting from the statistical tests. The p-values that indicate statistical
significance (at a significance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the tables.

TABLE 4.235: Deceptive tartarus:
Statistical tests on final population

semantic diversity

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1 NS2

OF

BP1 0.00

BP2 0.00 0.00

FS 0.11 0.00 0.00

DSS 0.35 0.00 0.00 0.10

HP 0.34 0.00 0.00 0.05 0.47

NS1 0.10 0.00 0.00 0.16 0.04 0.01

NS2 0.00 0.00 0.00 0.00 0.00 0.00 0.00

TABLE 4.236: Deceptive tartarus:
Statistical tests on final population

entropy

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1 NS2

OF

BP1 0.00

BP2 0.22 0.00

FS 0.00 0.00 0.00

DSS 0.17 0.00 0.44 0.00

HP 0.35 0.00 0.12 0.00 0.08

NS1 0.00 0.00 0.00 0.47 0.10 0.10

NS2 0.00 0.32 0.00 0.00 0.00 0.00 0.00
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The results indicate that NS2 exhibits significantly higher semantic diversity than the other fitness mea-
sures. In turn, NS2 and BP1 exhibit the highest entropy. Furthermore, OF, FS, DSS, HP and NS1 exhibit on par
semantic diversity, whereas FS and NS1 exhibit the lowest entropy.

Summary of the diversity results

The results show that FS, DSS, HP and NS, intended to maintain high levels of diversity in GP largely achieve
this. Nevertheless, the fitness measures do not exhibit high diversity on all the problems. The following
general observations are made:

i) FS, DSS, HP, and NS1/NS2 demonstrate the ability to perpetuate the semantic and fitness diversity of GP.
Based on the discussion in section 3.4 of chapter 3, FS perpetuates diversity by favoring candidate solu-
tion programs that solve unique fitness cases compared to the rest of the population. In turn, DSS and HP
continually adapt the fitness case subset used for OF evaluation, discouraging premature convergence
to solution programs that solve only “easy” fitness cases. NS favors candidate solution programs that
have the highest semantic distance to their k-nearest neighbours. The results show that FS, DSS, HP and
NS1/NS2 maintain high levels of semantic diversity and entropy on most of the benchmark problems.

ii) BP is shown to exhibit low diversity. Section 3.3.2 of 3 established BP favors candidate solution programs
that contain useful modules. This results in the spread of the useful modules within the GP population.
It follows that as a result of the spread of useful modules, the candidate solution programs in the pop-
ulation become similar with respect to their OF scores as well as the fitness cases solved. The above
arguments justify the observation that BP1 and BP2 exhibit low semantic diversity and entropy on most
of the benchmark problems.

iii) The fitness measures do not always influence diversity as described in this section. For example, FS
and NS1 exhibit low diversity on the tartarus and deceptive tartarus problems. The fitness cases in the
tartarus and deceptive tartarus problems are difficult [248]: random initial population individuals tend
not to solve any of the fitness cases. The population individuals solving few (or none) of fitness cases
results in low population semantic diversity due to low diversity in the fitness cases solved, as well as
low population entropy, due to low diversity in the fitness values achieved. Furthermore, the solution
quality results in section 4.3.1 showed that FS and NS1 make little (or no) improvements on the quality
of the initial population individuals: thus the fitness measures retain the low initial population semantic
diversity and entropy on the problems, as shown in figures 4.35 and 4.36 of section 4.3.3. The indication
is that the extent to which a fitness measure influences the population diversity on a given problem
depends on its suitability. A suitable fitness measure improves on the initial population, creating more
opportunity for the candidate solution programs in subsequent generations to solve diverse fitness cases
and achieve diverse fitness scores. Conversely, a fitness measure that fails to improve on the initial
population retains the low initial population semantic diversity and entropy.

iv) The effect of diversity on the quality of the candidate solution programs differs for different problems.
For example, the solution quality results in section 4.3.1 showed that BP achieves high quality on mod-
ular problems. Hence on these problems, high quality is seen with the low diversity exhibited when
using BP. Here, low diversity is associated with the exploitation of useful modules. On the other hand,
the solution quality results in section 4.3.1 also showed that FS, DSS, HP and NS achieve high quality
on problems prone to local optima. Therefore, on these problems high quality is seen with the high
diversity exhibited when using the listed fitness measures. In this case, diversity precludes premature
convergence. Overall, the results show that the relationship between diversity and solution quality dif-
fers for different problems, whereby different levels of diversity suit different problems.
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4.3.4 Structural complexity

This section reports on the structural complexity associated with the different fitness measures. GP solution
programs become opaque to human understanding as their size increases [259]. Furthermore, a bloated GP
population consumes computational and memory resources [107, 259]. Therefore, in the case of structural
complexity, lower values indicate a better result. A presentation of the results from each domain ensues.

Symbolic regression benchmarks

An overview of the performance in the domain is presented. A detailed breakdown of the results follows.

Performance overview

Figure 4.37 shows the mean size of the best solution program found by GP. The mean size of the best solution
program is also shown in table 4.237, where the lowest values achieved on each problem are highlighted. In
turn, figure 4.38 shows the generational mean population size. In the figures and tables below, lower values
indicate better performance of GP. All values are averaged over the 30 GP runs.

FIGURE 4.37: Symbolic regression benchmarks: Mean final BS size

TABLE 4.237: Symbolic regression benchmarks: Mean final BS size

OF BP1 BP2 FS DSS HP NS1

Sextic 66.35 229.52 271.22 61.34 82.86 91.02 63.41

Nguyen 29.36 211.95 296.75 31.37 46.29 65.84 27.92

Pagie 57.46 113.70 211.97 24.69 51.49 48.02 24.28

Keijzer 106.63 275.22 256.05 78.81 145.53 140.54 116.39

Vlad 70.28 227.17 116.02 27.29 48.41 51.67 20.38

Dow 69.00 145.72 220.29 19.06 84.15 44.57 19.52
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The results show that FS and NS1 generally discover the smallest solution programs, whereas BP1 and BP2
discover the largest solution programs.

Detailed results
The benchmarks are discussed in the following order: A) Sextic, B) Nguyen, C) Pagie, D) Keijzer, E) Vlad, and
F) Dow.

A. Sextic (lowest structural complexity = OF, FS, NS1)

Table 4.238 lists the best (b), mean (µ) and standard deviation (σ) of the final BS size. The fitness measures that
discover the smallest solutions are highlighted in the table.

TABLE 4.238: Sextic: Final BS size

OF BP1 BP2 FS DSS HP NS1

b 95.00 295.00 355.00 77.00 133.00 209.00 78.00

µ 66.35 229.52 271.22 61.34 82.86 91.02 63.41

σ 10.20 24.42 26.01 6.45 15.51 39.31 5.65

Statistical tests are conducted to verify the significance of the observations in tables 4.238. Table 4.239
lists the p-values resulting from the statistical tests. The p-values that indicate statistical significance (at a
significance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the table.

TABLE 4.239: Sextic: Statistical tests on final BS size

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.00

BP2 0.00 0.00

FS 0.11 0.00 0.00

DSS 0.00 0.00 0.00 0.00

HP 0.00 0.00 0.00 0.00 0.05

NS1 0.07 0.00 0.00 0.22 0.00 0.00

The results indicate that OF, FS and NS1 discover the smallest solution programs. Furthermore, BP2 dis-
covers the largest solution programs.

B. Nguyen (lowest structural complexity = OF, FS, NS1)

Table 4.240 lists the best (b), mean (µ) and standard deviation (σ) of the final BS size. The fitness measures that
discover the smallest solutions highlighted in the table.

TABLE 4.240: Nguyen: Final BS size

OF BP1 BP2 FS DSS HP NS1

b 96.00 301.00 371.00 91.00 139.00 221.00 90.00

µ 66.35 229.52 271.22 61.34 82.86 91.02 63.41

σ 12.47 26.22 29.21 9.54 18.13 41.14 6.65

Statistical tests are conducted to verify the significance of the observations in tables 4.240. Table 4.241
lists the p-values resulting from the statistical tests. The p-values that indicate statistical significance (at a
significance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the table.

The results indicate that OF, FS and NS1 discover the smallest solution programs. Furthermore, BP2 dis-
covers the largest solution programs.
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TABLE 4.241: Nguyen: Statistical tests on final BS size

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.00

BP2 0.00 0.00

FS 0.17 0.00 0.00

DSS 0.00 0.00 0.00 0.00

HP 0.00 0.00 0.00 0.00 0.00

NS1 0.29 0.00 0.00 0.41 0.00 0.00

C. Pagie (lowest structural complexity = FS, NS1)

Table 4.242 lists the best (b), mean (µ) and standard deviation (σ) of the final BS size. The fitness measures that
discover the smallest solutions highlighted in the table.

TABLE 4.242: Pagie: Final BS size

OF BP1 BP2 FS DSS HP NS1

b 119.00 181.00 269.00 41.00 99.00 126.00 42.00

µ 57.46 113.70 211.97 24.69 51.49 48.02 24.28

σ 22.73 25.22 25.01 7.46 20.33 35.37 7.01

Statistical tests are conducted to verify the significance of the observations in tables 4.242. Table 4.243
lists the p-values resulting from the statistical tests. The p-values that indicate statistical significance (at a
significance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the table.

TABLE 4.243: Pagie: Statistical tests on final BS size

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.00

BP2 0.00 0.00

FS 0.00 0.00 0.00

DSS 0.00 0.00 0.00 0.00

HP 0.00 0.00 0.00 0.00 0.37

NS1 0.00 0.00 0.00 0.43 0.00 0.00

The results indicate that FS and NS1 discover the smallest solution programs. Furthermore, BP2 discovers
the largest solution programs.

D. Keijzer (lowest structural complexity = FS)

Table 4.244 lists the best (b), mean (µ) and standard deviation (σ) of the final BS size. The fitness measures that
discover the smallest solutions highlighted in the table.

TABLE 4.244: Keijzer: Final BS size

OF BP1 BP2 FS DSS HP NS1

b 202.00 381.00 371.00 131.00 230.00 256.00 167.00

µ 106.63 275.22 256.05 78.81 145.53 140.54 116.39

σ 32.34 35.42 35.21 17.63 30.12 45.17 21.09
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Statistical tests are conducted to verify the significance of the observations in tables 4.244. Table 4.245
lists the p-values resulting from the statistical tests. The p-values that indicate statistical significance (at a
significance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the table.

TABLE 4.245: Keijzer: Statistical tests on final BS size

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.00

BP2 0.00 0.05

FS 0.00 0.00 0.00

DSS 0.00 0.00 0.00 0.00

HP 0.00 0.00 0.00 0.00 0.21

NS1 0.10 0.00 0.00 0.00 0.00 0.00

The results indicate that FS discovers the smallest solution programs. Furthermore, BP1 and BP2 discover
the largest solution programs.

..
E. Vlad (lowest structural complexity = FS, NS1)

Table 4.246 lists the best (b), mean (µ) and standard deviation (σ) of the final BS size. The fitness measures that
discover the smallest solutions highlighted in the table.

TABLE 4.246: Vlad: Final BS size

OF BP1 BP2 FS DSS HP NS1

b 181.00 341.00 249.00 87.00 138.00 179.00 80.00

µ 70.28 227.17 116.02 27.29 48.41 51.67 20.38

σ 37.12 42.11 49.12 22.32 35.22 39.26 24.29

Statistical tests are conducted to verify the significance of the observations in tables 4.246. Table 4.247
lists the p-values resulting from the statistical tests. The p-values that indicate statistical significance (at a
significance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the table.

TABLE 4.247: Vlad: Statistical tests on final BS size

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.00

BP2 0.00 0.00

FS 0.00 0.00 0.00

DSS 0.04 0.00 0.00 0.00

HP 0.00 0.00 0.00 0.00 0.00

NS1 0.00 0.00 0.00 0.15 0.00 0.00

The results indicate that FS and NS1 discover the smallest solution programs. Furthermore, BP1 discovers
the largest solution programs.
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F. Dow (lowest structural complexity = FS, NS1)

Table 4.248 lists the best (b), mean (µ) and standard deviation (σ) of the final BS size. The fitness measures that
discover the smallest solutions highlighted in the table.

TABLE 4.248: Dow: Final BS size

OF BP1 BP2 FS DSS HP NS1

b 162.00 265.00 321.00 79.00 172.00 135.00 82.00

µ 69.00 145.72 220.29 19.06 84.15 44.57 19.52

σ 33.12 39.16 40.86 20.15 37.19 32.21 21.27

Statistical tests are conducted to verify the significance of the observations in tables 4.246. Table 4.247
lists the p-values resulting from the statistical tests. The p-values that indicate statistical significance (at a
significance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the table.

TABLE 4.249: Dow: Statistical tests on final BS size

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.00

BP2 0.00 0.00

FS 0.00 0.00 0.00

DSS 0.05 0.00 0.00 0.00

HP 0.00 0.00 0.00 0.00 0.00

NS1 0.00 0.00 0.00 0.40 0.00 0.00

The results indicate that FS and NS1 discover the smallest solution programs. Furthermore, BP2 discovers
the largest solution programs.

.. .. .. .. .. .. .. .. .. .. .. .. ..

Supervised classification benchmarks

An overview of the performance in the domain is presented. A detailed breakdown of the results follows.

Performance overview

Figure 4.39 shows the mean size of the best solution program found by GP. The mean size of the best solution
program is also shown in table 4.250, whereby the lowest values achieved on each problem are highlighted. In
turn, figure 4.40 shows the generational mean population size. In the figures and tables below, lower values
indicate better performance of GP. All values are averaged over the 30 GP runs.

The results show that NS1 generally discovers the smallest solution programs, whereas BP1 and BP2 dis-
cover the largest solution programs on the problems in the domain.
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.. .... .... .... .. .. .... .... .... ..

FIGURE 4.39: Supervised classification benchmarks: Mean final BS size

..

..

.. .. .. .. ..

TABLE 4.250: Supervised classification benchmarks: Mean final BS size

OF BP1 BP2 FS DSS HP NS

Iris 76.13 136.00 99.40 92.47 86.13 88.33 25.47

Credit 191.13 462.87 721.36 407.27 60.20 236.53 11.67

Wine 134.53 257.27 140.80 140.00 102.80 149.07 51.13

Segment 152.47 365.00 354.53 157.20 141.47 102.00 84.13

Vowel 222.93 294.93 487.17 101.67 163.80 98.67 54.93

Opt 84.20 508.15 555.94 144.33 106.87 99.67 88.13
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Detailed results
The benchmarks are discussed in the following order: A) Iris, B) Credit, C) Wine, D) Segment, E) Vowel, and
F) Opt.

A. Iris (lowest structural complexity = NS1)

Table 4.251 lists the best (b), mean (µ) and standard deviation (σ) of the final BS size. The fitness measures that
discover the smallest solutions highlighted in the table.

TABLE 4.251: Iris: Final BS size

OF BP1 BP2 FS DSS HP NS1

b 165.00 255.00 215.00 355.00 179.00 253.00 77.00

µ 76.13 136.00 99.40 92.47 86.13 88.33 25.47

σ 29.20 35.34 35.41 80.24 25.75 50.31 15.55

Statistical tests are conducted to verify the significance of the observations in tables 4.251. Table 4.252
lists the p-values resulting from the statistical tests. The p-values that indicate statistical significance (at a
significance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the table.

TABLE 4.252: Iris: Statistical tests on final BS size

One-way ANOVA p-value = 0.05

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.00

BP2 0.03 0.01

FS 0.16 0.01 0.34

DSS 0.17 0.00 0.13 0.35

HP 0.16 0.00 0.20 0.41 0.43

NS1 0.00 0.00 0.00 0.00 0.00 0.00

The results indicate that NS1 discovers the smallest solution programs. Furthermore, BP1 discovers the
largest solution programs.

B. Credit (lowest structural complexity = NS1)

Table 4.253 lists the best (b), mean (µ) and standard deviation (σ) of the final BS size. The fitness measures that
discover the smallest solutions highlighted in the table.

TABLE 4.253: Credit: Final BS size

OF BP1 BP2 FS DSS HP NS1

b 455.00 775.00 1563.00 727.00 189.00 565.00 63.00

µ 191.13 462.87 721.36 407.27 60.20 236.53 11.67

σ 79.13 97.54 250.63 91.15 40.16 97.15 12.76

Statistical tests are conducted to verify the significance of the observations in tables 4.253. Table 4.254
lists the p-values resulting from the statistical tests. The p-values that indicate statistical significance (at a
significance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the table.

The results indicate that NS1 discovers the smallest solution programs. Furthermore, BP2 discovers the
largest solution programs.
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TABLE 4.254: Credit: Statistical tests on final BS size

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.00

BP2 0.00 0.00

FS 0.00 0.12 0.00

DSS 0.00 0.00 0.00 0.00

HP 0.08 0.00 0.00 0.00 0.00

NS1 0.00 0.00 0.00 0.00 0.00 0.00

C. Wine (lowest structural complexity = NS1)

Table 4.255 lists the best (b), mean (µ) and standard deviation (σ) of the final BS size. The fitness measures that
discover the smallest solutions highlighted in the table.

TABLE 4.255: Wine: Final BS size

OF BP1 BP2 FS DSS HP NS1

b 281.00 597.00 299.00 373.00 237.00 231.00 175.00

µ 134.53 257.27 140.80 140.00 102.80 149.07 51.13

σ 41.24 99.12 48.15 75.67 41.52 22.72 31.52

Statistical tests are conducted to verify the significance of the observations in tables 4.255. Table 4.256
lists the p-values resulting from the statistical tests. The p-values that indicate statistical significance (at a
significance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the table.

TABLE 4.256: Wine: Statistical tests on final BS size

One-way ANOVA p-value = 0.03

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.00

BP2 0.36 0.00

FS 0.38 0.00 0.48

DSS 0.02 0.00 0.01 0.02

HP 0.16 0.00 0.31 0.30 0.00

NS 0.00 0.00 0.00 0.00 0.00 0.00

The results indicate that NS1 discovers the smallest solution programs. Furthermore, BP1 discovers the
largest solution programs.

D. Segment (lowest structural complexity = NS1)

Table 4.257 lists the best (b), mean (µ) and standard deviation (σ) of the final BS size. The fitness measures that
discover the smallest solutions highlighted in the table.

TABLE 4.257: Segment: Final BS size

OF BP1 BP2 FS DSS HP NS1

b 277.00 689.00 995.00 383.00 323.00 207.00 149.00

µ 152.47 365.00 354.53 157.20 141.47 102.00 84.13

Min 69.32 113.63 181.14 75.45 63.54 67.45 19.22
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Statistical tests are conducted to verify the significance of the observations in tables 4.257. Table 4.258
lists the p-values resulting from the statistical tests. The p-values that indicate statistical significance (at a
significance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the table.

TABLE 4.258: Segment: Statistical tests on final BS size

One-way ANOVA p-value = 0.03

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.00

BP2 0.00 0.42

FS 0.41 0.00 0.00

DSS 0.25 0.00 0.00 0.24

HP 0.00 0.00 0.00 0.00 0.00

NS1 0.00 0.00 0.00 0.00 0.00 0.02

The results indicate that NS1 discovers the smallest solution programs. Furthermore, BP1 and BP2 discover
the largest solution programs.

E. Vowel (lowest structural complexity = NS1)

Table 4.259 lists the best (b), mean (µ) and standard deviation (σ) of the final BS size. The fitness measures that
discover the smallest solutions highlighted in the table.

TABLE 4.259: Vowel: Final BS size

OF BP1 BP2 FS DSS HP NS1

b 431.00 587.00 987.00 229.00 363.00 263.00 107.00

µ 222.93 294.93 487.17 101.67 163.80 98.67 54.93

σ 65.42 91.23 155.55 35.24 53.14 39.24 13.16

Statistical tests are conducted to verify the significance of the observations in tables 4.257. Table 4.258
lists the p-values resulting from the statistical tests. The p-values that indicate statistical significance (at a
significance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the table.

TABLE 4.260: Vowel: Statistical tests on final BS size

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.02

BP2 0.00 0.00

FS 0.00 0.00 0.00

DSS 0.01 0.00 0.00 0.00

HP 0.00 0.00 0.00 0.41 0.00

NS1 0.00 0.00 0.00 0.00 0.00 0.00

The results indicate that NS1 discovers the smallest solution programs. Furthermore, BP2 discovers the
largest solution programs.

F. Opt (lowest structural complexity = OF, NS1)

Table 4.261 lists the best (b), mean (µ) and standard deviation (σ) of the final BS size. The fitness measures that
discover the smallest solutions highlighted in the table.
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TABLE 4.261: Opt: Final BS size

OF BP1 BP2 FS DSS HP NS

b 197.00 665.00 711.00 337.00 205.00 321.00 221.00

µ 84.20 508.15 555.94 144.33 106.87 99.67 88.13

σ 28.14 50.24 67.40 66.14 29.63 70.00 33.53

Statistical tests are conducted to verify the significance of the observations in tables 4.257. Table 4.258
lists the p-values resulting from the statistical tests. The p-values that indicate statistical significance (at a
significance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the table.

TABLE 4.262: Opt: Statistical tests on final BS size

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS

OF

BP1 0.00

BP2 0.00 0.13

FS 0.00 0.00 0.00

DSS 0.03 0.00 0.00 0.01

HP 0.18 0.00 0.00 0.01 0.34

NS 0.36 0.00 0.00 0.00 0.06 0.25

The results indicate that OF and NS1 discover the smallest solution programs. Furthermore, BP1 and BP2
discover the largest solution programs.

... ... ... ... ... ...

... ... ...

Boolean function synthesis benchmarks

An overview of the performance in the domain is presented. A detailed breakdown of the results follows.

Performance overview

Figure 4.41 shows the mean size of the best solution program found by GP. The mean size of the best solution
program is also shown in table 4.263, whereby the lowest values achieved on each problem are highlighted. In
turn, figure 4.42 shows the generational mean population size. In the figures and tables below, lower values
indicate better performance of GP. All values are averaged over the 30 GP runs.

The results show that as in the symbolic regression and supervised classification domains, NS1 discovers
the smallest solution programs on most of the problems in this domain. HP also discovers the smallest solution
programs on the par-7, par-9 and mux-11 problems. Conversely, BP1 and BP2 discover the largest solution
programs.
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... ... ...

... ... ... ... ... ......

FIGURE 4.41: Boolean function synthesis benchmarks: Mean final BS size

...

...

... ... ......

TABLE 4.263: Boolean function synthesis benchmarks: Mean final BS size

OF BP1 BP2 FS DSS HP NS1

Par-5 83.27 116.87 375.80 221.73 97.13 104.07 34.40

Par-7 143.07 246.67 587.33 304.27 179.40 46.67 105.20

Par-9 140.93 355.47 924.00 466.47 237.33 41.47 100.53

Mux-11 120.83 179.59 152.27 180.87 170.33 24.00 45.40

Mult-3 159.34 116.34 141.73 34.63 114.11 23.32 9.21

Mult-4 123.38 140.41 134.25 18.63 87.72 45.60 14.48
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Detailed results

The benchmarks are discussed in the following order: A) Even-5 parity, B) Even-7 parity, C) Even-9 parity, D)
11-multiplexer, E) 3-bit multiplier, and F) 4-bit multiplier.

A. Even-5 parity (lowest structural complexity = NS1)

Table 4.264 lists the best (b), mean (µ) and standard deviation (σ) of the final BS size. The fitness measures that
discover the smallest solutions highlighted in the table.

TABLE 4.264: Even-5 parity: Final BS size

OF BP1 BP2 FS DSS HP NS1

b 151.00 313.00 1019.00 827.00 153.00 305.00 67.00

µ 83.27 116.87 375.80 221.73 97.13 104.07 34.40

σ 23.33 60.66 193.42 171.91 18.65 62.13 11.41

Statistical tests are conducted to verify the significance of the observations in tables 4.264. Table 4.265
lists the p-values resulting from the statistical tests. The p-values that indicate statistical significance (at a
significance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the table.

TABLE 4.265: Even-5 parity: Statistical tests on final BS size

One-way ANOVA p-value = 0.05

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.01

BP2 0.00 0.00

FS 0.00 0.00 0.00

DSS 0.06 0.06 0.00 0.00

HP 0.05 0.20 0.00 0.00 0.28

NS1 0.00 0.00 0.00 0.00 0.00 0.00

The results indicate that NS1 discovers the smallest solution programs. Furthermore, BP2 discovers the
largest solution programs.

B. Even-7 parity (lowest structural complexity = HP)

Table 4.266 lists the best (b), mean (µ) and standard deviation (σ) of the final BS size. The fitness measures that
discover the smallest solutions highlighted in the table.

TABLE 4.266: Even-7 parity: Final BS size

OF BP1 BP2 FS DSS HP NS

Max 329.00 499.00 4947.00 633.00 301.00 135.00 193.00

µ 143.07 246.67 587.33 304.27 179.40 46.67 105.20

Min 60.20 79.92 1150.21 87.02 77.45 33.23 35.32

Statistical tests are conducted to verify the significance of the observations in tables 4.266. Table 4.267
lists the p-values resulting from the statistical tests. The p-values that indicate statistical significance (at a
significance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the table.

The results indicate that HP discovers the smallest solution programs. Furthermore, BP2 discovers the
largest solution programs.
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TABLE 4.267: Even-7 parity: Statistical tests on final BS size

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS

OF

BP1 0.00

BP2 0.01 0.02

FS 0.00 0.04 0.04

DSS 0.01 0.00 0.01 0.00

HP 0.00 0.00 0.00 0.00 0.00

NS 0.01 0.00 0.00 0.00 0.00 0.00

C. Even-9 parity (lowest structural complexity = HP)

Table 4.268 lists the best (b), mean (µ) and standard deviation (σ) of the final BS size. The fitness measures that
discover the smallest solutions highlighted in the table.

TABLE 4.268: Even-9 parity: Final BS size

OF BP1 BP2 FS DSS HP NS1

b 349.00 881.00 3901.00 1065.00 475.00 111.00 213.00

µ 140.93 355.47 924.00 466.47 237.33 41.47 100.53

σ 59.46 147.74 518.90 197.32 83.33 25.34 31.32

Statistical tests are conducted to verify the significance of the observations in tables 4.268. Table 4.269
lists the p-values resulting from the statistical tests. The p-values that indicate statistical significance (at a
significance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the table.

TABLE 4.269: Even-9 parity: Statistical tests on final BS size

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.00

BP2 0.00 0.01

FS 0.00 0.01 0.00

DSS 0.00 0.00 0.00 0.00

HP 0.00 0.00 0.00 0.00 0.00

NS1 0.00 0.00 0.00 0.00 0.00 0.00

The results indicate that HP discovers the smallest solution programs. Furthermore, BP2 discovers the
largest solution programs.

D. 11-multiplexer (lowest structural complexity = HP)

Table 4.270 lists the best (b), mean (µ) and standard deviation (σ) of the final BS size. The fitness measures that
discover the smallest solutions highlighted in the table.

TABLE 4.270: 11-multiplexer: Final BS size

OF BP1 BP2 FS DSS HP NS1

b 247.00 580.00 360.00 462.00 450.00 86.00 176.00

µ 120.83 179.59 152.27 180.87 170.33 24.00 45.40

σ 41.11 99.46 59.28 64.28 89.47 17.28 38.24
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Statistical tests are conducted to verify the significance of the observations in tables 4.270. Table 4.271
lists the p-values resulting from the statistical tests. The p-values that indicate statistical significance (at a
significance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the table.

TABLE 4.271: 11-multiplexer: Statistical tests on final BS size

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.00

BP2 0.05 0.16

FS 0.00 0.48 0.09

DSS 0.01 0.37 0.23 0.32

HP 0.00 0.00 0.00 0.00 0.00

NS1 0.00 0.00 0.00 0.00 0.00 0.01

The results indicate that HP discovers the smallest solution programs. Furthermore, BP1, BP2, FS and DSS
discover the largest solution programs.

E. 3-bit multiplier (lowest structural complexity = NS1)

Table 4.272 lists the best (b), mean (µ) and standard deviation (σ) of the final BS size. The fitness measures that
discover the smallest solutions highlighted in the table.

TABLE 4.272: 3-bit multiplier: Final BS size

OF BP1 BP2 FS DSS HP NS1

b 230.00 190.33 329.67 60.00 171.67 42.67 23.67

µ 159.34 116.34 141.73 34.63 114.11 23.32 9.21

σ 29.33 22.67 56.33 9.43 15.67 7.33 3.00

Statistical tests are conducted to verify the significance of the observations in tables 4.272. Table 4.273
lists the p-values resulting from the statistical tests. The p-values that indicate statistical significance (at a
significance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the table.

TABLE 4.273: 3-bit multiplier: Statistical tests on final BS size

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.00

BP2 0.14 0.06

FS 0.00 0.00 0.00

DSS 0.00 0.40 0.05 0.00

HP 0.00 0.00 0.00 0.00 0.00

NS1 0.00 0.00 0.00 0.00 0.00 0.00

The results indicate that NS1 discovers the smallest solution programs. Furthermore, OF and BP2 discover
the largest solution programs.

F. 4-bit multiplier (lowest structural complexity = FS, NS1)

Table 4.274 lists the best (b), mean (µ) and standard deviation (σ) of the final BS size. The fitness measures that
discover the smallest solutions highlighted in the table.
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TABLE 4.274: 4-bit multiplier: Final BS size

OF BP1 BP2 FS DSS HP NS1

b 179.50 177.75 208.00 36.00 125.75 80.50 55.25

µ 123.38 140.41 134.25 18.63 87.72 45.60 14.48

σ 14.75 12.20 19.50 5.59 10.25 9.20 9.25

Statistical tests are conducted to verify the significance of the observations in tables 4.274. Table 4.275
lists the p-values resulting from the statistical tests. The p-values that indicate statistical significance (at a
significance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the table.

TABLE 4.275: 4-bit multiplier: Statistical tests on final BS size

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.00

BP2 0.08 0.20

FS 0.00 0.00 0.00

DSS 0.00 0.00 0.00 0.00

HP 0.00 0.00 0.00 0.00 0.00

NS1 0.00 0.00 0.00 0.04 0.00 0.00

The results indicate that FS and NS1 discover the smallest solution programs. Furthermore, OF, BP1 and
BP2 discover the largest solution programs.

... ... ... ... ... ......

Path-finding benchmarks

An overview of the performance in the domain is presented. A detailed breakdown of the results follows.

Performance overview

Figure 4.43 shows the mean size of the best solution program found by GP. The mean size of the best solution
program is also shown in table 4.276, whereby the lowest values achieved on each problem are highlighted. In
turn, figure 4.44 shows the generational mean population size. In the figures and tables below, lower values
indicate better performance of GP. All values are averaged over the 30 GP runs.

The results show that, as in the previous domains, FS and NS1 generally discover the smallest solution
programs on the problems in this domain. Furthermore, BP1 and BP2 discover among the largest solution
programs on most of the problems. OF and DSS discover the largest solution programs on the ant problem. In
turn, BP2 discovers the largest solution programs on the tartarus problem, whereas BP2 and NS2 discover the
largest solution programs on the deceptive tartarus problem.
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... ... ...

... ... ... ... ... ......

FIGURE 4.43: Path-finding benchmarks: Mean size of best solution

...

...

...

...

...

...

TABLE 4.276: Path-finding benchmarks: Mean size of best solution

OF BP1 BP2 FS DSS HP NS1 NS2

Ant 194.13 136.70 149.20 82.00 195.97 162.10 65.73 90.83

Tart. 82.17 107.53 1056.67 19.57 124.50 115.10 21.73 99.20

Dec. tart. 71.07 138.23 224.73 17.70 68.30 78.37 15.43 243.10
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Detailed results

The benchmarks are discussed in the following order: A) Artificial Ant, B) Tartarus, and C) Deceptive Tartarus.

A. Artificial Ant (lowest structural complexity = NS1)

Table 4.277 lists the best (b), mean (µ) and standard deviation (σ) of the final BS size. The fitness measures that
discover the smallest solutions highlighted in the table.

TABLE 4.277: Artificial Ant: Final BS size

OF BP1 BP2 FS DSS HP NS1 NS2

b 683.00 277.00 336.00 160.00 494.00 412.00 162.00 179.00

µ 194.13 136.70 149.20 82.00 195.97 162.10 65.73 90.83

σ 159.29 29.32 59.23 23.23 87.02 74.22 29.03 32.32

Statistical tests are conducted to verify the significance of the observations in tables 4.277. Table 4.278
lists the p-values resulting from the statistical tests. The p-values that indicate statistical significance (at a
significance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the table.

TABLE 4.278: Artificial Ant: Statistical tests on final BS size

One-way ANOVA p-value = 0.05

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1 NS2

OF

BP1 0.00

BP2 0.00 0.23

FS 0.00 0.00 0.00

DSS 0.48 0.01 0.03 0.00

HP 0.00 0.12 0.30 0.00 0.00

NS1 0.00 0.00 0.00 0.05 0.00 0.00

NS2 0.00 0.00 0.00 0.21 0.00 0.00 0.01

The results indicate that NS1 discovers the smallest solution programs. Furthermore, OF and DSS discover
the largest solution programs.

B. Tartarus (lowest structural complexity = FS, NS1)

Table 4.279 lists the best (b), mean (µ) and standard deviation (σ) of the final BS size. The fitness measures that
discover the smallest solutions highlighted in the table.

TABLE 4.279: Tartarus: Final BS size

OF BP1 BP2 FS DSS HP NS1 NS2

b 147.00 234.00 1750.00 65.00 223.00 274.00 60.00 193.00

µ 82.17 107.53 1056.67 19.57 124.50 115.10 21.73 99.20

σ 13.20 22.18 68.43 10.92 29.22 49.44 12.23 29.12

Statistical tests are conducted to verify the significance of the observations in tables 4.279. Table 4.280
lists the p-values resulting from the statistical tests. The p-values that indicate statistical significance (at a
significance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the table.

The results indicate that FS and NS1 discover the smallest solution programs. Furthermore, BP2 discovers
the largest solution programs.



Chapter 4. A Comparison of Fitness Measures in GP 175

TABLE 4.280: Tartarus: Statistical tests on final BS size

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS

OF

BP1 0.01

BP2 0.01 0.02

FS 0.00 0.00 0.01

DSS 0.00 0.07 0.02 0.00

HP 0.00 0.26 0.02 0.00 0.20

NS 0.00 0.00 0.01 0.30 0.00 0.00

NS2 0.02 0.21 0.01 0.00 0.00 0.06 0.00

C. Deceptive tartarus (lowest structural complexity = FS, NS1)

Table 4.281 lists the best (b), mean (µ) and standard deviation (σ) of the final BS size. The fitness measures that
discover the smallest solutions highlighted in the table.

TABLE 4.281: Deceptive tartarus: Final BS size

OF BP1 BP2 FS DSS HP NS1 NS2

b 224.00 317.00 1418.00 77.00 218.00 221.00 62.00 593.00

µ 71.07 138.23 224.73 17.70 68.30 78.37 15.43 243.10

σ 42.12 51.44 299.32 19.23 43.22 39.23 12.28 91.22

Statistical tests are conducted to verify the significance of the observations in tables 4.281. Table 4.282
lists the p-values resulting from the statistical tests. The p-values that indicate statistical significance (at a
significance level of α = 0.05 ; i.e. p-val < 0.05) are highlighted in the table.

TABLE 4.282: Deceptive tartarus: Statistical tests on final BS size

One-way ANOVA p-value = 0.00

Pairwise one-tail t-tests: p-values:

OF BP1 BP2 FS DSS HP NS1

OF

BP1 0.00

BP2 0.00 0.04

FS 0.00 0.00 0.00

DSS 0.43 0.00 0.00 0.00

HP 0.33 0.00 0.00 0.00 0.28

NS1 0.00 0.00 0.00 0.28 0.00 0.00

NS2 0.00 0.00 0.37 0.00 0.00 0.00 0.00

The results indicate that FS and NS1 discovers the smallest solution programs. Furthermore, BP2 and NS2
discover the largest solution programs.

Summary of the structural complexity results

The results in this section show that FS and NS1 discover the smallest solution programs on most of the
problems. The following general observations are made:

i) BP consistently incurs high structural complexity on the tackled problems. BP favors solution programs
that contain useful modules. The version of BP implemented in this study was prescribed at the origina-
tion of the BP paradigm in [160]. This version of BP does not impose any criteria to limit the size of the
subtrees associated with useful modules; hence the useful modules may be large (or bloated) subtrees,
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or even entire trees. The spread of such modules inevitably leads to increases in the code size. This effect
is exacerbated in BP2, where the archive supplied mutation operator recombines the useful modules into
the candidate solution programs in the evolving GP population. The indication is that a multi-objective
fitness measure incorporating parsimony pressure should be used in BP, in order to mitigate the code
growth associated with the fitness measure.

ii) FS discovers the smallest solution programs on a number of the problems. Section 3.4 of chapter 3
established that FS mitigates bloat: FS penalizes candidate solution programs that solve the same fitness
cases, mitigating genetic operations in neutral code regions and corresponding increases in code size.
The results indicate that FS mitigates bloat on the tackled problems.

iii) NS also reliably discovers the smallest solution programs on a number of the problems. Section 3.7 of
chapter 3 established that NS mitigates bloat: neutral code inhibits a phenomenon that is rewarded in
NS; behavioral change. Therefore, the selective pressure in NS perpetually discourages the growth of
neutral code. The results indicate that NS mitigates bloat on the tackled problems.

iv) Low structural complexity is not always associated with the best outcome. Low structural complexity
may result from the failure of GP search to improve on the primitive initial population individuals.
Examples of this are seen with HP achieving low quality and exhibiting low structural complexity in
the Boolean function synthesis domain, as well as FS and NS1 achieving low quality and exhibiting low
structural complexity on the tartarus and deceptive tartarus problems. On the other hand, the relatively
high structural complexity incurred by BP1, BP2 and NS2 on the deceptive tartarus problem is due to
the ability of these fitness measures to progress the search, while the other fitness measures make little
(or no) improvement on the primitive initial population individuals.

4.3.5 Time taken

This section reports on the time taken to execute GP. A presentation of the results from each domain ensues.

Symbolic regression benchmarks

Table 4.283 lists the mean time taken (in seconds) to execute a single GP run; the shortest times incurred are
highlighted in the table. The results in table 4.283 are averaged over the 30 GP runs.

TABLE 4.283: Symbolic regression benchmarks: Mean execution time (seconds)

OF BP1 BP2 FS DSS HP NS1

Sextic 6.28 1930.82 4930.08 5.42 4.10 5.75 93.01

Nguyen 11.29 2863.12 5007.08 6.06 6.01 8.12 287.76

Pagie 18.85 2950.51 5163.54 13.99 9.45 11.21 506.27

Keijzer 1534.40 6751.90 8340.98 1033.87 428.01 518.34 3692.76

Vlad 1194.22 7838.33 8942.22 1008.79 758.96 900.76 4099.90

Dow 3342.02 17224.25 26563.93 3423.28 2028.23 2100.03 10716.49

The results show that DSS incurs the shortest execution times on the problems. FS incurs a comparable
execution time with DSS on the sextic, Nguyen and Pagie problems. In turn, HP incurs a comparable execution
with DSS on all the problems. Conversely, BP1 and BP2 are shown to incur the longest execution times on the
problems. NS1 also incurs relatively long execution times.

Supervised classification benchmarks

Table 4.284 lists the mean time taken (in seconds) to execute a single GP run; the lowest times incurred are
highlighted in the table. The results in table 4.284 are averaged over the 30 GP runs.
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TABLE 4.284: Supervised classification benchmarks: Mean execution time (seconds)

OF BP1 BP2 FS DSS HP NS1

Iris 10.41 338.22 304.88 11.39 9.69 7.79 17.81

Credit 159.84 11696.10 17205.50 388.27 53.01 119.12 682.45

Wine 21.08 2255.45 2263.54 25.23 22.82 36.58 56.19

Segment 39.37 2301.48 2309.74 39.09 41.95 29.30 56.76

Vowel 83.54 8838.33 18930.20 79.47 58.02 64.24 1089.81

Opt 290.09 327208.00 363563.89 480.53 456.37 192.93 2376.05

The results show that, as in the previous domain, DSS and HP incur short execution times on the problems.
Furthermore, BP1 and BP2 incur the longest execution times on all problems, while NS1 also incurs relatively
long execution times.

Boolean function synthesis benchmarks

Table 4.285 lists the mean time taken (in seconds) to execute a single GP run; the lowest times incurred are
highlighted in the table. The results in table 4.285 are averaged over the 30 GP runs.

TABLE 4.285: Boolean function synthesis benchmarks: Mean execution time (seconds)

OF BP1 BP2 FS DSS HP NS1

Par-5 5.71 40.71 317.34 7.45 2.74 5.15 3.36

Par-7 34.81 513.13 2638.61 43.56 34.83 16.17 569.43

Par-9 97.38 2495.73 12230.20 113.37 93.08 50.96 237.87

Mux-11 170.87 2455.20 2146.73 15.19 69.47 40.10 3945.62

Mult-3 34.51 187.63 317.47 34.66 36.79 14.48 818.82

Mult-4 351.02 1860.83 2850.85 873.87 300.28 94.38 3249.55

The results show that DSS incurs the shortest execution time on the par-5 problem. In turn, FS incurs
the shortest execution time on the mult-11 problem, whereas HP incurs the shortest execution time on the
remaining problems. Conversely, BP1, BP2 and NS1 incur long execution times.

Path-finding benchmarks

Table 4.286 lists the mean time taken (in seconds) to execute a single GP run; the lowest times incurred are
highlighted in the table. The results in table 4.286 are averaged over the 30 GP runs.

The results show that BP1 incurs the shortest execution time on the ant problem. In turn, FS and NS1
incur the shortest execution time on the tartarus and deceptive tartarus problems. Conversely, BP2 incurs the
longest execution time on the tartarus and deceptive tartarus problems.

TABLE 4.286: Path-finding benchmarks: Mean execution time (seconds)

OF BP1 BP2 FS DSS HP NS1 NS2

Ant 26.51 22.28 45.38 34.59 28.60 41.67 29.94 29.05

Tart. 22.06 55.59 189.98 15.83 31.70 33.04 18.60 38.92

Dec. tart 20.80 58.26 78.87 14.13 21.08 30.71 16.36 40.20

Summary of the time taken results

The results in this section show that DSS and HP, anticipated to minimize the GP execution time, largely
achieves this. The following general observations are made:
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i) DSS and HP incur the shortest execution times on most of the benchmark problems. Sections 3.5.1 and
3.6.1 of chapter 3 established that DSS and HP evaluate only subsets of the complete fitness case set at a
time, which enhances the evolution speed of GP. Hence a shorter time is taken to run GP.

ii) BP1 and BP2 incur the longest execution times on most of the benchmark problems. Section 3.3.2 of
chapter 3 established that in BP, the fitness evaluation involves the additional cost of modelling the
program trace data. The time taken to model the program trace data is proportional to |m| × s, where
|m| is the number of fitness cases in the training set and s is the number of nodes in the given candidate
solution program. The structural complexity results in section 4.3.4 showed that in BP, the size of the
candidate solution programs in the population increases considerably with the progress of GP. Therefore,
significant time delays are inevitable with the progress of search in BP.

iii) NS1 also incurs long execution times on a number of the problems. Section 3.7 of chapter 3 established
that in NS, the fitness of a candidate solution program, i, is determined by calculating the pairwise
distance between i and each of its K-nearest neighbours. Therefore, the time taken to compute i’s fitness
is proportional to the value of K. It follows that the time taken to evaluate the fitness of the entire
population is quadratic for values of K approaching the population size; that is, given a population of
size N , and k ≈ N , the time taken is proportional to N × N . Hence in NS, there is a trade-off between
the execution time, and the value of K used: higher values of K incorporate more information into the
search, steering the population towards more novelty; nevertheless, high values ofK are associated with
costly fitness evaluations.

iv) The time taken to execute GP also depends on a number factors that vary for the different benchmark
problems. For example, achieving high success rates minimizes the time taken to run GP. This is seen
with FS achieving high success rates and therefore incurring relatively short execution times on the 11-
multiplexer, iris and even-5 parity problems. Also, BP1 achieves the high success rate on the ant problem,
and as a result incurs the shortest execution time on the problem.

Bloat is another factor influencing the time taken to run GP. According to the literature [259], larger
programs take more execution time than smaller ones. For all of the fitness measures analyzed in the
study, the fitness score of a candidate solution program is determined through traversal (see chapter
3), whereby it takes a longer time to traverse a larger program. Hence the fitness evaluations are more
expensive in bloated populations. As a result, the fitness measures that mitigate bloat also minimize the
time taken to run GP.

4.4 Summary

This chapter compared 6 state of the art fitness measures: OF, BP, FS, DSS, HP and NS. An experiment was
conducted to evaluate the effect that the different fitness measures have for different benchmark problems.
The study looked at how the different fitness measures address each of the limitations they aim to overcome
for different problems.

The results indicate that the fitness measures largely address the intended limitations. BP improves on the
quality of the solution programs found by GP on modular problems. However, BP should be implemented
with parsimony pressure, in order to minimize the code bloat characteristic of the fitness measure. This will
in turn minimize the long execution times also characteristic of BP.

FS and DSS are shown to improve on the quality of the solutions found by GP on problems susceptible
to premature convergence. A further observation made is that DSS improves on GP’s generalization; this is
attributed to the ability to mitigate overfitting. Furthermore, FS implicitly mitigates overfitting as a result
the niching strategy used. This is whereby the FS niching strategy leads to solution programs that can solve
diverse fitness cases. FS is also seen to mitigate bloat: by penalizing candidate solution programs that solve
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the same fitness cases, FS curtails genetic operations in neutral code regions, and corresponding increases in
code size.

DSS and HP are shown to minimize the GP execution time. This is due to the fitness measures evaluating
only subsets of the complete training set of fitness cases on each generation. Nevertheless, the GP execu-
tion time is also influenced by the size of the candidate solution programs being evolved. Hence the fitness
measures that mitigate bloat, such as FS, can also minimize the GP execution time.

NS demonstrates the capability improve on the solution quality on difficult problems where there is mo-
tivation for exploring the behavior space. Nevertheless NS’s reliability is influenced by the choice of the
behavior descriptor, as well as the size of the behavior space. The results also indicate that NS mitigates bloat
on most problems, whereby bloat is maladaptive to the behavioral change promoted by the fitness measure. A
further observation made is that NS incurs relatively long execution times. In NS, search is a trade-off between
the number of K-nearest neighbours used to guide search and the time taken to run GP; higher values of K
incorporate more information into the search, perpetuating more novelty; nevertheless, high values of K are
associated with longer execution times.

The fitness measures do not always influence GP as intended. Rather, the NFL theorems apply: no one
fitness measure achieves the best result on all problems with respect to a given criterion. The solution quality
achieved depends on the properties of the given problem e.g. modularity, susceptibility to premature con-
vergence, and whether or not there is motivation for exploring the behavior space in the case of NS; these
properties differ for the different problems. In turn, generalization is influenced by the relationship between
the training and test sets, which differs for the different problems. The extent to which a fitness measure in-
fluences the population diversity on a problem is influenced by whether or not the fitness measure suits the
given problem: a fitness measure that does not suit the given problem may fail to improve on the quality of
the primitive initial population individuals, hence retaining the low initial population semantic diversity and
entropy on the problem. Importantly, the relationship between diversity and solution quality differs for the
different problems, whereby high diversity is seen with high quality on some of the problems, while low di-
versity is seen with high quality on other problems. Another observation made is that HP and DSS generally
achieve the best result with respect to minimizing the GP execution time. Nevertheless, short execution times
are also seen with high success rates; furthermore, the fitness measures that mitigate bloat also minimize the
time taken to run GP.

Overall, the problems tackled in the study exhibit different properties; hence different fitness measures
suit the different problems. The ensuing chapters employ GA and GP to find the best fitness measure se-
quences and fitness measure combinations respectively for DFMGP. This is whereby GA and GP are used to
approximate the most suitable fitness measures for problems and problem classes.



Chapter 5

Methodology

5.1 Introduction

This chapter sets out the methodology used to achieve the objectives of the dissertation, described in chapter
1. The chapter is organized as follows. Section 5.2 presents a critical analysis of related literature. Section 5.3
presents the research methodology to be followed. Section 5.4 details how each objective will be achieved.
Section 5.5 specifies the benchmark suite that will be used in the study. Section 5.6 details the hardware and
software used to achieve the objectives. Finally section 5.7 summarizes the chapter.

5.2 Critical analysis of related literature

From the literature surveyed in chapter 3, as well as the experiment conducted in chapter 4, it is clear that the
concept of a universal “best” fitness measure is a falsehood. Rather, different fitness measures suit different
problems. Importantly, the performance of a fitness measure on a given problem depends on the properties
exhibited by the tackled problem (e.g. modularity, susceptibility to premature convergence, deception), as
well as the capability of the fitness measure in handling the challenges posed by the problem.

The experiment conducted in chapter 4 provided some guidelines that can be used to anticipate the per-
formance of the fitness measures. For example, OF achieves high solution quality on trivial problems. Also,
BP achieves high solution quality when useful modules can be found and exploited. In turn, FS is shown to
improve on the quality of the solution programs found by OF-GP on problems prone to local optima. As a
final example, a well-configured NS improves on the quality of the solution programs found by OF-GP on
deceptive problems, such as the deceptive tartarus problem from the path-finding domain. The information
summarized above, whereby problem properties are matched to suitable fitness measures, is however only
useful to a certain extent. In real world scenarios, GP practitioners are seldom aware of the properties under-
lying a newly encountered problem. In this case, it is difficult to prescribe suitable fitness measures for such
problems a priori.

Importantly, the literature also anticipates that applying different fitness measures at different points of
the GP problem solving process should be more effective then applying a single fitness measure individually
throughout the algorithm [6, 15]. McKay [6, 15] anticipates this idea, but does not conduct a thorough inves-
tigation to this effect. The work done by McKay [6, 15] is motivated by the observation that fitness sharing
(FS) measures constantly enforce the maintenance of niches in the GP population, inhibiting widespread con-
vergence of the population in later generations. Nevertheless, widespread population convergence is often
necessary in later generations, in order to involve more search points in exploiting the promising solution pro-
grams discovered by the search [6, 15]. In this vein, McKay [6, 15] prescribes a ramped approach, whereby FS
is applied in the initial 25% of the GP generations, OF is applied in the last 25% of the GP generations, and in
the intermediate GP generations, fitness is calculated as a linear ramp between FS and OF [6, 15]. The ramped
approach is shown to evolve higher-quality solution programs on different problems when compared to both
FS and OF applied individually throughout the course of GP [6, 15]. This result is justified by the argument that
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the ramped approach strikes a balance between mitigating premature convergence in the preliminary GP gen-
erations, and subsequently allowing widespread convergence and exploitation in later GP generations [6, 15].
McKay’s ramped approach [6, 15] may also be applicable to other fitness measures. For example, Mouret [204]
argues that NS is incapable of exploitation. NS inhibits population convergence, because the fitness measure
maintains the same level of selective pressure in favor of diversification, even when near-optimal candidate
solution programs are found [204]. In this scenario, a ramped approach may be useful with respect to facil-
itating exploitation in later generations, when promising candidate solution programs have been discovered
by the NS. A potential drawback of the ramped approach is that the exploration and exploitation phases may
span different GP generations for different problems, such that the arbitrary partitioning of generations (first
25% - FS/NS; subsequent 50% - ramped; subsequent 25% - OF) does not achieve consistent results on different
problems. Also, based on the results obtained in the previous chapter, it is unlikely that two fitness measures
(e.g. FS and OF, or NS and OF) will be suited to all problems in the universe of GP problems. Hence a ramped
approach that uses only the listed measures may not achieve consistent results on all problems. Despite the
promising results obtained in the work of McKay [6, 15], no further research exists in the literature with respect
to applying different fitness measures on the different GP generations.

Based on the above arguments, the main contribution of this research is the proposal of dynamic fitness
measure GP (DFMGP). DFMGP involves the use of different fitness measures on the different GP generations,
whereby the fitness measures are drawn from a rich database of measures. Furthermore, in the proposed
DFMGP approach, rather than arbitrarily applying different fitness measures on the different GP generations,
a higher (or meta-) level search algorithm is used to approximate the best fitness measure to use on each gen-
eration for the given problem (or set of problems). The term dynamic fitness measure (DFM) refers to the
alternation of fitness measures on the DFMGP generations. A high-level search algorithm is needed to search
the space of DFMs for DFMGP, because selecting the best fitness measure (or fitness measure combination) to
apply on each GP generation is in itself a combinatorial optimization problem, due to a combinatorial explo-
sion of possible fitness measure sequences and combinations. Importantly, the automated selection and/or
combination of the fitness measures achieved by the high-level search algorithm will also remove the need
for manual configuration of the fitness measures, and in so doing reduces the role of the human expert in the
problem solving process. The study also investigates the reusability of the evolved DFMs. DFMs are evolved
for different problem classes, whereby the purpose is to evolve problem solvers that can generalize within a
problem class. Furthermore, DFMGP is also applied to complex, real-world problems. Here, DFMs evolved
by training on the problem classes are tested on real-world problems from the same problem domain. The idea
is to train on simpler and less complex problems that will not take as much time to train on, and subsequently
employ the evolved DFMs on the more complex problems. Overall, the implication of reusable DFMs is that
the total time necessary for the derivations is reduced.

The objectives as stated in chapter 1 for the dissertation are: 1) apply GAs for evolving DFMs for DFMGP,
2) apply GP for evolving DFMs for DFMGP, 3) compare the performance of DFMGP with the conventional
GP approach, 4) compare the performance of GAs and GP in evolving DFMs, 5) assess the reusability of the
evolved DFMs, and 6) analyse the best performing DFMs to identify the fitness measures that are most useful
in the different phases of search for different problems.

5.2.1 Justification of the GA approach for evolving DFMs for DFMGP

A GA approach will be used to evolve the DFMs for DFMGP. GAs have proven to be effective for higher (or
meta-) level search. For example, in the study conducted by Dioşan and Oltean [17], GAs are used to select
which genetic operator to apply at each point in an EA. The GA approach proposed by Dioşan and Oltean
[17] evolves the sequence in which crossover, mutation and selection operators are applied an EA, while the
candidate EAs attempt to solve the given problem at the lower level [17]. The GA approach in [17] is shown
to evolve EAs that perform on par with, and in some cases even better than, manually designed standard EA
approaches on a number of problems. GAs have also been used for parameter tuning of EAs [18, 26, 29]. For
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example, in the study conducted by Brain and Addicoat [29], a GA approach is used to search the space of
quantitative parameters for a lower-level GA. The GA approach proposed in [29] is shown to derive optimal
parameters for the lower-level GA on a complex real-world problem.

In the current study, a GA approach will be used to select the best fitness measure to apply on each gen-
eration of DFMGP for the given problem (or set of problems). The GA individuals will be represented using
a direct value encoding. In section 2.2.2 of chapter 2, it was established that more recent studies on GAs have
employed a direct value encoding, rather than a binary encoding, because the former type of encoding offers
an intuitive representation of the search space, and a simplified GA implementation, whereby pre-processing
and post-processing steps are not required. The direct value encoding used in the current study is described
in detail in section 7.3 of chapter 7. The GA approach will also use a generational control model as it will be a
good way to establish a basic performance of the approach. It is a well known control model and does provide
a level of reliability.

When deriving DFMs for a given problem, the fitness of each GA individual will be measured as the best
solution quality achieved by running DFMGP applying the corresponding DFM (i.e. the DFM represented
by the individual) on the problem. In chapter 4 of the study, different fitness measures were compared with
respect to varied criteria (i.e. the solution quality achieved, generalization capability, population diversity
etc.). Nevertheless, the fundamental aim of GP search is to find high quality solutions [1]. Therefore, at the
inception of DFMGP in the current study, the aim is to improve on the solution quality. This informs the choice
of the solution quality as the sole criterion optimized by the GA. Note that in the course of determining the
fitness of a GA individual, it is likely that successive runs of DFMGP applying the corresponding DFM on a
given problem should generate completely different solution programs, due to the stochastic nature of GP [1],
and hence DFMGP. In this regard, DFMGP applying the corresponding DFM is executed a total of r times,
and the fitness of the GA individual is measured as the mean best solution quality achieved over the r runs
on the given problem; here, the value of r is set at 5. The value of r is kept low to minimize the computational
cost involved in deriving the DFMs; also, in preliminary experiments, increasing the value of r did not yield
significant improvement in the derived DFMs.

A further configuration employed by the GA will be tournament selection, rather than fitness proportion-
ate selection, so that the tournament size parameter used in tournament selection can be tuned to mitigate
premature convergence [32]. The crossover operator used by the GA will be one-point crossover, because it is
found to be effective for other higher (or meta-) level GA approaches in different problem domains [17, 26, 29].
Furthermore, point mutation will be used, because it is also found to be effective for other higher (or meta-)
level GA approaches [17, 26, 29]. Importantly, additional genetic operators will be defined during develop-
ment, which together with the mutation operator will play the role of restoring lost diversity and mitigating
premature convergence of the GA. Chapter 7 of the thesis describes the GA approach in detail.

5.2.2 Justification of the GP approach for evolving DFMs for DFMGP

A GP approach will also be used to evolve the DFMs for DFMGP. In the literature, GP has been used at
the higher (or meta-) level to construct new EA components from the atomic elements that make up existing
components [19, 20]; here, a component is an element that can be easily isolated in the EA structure [19–21]: for
instance, the fitness measure used, the selection method used and the crossover and mutation operators used
are all examples of EA components. An example is seen in the work of Edmonds [19], where a GP approach is
used to evolve new crossover operators for a lower-level GP. The GP approach proposed in [19] constructs new
crossover operators from the atomic elements that make up existing crossover operators. The GP approach in
[19] is shown to evolve crossover operators that improve on the quality of the solution programs found by a
lower-level GP on the odd 4-parity problem from the Boolean function synthesis domain. Edmonds [19] argues
that the GP approach proposed in the study is a general technique expected to improve on the performance
of a lower-level GP on different problems. As a further example, in the study by Dioşan and Oltean [20], GP
is used to evolve new crossover operators for GA. In [20], a training problem is used to evolve the crossover
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operators; subsequently GA is executed on unseen problems from the same problem domain using the evolved
crossover operators. The results in [20] show that the proposed GP approach evolves new crossover operators
that perform better than human-designed crossover operators on unseen problems. Overall, the literature
demonstrates that GP has proven to be an effective approach for meta-level search. Furthermore, GP can be
used to construct new EA components from the atomic elements that make up existing components.

In the current study, a GP approach will be used to create a new function for the DFMGP fitness measure,
whereby the new function is a combination of existing fitness measures, in order to suit the given problem
(or set of problems). The GP approach will employ an abstract syntax tree (AST) representation. AST-GP is
the canonical GP approach proposed by Koza in [1]; it is a well-known approach and hence will be a good
way to establish a basic performance of the GP approach. The aim is for the GP approach to evolve arith-
metic and logical combinations of existing fitness measures. Hence the GP individuals being evolved should
arithmetically combine existing fitness measures, and also employ logic with respect to selecting the best com-
bination of fitness measures to apply on each DFMGP generation. Arithmetically combined fitness measures
are anticipated to be advantageous based on the literature [66, 72]. For example, in [66] (and in this study), the
behavioral fitness of a solution program is calculated as an arithmetic combination of the OF score and two
terms that quantify the usefulness of the solution’s subprograms; the previous chapter showed that the behav-
ioral fitness measure (BP) improves on the performance of OF-GP on modular problems. Another example of
arithmetically combined fitness measures is novelty-fitness aggregation, proposed as an NS variant for GP in
[72]. In novelty-fitness aggregation, the fitness measure used is a weighted sum of the OF and novelty scores
[72]. The purpose of novelty-fitness aggregation is to incorporate the search objective into the novelty search,
because complete abandonment of the objective may cause the NS to waste time evaluating candidate solution
programs with little or no relevance to the objective [72, 202]. Novelty-fitness aggregation does not achieve
performance gain over OF-GP in [72], but this may be due to the NS behavior descriptor used in [72]. A further
aspect of the syntax of the GP individuals being evolved is to incorporate logical selection of the arithmetic
combinations of fitness measures based on the DFMGP generation. Logical selection of the fitness measures
based on the DFMGP generation is anticipated to be advantageous because of the performance of McKay’s
ramped fitness approach [6, 15], whereby employing different fitness measures on the different generations of
GP outperforms the standard GP approach of applying the same fitness measure individually throughout the
algorithm. The above discussion indicates that the syntax of the GP individuals will be comprised of arithmetic
and logical expressions. For this reason, the GP approach will employ a strongly-typed GP representation, in
order to handle the different primitive types required. The strongly-typed representation used is described in
detail in section 8.3 of chapter 8.

The GP approach will use a generational control model; it is a commonly used control model for GP. Also,
the ramped half-and-half method will be used to produce the GP initial population; the ramped half-and-half
method is argued to improve on the diversity of the initial population, due to the ability to generate a wide
variety of tree shapes and structures [1]. The fitness of the GP individuals will be determined in the same way
as in the GA approach, whereby fitness is measured as the mean best solution quality achieved over 5 runs
of DFMGP applying the corresponding DFM on the given problem. A further configuration employed by the
GP will be tournament selection, so that the tournament size used can be tuned to mitigate premature con-
vergence. The genetic operators used will be standard GP crossover and mutation. Furthermore, additional
genetic operators will be defined during development, which together with the mutation operator will play
the role of restoring lost diversity and mitigating premature convergence of the GP. The GP initial popula-
tion creation routine and genetic operators will be modified so as to facilitate typing. Chapter 8 of the thesis
describes the GP approach in detail.
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5.3 Research methodology

The objectives of the research will be achieved using the proof by demonstration methodology [260]. This
research methodology for computer science requires the development of a single approach which is iterated
upon to achieve the stated objective(s). First an initial approach is developed. The initial approach is based on
an analysis of the literature. Subsequently, the initial approach is improved upon using iterative refinement,
whereby the reasons identified for failure on each iteration form input to the refinement process of the next
iteration. For each iteration, the changes to the approach will be based on testing. Each revision of the ap-
proach is evaluated in terms of the objectives of the problem to be solved. The formulated approach should be
produced to meet the objectives of the research question. Iterative improvement occurs until further improve-
ments are not going to provide significant improvement for the work required.

In order to analyse the developed approaches data will be collected. This will be done by measuring the
performance of the approaches on a suite of GP benchmark problems. Statistical tests will be used to establish
the significance of the observations made. Finally the data collected and observations made will be presented
in a conclusion.

5.4 Objectives

This section describes how the research methodology will be implemented in order to achieve the objectives
of this dissertation. Objectives one and two are similar and approached in the same manner; this methodology
will be discussed in section 5.4.1. Objectives three, four, five and six require the completion of objectives one
and two. Objectives three, four and five are discussed in section 5.4.2. Finally, objective six is discussed in
section 5.4.3.

5.4.1 Objectives one and two

The first objective set in chapter 1 is to apply GAs for evolving DFMs for DFMGP. The second objective set in
chapter 1 is to apply GP for evolving DFMs for DFMGP. A brief discussion of the objectives is given below,
after which the details of measurements used for analysis of the objectives will be discussed.

Overview of the objectives

Objectives one and two will be achieved through the proof by demonstration methodology. First an initial ap-
proach will be developed for each objective; descriptions of the initial approaches for objectives one and two
can be found in sections 5.2.1 and 5.2.2 respectively. The two developed approaches will be tested using the
benchmark problems specified in table 5.1 of section 5.5. The developed approaches will be refined until fur-
ther improvements are not going to provide significant improvement for the work required. The refinements
made to both approaches will be similar as they are both evolutionary algorithms as described in chapter 2. Re-
finements will include looking at the initial population creation, the genetic operators, the selection method,
as well as tuning quantitative parameters such as the population size, the genetic operator probabilities (or
application rates) and the tournament size used if the selection method employed is tournament selection.

Measurements for analysis of the objectives

Objectives one and two require analysis of the performance of the GA and GP approaches. A key factor that
will be used to measure the performance of the GA and GP approaches is the solution quality achieved. Recall
that at the inception of DFMGP in the current study, the aim is to improve on the solution quality. The GA
and GP approaches will be used to derive DFMs for each of the benchmark problems specified in table 5.1
of section 5.5. Each approach will be executed 30 times for each of the given problems. A total of 30 runs
are conducted due to the stochastic nature of GA/GP, whereby each run of the GA/GP approach on a given
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problem should generate a different DFM. For each run, the best-of-run individual (i.e. the DFM with the
best fitness score found over the course of the run) is retained. The performance of the GA/GP approach on
a given problem is measured as the average performance achieved by the best-of-run individuals over the 30
runs; this is the mean fitness score of the best-of-run individuals over the 30 runs: the calculation of the fitness
scores is based on the solution quality achieved, and was described in sections 5.2.1 and 5.2.2 for the GA and
GP approaches respectively. Overall, for both the GA and GP approaches, the average performance achieved
will be measured for all the given problems. The iterative refinements made on the approaches aim to improve
on the performance achieved on the problems.

5.4.2 Objectives three, four and five

The third objective of the research is to compare the performance of DFMGP with the conventional GP ap-
proach. The fourth objective is to compare the performance of GAs and GP in evolving DFMs. Lastly, the
fifth objective is to assess the reusability of the evolved DFMs. Objectives three and four are concerned with
performance comparisons. Objective five is also concerned with performance comparisons, whereby a DFM
is said to be reusable if DFMGP applying the DFM performs better the conventional GP approach on unseen
problems. A brief discussion of the objectives is given below, after which the details of measurements used for
analysis of the objectives will be discussed. Lastly, the statistical tests used to determine the significance of the
observations made will be discussed.

Overview of the objectives

To achieve objective three, the performance of DFMGP applying the DFMs derived by the GA approach (ab-
breviated as DFMGPGA) is compared to that of standard GP on each of the benchmark problems specified in
table 5.1 of section 5.5. The GA approach is executed 30 times on each of the problems. For each problem, the
best DFM found over the 30 runs of the GA is retained. The performance of DFMGPGA applying this DFM
is compared to that of standard GP over 30 runs of DFMGPGA and standard GP on the same problem used
to derive the DFM. Importantly, the total computational cost of using the GA approach to derive a DFM and
subsequently runningDFMGPGA applying the derived DFM on a given problem is much higher than simply
running standard GP on the given problem; hence the total time taken do the former is also compared to the
time taken to do the latter for each of the benchmark problems specified in table 5.1. This comparison of the
time taken by the approaches demonstrates the high computational cost of the DFM derivations, and hence
justifies the investigation into the reusability of the DFMs, addressed in objective five. The above steps are re-
peated to compare the performance of DFMGP applying the DFMs derived by the GP approach (abbreviated
as DFMGPGP ) to that of standard GP in the same way.

To achieve objective four, the performance of DFMGPGA is compared to that of DFMGPGP on each of
the benchmark problems specified in table 5.1 of section 5.5. The DFMs are first derived for each problem,
whereby for both the GA and GP approaches, the best DFM found over 30 runs is retained. For each problem,
the performance of DFMGPGA and DFMGPGP applying this DFM is compared over 30 runs of DFMGPGA

and DFMGPGP on the same problem used to derive the DFM. The total time taken to derive the DFMs and
subsequently run DFMGP applying the derived DFM is also compared for the GA and GP approaches.

Two aspects are involved in achieving objective 5. The first aspect is to asses the reusability of the evolved
DFMs for problem classes. Table 5.2 of section 5.5 specifies the problem classes used for this purpose. The
GA approach is trained on a subset of problem instances from a given problem class, the training set. When
training on a problem class, the fitness of a GA individual is measured as the mean best solution quality
achieved by DFMGPGA applying the corresponding DFM (i.e. the DFM represented by the individual) on
the problems in the training set; here, the best solution quality achieved on a single run of DFMGPGA is
measured for each problem, and subsequently the fitness of the GA individual is measured as the average of
these values over all the problems in the training set. In the fitness evaluation described here, a single run of
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DFMGPGA is conducted for each problem in the training set in order to minimize the total computational
cost involved in deriving the DFMs; also, in preliminary experiments, increasing the number of DFMGPGA

runs conducted for each of the problems was found not to yield significant improvement in the derived DFMs.
Importantly, DFMGPGA is run r times (once for each problem) in the course of fitness determination, which
compensates for the stochastic nature of DFMGPGA. The GA approach is run 30 times on the problems in
the training set. Subsequently, the best DFM found over the 30 runs is retained. This DFM is tested on a set of
unseen problem instances from the same problem class, the test set. The performance ofDFMGPGA applying
the DFM is compared to that of standard GP over 30 runs of the approaches on each of the unseen problems.
The above steps are repeated to assess the reusability of the DFMs evolved by the GP approach for problem
classes in the same way.

The second aspect of objective 5 is to assess the reusability of the evolved DFMs for complex real-world
problems. Table 5.3 of section 5.5 specifies the real-world problems used for this purpose. After the GA
approach has been used to derive DFMs for the problem classes, DFMGPGA applying the DFMs is executed
on unseen real-world problems, whereby for each problem class, the unseen problems tested come from the
same problem domain as the problems in the class. The performance of DFMGPGA is compared to that of
standard GP over 30 runs of the approaches on each of the unseen problems. The above steps are repeated to
assess the reusability of the DFMs evolved by the GP approach for real-world problems in the same way.

Measurements for analysis of the objectives

This section describes a series of experiments conducted to achieve objectives three, four and five. From the
overview of the objectives, it is clear that the steps that will be undertaken to assess the GA approach and
DFMGPGA are similar to those that will be used to do the same for the GP approach and DFMGPGP . In this
regard, two main experiments will be conducted:

1. Experiment 1: This experiment assesses the GA approach and DFMGPGA to determine:

(a) The effectiveness of DFMGPGA compared to the conventional GP approach.

(b) The reusability of the derived DFMs within problem classes.

(c) The reusability of the derived DFMs on real world problems.

2. Experiment 2: This experiment has a similar structure to experiment 1 and assesses the GP approach and
DFMGPGP to determine:

(a) The effectiveness of DFMGPGP compared to the conventional GP approach. The effectiveness of
the GP approach and DFMGPGP is also compared to that of the GA approach and DFMGPGA.

(b) The reusability of the derived DFMs within problem classes.

(c) The reusability of the derived DFMs on real world problems.

Experiments 1 and 2 are detailed below.

Experiment 1

The experiment is described in terms of the assessments made.

a) Testing the effectiveness of DFMGPGA

The performance of DFMGPGA applying the DFMs derived by the GA approach is compared to that of
standard GP applying the fitness measures individually to solve the same problem on each of the benchmark
problems specified in table 5.1 of section 5.5. Furthermore, a control experiment is implemented, whereby
randomly generated DFMs (obtained by the GA initial population creation procedure described in section 7.4
of chapter 7) are used for DFMGP: the control, abbreviated as DFMGPRD1, is used to establish whether the
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GA evolution is needed, or if generating random DFMs for DFMGP is sufficient with respect to obtaining a
performance improvement over canonical GP. The number of random DFMs evaluated in the control is the
same as the total number of DFMs evaluated by the GA. The above-mentioned approaches are compared on
the benchmark problems listed in table 5.1. For each of the problems tackled, DFMGPGA, DFMGPRD1 and
canonical GP will be compared based on the mean best solution quality (that is, the mean best raw OF score)
achieved over 30 runs on the given problem.

b) Testing the reusability of the derived DFMs within problem classes

To determine the reusability of the DFMs within problem classes, the GA is trained on a subset of problem
instances from a given problem class, the training set; here, the GA calculates the fitness of a candidate DFM
as the mean best solution quality yielded over the training instances, as shown in equation 5.1.

F (iDFM ) =

∑m
j=1OF (iDFM (bestj))

m
(5.1)

whereby:

1. F (iDFM ) represents the fitness of iDFM .

2. iDFM is a candidate DFM.

3. OF (iDFM (bestj)) represents the quality (i.e. the raw OF score) of the best solution program found on the jth

problem in the training set. OF (iDFM (bestj)) is averaged over the m problems in the training set.

The DFM derived by the GA during training is tested on a set of unseen problem instances from the same
problem class, the test set. Table 5.2 of section 5.5 shows the problem classes tackled in this respect. To
assess the reusability of the derived DFMs within a problem class, the performance of DFMGPGA applying
the DFMs on each test instance from the class is compared that of canonical GP applying each of the fitness
measures individually on the same test instance. The performance of DFMGPRD1 on the test instances is
also evaluated. For each test instance listed in table 5.2, DFMGPGA, DFMGPRD and canonical GP will be
compared based on the mean best solution quality achieved over 30 runs on the given problem.

c) Testing the reusability of the derived DFMs on real world problems

To determine the reusability of the DFMs on real world problems, DFMGPGA is applied in real-world sce-
narios, as summarized in table 5.3 of section 5.5. After the DFMs have been evolved for the problem classes,
DFMGPGA applying the DFMs is executed on real-world problems from the same problem domain. In ad-
dition, a more general DFM is evolved for each problem domain by training the GA on the combined set
of all the training problems from the problem classes in the domain. DFMGPGA applying this DFM is also
executed on the real-world problems from the problem domain. For each of the real-world problems listed
in table 5.3, DFMGPGA, DFMGPRD1 and canonical GP will be compared based on the mean best solution
quality achieved over 30 runs on the given problem.

Experiment 2

The experiment is described in terms of the assessments made.

a) Testing the effectiveness of DFMGPGP

The performance of DFMGPGP applying the DFMs derived by the GP approach is compared to that of stan-
dard GP applying the fitness measures individually to solve the same problem on each of the benchmark
problems specified in table 5.1 of section 5.5. Furthermore, a control experiment is implemented, whereby
randomly generated DFMs (obtained by the GP initial population creation procedure described in section 8.4
of chapter 8) are used for DFMGP: the control, abbreviated as DFMGPRD2, is used to establish whether the
GP evolution is needed, or if generating random DFMs for DFMGP is sufficient with respect to obtaining a
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performance improvement over canonical GP. The number of random DFMs evaluated in the control is the
same as the total number of DFMs evaluated by the GP. The above-mentioned approaches are compared on
the benchmark problems listed in table 5.1. DFMGPGP is also compared to DFMGPGA on the problems.
For each of the problems tackled, DFMGPGP , DFMGPGA, DFMGPRD2 and canonical GP will be compared
based on the mean best solution quality (that is, the mean best raw OF score) achieved over 30 runs on the
given problem.

b) Testing the reusability of the derived DFMs within problem classes

To determine the reusability of the DFMs within problem classes, the GP is trained on a subset of problem
instances from a given problem class, the training set; here, the GP calculates the fitness of a candidate DFM as
the mean best solution quality yielded over the training instances in the same way as shown in equation 5.1.
The DFM derived by the GP during training is tested on a set of unseen problem instances from the same prob-
lem class, the test set. Table 5.2 of section 5.5 shows the problem classes tackled in this respect. Subsequently,
the performance of DFMGPGP applying the DFMs on each test instance from the class is compared that of
canonical GP applying each of the fitness measures individually on the same test instance. The performance
of DFMGPRD2 on the test instances is also evaluated. Also, DFMGPGP is also compared to DFMGPGA on
the problems. For each test instance listed in table 5.2, DFMGPGP , DFMGPGA, DFMGPRD2 and canonical
GP will be compared based on the mean best solution quality achieved over 30 runs on the given problem.

c) Testing the reusability of the derived DFMs on real world problems

To determine the reusability of the DFMs on real world problems, DFMGPGP is applied in real-world sce-
narios, as summarized in table 5.3 of section 5.5. After the DFMs have been evolved for the problem classes,
DFMGPGP applying the DFMs is executed on real-world problems from the same problem domain. In addi-
tion, a more general DFM is evolved for each problem domain by training the GP on the combined set of all the
training problems from the problem classes in the domain. DFMGPGP applying this DFM is also executed
on the real-world problems from the problem domain. For each of the real-world problems listed in table 5.3,
DFMGPGP , DFMGPGA, DFMGPRD2 and canonical GP will be compared based on the mean best solution
quality achieved over 30 runs on the given problem.

Hypothesis testing

For all the performance comparisons conducted, the mean solution quality achieved by each approach over
30 runs will be the test statistic used for statistical hypothesis testing. A test statistic is a numerical summary
of the data collected that reduces the data to a single value used to perform the hypothesis test [256]. A Z-test
will be used to determine the statistical significance of results obtained. A Z-test is a statistical test used to
determine whether two population means are different [256]. A Z-test assumes a normal distribution of the
test statistic. The distribution of the test statistic is approximately normal given a large enough sample size; as
a rule of thumb, a sample size of 30 is considered to be large enough to meet this criteria [256]. This argument
justifies the calculation of the test statistic over 30 runs, as described in experiments 1 and 2 in the previous
section.

Testing for a statistically significant result requires the formulation of a null hypothesis and an alternative
hypothesis. The hypotheses test if the there is a difference in the test statistics (i.e. the mean solution quality
achieved); the null hypothesis is that there is no difference and the alternative is that there is a difference:

Null hypothesis: H0 : µA = µB or
Null hypothesis.: H0 : µA − µB = 0.
Alternative hypothesis: Ha : µA > µB .
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The Z-tests are used to calculate a Z-score. This Z-score is converted to a p-value by looking up the cor-
responding p-value in a Z-table [256]. Subsequently, the null hypothesis (H0) is rejected if the p-value is less
than or equal to a small, fixed threshold value, α, referred to as the level of significance. In this dissertation,
the level of significance will be set to 5% (or 0.05), such that H0 is rejected when p_val ≤ 0.05, where p_val is
the p-value derived from the observations.

5.4.3 Objective six

The sixth objective of the research is to analyse the best performing DFMs to identify the fitness measures that
are most useful in the different phases of search for different problems. A brief discussion of the objective is
given below, after which the details of measurements used for analysis of the objective will be discussed.

Overview of the objective

The DFMs derived for the problem classes are analyzed to identify the fitness measures that suit the different
phases of search for the problem classes. Also, the more general DFMs derived for the problem domains
are analyzed to identify the different fitness measures that suit the different phases of search for the problem
domains. Recall that the GA approach is used to derive fitness measure sequences, while the GP approach is
used to derive fitness measure combinations. The derived fitness measure sequences and combinations are
analyzed separately, and also compared to determine if there are similarities between the two with respect to
the fitness measures selected for a given set of problems.

Measurements for analysis of the objective

The DFMs derived by the GA approach will be analyzed. The DFM analyzed for a given problem class is the
best DFM found over 30 runs of the GA approach on the training problems from the class. Also, the DFM
analyzed for a given problem domain is the best DFM found over 30 runs of the GA approach on the training
problems from the domain. The GA chromosomes representing these DFMs will be reported and commentary
made on the fitness measures selected in these DFMs.

The DFMs derived by the GP approach will also be analyzed. The DFM analyzed for a given problem class
is the best DFM found over 30 runs of the GP approach on the training problems from the class. Also, the DFM
analyzed for a given problem domain is the best DFM found over 30 runs of the GP approach on the training
problems from the domain. The GP chromosomes representing these DFMs will be reported and commentary
made on the fitness measures selected in these DFMs.

5.5 Benchmark suite

The benchmark suite of problems is comprised of the following:

1. Problems used to test the effectiveness of DFMGP.

2. Problem classes used to test the reusability of the DFMs derived by the GA and GP approaches.

3. Real-world problems used to test the reusability of the DFMs derived by the GA and GP approaches.

The different problems that make up the benchmark suite are discussed in section 5.5.1. Subsequently, section
5.5.2 discusses the function and terminal sets used for the tackled problems. Finally, section 5.5.3 lists the
fitness cases used for the problems.

5.5.1 Benchmark problems

The ensuing sections discuss the problems that make up the benchmark suite.
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Problems used to test the effectiveness of DFMGP

The problems are listed in table 5.1. The problems in table 5.1 were selected from the benchmark suite specified
in section 4.2.3 of chapter 4. These problems were selected on the basis of two considerations. The first
consideration is to ensure representation from the different problem domains. Problems were selected from
the symbolic regression, Boolean function synthesis and path-finding domains. The supervised classification
domain is excluded, because the concept of a problem class (i.e. different instances of a given problem) is not
applicable to the real-world datasets defined in chapter 4; i.e. the datasets do not contain problem instances,
neither can one manipulate or transform the datasets to obtain problem instances without tampering with the
real-world nature of the data. Conversely, different instances can be specified for the problems listed in table
5.1, as detailed in the ensuing discussion on the problem classes analyzed. The second consideration is that the
GA and GP approaches used to derive the DFMs are computationally expensive approaches that runs several
instances of DFMGP at the lower level; hence problems with a low computational cost (i.e. few fitness cases)
were selected, so as not to exacerbate the overall cost of finding and executing the optimal DFMs.

TABLE 5.1: Benchmark problems tackled

Problem domain Problem

Symbolic regression Sextic polynomial (abbrev. Sextic)

Symbolic regression Keijzer-6 (abbrev. Keijzer)

Boolean function synthesis Even-7 Parity (abbrev. Par-7)

Boolean function synthesis 3-bit multiplier (abbrev. Mult-3)

Path-finding Tartarus (abbrev. Tart)
Path-finding Deceptive tartarus (abbrev. Dec-tart)

Problem classes used to test the reusability of the DFMs evolved by the GA and GP approaches

The problems are listed in table 5.2. In the symbolic regression domain, a problem class is defined in terms
of a coefficient to a given regression function: here, given a regression function, f(x), all problems of the
form a.f(x) (whereby a ∈ Z) belong to the same problem class. In the Boolean and path-finding problems, a
problem class is defined based on different instances (i.e. different levels of complexity and the use of different
input parameters respectively) of a given problem.

Real-world problems used to test the reusability of the DFMs evolved by the GA and GP approaches

The problems are listed in table 5.3. The abalone [245] and Dow Chemical parser (abbrev. Dow) [232] datasets
are selected as the real-world problems from the symbolic regression domain. The Dow dataset is a challenging
real-world problem that was the subject of the symbolic regression EvoCompetitions event of the 2010 EvoStar
conference [232]; this problem has been described in detail in section 4.2.3 of chapter 4. In turn, the abalone
dataset is a well-known real-world problem to which GP has been applied in previous research [261, 262]:
in the problem, a regression function is evolved to predict the age of abalone shellfish from 8 attributes; the
fitness case set is comprised of 4177 instances [261, 262].

The flame detection circuit [263] (abbrev. sensor) and binary-coded-decimal-to-seven-segment decoder
(abbrev. decoder) [264] problems are selected as the real-world problems from the Boolean function synthesis
domain. The sensor problem involves the design of a sensor-input circuit to detect the presence or absence
of a flame in a toxic waste incinerator [263]: in the current study, 6 sensors (each with a value of true=“flame
present” or false = “flame absent”) supply input to the circuit, and the task is to produce 2 outputs: 1) an
indication that a flame is present when at least 4 of the sensors detect a flame, and 2) an indication that the
sensors should be repaired when at least 2 of the sensors differ from the other sensors [263]. The decoder
problem involves converting a decimal number input (encoded as a 4-bit binary digit) into a seven segment
light emitting diode (LED) display, whereby specific segments of the LED are turned on to display the seven
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TABLE 5.2: Benchmark training/test problems tackled

Problem class Training problems Test problems

Sextic polynomial
(abbrev. Sextic)
(Symbolic regression
domain)

10 random problems drawn from the
.....set a.(x6 − 2x4 − x2).
.....Note that care is taken to exclude
.....the problems in the test set.

1) .2.(x6 − 2x4 + x2)
2) .5.(x6 − 2x4 + x2)
3) .10.(x6 − 2x4 + x2)
4) .20.(x6 − 2x4 + x2)
5) .50.(x6 − 2x4 + x2)
6) .100.(x6 − 2x4 + x2)
7) .200.(x6 − 2x4 + x2)
8) .250.(x6 − 2x4 + x2)
9) .500.(x6 − 2x4 + x2)
10) 1000.(x6 − 2x4 − x2)

Keijzer-6
(abbrev. Keijzer)
(Symbolic regression
domain)

10 random problems drawn from the
.....set a.(

∑x
j=1

1
j
).

.....Note that care is taken to exclude

.....the problems in the test set.

1) .2.(
∑x
j=1

1
j
)

2) .5.(
∑x
j=1

1
j
)

3) .10.(
∑x
j=1

1
j
)

4) .20.(
∑x
j=1

1
j
)

5) .50.(
∑x
j=1

1
j
)

6) .100.(
∑x
j=1

1
j
)

7) .200.(
∑x
j=1

1
j
)

8) .250.(
∑x
j=1

1
j
)

9) ..500.(
∑x
j=1

1
j
)

10) 1000.(
∑x
j=1

1
j
)

Even-N parity
(abbrev Par-N)
(Boolean function
synthesis domain)

The set Even-N parity, whereby
.....N ∈ {3, 4, 5, 6, 7, 8}.
......

1) Even-9 parity
2) Even-10 parity
3) Even-11 parity
4) Even-12 parity
5) Even-13 parity

N-bit multiplier
(abbrev. Mult-N)
(Boolean function
synthesis domain)

The set N-bit multiplier, whereby
.....N ∈ {2, 3, 4}.
.....

1) 5-bit multiplier
2) 6-bit multiplier
3) 7-bit multiplier
4) 8-bit multiplier
5) 9-bit multiplier

Tartarus
(abbrev Tart.)
(Path finding domain)

KEY: gl = grid length;
nb = number of blocks

10 random problems drawn from the
.....set: Tartarus (gl = m; nb = n),
.....whereby m ∈ [4, 12] and n ∈ [4, 12].
.....Note that care is taken to exclude
.....the problemse in the test set.

1) Tartarus (gl = 8; nb = 6)
2) Tartarus (gl = 10; nb = 6)
3) Tartarus (gl = 6; nb = 7)
4) Tartarus (gl = 8; nb = 8)
5) Tartarus (gl = 6; nb = 8)
6) Tartarus (gl = 9; nb = 7)
7) Tartarus (gl = 10; nb = 7)
8) Tartarus (gl = 9; nb = 8)
9) Tartarus (gl = 10; nb = 8)
10) Tartarus (gl = 10; nb = 10)

Deceptive tartarus
(abbrev. Dec-tart.)
(Path finding domain)

KEY: gl = grid length;
nb = number of blocks

10 random problems drawn from the
.....set: Deceptive tartarus (gl = m; nb
.....= n), whereby m ∈ [4, 12] and n
.....∈ [4, 12]. Note that care is taken
..... to exclude the problems in the
.....test set

1) Deceptive tartarus (gl = 8; nb = 6)
2) Deceptive tartarus (gl = 10; nb = 6)
3) Deceptive tartarus (gl = 6; nb = 7)
4) Deceptive tartarus (gl = 8; nb = 8)
5) Deceptive tartarus (gl = 6; nb = 8)
6) Deceptive tartarus (gl = 9; nb = 7)
7) Deceptive tartarus (gl = 10; nb = 7)
8) Deceptive tartarus (gl = 9; nb = 8)
9) Deceptive tartarus (gl = 10; nb = 8)
10) Deceptive tartarus (gl = 10; nb = 10)

segment representation of the number [264]. Decoder circuits are used widely in electronic devices that display
numerical information, including basic calculators and digital clocks [264].

5.5.2 Function and terminal sets

This section lists the function and terminal sets used for the problems tackled in experiments 1 and 2. For
the problems introduced in chapter 4, the information listed below is the same as provided in section 4.2.3 of
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TABLE 5.3: Real-world problems tackled

Problem domain Training problems Test problems

Symbolic Regression Sextic training problems
1) Abalone (abbrev. Abalone)
2) Dow Chemical parser (abbrev. Dow)Symbolic Regression Keijzer training problems

Symbolic Regression Sextic + Keijzer training problems

Boolean Function Synthesis Par-N training problems 1) Flame detection circuit
(abbrev. Sensor)
2) Binary Coded Decimal to Seven
Segment Decoder (abbrev. Decoder)

Boolean Function Synthesis Mu lt-N training problems

Boolean Function Synthesis Par-N + Mult-N training problems

chapter 4. Additional information is incorporated below in relation to the new real-world problems included
in experiments 1 and 2:

1. The function set used in the symbolic regression (sextic, Keijzer-6, Dow and abalone) problems is com-
prised of common mathematical {+, −, ×, %, sin, cos, log, exp} functions; however, the division (%) and
logarithm (log) functions used are protected, such that the result of division is 1 whenever the denomi-
nator is 0, and the argument of the logarithm is always converted to its absolute value [1]. The terminal
set used in the sextic and Keijzer-6 problems is comprised of a single variable, {x} [1]. In the Dow and
abalone problems, the terminal sets used are comprised of alphabet characters that represent each of the
distinctive attributes defined for the respective dataset.

2. The function set used in the even-N parity, sensor and decoder problems is comprised of the Boolean
operators {AND, OR, NAND, NOR} [1]. The even-N parity problems employ a terminal set {d0, d1, ...,

dN−1}, comprised of a total of N variables, where the value of N is dependent on the particular even-N
parity instance tackled [1]. In the sensor problem, input is received from 6 sensors, hence the terminal
set used is {d0, d1, ..., d5} . In turn, in the decoder problem, a 4-bit input is received, hence the terminal set
used is {d0, d1, ..., d3}.

3. The function set used in the N-bit multiplier problems is comprised of the Boolean operators {AND,

ANDI , OR, XOR} [234]. In turn, the terminal set {d0, d1, ..., d2N−1}, is comprised of a total of 2N variables,
where the value of N is dependent on the particular N-bit multiplier instance tackled [234].

4. The function set used in the path-finding (tartarus and deceptive tartarus) problems, taken from [248], is
comprised of a connective function (PROGN2), problem-specific logical functions (i.e. IF -POSITION -
IS-STATE where POSITION ∈ {UM , UR, MR, LR, LM , LL, ML, UL}, and STATE ∈ {E,B,W }),
simple logical functions (NOT , EQ, IF ) and read/write functions (i.e. READi, WRITEi where i ∈ {1,
2, 3}). The terminal set is comprised of constants (Zero, One, Two) and actions (TurnLeft, TurnRight,
Move-Forward).

5.5.3 Fitness cases

This section lists the fitness cases used for the tackled problems.

1. Sextic regression: 50 x-axis points, evenly spaced with an interval of 0.04 in the range [−1, 1] [1].

2. Keijzer regression: 50 x-axis points, evenly spaced with an interval of 1.00 in the range [1, 50] [232].

3. Dow regression: the set of 747 fitness cases defined in [232].

4. Abalone regression: the set of 4177 fitness cases defined in [245].

5. Even-N parity: 2N Boolean numbers ranging from 0 to 2N − 1: the value of N is dependent on the
particular even-N parity instance tackled [1].
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6. N-bit multiplier: 22N Boolean numbers ranging from 0 to 22N − 1: the value of N is dependent on the
particular N -bit multiplier instance tackled [1].

7. Sensor: 26 Boolean numbers ranging from 0 to 26 − 1 [263].

8. Decoder: 24 Boolean numbers ranging from 0 to 24 − 1 [264].

9. Path finding (tartarus, deceptive tartarus): 40 randomly generated path-finding grid-worlds [248].

5.6 Technical specifications

The technical specifications of the experiment are identical to those listed in section 4.2.5 of chapter 4, and
are restated here. The algorithms tested in the study were developed using Java SE (Oracle, version 8; [253]).
The programs were developed on a computer with the following specifications: Intel(R) Celeron(R) N2840
@ 2.16GHz, 2.00 GB RAM, Windows 8 Enterprise OS. Simulations (trial and final) were run on the Center for
High Performance Computing, South Africa1. The analysis of the results was performed using Microsoft Excel
2010 [254] and Wolfram Mathematica 10.0 [255].

5.7 Summary

This chapter presented the methodology used for achieving the objectives outlined in chapter 1. The measure-
ments used to analyse the achievement of the objectives were discussed. The benchmark problems that will
be tackled to achieve the objectives of the research were also presented. In cases where there is need to show
the significance of a result, a Z-test will be used to demonstrate statistical significance. Finally, the technical
specifications for the development and testing of the developed approaches (the GA and GP approaches, as
well as DFMGP) were provided.

1See https://www.chpc.ac.za/index.php/resources/lengau-cluster for cluster specifications.



Chapter 6

The DFMGP Algorithm

6.1 Introduction

This chapter describes the DFMGP algorithm in detail. The chapter is organized as follows. Section 6.2 de-
scribes the DFMGP algorithm. Subsequently, sections 6.3, 6.4, 6.5, 6.6 and 6.7 describe the representation
scheme, initial population creation, fitness evaluation, selection method and genetic operators used within
DFMGP respectively. Next, section 6.8 discusses the parameters used for DFMGP. Finally, section 6.9 summa-
rizes the chapter.

6.2 The DFMGP algorithm

DFMGP resembles Koza’s canonical GP [1], shown in listing 2.2 of chapter 2. The only difference between
DFMGP and canonical GP is that in the former, different fitness measures are applied on the different GP
generations; here, the fitness measure, fi, applied on DFMGP generation i can be an existing fitness measure,
or an arithmetic combination of existing fitness measures. Figure 6.1 illustrates a DFMGP algorithm spanning
a total of N generations.

FIGURE 6.1: Schematic of DFMGP. The symbols Fi, Fii, Fiii...FN represent different fitness mea-
sures.

Like canonical GP, DFMGP uses a generational control model [1]. DFMGP evolves a population ofNDFMGP

candidate solutions for gDFMGP generations; here, NDFMGP and gDFMGP are control parameters. As in the
case with canonical GP, DFMGP terminates when a global optimum solution is found, or when the maximum
number of generations have elapsed [1].

6.3 Representation scheme

The DFMGP candidate solutions are standard AST-GP parse trees, as proposed for canonical GP in [1]. The
function and terminal sets used depend on the specific problem being tackled; these have been described in
detail for each of the problems tackled in the study in section 5.5.2 of chapter 5.
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6.4 Initial population creation

The DFMGP initial populations are generated using the ramped half-and-half method, with the parse trees
ranging from depths of 2 to 6, as proposed for canonical GP in [1]. The ramped half-and-half method is
argued to generate a more diverse initial population compared to the full and grow methods discussed in
section 2.3.3 of chapter 2, because of the ability of the former to generate a wide variety of tree shapes and
structures [1].

6.5 Fitness evaluation

The different fitness measures that will be used in DFMGP, as depicted in figure 6.1 of section 6.2, are com-
prised of fitness measures selected from a pre-defined subset; these are the same fitness measures that were
analyzed in chapter 4:

1. Objective fitness (OF)

2. Behavioral programming (BP1)

3. Behavioral programming with archive supplied mutation (BP2)

4. Fitness sharing (FS)

5. Dynamic subset selection (DSS)

6. Host-parasite coevolution (HP)

7. Novelty search (NS1)

8. Novelty search with problem-specific path-finding behavior descriptor (NS2)

The GA and GP approaches used to evolve DFMs for DFMGP will select and combine fitness measures
from the measures listed above. Chapter 4 established that the listed measures suit different problems. Fur-
thermore some of the fitness measures have been argued to suit specific phases of search: for example, FS
and NS are more suited to the preliminary generations of GP, rather than the later generations, due to poor
exploitation capability [6, 15, 204]. The goal in providing a diverse subset of fitness measures for the DFMs is
for the GA and GP approaches to be able to produce optimal DFMs for varied problems and problem classes.

6.6 Selection method

The DFMGP selection methods used are tournament and fitness-proportionate selection [1]. Different selection
methods are used with the different fitness measures within DFMGP, as described in detail in section 6.8.

6.7 Genetic operators

The DFMGP genetic operators used are standard GP crossover, mutation and reproduction, as proposed for
canonical GP in [1]; also, the archive-supplied mutation operator is applied with BP2 [5]. Different genetic
operator application rates are used with the different fitness measures within DFMGP, as described in detail
in section 6.8.
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6.8 Parameter tuning

The SMAC-tuned fitness measure specific parameters employed in the experimental treatments in chapter 4
are used. These parameters are used for the fitness measure when applied in DFMGP. Hence, a different selec-
tion method and different genetic operator application rates are used for each fitness measure within DFMGP.
This parameter tuning approach is adopted as an approximation of the optimal configuration for each of the
fitness measures in DFMGP; parameter tuning is not applied directly to DFMGP, due to the combinatorial ex-
plosion of possible DFMGPs. The list of SMAC-tuned parameters for each of the fitness measures is the same
as was provided in table 4.2 of chapter 4.

Apart from the SMAC-tuned parameters, the DFMGP population size and maximum number of DFMGP
generations are tuned in the context of the GA/GP approach being used to evolve DFMs for DFMGP. These
parameters are discussed in section 7.8 of chapter 7 for the GA approach and section 8.8 of chapter 8 for the
GP approach.

6.9 Summary

This chapter presented the DFMGP algorithm used to apply different fitness measures on the different gen-
erations of GP. An overview of the algorithm was presented. Subsequently, detail was provided of the repre-
sentation scheme, initial population creation, fitness evaluation, selection method and genetic operators used
within DFMGP. The parametric configuration of DFMGP was also discussed. The ensuing chapters will detail
the GA and GP approaches employed at the higher (or meta-) level to evolve DFMs for DFMGP.



Chapter 7

A GA Approach for Deriving DFMs for
DFMGP

7.1 Introduction

This chapter describes the GA approach implemented to search the space of DFMs for DFMGP. The imple-
mented GA operates at the higher (or meta-) level, and aims to discover the optimal sequence in which fitness
measures should be applied in DFMGP for a given problem (or problem class); at the lower-level, DFMGP
attempts to solve the problem.

This chapter is organized as follows. Section 7.2 provides an overview of the GA approach. Subsequently,
sections 7.3, 7.4, 7.5, 7.6 and 7.7 describe the representation scheme, initial population creation, fitness eval-
uation, selection method and genetic operators used respectively. Next, section 7.8 discusses the parameters
used by the GA approach. Finally, section 7.9 summarizes the chapter.

7.2 Genetic algorithm for dynamic fitness measure GP

The GA approach evolves a population of candidate fitness measure sequences for DFMGP. The GA takes one
or more GP problems as input. Subsequently, the GA aims to discover an optimal fitness measure sequence for
the input problem(s). Figure 7.1 illustrates the interaction between the GA, DFMGP and the solution program
space.

The GA evolves a population of NGA candidate fitness measure sequences for gGA generations; NGA and
gGA are control parameters. The fitness of a candidate fitness measure sequence is the mean best solution
quality achieved by DFMGP applying the sequence. Here, DFMGP applying the sequence is run r times
in order to obtain an accurate estimate for the best solution quality, given the stochastic nature of DFMGP;
section 5.2.1 of chapter 5 established that when evolving DFMs for a given problem, r is set at 5; otherwise,
when evolving DFMs for a given problem class, DFMGP applying the corresponding DFM is run once for
each of the problems in the training set, such that the value of r is equal to the total number of problems in
the training set. The GA approach is run 30 times on the given problem(s), such that the DFM derived by the
approach is the best DFM found over the 30 runs. Overall, the GA exerts considerable computational effort.
However, the GA’s automation is better than a cumbersome manual search of the space of fitness measure
sequences; the latter approach is infeasible, given the combinatorial explosion of possible sequences. Also, the
GA’s computational effort is considered worthwile if the derived fitness measure sequences are shown to be
reusable on unseen problems, reducing the total time necessary for the derivations.

7.3 Representation

Each GA chromosome represents a sequence of fitness measures. The previous chapter established that the
fitness measures used in DFMGP will be selected from a pre-defined subset: 1) OF, 2) BP1, 3) BP2, 4) FS, 5)
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FIGURE 7.1: Overall GA approach

DSS, 6) HP, 7) NS1, and 8) NS2. The following characters are used to encode the fitness measures:

i. A encodes Objective fitness (OF).

ii. B encodes Behavioral programming (BP1).

iii. C encodes Behavioral programming with archive supplied mutation (BP2).

iv. D encodes Fitness sharing (FS).

v. E encodes Dynamic subset selection (DSS).

vi. F encodes Host-parasite coevolution (HP).

vii. G encodes Novelty search (NS1).

An additional character, H , is appended to this set when tackling path-finding problems. H encodes novelty
search with a problem-specific path-finding behavior descriptor (NS2). In chapter 4 of the study, problem-
specific path-finding descriptors were shown to enhance the potential of NS in the deceptive path-finding
domain.

The GA chromosomes used are of length gGP , the number of DFMGP generations, such that the character
at position pwithin a chromosome corresponds to the fitness measure applied on the generation with the same
index within the DFMGP. An example GA chromosome is shown below:
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Example:
G
0
G
1
G
2
G
3
G
4
G
5
G
6
G
7
G
8
G
9
G
10
G
11
G
12
A
13
A
14
A
15
A
16
A
17
A
18
A
19
A
20
A
21
A
22
A
23
A
24
A
25
A
26
A
27
A
28
A
29
A
30
A
31
A
32
A
33
A
34
A
35
A
36
A
37
A
38
A
39
A
40
A
41
A
42

.....A
43
A
44
A
45
A
46
A
47
A
48
A
49
A
50
A
51
A
52
A
53
A
54
A
55
A
56
A
57
A
58
A
59
A
60
A
61
A
62
D
63
D
64
D
65
D
66
D
67
D
68
D
69
D
70
D
71
D
72
D
73
D
74
D
75
D
76
D
77
D
78
D
79
D
80
D
81
D
82
C
83

.....C
84
C
85
C
86
C
87
C
88
C
89
C
90
C
91
C
92
C
93
C
94
C
95
C
96
C
97
C
98
C
99
C
100

The above chromosome represents a sequence spanning 101 DFMGP generations: 13 generations of novelty
search (NS1 - encoded as G), followed by 50 generations of objective fitness (OF - encoded as A), followed by
20 generations of fitness sharing (FS - encoded as D), and lastly, 18 generations of behavioral programming
with archive supplied mutation (BP2 - encoded as C).

7.4 Initial population creation

The initial population is generated randomly, but in such a way that the fitness measures span contiguous
DFMGP generations: e.g. AAAAAAACCCCCDDDD, as opposed to ADCBGHEFAFEFACDC. This is
done in order to ensure that the DFMGPs are not noisy in the sense of continually switching between the
fitness measures. Rather, each fitness measure has an opportunity to progress the search in its own respect
for a number of generations. For this reason, each initial population chromosome is created by randomly
selecting k fitness measures, where k = 1, 2, 3, 4; here, each fitness measure is applied for m consecutive
DFMGP generations with m ≈ gGP /k. The initial population contains an equal number of chromosomes
for each value of k. The maximum value for k is set at 4, because higher values of k are seen not to yield
improvements in the fitness of the initial population.

For example, if gGP = 101 and k = 2, an example of a resulting chromosome is:
A
0
A
1
A
2
A
3
A
4
A
5
A
6
A
7
A
8
A
9
A
10
A
11
A
12
A
13
A
14
A
15
A
16
A
17
A
18
A
19
A
20
A
21
A
22
A
23
A
24
A
25
A
26
A
27
A
28
A
29
A
30
A
31
A
32
A
33
A
34
A
35
A
36
A
37
A
38
A
39
A
40
A
41
A
42
A
43
A
44
A
45
A
46
A
47
A
48
A
49
A
50
B
51

.....B
52
B
53
B
54
B
55
B
56
B
57
B
58
B
59
B
60
B
61
B
62
B
63
B
64
B
65
B
66
B
67
B
68
B
69
B
70
B
71
B
72
B
73
B
74
B
75
B
76
B
77
B
78
B
79
B
80
B
81
B
82
B
83
B
84
B
85
B
86
B
87
B
88
B
89
B
90
B
91
B
92
B
93
B
94
B
95
B
96
B
97
B
98
B
99
B
100

.

In the above example, OF (encoded as A) is selected as the first fitness measure spanning the first 51
DFMGP generations. BP1 (encoded as B) is selected as the second fitness measure spanning the remaining 50
DFMGP generations.

7.5 Fitness evaluation

The fitness of a candidate fitness measure sequence is the mean quality of the best solution program produced
by DFMGP applying the sequence. Here, the mean quality is obtained by conducting a total of r runs of the
DFMGP, and averaging the best quality achieved over the r runs. The solution quality is measured in terms of
the raw objective fitness (OF) score (see equation 4.1 in chapter 4). Equation 7.1 below summarizes the fitness
evaluation of a candidate fitness measure sequence.

F (iDFM ) =

∑r
j=1OF (iDFM (bestj))

r
(7.1)

whereby:

1. F (iDFM ) represents the fitness of iDFM .

2. iDFM is a candidate fitness measure sequence.

3. OF (iDFM (bestj)) represents the raw OF score of the best solution program found on the jth run of DFMGP applying
iDFM . OF (iDFM (bestj)) is averaged over the r runs of the DFMGP applying iDFM .
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7.6 Selection method

Tournament selection is used, whereby t elements of the population are selected at random, and only the
element with the higher fitness is retained [1]. The tournament size, t, is configured by empirical tuning,
whereby multiple runs are conducted, and the tournament size that gives the best result is selected.

7.7 Genetic operators

This section describes the genetic operators used by the GA. These operators include those traditionally used
in GAs, namely, one-point crossover and mutation [3]. In addition, newly defined disruptive genetic operators
are applied, which were seen to delay convergence during empirical testing of the GA on different problems,
namely, the operators reverse, chop and reorder the fitness measure sequences. The new operators delay
convergence with the aim of mitigating premature convergence of the GA. The genetic operators used are
described below:

1. Standard one-point crossover - Two fitness measure sequences are crossed over at a randomly selected
position.

Before crossover:

Sequence 1 = AAAAAAAAAAAAA....AAAAAAAAAAAAAAAAAAA

Sequence 2 = BBBBBBBBBBBB....BBBBBBBBBBBBBBBBBB

After crossover:

Offspring 1 = AAAAABBBBBBB....BBBBBBBBBBBBBBBBBB

Offspring 2 = BBBBBAAAAAAAA....AAAAAAAAAAAAAAAAAAA

In the above example the two fitness measure sequences are crossed over at position 6.

2. Standard one-point mutation - The fitness measure at a randomly selected position within the given se-
quence is substituted with another fitness measure randomly drawn from the alphabet of fitness mea-
sures.

Example:

Before mutation: AAAAAAAAAAAAAAAAAAAAAAAAAAA....

After mutation: ABAAAAAAAAAAAAAAAAAAAAAAAAA....

In the above example mutation is performed at position 2 in the sequence.

3. Replace - All occurrences of a randomly selected fitness measure within the given fitness measure se-
quence are substituted with another fitness measure randomly selected from the characters representing
the fitness measures.

Example:

Before replace: AAAAAAACCCCCCAAAABBAACCCCCAA....

After replace: AAAAAAADDDDDDAAAABBAADDDDDAA....

In the above example all occurrences of the fitness measure C are replaced with the fitness measure D.

4. Shift - The given fitness measure sequence is shifted right by a random number. The shift operation wraps
around, such that the last fitness measure in the sequence is shifted to the beginning of the sequence.

Example:

Before shift: DDDDDDDDDDAAAAAAAAAAAAAA...BBBBBB

After shift: BBBBDDDDDDDDDDAAAAAAAAAAAAAA...BB
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In the above example the fitness measure sequence is shifted right by 4 steps.

5. Reverse - The given fitness measure sequence is reversed.

Example:

Before reverse: AAAAAAAAAAAAA....BBBBBBBBBBBBBBBB

After reverse: BBBBBBBBBBBBBBBB....AAAAAAAAAAAAA

6. Random sequence - A random subsequence of fitness measures replaces a subsequence of the same length
at a random position within the given fitness measure sequence.

Example: random subsequence = HHHDDAAAGGCH

Before replacement: AAAAAAAAAAAAAAAAAAAAAAAAAAAA....

After replacement: AAHHHDDAAAGGCHAAAAAAAAAAAAAA....

In the above example the random subsequence is substituted into position 3 of the given fitness measure
sequence.

7.8 Parameter tuning

This section discusses the parameters decided during development. There are two sets of parameters, namely,
the GA parameters and the parameters used by the lower-level DFMGP. All the parameters discussed below
were tuned empirically, whereby multiple runs are conducted, and the parameters that produce the best results
with respect to both solution quality and time considerations, are selected. The parameter tuning was done to
explore a number of possible configurations.

The following GA parameters were tuned: the initial population creation routine, the genetic operators,
the selection method, the genetic operator probabilities, the population size and the number of generations.
The initial population routine described in section 7.4 was shown to produce the best results over the iterative
refinements of the GA approach. Also, the genetic operators described in section 7.7 were shown to produce
the best results. The following genetic operator probabilities were decided on: standard GA crossover is
employed with 50% probability; the remaining genetic operators described in section 7.7 are each applied
with a probability of 10%. The selection method that produced the best results was tournament selection with
a tournament size of 7. The following were decided on for the GA population size and termination criteria:
the GA evolves a population of 50 DFMs and terminates when after a total of 51 GA generations have elapsed.

The following DFMGP parameters were tuned: the population size and the number of DFMGP genera-
tions. The following configuration for the lower-level GPs produced the best result on the different problems
tackled: for each candidate DFM within the GA, the lower-level DFMGPs applying the DFM evolve a pop-
ulation of 500 candidate solution programs for 101 generations (i.e. an initial random generation 0 plus 100
additional generations); 101 generations are selected in order to allow DFMGP to improve on solution quality
over an extended period of time (the convention used in the literature [1, 252] is 51 GP generations).

7.9 Summary

This chapter described a GA approach to derive a sequence of fitness measures for DFMGP. The GA operates
at the high (or meta-) level, and searches the space of fitness measure sequences with the aim of discovering an
optimal sequence for DFMGP; at the lower-level, DFMGP attempts to solve the given problem. An overview
of the GA approach was presented. Subsequently, detail was provided of the representation scheme, initial
population creation, fitness evaluation, selection method and genetic operators used by the approach. Finally,
the parameters chosen for the GA approach were presented.
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A GP Approach for Deriving DFMs for
DFMGP

8.1 Introduction

This chapter describes the GP approach implemented to search the space of DFMs for DFMGP. The imple-
mented GP operates at the higher (or meta-) level, and aims to discover optimal fitness measure combinations
for DFMGP run on a given problem instance (or problem class); at the lower-level, DFMGP attempts to solve
the problem.

This chapter is organized as follows. Section 8.2 provides an overview of the GP approach. Subsequently,
sections 8.3, 8.4, 8.5, 8.6 and 8.7 describe the representation scheme, initial population creation, fitness eval-
uation, selection method and genetic operators used respectively. Next, section 8.8 discusses the parameters
used by the GP approach. Finally, section 8.9 summarizes the chapter.

8.2 Genetic programming for dynamic fitness measure GP

The GP approach evolves a population of candidate fitness measure combinations for DFMGP. The GP takes
one or more problems as input, and aims to discover an optimal fitness measure combination for the input
problem(s). Figure 8.1 illustrates the relationship between the GP, DFMGP and the solution program space.

A candidate DFM in the GP is interpreted as follows: on each DFMGP generation, the parse tree encoding
the DFM is traversed to obtain the fitness measure combination to use on the DFMGP generation; here, the
obtained fitness measure combination is used to evaluate the fitness of all candidate solution programs in the
current DFMGP generation; this process is repeated for all the DFMGP generations.

The GP evolves a population of NGP DFMs for gGP generations; NGP and gGP are control parameters. The
fitness of a candidate DFM is the mean best solution quality achieved by DFMGP applying the DFM. Here,
DFMGP applying the DFM is run r times in order to obtain an accurate estimate for the best solution quality,
given the stochastic nature of DFMGP; section 5.2.2 of chapter 5 established that when evolving DFMs for a
given problem, r is set at 5; otherwise, when evolving DFMs for a given problem class, DFMGP applying the
corresponding DFM is run once for each of the problems in the training set, such that the value of r is equal
to the total number of problems in the training set. The GP approach is run 30 times on the given problem(s),
such that the DFM derived by the approach is the best DFM found over the 30 runs. Overall, the GP exerts con-
siderable computational effort. However, the GP’s automation is better than a cumbersome manual search of
the space of fitness measure combinations; the latter approach is infeasible, given the combinatorial explosion
of possible combinations. Also, as in the case with the GA approach, the GP’s computational effort is con-
sidered worthwile if the derived fitness measure combinations are shown to be reusable on unseen problems,
reducing the total time necessary for the derivations.

202
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FIGURE 8.1: Overall approach

8.3 Representation

The GP uses a strongly-typed parse-tree representation comprised of the following types: 1) integer (abbrev.
I), and 2) fitness measure (abbrev. F). The following constraints are applied:

1. A candidate DFM in the GP should always return a variable of type F : thus the root of a parse tree
encoding a DFM should be a node of type F . Ultimately, F is the type of interest. Nodes of type I are
strictly used to configure an integer parameter that influences the returned fitness measure (see section
8.3.2).

2. As in all strongly-typed GP systems, the genetic operators used in the GP are constrained such that nodes
can only replace identical types during crossover and mutation events. The initial population creation
routine described in section 8.4 is also modified such that random but valid arguments are supplied to
all functions, such that only legal trees are created.

Further information on the listed types is provided in a discussion of the terminal and function sets in sections
8.3.1 and 8.3.2 respectively.

8.3.1 Terminal Set

The terminal set is comprised of the following:

1. The set {A,B,C,D,E, F,G} of type F primitives encoding the fitness measures, whereby:

i. A encodes Objective fitness (OF).
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ii. B encodes Behavioral programming (BP1).

iii. C encodes Behavioral programming with archive supplied mutation (BP2).

iv. D encodes Fitness sharing (FS).

v. E encodes Dynamic subset selection (DSS).

vi. F encodes Host-parasite coevolution (HP).

vii. G encodes Novelty search (NS1).

An additional character, H , is appended to this set when tackling path-finding problems. H encodes
novelty search with a problem-specific path-finding behavior descriptor (NS2). In chapter 4 of the study,
problem-specific path-finding descriptors were shown to enhance the potential of NS in the deceptive
path-finding domain.

2. R, a symbol representing an ephemeral random constant (ERC): an ERC is a random integer generated
during the construction of an initial population individual, which is assigned to a terminal node and
remains fixed for the duration of the GP run [1]. Each time the symbolR is chosen in the construction of
an initial tree, a different random integer is generated from the interval [0, gDFMGP ], where gDFMGP is
the maximum number of DFMGP generations.

Table 8.1 summarizes the terminal set used.

TABLE 8.1: Terminal set

Terminal Type

A F
B F
C F
D F
E F
F F
G F
H F
R I

8.3.2 Function Set

The function set is comprised of the following:

1. The set of arithmetic operators {+,−,×,%}: these are the addition, subtraction, multiplication and pro-
tected division operators respectively. The operators are used to perform operations on the terminal set
ERCs. Each arithmetic operator takes two variables of type I as input, and outputs a variable of type I.
Figure 8.2 shows an example subtree rooted at this type of operator. The subtree in the figure evaluates
to (3× 2) + (20%(2 + 8)) = 8.

2. The set of arithmetic operators {+F ,−F ,×F ,%F }: here, the subscript, F , indicates operands of type
F , distinguishing these operators from the arithmetic operators described above. The operators behave
exactly like arithmetic operators, except that they are used to add, subtract, multiply and divide the
arithmetic output returned by the fitness measures. Fig 8.3 shows an example subtree rooted at this type
of operator. The subtree in the figure evaluates to (A + C) + (B + (C × C)): here, the fitness score is
calculated individually according to each listed fitness measure (i.e. A, B and C). Subsequently, the
arithmetic outputs from A, B and C are combined according to the listed formula, to produce a final
arithmetic output of type F .
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FIGURE 8.2: Example subtree rooted at arithmetic operator of type I

FIGURE 8.3: Example subtree rooted at arithmetic operator of type F

3. Two conditional operators, IFGLT and IFGGT . The operators are used to select fitness measures con-
ditionally, based on the current DFMGP generation. Both IFGLT and IFGGT take three input param-
eters: one of type I (I1), and two of type F (F2 and F3). IFGLT and IFGGT both return an output of
type F . IFGLT is interpreted as follows: if the current DFMGP generation, g, is less than I1, apply fitness
measure F2, otherwise apply fitness measure F3. IFGGT is interpreted similarly, except that the condi-
tion evaluated is g greater than I1. To ensure that I1 specifies a valid DFMGP generation, the parameter
is adjusted to yield an integer in the interval [0, gDFMGP ], whereby gDFMGP is the maximum DFMGP
generation: this is achieved by applying the transformation I1 = (dI1e)mod(gDFMGP ) to the given value
of I1, where de and mod are the ceiling and modulus operators respectively.

Figure 8.4 shows two example subtrees rooted at IFGLT and IFGGT . The first tree is interpreted as
follows: if the current DFMGP generation, g, is less than 5, apply fitness measure A, otherwise apply fit-
ness measure B. The second tree is interpreted as follows: if the current DFMGP generation, g, is greater
than the value of ((d3× 34e)mod(gDFMGP )), apply fitness measure E, otherwise the fitness measure is
(A+ (C × C)), an arithmetic combination of the individual outputs from A and C.

Table 8.2 summarizes the function set used.

8.4 Initial population creation

As in the case with the DFMGPs running at the lower level, the GP initial population is generated using the
ramped half-and-half method, with the parse trees ranging from depths of 2 to 6 [1].
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FIGURE 8.4: Example subtrees rooted at IFGGT and IFGLT

TABLE 8.2: Function set

Function Input Types Output Type

+ 2 inputs: type I I
− 2 inputs: type I I
× 2 inputs: type I I
% 2 inputs: type I I
+F 2 inputs: type F F
−F 2 inputs: type F F
×F 2 inputs: type F F
%F 2 inputs: type F F
IFGLT 3 inputs: 1 type I, 2 type F F
IFGGT 3 inputs: 1 type I, 2 type F F

8.5 Fitness evaluation

As in the case with the GA approach, the fitness of a candidate DFM in the GP is calculated as the mean quality
of the best solution program produced by the DFMGP applying the DFM: the mean quality is obtained by
conducting a total of r runs of the DFMGP, and averaging the best quality achieved over the r runs. Equation
8.1 below summarizes the fitness evaluation of a candidate DFM.

F (iDFM ) =

∑r
j=1OF (iDFM (bestj))

r
(8.1)

whereby:

1. F (iDFM ) represents the fitness of iDFM .

2. iDFM is a candidate DFM.

3. OF (iDFM (bestj)) represents the raw OF score of the best solution program found on the jth run of DFMGP applying
iDFM . OF (iDFM (bestj)) is averaged over the r runs of the DFMGP applying iDFM .

8.6 Selection method

Tournament selection is used. The tournament size is configured by empirical tuning, whereby multiple runs
are conducted, and the tournament size that gives the best result is selected.

8.7 Genetic operators

Standard GP crossover and mutation are used [1]. A creation operator, which was observed to mitigate against
premature convergence during empirical tuning, is also used: the creation operator replaces an existing parse
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tree with a random tree, whereby the latter is created using the initial population creation routine described in
section 8.4. The probabilities for the mentioned genetic operators are configured by empirical tuning.

8.8 Parameter tuning

This section discusses the parameters decided during development. As in the case with the GA approach,
There are two sets of parameters, namely, the GP parameters and the parameters used by the lower-level
DFMGP. All the parameters discussed below were tuned empirically, whereby multiple runs are conducted,
and the parameters that produce the best results with respect to both solution quality and time considerations,
are selected. The parameter tuning was done to explore a number of possible configurations.

The following GP parameters were tuned: the maximum tree depth for the GP parse trees, the genetic
operators, the selection method, the genetic operator probabilities, the population size and the number of
generations. The maximum tree depth decided on for the GP parse trees is 17; this value for the maximum
tree depth was shown to produce the best results over the iterative refinements of the GP approach. Also,
the genetic operators described in section 8.7 were shown to produce the best results. The following genetic
operator application rates were decided on: standard crossover, mutation and creation are employed with
probabilities of 80%, 10% and 10% respectively. The selection method that produced the best results was
tournament selection with a tournament size of 7. The following were decided on for the GP population size
and termination criteria: the GP evolves a population of 50 DFMs and terminates when after a total of 51 GP
generations have elapsed. This configuration of the population size and termination criteria are the same as
were decided for the GA approach, so that the total number of DFM fitness evaluations conducted by the GA
and GP approaches are comparable.

The lower-level DFMGP parameters used by the GP approach are the same as were used by the GA ap-
proach. For each candidate DFM within the GP, the lower-level DFMGPs applying the DFM evolve a pop-
ulation of 500 candidate solution programs for 101 generations (i.e. an initial random generation 0 plus 100
additional generations).

8.9 Summary

This chapter described a GP approach to derive a sequence of fitness measures for DFMGP. The GP operates at
the high (or meta-) level, and searches the space of fitness measure combinations with the aim of discovering
an optimal combination for DFMGP; at the lower-level, DFMGP attempts to solve the given problem. An
overview of the GP approach was presented. Subsequently, detail was provided of the representation scheme,
initial population creation, fitness evaluation, selection method and genetic operators used by the approach.
Finally, the parameters chosen for the GP approach were presented.



Chapter 9

Results and Discussion

9.1 Introduction

This chapter details the results of the two approaches developed to achieve the objectives outlined in chapter
5. Section 9.2 presents the results of the GA approach for deriving DFMs for DFMGP, and DFMGP applying
these DFMs (DFMGPGA). Section 9.3 presents the results of the GP approach for deriving DFMs for DFMGP,
and DFMGP applying these DFMs (DFMGPGP ). Section 9.4 presents a comparison of the two approaches
results. Finally, section 9.5 draws conclusions on the study based on the results presented.

9.2 Results of the GA approach and DFMGPGA

This section presents the results obtained by the approach described in chapter 7, namely a GA approach
for deriving DFMs for DFMGP. Section 9.2.1 discusses the results obtained from testing the effectiveness of
the GA approach and DFMGPGA. Subsequently, section 9.2.2 presents the results obtained from testing the
reusability of the derived DFMs within problem classes. Next, section 9.2.3 presents the results obtained from
testing the reusability of the derived DFMs on real world problems. Finally, section 9.2.4 presents an analysis of
the derived DFMs to identify the fitness measures that suit the different phases of search for different problems.

9.2.1 Testing the effectiveness of DFMGPGA

This section presents the results obtained from comparing the performance of DFMGPGA with that of stan-
dard GP applying each of the fitness measures individually on the benchmark problems listed in table 5.1 of
chapter 5. The performance of DFMGPGA is also compared to that of DFMGP applying randomly generated
DFMs (obtained by the GA initial population creation procedure described in section 7.4 of chapter 7); the
latter approach is abbreviated as DFMGPRD1.

Table 9.1 shows the results obtained by running DFMGPGA, DFMGPRD1 and standard GP on the tack-
led problems. The table shows the best solution quality, b, achieved over 30 runs of GP/DFMGP; the table
also shows the mean, µ, and standard deviation, σ, of the best solution quality over the 30 runs. As in the
experiments conducted in chapter 4, in the Boolean and path-finding domains, the solution quality is mea-
sured as an increasing function spanning the interval [0, 1]: in the former case, this is the proportion of the
defined fitness cases solved; in the latter case, this is the proportion of the path-finding task solved. In turn,
in the symbolic regression domain, the solution quality is measured as the sum of the absolute error over the
fitness cases defined for the given problem: the quality scores span the interval [0,∞], whereby lower scores
indicate better quality. As in chapter 4, for the sake of uniformity with the Boolean and path-finding domains,
the transformation function 1− (x/(x+ 1)) is applied to each symbolic regression quality score. Therefore, all
quality scores listed in table 9.1 span the interval [0, 1], with higher scores indicating better quality.

In table 9.1, the results for NS2 are greyed out for problems other than the path-finding problems, be-
cause the behavior descriptors used in NS2 are specific to the path-finding problems (see chapter 4). Table 9.1
highlights the best performing GP approach on each problem. DFMGPGA is seen to achieve near-optimal

208
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TABLE 9.1: DFMGPGA vs. DFMGPRD1/Standard GP: Quality Scores

DFM− DFM− Standard GP
GPGA GPRD1 OF BP1 BP2 FS DSS HP NS1 NS2

Sextic
b = 1.00
µ = 0.95
σ = 0.03

b = 0.96
µ = 0.85
σ = 0.05

b = 1.00
µ = 0.86
σ = 0.03

b = 1.00
µ = 0.84
σ = 0.04

b = 1.00
µ = 0.91
σ = 0.04

b = 0.91
µ = 0.80
σ = 0.04

b = 0.93
µ = 0.85
σ = 0.06

b = 0.90
µ = 0.86
σ = 0.06

b = 0.91
µ = 0.80
σ = 0.06

Keijzer
b = 0.87
µ = 0.77
σ = 0.08

b = 0.71
µ = 0.59
σ = 0.11

b = 0.69
µ = 0.62
σ = 0.08

b = 0.71
µ = 0.59
σ = 0.09

b = 0.76
µ = 0.66
σ = 0.09

b = 0.76
µ = 0.67
σ = 0.09

b = 0.75
µ = 0.67
σ = 0.09

b = 0.73
µ = 0.65
σ = 0.07

b = 0.61
µ = 0.49
σ = 0.11

Par-7
b = 0.84
µ = 0.73
σ = 0.05

b = 0.71
µ = 0.59
σ = 0.07

b = 0.73
µ = 0.65
σ = 0.05

b = 0.62
µ = 0.58
σ = 0.02

b = 0.75
µ = 0.65
σ = 0.05

b = 0.59
µ = 0.56
σ = 0.01

b = 0.72
µ = 0.66
σ = 0.03

b = 0.58
µ = 0.54
σ = 0.01

b = 0.60
µ = 0.58
σ = 0.01

Mult-3
b = 0.99
µ = 0.97
σ = 0.01

b = 0.95
µ = 0.89
σ = 0.11

b = 0.93
µ = 0.89
σ = 0.02

b = 0.93
µ = 0.90
σ = 0.02

b = 0.96
µ = 0.92
σ = 0.01

b = 0.95
µ = 0.93
σ = 0.01

b = 0.95
µ = 0.93
σ = 0.01

b = 0.92
µ = 0.88
σ = 0.02

b = 0.74
µ = 0.71
σ = 0.02

Tart
b = 0.74
µ = 0.62
σ = 0.04

b = 0.60
µ = 0.41
σ = 0.04

b = 0.67
µ = 0.51
σ = 0.06

b = 0.64
µ = 0.52
σ = 0.09

b = 0.66
µ = 0.51
σ = 0.06

b = 0.30
µ = 0.14
σ = 0.02

b = 0.74
µ = 0.57
σ = 0.06

b = 0.65
µ = 0.48
σ = 0.07

b = 0.25
µ = 0.14
σ = 0.02

b = 0.69
µ = 0.59
σ = 0.04

Dec-
tart

b = 0.78
µ = 0.69
σ = 0.02

b = 0.50
µ = 0.43
σ = 0.03

b = 0.59
µ = 0.49
σ = 0.04

b = 0.76
µ = 0.66
σ = 0.03

b = 0.78
µ = 0.67
σ = 0.03

b = 0.52
µ = 0.46
σ = 0.02

b = 0.65
µ = 0.50
σ = 0.03

b = 0.61
µ = 0.48
σ = 0.04

b = 0.52
µ = 0.46
σ = 0.02

b = 0.68
µ = 0.56
σ = 0.03

performance on the sextic and mult-3 problems. Importantly, DFMGPGA achieves the best result on all the
tackled problems. Statistical tests are conducted to ascertain the performance advantage of DFMGPGA over
DFMGPRD1 and standard GP: the result obtained by running DFMGPGA, (µ0, σ0), is compared to that ob-
tained by running DFMGPRD1/standard GP on the same problem (µ1, σ1): here, a pairwise z-test, specified
as follows HO : µ0 = µ1, HA : µ0 > µ1, is conducted. Table 9.2 shows the resulting p-values; here, the p-values
that indicate statistical significance (at α = 0.05) are highlighted.

TABLE 9.2: DFMGPGA vs. DFMGPRD1/Standard GP: Statistical Tests

DFMGPGA

vs.
DFMGPRD1

DFM -
GPGA

vs. OF

DFM -
GPGA

vs. BP1

DFM -
GPGA

vs. BP2

DFM -
GPGA

vs. FS

DFM -
GPGA

vs. DSS

DFM -
GPGA

vs. HP

DFM -
GPGA

vs. NS1

DFM -
GPGA

vs. NS2
Sextic 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00

Keijzer 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Par-7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Mult-3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Tart 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.03

Dec-tart 0.00 0.00 0.03 . 0.05 0.00 0.00 0.00 0.00 0.00

Tables 9.1 and 9.2 indicate that DFMGPGA largely achieves better quality than both DFMGPRD1 and
standard GP at the 5% level of significance. Standard GP with BP2 offers competitive performance on the
deceptive tartarus problem, while standard GP with DSS and standard GP with NS2 offer competitive perfor-
mance on the tartarus problem; from the observations in section 4.3.1 of chapter 4, recall that BP2 achieves the
highest solution quality on the deceptive tartarus problem, while DSS and NS2 achieve the highest solution
quality on the tartarus problem. Nevertheless, DFMGPGA consistently achieves significantly better perfor-
mance than standard GP on most of the problems. Hence DFMGPGA is observed to be more effective than
standard GP on the problems. Furthermore, the GA evolution is shown to be an important component of
deriving the DFMs, as DFMGPGA consistently outperforms DFMGPRD1. The GA is however observed to
be a power-hungry approach: the GA executes a colossal number of DFMGP runs in the quest to discover an
optimal DFM. Table 9.3 shows the total time taken to train the GA and subsequently runDFMGPGA applying
the evolved DFM (this time is abbreviated as GA + DFMGPGA); the time is compared to the time taken to
run standard GP.
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TABLE 9.3: GA + DFMGPGA vs. Standard GP: Execution Time (seconds)

GA + Standard GP
DFMGPGA OF BP1 BP2 FS DSS HP NS1 NS2

Sextic 2.30× 107 6.28× 100 1.93× 103 7.93× 103 5.40× 100 4.10× 100 5.75× 100 9.30× 101

Keijzer 4.25× 107 1.53× 103 6.75× 103 8.34× 103 1.03× 103 4.28× 102 5.18× 102 3.69× 103

Par-7 1.90× 108 4.07× 104 6.68× 104 9.95× 104 4.19× 104 3.58× 103 4.04× 103 5.78× 104

Mult-3 1.69× 108 2.67× 104 3.54× 104 4.01× 104 2.73× 104 8.81× 103 9.21× 103 3.04× 104

Tart 1.41× 108 3.74× 104 7.74× 104 7.94× 104 3.81× 104 8.91× 103 9.02× 103 6.18× 104 6.20× 104

Dec-
tart

1.17× 108 3.66× 104 7.01× 104 7.22× 104 4.01× 104 9.02× 103 9.13× 103 6.84× 104 6.11× 104

The key observation in table 9.3 is that the total time taken to train the GA and subsequently execute
DFMGPGA is markedly higher than the time taken to run standard GP. This is expected because of the addi-
tional computational effort incurred by the GA. The GA’s computational expense can however prove worth-
while if the evolved DFMs generalize to unseen problem instances; in this case, given a problem class, the GA
need only be executed once, in order to evolve a general problem solver for the class. In this vein, the ensuing
sections use training and test sets to verify the reusability of the evolved DFMs.

9.2.2 Testing the reusability of the derived DFMs within problem classes

This section presents the results obtained from comparing the performance of DFMGPGA, DFMGPRD1 and
standard GP on the problem classes listed in table 5.2 of chapter 5.

Table 9.4 shows the results obtained by running DFMGPGA on unseen instances of the sextic prob-
lem class; here the GA is trained on the sextic training set defined in table 5.2 of chapter 5; subsequently,
DFMGPGA applying the derived DFM is run on the test set; tests 1 to 10 represent test set problems defined
in table 5.2. Table 9.4 shows the best solution quality, b, achieved over 30 runs of GP/DFMGP; the table also
shows the mean, µ, and standard deviation, σ, of the best solution quality over the 30 runs. Table 9.4 highlights
the GP approaches that achieve the best mean quality scores on each problem.

Table 9.4 shows that DFMGPGA achieves among the best results on all problems. Standard GP with BP2
performs just as well as DFMGPGA for the second test problem producing the same best and average fitness
over the 30 runs. Similarly, standard GP with BP2 produces the same average fitness over the 30 runs for test
10, however DFMGPGA produces a better best fitness. Similar to the solution quality results obtained for the
sextic problem in section 4.3.1 of chapter 4, BP2’s high performance on the sextic problem class is attributed
to these problems being inherently modular; the sextic problems are modular, because useful lower-order
functions, such as x2, are reused to construct the sextic function. Thus BP is expected to do well in the sextic
problem class, because BP exploits modularity [5]. Nevertheless, DFMGPGA generally outperforms BP2 by
producing the best results for all the test problems. The justification for DFMGPGA’s performance advantage
is discussed in section 9.2.4.

Statistical tests, identical to those reported in table 9.2, are conducted to ascertain the performance ad-
vantage of DFMGPGA over DFMGPRD1 and standard GP in the sextic class. Table 9.5 shows the resulting
p-values; the p-values that indicate statistical significance (at α = 0.05) are highlighted in the table. The results
in table 9.5 ascertain that DFMGPGA largely outperforms both DFMGPRD1 and standard GP at the 5% level
of significance. Also, standard GP with BP2 achieves on par performance with DFMGPGA on two of the
problems.

Table 9.6 shows the results obtained by running DFMGP on unseen instances of the Keijzer problem class:
tests 1 to 10 represent the test set problems defined in table 5.2 of chapter 5. The best, b, mean, µ, and standard
deviation, σ, of the best solution quality achieved over 30 GP/DFMGP runs are shown. The best perform-
ing GP approaches are highlighted in the table. Table 9.6 shows that DFMGPGA achieves among the best
results on all problems. Conversely, standard GP achieves varied results with no particular fitness measure
demonstrating a consistent performance advantage.
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TABLE 9.4: DFMGPGA vs. DFMGPRD1/Standard GP: Sextic Class - Test Set Quality Scores

DFM− DFM− Standard GP
GPGA GPRD1 OF BP1 BP2 FS DSS HP NS1

Test 1
b = 0.98
µ = 0.94
σ = 0.03

b = 0.89
µ = 0.71
σ = 0.18

b = 0.90
µ = 0.85
σ = 0.06

b = 0.72
µ = 0.68
σ = 0.11

b = 0.93
µ = 0.89
σ = 0.02

b = 0.89
µ = 0.85
σ = 0.03

b = 0.89
µ = 0.82
σ = 0.06

b = 0.92
µ = 0.86
σ = 0.04

b = 0.90
µ = 0.82
σ = 0.06

Test 2
b = 0.80
µ = 0.68
σ = 0.09

b = 0.74
µ = 0.48
σ = 0.22

b = 0.74
µ = 0.65
σ = 0.09

b = 0.67
µ = 0.56
σ = 0.07

b = 0.80
µ = 0.68
σ = 0.11

b = 0.36
µ = 0.25
σ = 0.10

b = 0.74
µ = 0.63
σ = 0.13

b = 0.72
µ = 0.62
σ = 0.09

b = 0.31
µ = 0.22
σ = 0.06

Test 3
b = 0.99
µ = 0.90
σ = 0.08

b = 0.81
µ = 0.42
σ = 0.24

b = 0.85
µ = 0.81
σ = 0.06

b = 0.84
µ = 0.78
σ = 0.06

b = 0.89
µ = 0.85
σ = 0.05

b = 0.43
µ = 0.30
σ = 0.07

b = 0.89
µ = 0.74
σ = 0.13

b = 0.81
µ = 0.70
σ = 0.09

b = 0.29
µ = 0.20
σ = 0.05

Test 4
b = 0.69
µ = 0.52
σ = 0.09

b = 0.67
µ = 0.29
σ = 0.18

b = 0.60
µ = 0.37
σ = 0.09

b = 0.62
µ = 0.38
σ = 0.07

b = 0.67
µ = 0.42
σ = 0.08

b = 0.29
µ = 0.10
σ = 0.04

b = 0.50
µ = 0.33
σ = 0.06

b = 0.50
µ = 0.30
σ = 0.09

b = 0.17
µ = 0.13
σ = 0.04

Test 5
b = 0.72
µ = 0.50
σ = 0.08

b = 0.65
µ = 0.25
σ = 0.22

b = 0.52
µ = 0.34
σ = 0.06

b = 0.43
µ = 0.27
σ = 0.06

b = 0.52
µ = 0.40
σ = 0.07

b = 0.25
µ = 0.10
σ = 0.07

b = 0.40
µ = 0.22
σ = 0.05

b = 0.40
µ = 0.20
σ = 0.07

b = 0.09
µ = 0.05
σ = 0.02

Test 6
b = 0.70
µ = 0.46
σ = 0.09

b = 0.59
µ = 0.20
σ = 0.19

b = 0.20
µ = 0.13
σ = 0.05

b = 0.22
µ = 0.15
σ = 0.06

b = 0.34
µ = 0.29
σ = 0.07

b = 0.14
µ = 0.08
σ = 0.04

b = 0.33
µ = 0.17
σ = 0.05

b = 0.30
µ = 0.17
σ = 0.05

b = 0.04
µ = 0.02
σ = 0.02

Test 7
b = 0.64
µ = 0.55
σ = 0.09

b = 0.59
µ = 0.35
σ = 0.18

b = 0.60
µ = 0.48
σ = 0.06

b = 0.54
µ = 0.46
σ = 0.05

b = 0.61
µ = 0.50
σ = 0.06

b = 0.21
µ = 0.11
σ = 0.07

b = 0.59
µ = 0.44
σ = 0.13

b = 0.53
µ = 0.42
σ = 0.09

b = 0.19
µ = 0.11
σ = 0.05

Test 8
b = 0.39
µ = 0.25
σ = 0.08

b = 0.33
µ = 0.15
σ = 0.21

b = 0.24
µ = 0.16
σ = 0.09

b = 0.29
µ = 0.19
σ = 0.07

b = 0.33
µ = 0.20
σ = 0.09

b = 0.20
µ = 0.09
σ = 0.05

b = 0.24
µ = 0.18
σ = 0.09

b = 0.19
µ = 0.11
σ = 0.09

b = 0.13
µ = 0.07
σ = 0.05

Test 9
b = 0.69
µ = 0.47
σ = 0.07

b = 0.60
µ = 0.21
σ = 0.19

b = 0.22
µ = 0.15
σ = 0.10

b = 0.27
µ = 0.20
σ = 0.07

b = 0.42
µ = 0.35
σ = 0.08

b = 0.20
µ = 0.15
σ = 0.07

b = 0.26
µ = 0.13
σ = 0.09

b = 0.26
µ = 0.16
σ = 0.07

b = 0.17
µ = 0.11
σ = 0.06

Test 10
b = 0.90
µ = 0.77
σ = 0.09

b = 0.81
µ = 0.40
σ = 0.19

b = 0.60
µ = 0.48
σ = 0.10

b = 0.81
µ = 0.72
σ = 0.07

b = 0.87
µ = 0.77
σ = 0.08

b = 0.55
µ = 0.43
σ = 0.11

b = 0.80
µ = 0.69
σ = 0.09

b = 0.81
µ = 0.69
σ = 0.09

b = 0.41
µ = 0.33
σ = 0.06

TABLE 9.5: DFMGPGA vs. DFMGPRD1/Standard GP: Sextic Class - Statistical Tests

DFMGPGA

vs.
DFMGPRD1

DFM -
GPGA

vs. OF

DFM -
GPGA

vs. BP1

DFM -
GPGA

vs. BP2

DFM -
GPGA

vs. FS

DFM -
GPGA

vs. DSS

DFM -
GPGA

vs. HP

DFM -
GPGA

vs. NS1
Test 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Test 2 0.00 0.03 0.00 .0.29 0.00 0.00 0.00 0.00

Test 3 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00

Test 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Test 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Test 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Test 7 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00

Test 8 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00

Test 9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Test 10 0.00 0.00 0.01 .0.27 0.00 0.00 0.00 0.00

Table 9.7 shows the result of statistical tests conducted to ascertain the performance advantage of DFM -
GPGA overDFMGPRD1 and standard GP in the Keijzer class; the p-values that indicate statistical significance
(at α = 0.05) are highlighted in the table. Table 9.7 indicates that while standard GP performs on par with
DFMGPGA in a number of instances, DFMGPGA outperforms both DFMGPRD1 and standard GP at the
5% level of significance on most of the problems. On the problem instances where standard GP performs
on par with DFMGPGA, one may argue that it is easier to simply try standard GP with the different fitness
measures on the given problem, and select the best result; this would also be less computationally expensive



212 Chapter 9. Results and Discussion

TABLE 9.6: DFMGPGA vs. DFMGPRD1/Standard GP: Keijzer-6 Class - Test Set Quality Scores

DFM− DFM− Standard GP
GPGA GPRD1 OF BP1 BP2 FS DSS HP NS1

Test 1
b = 0.62
µ = 0.50
σ = 0.08

b = 0.55
µ = 0.28
σ = 0.21

b = 0.55
µ = 0.43
σ = 0.10

b = 0.54
µ = 0.43
σ = 0.09

b = 0.57
µ = 0.44
σ = 0.08

b = 0.50
µ = 0.32
σ = 0.20

b = 0.60
µ = 0.47
σ = 0.07

b = 0.52
µ = 0.41
σ = 0.08

b = 0.28
µ = 0.18
σ = 0.06

Test 2
b = 0.89
µ = 0.76
σ = 0.08

b = 0.90
µ = 0.31
σ = 0.25

b = 0.84
µ = 0.73
σ = 0.09

b = 0.89
µ = 0.76
σ = 0.10

b = 0.82
µ = 0.73
σ = 0.08

b = 0.64
µ = 0.56
σ = 0.11

b = 0.90
µ = 0.75
σ = 0.07

b = 0.86
µ = 0.75
σ = 0.10

b = 0.53
µ = 0.39
σ = 0.11

Test 3
b = 0.81
µ = 0.69
σ = 0.11

b = 0.75
µ = 0.30
σ = 0.19

b = 0.75
µ = 0.63
σ = 0.07

b = 0.72
µ = 0.61
σ = 0.06

b = 0.75
µ = 0.64
σ = 0.06

b = 0.50
µ = 0.34
σ = 0.11

b = 0.72
µ = 0.63
σ = 0.06

b = 0.72
µ = 0.64
σ = 0.06

b = 0.27
µ = 0.17
σ = 0.05

Test 4
b = 0.79
µ = 0.67
σ = 0.09

b = 0.70
µ = 0.42
σ = 0.30

b = 0.71
µ = 0.65
σ = 0.06

b = 0.70
µ = 0.62
σ = 0.06

b = 0.72
µ = 0.65
σ = 0.05

b = 0.44
µ = 0.32
σ = 0.09

b = 0.78
µ = 0.67
σ = 0.05

b = 0.69
µ = 0.62
σ = 0.07

b = 0.33
µ = 0.20
σ = 0.10

Test 5
b = 0.62
µ = 0.51
σ = 0.07

b = 0.50
µ = 0.22
σ = 0.35

b = 0.42
µ = 0.31
σ = 0.08

b = 0.50
µ = 0.40
σ = 0.08

b = 0.58
µ = 0.44
σ = 0.13

b = 0.20
µ = 0.14
σ = 0.04

b = 0.49
µ = 0.36
σ = 0.10

b = 0.43
µ = 0.31
σ = 0.11

b = 0.29
µ = 0.07
σ = 0.05

Test 6
b = 0.59
µ = 0.47
σ = 0.07

b = 0.50
µ = 0.22
σ = 0.21

b = 0.40
µ = 0.29
σ = 0.09

b = 0.41
µ = 0.34
σ = 0.08

b = 0.46
µ = 0.39
σ = 0.05

b = 0.12
µ = 0.09
σ = 0.05

b = 0.46
µ = 0.27
σ = 0.07

b = 0.20
µ = 0.10
σ = 0.11

b = 0.07
µ = 0.05
σ = 0.01

Test 7
b = 0.41
µ = 0.26
σ = 0.09

b = 0.21
µ = 0.10
σ = 0.22

b = 0.14
µ = 0.12
σ = 0.01

b = 0.29
µ = 0.18
σ = 0.06

b = 0.27
µ = 0.20
σ = 0.06

b = 0.15
µ = 0.10
σ = 0.02

b = 0.25
µ = 0.18
σ = 0.05

b = 0.22
µ = 0.15
σ = 0.05

b = 0.08
µ = 0.05
σ = 0.02

Test 8
b = 0.27
µ = 0.18
σ = 0.05

b = 0.22
µ = 0.10
σ = 0.19

b = 0.11
µ = 0.09
σ = 0.03

b = 0.11
µ = 0.09
σ = 0.03

b = 0.16
µ = 0.10
σ = 0.05

b = 0.15
µ = 0.10
σ = 0.03

b = 0.18
µ = 0.12
σ = 0.05

b = 0.15
µ = 0.12
σ = 0.03

b = 0.08
µ = 0.04
σ = 0.02

Test 9
b = 0.22
µ = 0.14
σ = 0.06

b = 0.18
µ = 0.09
σ = 0.15

b = 0.16
µ = 0.09
σ = 0.04

b = 0.16
µ = 0.10
σ = 0.03

b = 0.18
µ = 0.11
σ = 0.05

b = 0.12
µ = 0.08
σ = 0.02

b = 0.15
µ = 0.10
σ = 0.03

b = 0.15
µ = 0.10
σ = 0.03

b = 0.08
µ = 0.03
σ = 0.02

Test 10
b = 0.20
µ = 0.12
σ = 0.09

b = 0.18
µ = 0.08
σ = 0.10

b = 0.14
µ = 0.09
σ = 0.03

b = 0.14
µ = 0.10
σ = 0.02

b = 0.18
µ = 0.10
σ = 0.05

b = 0.10
µ = 0.07
σ = 0.02

b = 0.14
µ = 0.10
σ = 0.03

b = 0.17
µ = 0.12
σ = 0.03

b = 0.05
µ = 0.03
σ = 0.01

than training the GA on the problem class, and subsequently runningDFMGPGA applying the derived DFM.
Nevertheless, DFMGPGA produces a better result than standard GP on most of the problems.

TABLE 9.7: DFMGPGA vs. DFMGPRD1/Standard GP: Keijzer-6 Class - Statistical Tests

DFMGPGA

vs.
DFMGPRD1

DFM -
GPGA

vs. OF

DFM -
GPGA

vs. BP1

DFM -
GPGA

vs. BP2

DFM -
GPGA

vs. FS

DFM -
GPGA

vs. DSS

DFM -
GPGA

vs. HP

DFM -
GPGA

vs. NS1
Test 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Test 2 0.00 0.00 0.36 0.00 0.00 0.32 0.20 0.00

Test 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Test 4 0.00 0.03 0.00 0.04 0.00 0.27 0.04 0.00

Test 5 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00

Test 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Test 7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Test 8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Test 9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Test 10 0.00 0.00 0.01 0.03 0.00 0.03 0.39 0.00
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Table 9.8 shows the results obtained by running DFMGP on unseen instances of the even-N parity problem
class: tests 1 to 10 represent the test set problems defined in table 5.2 of section 5. The best, b, mean, µ, and
standard deviation, σ, of the best solution quality achieved over 30 GP/DFMGP runs are shown. The best
performing GP approaches are highlighted in the table. Table 9.8 shows that DFMGPGA achieves the best
result on all problems. Standard GP with BP2 also performs competitively in the class: this is attributed to
BP exploiting the inherent modularity of the even-N parity problems [1]. Nevertheless, DFMGPGA is seen to
consistently outperform BP2.

TABLE 9.8: DFMGPGA vs. DFMGPRD1/Standard GP: Even-N Parity Class - Test Set Quality
Scores

DFM− DFM− Standard GP
GPGA GPRD1 OF BP1 BP2 FS DSS HP NS1

Test 1
b = 0.65
µ = 0.59
σ = 0.04

b = 0.59
µ = 0.50
σ = 0.08

b = 0.50
µ = 0.50
σ = 0.00

b = 0.57
µ = 0.53
σ = 0.02

b = 0.59
µ = 0.55
σ = 0.04

b = 0.51
µ = 0.50
σ = 0.00

b = 0.50
µ = 0.50
σ = 0.00

b = 0.55
µ = 0.54
σ = 0.01

b = 0.51
µ = 0.50
σ = 0.00

Test 2
b = 0.59
µ = 0.54
σ = 0.02

b = 0.55
µ = 0.51
σ = 0.06

b = 0.50
µ = 0.50
σ = 0.00

b = 0.53
µ = 0.50
σ = 0.01

b = 0.57
µ = 0.53
σ = 0.01

b = 0.50
µ = 0.50
σ = 0.00

b = 0.50
µ = 0.50
σ = 0.00

b = 0.50
µ = 0.50
σ = 0.00

b = 0.50
µ = 0.50
σ = 0.00

Test 3
b = 0.58
µ = 0.54
σ = 0.03

b = 0.56
µ = 0.50
σ = 0.04

b = 0.50
µ = 0.50
σ = 0.00

b = 0.50
µ = 0.50
σ = 0.00

b = 0.54
µ = 0.52
σ = 0.01

b = 0.50
µ = 0.50
σ = 0.00

b = 0.50
µ = 0.50
σ = 0.00

b = 0.50
µ = 0.50
σ = 0.00

b = 0.50
µ = 0.50
σ = 0.00

Test 4
b = 0.55
µ = 0.52
σ = 0.01

b = 0.53
µ = 0.50
σ = 0.03

b = 0.50
µ = 0.50
σ = 0.00

b = 0.50
µ = 0.50
σ = 0.00

b = 0.53
µ = 0.51
σ = 0.01

b = 0.50
µ = 0.50
σ = 0.00

b = 0.50
µ = 0.50
σ = 0.00

b = 0.50
µ = 0.50
σ = 0.00

b = 0.50
µ = 0.50
σ = 0.00

Test 5
b = 0.54
µ = 0.52
σ = 0.01

b = 0.52
µ = 0.50
σ = 0.00

b = 0.50
µ = 0.50
σ = 0.00

b = 0.50
µ = 0.50
σ = 0.00

b = 0.50
µ = 0.50
σ = 0.00

b = 0.50
µ = 0.50
σ = 0.00

b = 0.50
µ = 0.50
σ = 0.00

b = 0.50
µ = 0.50
σ = 0.00

b = 0.50
µ = 0.50
σ = 0.00

Table 9.9 shows the result of statistical tests conducted to ascertain the performance advantage of DFM -
GPGA over DFMGPRD1 and standard GP in the even-N parity class; the p-values that indicate statistical
significance (at α = 0.05) are highlighted in the table. The results in table 9.9 show that DFMGPGA largely
outperforms both DFMGPRD1 and standard GP at the 5% level of significance.

TABLE 9.9: DFMGPGA vs. DFMGPRD1/Standard GP: Even-N Parity Class - Statistical Tests

DFMGPGA

vs.
DFMGPRD1

DFM -
GPGA

vs. OF

DFM -
GPGA

vs. BP1

DFM -
GPGA

vs. BP2

DFM -
GPGA

vs. FS

DFM -
GPGA

vs. DSS

DFM -
GPGA

vs. HP

DFM -
GPGA

vs. NS1
Test 1 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00

Test 2 0.00 0.00 0.00 .0.06 0.00 0.00 0.00 0.00

Test 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Test 4 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00

Test 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 9.10 shows the results obtained by running DFMGP on unseen instances of the mult-N problem class:
tests 1 to 10 represent the test set problems defined in table 5.2 of section 5. The best, b, mean, µ, and standard
deviation, σ, of the best solution quality achieved over 30 GP/DFMGP runs are shown. The best performing
GP approach is highlighted in the table. Table 9.10 shows that DFMGPGA achieves the best result on all
problems. Conversely, standard GP achieves varied results with no particular fitness measure demonstrating
a consistent performance advantage.

Table 9.11 shows the result of statistical tests conducted to ascertain the performance advantage of DFM -
GPGA overDFMGPRD1 and standard GP in the mult-N class; the p-values that indicate statistical significance
(at α = 0.05) are highlighted in the table. Table 9.11 shows that DFMGPGA outperforms both DFMGPRD1

and standard GP at the 5% level of significance on all problems.
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TABLE 9.10: DFMGPGA vs. DFMGPRD1/Standard GP: N-bit Multiplier Class - Test Set Qual-
ity scores

DFM− DFM− Standard GP
GPGA GPRD1 OF BP1 BP2 FS DSS HP NS1

Test 1
b = 0.82
µ = 0.79
σ = 0.01

b = 0.78
µ = 0.60
σ = 0.09

b = 0.75
µ = 0.74
σ = 0.01

b = 0.77
µ = 0.75
σ = 0.01

b = 0.78
µ = 0.75
σ = 0.01

b = 0.72
µ = 0.71
σ = 0.01

b = 0.74
µ = 0.73
σ = 0.01

b = 0.74
µ = 0.72
σ = 0.01

b = 0.60
µ = 0.57
σ = 0.01

Test 2
b = 0.79
µ = 0.77
σ = 0.01

b = 0.70
µ = 0.55
σ = 0.01

b = 0.71
µ = 0.69
σ = 0.01

b = 0.72
µ = 0.70
σ = 0.02

b = 0.72
µ = 0.70
σ = 0.01

b = 0.69
µ = 0.67
σ = 0.02

b = 0.69
µ = 0.67
σ = 0.02

b = 0.60
µ = 0.54
σ = 0.06

b = 0.69
µ = 0.67
σ = 0.01

Test 3
b = 0.76
µ = 0.73
σ = 0.01

b = 0.72
µ = 0.50
σ = 0.01

b = 0.68
µ = 0.66
σ = 0.01

b = 0.71
µ = 0.69
σ = 0.01

b = 0.71
µ = 0.69
σ = 0.01

b = 0.68
µ = 0.66
σ = 0.01

b = 0.73
µ = 0.70
σ = 0.01

b = 0.60
µ = 0.52
σ = 0.04

b = 0.62
µ = 0.60
σ = 0.01

Test 4
b = 0.59
µ = 0.54
σ = 0.01

b = 0.54
µ = 0.50
σ = 0.01

b = 0.50
µ = 0.50
σ = 0.00

b = 0.50
µ = 0.50
σ = 0.00

b = 0.52
µ = 0.50
σ = 0.01

b = 0.50
µ = 0.50
σ = 0.00

b = 0.50
µ = 0.50
σ = 0.00

b = 0.50
µ = 0.50
σ = 0.00

b = 0.50
µ = 0.50
σ = 0.00

Test 5
b = 0.54
µ = 0.52
σ = 0.01

b = 0.50
µ = 0.50
σ = 0.00

b = 0.50
µ = 0.50
σ = 0.00

b = 0.50
µ = 0.50
σ = 0.00

b = 0.50
µ = 0.50
σ = 0.00

b = 0.50
µ = 0.50
σ = 0.00

b = 0.50
µ = 0.50
σ = 0.00

b = 0.50
µ = 0.50
σ = 0.00

b = 0.50
µ = 0.50
σ = 0.00

TABLE 9.11: DFMGPGA vs. DFMGPRD1/Standard GP: N-bit Multiplier Class - Statistical Tests

DFMGPGA

vs.
DFMGPRD1

DFM -
GPGA

vs. OF

DFM -
GPGA

vs. BP1

DFM -
GPGA

vs. BP2

DFM -
GPGA

vs. FS

DFM -
GPGA

vs. DSS

DFM -
GPGA

vs. HP

DFM -
GPGA

vs. NS1
Test 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Test 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Test 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Test 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Test5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 9.12 shows the results obtained by running DFMGP on unseen instances of the tartarus problem class:
tests 1 to 10 represent the test set problems defined in table 5.2 of section 5. The best, b, mean, µ, and standard
deviation, σ, of the best solution quality achieved over 30 GP/DFMGP runs are shown. The best performing
GP approach is highlighted in the table. Table 9.12 shows that DFMGPGA achieves among the best results on
all problems. Standard GP with NS2 is seen to perform competitively in the class; the performance advantage
is attributed to NS2’s task-specific behavior descriptors, which mitigate against deception [4] on the deceptive
tasks. Standard GP with NS2 was also shown to perform competitively on a problem from the tartarus class
in section 4.3.1 of chapter 4. Also, similarly to the results obtained for the tartarus problem in chapter 4, table
9.12 shows that standard GP with DSS performs competitively in the tartarus class. Nevertheless, the results
in table 9.12 show that DFMGPGA largely outperforms standard GP by consistently producing the best result
on all the test instances.

Table 9.13 shows the result of statistical tests conducted to ascertain the performance advantage of DFM -
GPGA over DFMGPRD1 and standard GP in the tartarus class; in the table, the p-values that indicate statis-
tical significance (at α = 0.05) are highlighted. The p-values in table 9.13 show that standard GP with DSS
performs on par with DFMGPGA on test 7, while standard GP with NS2 performs on par with DFMGPGA

on test 8. Nevertheless, DFMGPGA largely outperforms both DFMGPRD1 and standard GP at the 5% level
of significance on the tackled problems.

Table 9.14 shows the results obtained by running DFMGP on unseen instances of the deceptive tartarus
problem class: test 1 to 10 represent the test set problems defined in table 5.2 of section 5. The best, b, mean, µ,
and standard deviation, σ, of the best solution quality achieved over 30 GP/DFMGP runs are shown. The best
performing GP approaches are highlighted in the table. Table 9.14 shows that DFMGPGA achieves among
the best results on all problems. Standard GP with BP2 and NS2 are also seen to perform competitively in
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TABLE 9.12: DFMGPGA vs. DFMGPRD1/Standard GP: Tartarus Class - Test Set Quality Scores

DFM− DFM− Standard GP
GPGA GPRD1 OF BP1 BP2 FS DSS HP NS1 NS2

Test 1
b = 0.53
µ = 0.51
σ = 0.01

b = 0.47
µ = 0.32
σ = 0.05

b = 0.45
µ = 0.37
σ = 0.05

b = 0.44
µ = 0.34
σ = 0.06

b = 0.42
µ = 0.36
σ = 0.05

b = 0.25
µ = 0.23
σ = 0.01

b = 0.42
µ = 0.36
σ = 0.05

b = 0.40
µ = 0.33
σ = 0.06

b = 0.24
µ = 0.23
σ = 0.01

b = 0.46
µ = 0.40
σ = 0.02

Test 2
b = 0.45
µ = 0.43
σ = 0.01

b = 0.39
µ = 0.28
σ = 0.05

b = 0.33
µ = 0.25
σ = 0.05

b = 0.36
µ = 0.28
σ = 0.05

b = 0.36
µ = 0.30
σ = 0.05

b = 0.19
µ = 0.18
σ = 0.02

b = 0.34
µ = 0.29
σ = 0.04

b = 0.36
µ = 0.27
σ = 0.04

b = 0.19
µ = 0.18
σ = 0.01

b = 0.39
µ = 0.36
σ = 0.01

Test 3
b = 0.73
µ = 0.69
σ = 0.05

b = 0.69
µ = 0.29
σ = 0.05

b = 0.67
µ = 0.52
σ = 0.11

b = 0.63
µ = 0.52
σ = 0.08

b = 0.60
µ = 0.52
σ = 0.07

b = 0.09
µ = 0.06
σ = 0.02

b = 0.64
µ = 0.50
σ = 0.08

b = 0.65
µ = 0.50
σ = 0.08

b = 0.11
µ = 0.07
σ = 0.02

b = 0.63
µ = 0.57
σ = 0.05

Test 4
b = 0.57
µ = 0.53
σ = 0.03

b = 0.51
µ = 0.32
σ = 0.05

b = 0.45
µ = 0.35
σ = 0.08

b = 0.44
µ = 0.37
σ = 0.06

b = 0.48
µ = 0.40
σ = 0.05

b = 0.33
µ = 0.25
σ = 0.02

b = 0.46
µ = 0.39
σ = 0.05

b = 0.46
µ = 0.37
σ = 0.04

b = 0.26
µ = 0.24
σ = 0.01

b = 0.54
µ = 0.50
σ = 0.02

Test 5
b = 0.64
µ = 0.55
σ = 0.06

b = 0.60
µ = 0.35
σ = 0.05

b = 0.53
µ = 0.46
σ = 0.06

b = 0.48
µ = 0.40
σ = 0.05

b = 0.50
µ = 0.44
σ = 0.05

b = 0.33
µ = 0.29
σ = 0.04

b = 0.42
µ = 0.35
σ = 0.04

b = 0.42
µ = 0.35
σ = 0.03

b = 0.35
µ = 0.28
σ = 0.03

b = 0.59
µ = 0.50
σ = 0.05

Test 6
b = 0.62
µ = 0.50
σ = 0.06

b = 0.48
µ = 0.30
σ = 0.05

b = 0.46
µ = 0.32
σ = 0.08

b = 0.44
µ = 0.35
σ = 0.06

b = 0.44
µ = 0.35
σ = 0.06

b = 0.27
µ = 0.25
σ = 0.01

b = 0.48
µ = 0.43
σ = 0.04

b = 0.37
µ = 0.30
σ = 0.05

b = 0.29
µ = 0.29
σ = 0.00

b = 0.38
µ = 0.35
σ = 0.05

Test 7
b = 0.48
µ = 0.38
σ = 0.06

b = 0.44
µ = 0.30
σ = 0.05

b = 0.40
µ = 0.33
σ = 0.07

b = 0.40
µ = 0.33
σ = 0.07

b = 0.34
µ = 0.29
σ = 0.06

b = 0.18
µ = 0.17
σ = 0.01

b = 0.44
µ = 0.38
σ = 0.04

b = 0.37
µ = 0.30
σ = 0.05

b = 0.22
µ = 0.21
σ = 0.01

b = 0.46
µ = 0.35
σ = 0.05

Test 8
b = 0.52
µ = 0.44
σ = 0.06

b = 0.46
µ = 0.25
σ = 0.05

b = 0.40
µ = 0.33
σ = 0.07

b = 0.43
µ = 0.34
σ = 0.06

b = 0.46
µ = 0.39
σ = 0.05

b = 0.26
µ = 0.24
σ = 0.01

b = 0.48
µ = 0.42
σ = 0.05

b = 0.45
µ = 0.39
σ = 0.04

b = 0.25
µ = 0.24
σ = 0.01

b = 0.48
µ = 0.44
σ = 0.05

Test 9
b = 0.54
µ = 0.45
σ = 0.06

b = 0.46
µ = 0.22
σ = 0.05

b = 0.45
µ = 0.30
σ = 0.05

b = 0.46
µ = 0.37
σ = 0.06

b = 0.42
µ = 0.35
σ = 0.05

b = 0.25
µ = 0.22
σ = 0.01

b = 0.46
µ = 0.40
σ = 0.04

b = 0.40
µ = 0.35
σ = 0.05

b = 0.26
µ = 0.25
σ = 0.01

b = 0.46
µ = 0.40
σ = 0.05

Test 10
b = 0.54
µ = 0.48
σ = 0.06

b = 0.50
µ = 0.28
σ = 0.05

b = 0.43
µ = 0.29
σ = 0.06

b = 0.46
µ = 0.40
σ = 0.05

b = 0.50
µ = 0.42
σ = 0.05

b = 0.25
µ = 0.24
σ = 0.01

b = 0.48
µ = 0.42
σ = 0.06

b = 0.42
µ = 0.32
σ = 0.07

b = 0.25
µ = 0.24
σ = 0.01

b = 0.49
µ = 0.44
σ = 0.06

TABLE 9.13: DFMGPGA vs. DFMGPRD1/Standard GP: Tartarus Class - Statistical Tests

DFMGPGA

vs.
DFMGPRD1

DFM -
GPGA

vs. OF

DFM -
GPGA

vs. BP1

DFM -
GPGA

vs. BP2

DFM -
GPGA

vs. FS

DFM -
GPGA

vs. DSS

DFM -
GPGA

vs. HP

DFM -
GPGA

vs. NS1

DFM -
GPGA

vs. NS2
Test 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Test 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Test 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Test 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Test 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Test 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Test 7 0.00 0.00 0.00 0.00 0.00 .0.35 0.00 0.00 0.00

Test 8 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 .0.39
Test 9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Test 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

the class. As in section 4.3.1 of chapter 4, BP2’s performance advantage is attributed to the following: the
problems in the deceptive tartarus class are highly deceptive due to penalization of some of the necessary
intermediate steps towards achieving the goal behavior [212]; BP favors the retention of subtrees that achieve
useful intermediate results: thus the fitness measure mitigates against the loss of useful subtrees, which would
otherwise be discarded by OF measures. NS2’s performance advantage shown in table 9.14 is attributed to the
task-specific behavior descriptors mitigating against deception on the deceptive tasks. Nevertheless, table 9.14
shows that DFMGPGA largely outperforms standard GP by consistently producing the best result on all the
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test instances.
Table 9.15 shows the result of statistical tests conducted to ascertain the performance advantage of DFM -

GPGA overDFMGPRD1 and standard GP in the deceptive tartarus class; in the table, the p-values that indicate
statistical significance (at α = 0.05) are highlighted. The p-values shown in table 9.15 show that standard
GP with BP2 performs on par with DFMGPGA on test 8. However, DFMGPGA largely outperforms both
DFMGPRD1 and standard GP at the 5% level of significance on the tackled problems.

TABLE 9.14: DFMGPGA vs. DFMGPRD1/Standard GP: Deceptive Tartarus Class - Test Set
Quality Scores

DFM− DFM− Standard GP
GPGA GPRD1 OF BP1 BP2 FS DSS HP NS1 NS2

Test 1
b = 0.50
µ = 0.48
σ = 0.01

b = 0.47
µ = 0.38
σ = 0.01

b = 0.43
µ = 0.41
σ = 0.01

b = 0.42
µ = 0.40
σ = 0.01

b = 0.46
µ = 0.43
σ = 0.02

b = 0.41
µ = 0.40
σ = 0.01

b = 0.42
µ = 0.40
σ = 0.01

b = 0.41
µ = 0.40
σ = 0.01

b = 0.37
µ = 0.36
σ = 0.02

b = 0.46
µ = 0.43
σ = 0.02

Test 2
b = 0.49
µ = 0.46
σ = 0.01

b = 0.49
µ = 0.33
σ = 0.01

b = 0.43
µ = 0.40
σ = 0.01

b = 0.43
µ = 0.40
σ = 0.01

b = 0.47
µ = 0.43
σ = 0.01

b = 0.35
µ = 0.34
σ = 0.01

b = 0.42
µ = 0.40
σ = 0.01

b = 0.42
µ = 0.40
σ = 0.01

b = 0.37
µ = 0.36
σ = 0.01

b = 0.46
µ = 0.42
σ = 0.01

Test 3
b = 0.75
µ = 0.72
σ = 0.01

b = 0.71
µ = 0.40
σ = 0.01

b = 0.53
µ = 0.48
σ = 0.03

b = 0.65
µ = 0.63
σ = 0.02

b = 0.71
µ = 0.68
σ = 0.03

b = 0.43
µ = 0.43
σ = 0.01

b = 0.52
µ = 0.49
σ = 0.02

b = 0.50
µ = 0.44
σ = 0.02

b = 0.45
µ = 0.43
σ = 0.01

b = 0.69
µ = 0.65
σ = 0.02

Test 4
b = 0.46
µ = 0.43
σ = 0.01

b = 0.39
µ = 0.34
σ = 0.01

b = 0.39
µ = 0.38
σ = 0.01

b = 0.39
µ = 0.35
σ = 0.02

b = 0.47
µ = 0.40
σ = 0.03

b = 0.33
µ = 0.32
σ = 0.01

b = 0.40
µ = 0.38
σ = 0.02

b = 0.40
µ = 0.39
σ = 0.02

b = 0.31
µ = 0.31
σ = 0.01

b = 0.44
µ = 0.40
σ = 0.01

Test 5
b = 0.73
µ = 0.69
σ = 0.02

b = 0.71
µ = 0.40
σ = 0.01

b = 0.51
µ = 0.47
σ = 0.03

b = 0.68
µ = 0.61
σ = 0.05

b = 0.70
µ = 0.64
σ = 0.02

b = 0.43
µ = 0.43
σ = 0.01

b = 0.54
µ = 0.49
σ = 0.04

b = 0.50
µ = 0.45
σ = 0.04

b = 0.43
µ = 0.43
σ = 0.01

b = 0.69
µ = 0.62
σ = 0.02

Test 6
b = 0.60
µ = 0.48
σ = 0.03

b = 0.50
µ = 0.38
σ = 0.01

b = 0.43
µ = 0.38
σ = 0.03

b = 0.38
µ = 0.37
σ = 0.01

b = 0.48
µ = 0.44
σ = 0.03

b = 0.35
µ = 0.35
σ = 0.00

b = 0.45
µ = 0.40
σ = 0.03

b = 0.44
µ = 0.40
σ = 0.03

b = 0.35
µ = 0.35
σ = 0.00

b = 0.43
µ = 0.40
σ = 0.02

Test 7
b = 0.60
µ = 0.48
σ = 0.03

b = 0.50
µ = 0.38
σ = 0.01

b = 0.43
µ = 0.38
σ = 0.03

b = 0.38
µ = 0.37
σ = 0.01

b = 0.48
µ = 0.44
σ = 0.03

b = 0.35
µ = 0.35
σ = 0.00

b = 0.45
µ = 0.40
σ = 0.03

b = 0.44
µ = 0.40
σ = 0.03

b = 0.35
µ = 0.35
σ = 0.00

b = 0.43
µ = 0.40
σ = 0.02

Test 8
b = 0.51
µ = 0.45
σ = 0.03

b = 0.47
µ = 0.36
σ = 0.01

b = 0.43
µ = 0.40
σ = 0.02

b = 0.43
µ = 0.40
σ = 0.02

b = 0.48
µ = 0.45
σ = 0.02

b = 0.34
µ = 0.34
σ = 0.00

b = 0.43
µ = 0.40
σ = 0.02

b = 0.44
µ = 0.40
σ = 0.03

b = 0.39
µ = 0.41
σ = 0.01

b = 0.44
µ = 0.39
σ = 0.03

Test 9
b = 0.49
µ = 0.45
σ = 0.03

b = 0.46
µ = 0.35
σ = 0.01

b = 0.37
µ = 0.36
σ = 0.01

b = 0.39
µ = 0.35
σ = 0.03

b = 0.49
µ = 0.42
σ = 0.01

b = 0.33
µ = 0.32
σ = 0.00

b = 0.42
µ = 0.39
σ = 0.02

b = 0.39
µ = 0.37
σ = 0.01

b = 0.33
µ = 0.32
σ = 0.00

b = 0.46
µ = 0.41
σ = 0.02

Test 10
b = 0.48
µ = 0.43
σ = 0.04

b = 0.46
µ = 0.35
σ = 0.01

b = 0.36
µ = 0.33
σ = 0.03

b = 0.39
µ = 0.35
σ = 0.03

b = 0.42
µ = 0.38
σ = 0.04

b = 0.30
µ = 0.29
σ = 0.00

b = 0.39
µ = 0.37
σ = 0.02

b = 0.38
µ = 0.36
σ = 0.02

b = 0.30
µ = 0.29
σ = 0.00

b = 0.40
µ = 0.37
σ = 0.02

The results in this section show that the GA-evolved DFMs are reusable within the problem classes: the
DFMs solve unseen problem instances to optimality. Furthermore, the importance of using the GA to evolve
the DFMs is ascertained by the fact that DFMGP applying randomly generated DFMs does not fair as well as
DFMGP applying the evolved DFMs on the problem classes.
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TABLE 9.15: DFMGPGA vs. DFMGPRD1/Standard GP: Deceptive Tartarus Class - Statistical
Tests

DFMGPGA

vs.
DFMGPRD1

DFM -
GPGA

vs. OF

DFM -
GPGA

vs. BP1

DFM -
GPGA

vs. BP2

DFM -
GPGA

vs. FS

DFM -
GPGA

vs. DSS

DFM -
GPGA

vs. HP

DFM -
GPGA

vs. NS1

DFM -
GPGA

vs. NS2

Test 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Test 2 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00

Test 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Test 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Test 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Test 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Test 7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Test 8 0.00 0.00 0.00 .0.36 0.00 0.00 0.00 0.00 0.00

Test 9 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00

Test
10

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

9.2.3 Testing the reusability of the derived DFMs on real world problems

This section presents the results obtained from comparing the performance of DFMGPGA, DFMGPRD1 and
standard GP on the real-world problems listed in table 5.3 of chapter 5.

Table 9.16 shows the results obtained on the real-world problems. For the regression problems in the
table, DFMGPP1 represents DFMGPGA employing the DFM trained on the sextic training set, DFMGPP2

represents DFMGPGA employing the DFM trained on the Keijzer training set, and DFMGPUN represents
DFMGPGA employing the DFM trained on the combined sextic and Keijzer training sets. For the Boolean
problems in the table, DFMGPP1 represents DFMGPGA employing the DFM trained on the even-N parity
training set, DFMGPP2 represents DFMGPGA employing the DFM trained on the mult-N training set, and
DFMGPUN representsDFMGPGA employing the DFM trained on the combined even-N and mult-N training
sets. In the ensuing discussion, the term DFMGP approach refers to DFMGPGA together with the data it is
trained on. Table 9.16 shows the best, b, mean, µ, and standard deviation, σ, of the best solution quality
achieved over 30 GP/DFMGP runs. The best performing GP approach is highlighted in the table.

TABLE 9.16: DFMGP vs Standard GP: Real-World Problem Quality Scores

DFM− DFM− DFM− Standard GP
GPP1 GPP2 GPUN OF BP1 BP2 FS DSS HP NS1

Dow
b = 0.44
µ = 0.39
σ = 0.02

b = 0.44
µ = 0.39
σ = 0.02

b = 0.48
µ = 0.42
σ = 0.03

b = 0.43
µ = 0.36
σ = 0.02

b = 0.43
µ = 0.37
σ = 0.02

b = 0.43
µ = 0.37
σ = 0.02

b = 0.41
µ = 0.36
σ = 0.02

b = 0.43
µ = 0.39
σ = 0.02

b = 0.41
µ = 0.39
σ = 0.02

b = 0.36
µ = 0.34
σ = 0.01

Abalone
b = 0.14
µ = 0.13
σ = 0.02

b = 0.14
µ = 0.13
σ = 0.01

b = 0.17
µ = 0.15
σ = 0.01

b = 0.14
µ = 0.13
σ = 0.01

b = 0.14
µ = 0.14
σ = 0.01

b = 0.14
µ = 0.14
σ = 0.01

b = 0.13
µ = 0.12
σ = 0.01

b = 0.14
µ = 0.13
σ = 0.01

b = 0.14
µ = 0.13
σ = 0.01

b = 0.12
µ = 0.12
σ = 0.01

Sensor
b = 0.95
µ = 0.90
σ = 0.03

b = 1.00
µ = 0.99
σ = 0.02

b = 0.95
µ = 0.90
σ = 0.03

b = 0.97
µ = 0.90
σ = 0.03

b = 0.96
µ = 0.90
σ = 0.02

b = 0.99
µ = 0.93
σ = 0.02

b = 1.00
µ = 0.95
σ = 0.02

b = 0.97
µ = 0.90
σ = 0.02

b = 0.97
µ = 0.89
σ = 0.02

b = 0.84
µ = 0.81
σ = 0.01

Decoder
b = 0.95
µ = 0.92
σ = 0.02

b = 1.00
µ = 0.99
σ = 0.02

b = 0.95
µ = 0.91
σ = 0.02

b = 0.92
µ = 0.88
σ = 0.02

b = 0.94
µ = 0.89
σ = 0.02

b = 1.00
µ = 0.90
σ = 0.02

b = 1.00
µ = 0.95
σ = 0.01

b = 0.96
µ = 0.90
σ = 0.02

b = 0.96
µ = 0.90
σ = 0.02

b = 0.80
µ = 0.76
σ = 0.02

Table 9.16 shows that in each case, one of the DFMGP approaches achieves the best result. DFMGPUN

achieves the best result on the Dow and abalone problems, while DFMGPP2 achieves the best result on the
sensor and decoder problems. Statistical tests are conducted to ascertain the significance of the differences
observed. For each DFMGP approach, the result obtained on each problem, (µ0, σ0), is compared to the same
for the other DFMGP approaches or standard GP, (µ1, σ1): whereby, a pairwise z-test, specified as followsHO :

µ0 = µ1, HA : µ0 > µ1, is conducted. Tables 9.17, 9.18 and 9.19 show the resulting p-values for DFMGPP1,
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DFMGPP2 and DFMGPUN respectively; the p-values that indicate statistical significance (at α = 0.05) are
highlighted.

TABLE 9.17: DFMGPP1 vs. DFMGPP2/DFMGPUN/Standard GP: Real-World Problems -
Statistical Tests

DFMGPP1

vs.
DFMGPP2

DFMGPP1

vs.
DFMGPUN

DFM -
GPP1

vs. OF

DFM -
GPP1

vs. BP1

DFM -
GPP1

vs. BP2

DFM -
GPP1

vs. FS

DFM -
GPP1

vs. DSS

DFM -
GPP1

vs. HP

DFM -
GPP1

vs. NS1
Dow 0.32 0.00 0.14 0.39 0.19 0.00 0.16 0.28 0.00

Abalone 0.35 0.00 0.22 0.14 0.10 0.00 0.10 0.11 0.00

Sensor 0.00 0.32 0.25 0.29 0.00 0.00 0.36 0.27 0.00

Decoder 0.00 0.36 0.00 0.02 0.15 0.00 0.22 0.21 0.00

TABLE 9.18: DFMGPP2 vs. DFMGPP1/DFMGPUN/Standard GP: Real-World Problems -
Statistical Tests

DFMGPP2

vs.
DFMGPP1

DFMGPP2

vs.
DFMGPUN

DFM -
GPP2

vs. OF

DFM -
GPP2

vs. BP1

DFM -
GPP2

vs. BP2

DFM -
GPP2

vs. FS

DFM -
GPP2

vs. DSS

DFM -
GPP2

vs. HP

DFM -
GPP2

vs. NS1
Dow 0.32 0.00 0.36 0.41 0.34 0.00 0.33 0.13 0.00

Abalone 0.35 0.00 0.13 0.06 0.05 0.00 0.08 0.10 0.00

Sensor 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Decoder 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

TABLE 9.19: DFMGPUN vs. DFMGPP1/DFMGPP2/Standard GP: Real-World Problems -
Statistical Tests

DFMGPUN

vs.
DFMGPP1

DFMGPUN

vs.
DFMGPP2

DFM -
GPUN

vs. OF

DFM -
GPUN

vs. BP1

DFM -
GPUN

vs. BP2

DFM -
GPUN

vs. FS

DFM -
GPUN

vs. DSS

DFM -
GPUN

vs. HP

DFM -
GPUN

vs. NS1
Dow 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Abalone 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Sensor 0.32 0.00 0.34 0.27 0.00 0.00 0.21 0.24 0.00

Decoder 0.36 0.00 0.00 0.04 0.15 0.00 0.24 0.26 0.17

Tables 9.17, 9.18 and 9.19 show that DFMGPP2 consistently outperforms standard GP and the other
DFMGP approaches on the sensor and decoder problems; on the other hand, DFMGPP1 and DFMGPUN

do not perform reliably on the problems. The tables also show that DFMGPUN consistently outperforms
standard GP and the other DFMGP approaches on the Dow and abalone problems, whereas DFMGPP1 and
DFMGPP2 do not perform reliably on the same problems. Overall, the inference gained from the data is that
DFMGP has the capacity to outperform standard GP. However, it is difficult to a priori ascertain the particular
DFMGP approach that will achieve superior performance. The performance of DFMGP on unseen problems
has to do with how similar the unseen problems are compared to the training problems with respect to prob-
lem properties addressed by the different fitness measures e.g. local optima, deceptiveness, bloat. Therefore,
definitive training sets for DFMGP can only be obtained if prior knowledge exists of shared problem proper-
ties. Ultimately, it would be useful if simple heuristics exist that can be used to a priori detect the properties
of the real-world problems. Subsequently, training sets with the same properties can be used to deduce suit-
able DFMs for DFMGP. Preliminary research already exists with respect to detecting problem properties. For
example, section 3.3.1 of chapter 3 discussed the heuristic proposed by Krawiek and Wieloch [158] to detect
modularity in Boolean function synthesis GP; the discussion established that the heuristic proposed in [158] is
not applicable to problems with continuous (i.e. non-discrete) outputs. Overall, more work is required with
respect to detecting the properties of different problems.
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9.2.4 Analysis of the derived DFMs

This section presents an analysis of the derived DFMs to identify the fitness measures that suit the different
phases of search for different problems.

Table 9.20 lists the DFMs evolved by the GA for the problem classes defined in table 5.2 of chapter 5. Each
DFM displayed is the best DFM found over the 30 runs of the GA approach on the given training problems;
while there are elements of the GA population with similar fitness over the 30 runs, there are no other elements
with the same fitness.

TABLE 9.20: Evolved Fitness Measure Sequences - Problem Classes

Class Evolved DFM

Sextic
G
0
G
1
G
2
G
3
G
4
G
5
G
6
G
7
G
8
G
9
G
10
G
11
G
12
G
13
G
14
G
15
G
16
G
17
G
18
G
19
B
20
B
21
B
22
G
23
B
24
B
25
B
26
B
27
B
28
B
29
B
30
B
31
B
32
B
33
B
34
B
35
B
36
B
37
B
38
B
39
B
40
B
41
B
42
B
43
B
44
B
45
B
46
B
47
B
48
B
49
B
50

B
51
B
52
B
53
B
54
B
55
B
56
B
57
B
58
B
59
B
60
C
61
C
62
C
63
C
64
C
65
C
66
C
67
C
68
C
69
C
70
C
71
B
72
B
73
B
74
B
75
B
76
B
77
B
78
B
79
B
80
B
81
B
82
B
83
B
84
B
85
B
86
B
87
B
88
B
89
B
90
B
91
B
92
B
93
B
94
B
95
B
96
B
97
B
98
B
99
B
100

Keijzer
D
0
D
1
D
2
D
3
D
4
D
5
D
6
D
7
D
8
D
9
D
10
D
11
D
12
D
13
D
14
D
15
D
16
D
17
D
18
D
19
D
20
D
21
D
22
D
23
D
24
E
25
E
26
A
27
A
28
A
29
A
30
A
31
C
32
C
33
C
34
C
35
B
36
B
37
B
38
B
39
B
40
B
41
B
42
B
43
B
44
B
45
B
46
B
47
B
48
B
49
B
50

B
51
B
52
B
53
B
54
B
55
B
56
B
57
B
58
B
59
B
60
B
61
B
62
B
63
B
64
B
65
B
66
B
67
B
68
B
69
B
70
B
71
B
72
B
73
B
74
B
75
F
76
F
77
F
78
F
79
F
80
F
81
F
82
F
83
F
84
F
85
F
86
F
87
F
88
F
89
F
90
F
91
F
92
F
93
F
94
F
95
F
96
F
97
F
98
F
99
F
100

Par-N
G
0
G
1
G
2
G
3
G
4
G
5
G
6
G
7
G
8
G
9
G
10
G
11
G
12
G
13
G
14
G
15
G
16
C
17
C
18
C
19
C
20
C
21
C
22
C
23
C
24
C
25
C
26
C
27
C
28
C
29
C
30
C
31
C
32
C
33
G
34
G
35
C
36
C
37
C
38
C
39
C
40
C
41
C
42
C
43
C
44
C
45
C
46
C
47
C
48
C
49
C
50

E
51
E
52
E
53
E
54
E
55
E
56
E
57
E
58
E
59
E
60
E
61
E
62
E
63
E
64
E
65
E
66
E
67
E
68
E
69
E
70
G
71
C
71
C
72
C
73
C
74
C
75
C
76
C
77
C
78
C
79
C
80
C
81
C
82
C
83
C
84
C
85
C
86
C
87
C
88
C
89
C
90
C
91
C
92
C
93
C
94
C
95
E
96
E
97
F
98
E
99
E
100

Mult-N
D
0
D
1
D
2
D
3
D
4
D
5
D
6
D
7
D
8
D
9
D
10
D
11
D
12
D
13
D
14
D
15
D
16
D
17
D
18
D
19
D
20
D
21
D
22
D
23
D
24
D
25
D
26
D
27
D
28
D
29
D
30
D
31
D
32
D
33
D
34
D
35
D
36
D
37
D
38
D
39
D
40
D
41
D
42
D
43
D
44
D
45
D
46
D
47
D
48
D
49
D
50

B
51
D
52
D
53
D
54
D
55
D
56
D
57
C
58
C
59
A
60
A
61
C
62
C
63
C
64
C
65
C
66
C
67
C
68
D
69
D
70
C
71
C
72
C
73
C
74
C
75
C
76
C
77
E
78
E
79
E
80
C
81
C
82
C
83
C
84
C
85
C
86
C
87
C
88
C
89
E
90
E
91
E
92
E
93
E
94
B
95
B
96
B
97
B
98
C
99
A
100

Tart
H
0
H
1
H
2
H
3
H
4
H
5
H
6
H
7
H
8
H
9
H
10
H
11
H
12
F
13
H
14
H
15
H
16
H
17
H
18
H
19
H
20
H
21
H
22
H
23
H
24
H
25
A
26
H
27
H
28
E
29
H
30
H
31
H
32
H
33
H
34
H
35
H
36
H
37
H
38
H
39
H
40
H
41
H
42
H
43
H
44
H
45
H
46
H
47
H
48
H
49

H
50
H
51
H
52
H
53
H
54
H
55
H
56
H
57
H
58
H
59
H
60
H
61
H
62
H
63
F
64
B
65
B
66
B
67
B
68
B
69
B
70
B
71
B
72
B
73
B
74
A
75
A
76
A
77
A
78
A
79
A
80
B
81
B
82
B
83
B
84
B
85
B
86
B
87
B
88
B
89
B
90
B
91
B
92
B
93
B
94
B
95
B
96
B
97
B
98
B
99
B
100

Dec-tart
H
0
H
1
H
2
H
3
H
4
H
5
H
6
H
7
H
8
H
9
H
10
H
11
H
12
H
13
H
14
H
15
H
16
H
17
H
18
H
19
H
20
H
21
B
22
C
23
C
24
C
25
C
26
C
27
C
28
C
29
C
30
C
31
C
32
C
33
C
34
C
35
C
36
C
37
D
38
C
39
C
40
C
41
C
42
C
43
C
44
C
45
C
46
C
47
C
48
C
49
H
50

D
51
D
52
D
53
D
54
D
55
D
56
C
57
C
58
C
59
C
60
C
61
C
62
C
63
C
64
C
65
C
66
C
67
C
68
C
69
C
70
C
71
C
72
C
73
C
74
C
75
C
76
C
77
C
78
C
79
C
80
C
81
C
82
C
83
B
84
B
85
B
86
A
87
A
88
A
89
A
90
A
91
A
92
A
93
A
94
A
95
A
96
B
97
B
98
B
99
C
100

Table 9.20 shows that NS1 (encoded as G) is selected for the preliminary generations in the sextic and par-
N classes; in turn, FS (encoded as D) is selected for the preliminary generations in the Keijzer and mult-N
classes. Table 9.20 also shows that BP1 and BP2 (encoded as B and C respectively), are placed towards the
middle and/or the end of the DFMs in the different classes.

Wolpert and Macready’s [14] No Free Lunch (NFL) theorems justify the observation that different DFMs
are evolved for the different problem classes. By virtue of the NFL, there is no universally optimal DFM;
rather, the GA evolves different DFMs for the different classes, because different fitness measures suit the
different classes. For example, table 9.20 shows that NS, rather than the objective-based FS, is selected for the
par-N class. This a likely consequence of complete abandonment of the search objective in NS: even-N parity
problems are associated with fitness plateaus [265], which make it difficult for objective-based fitness measures
to solve the problems; conversely, NS can mitigate stagnation in plateaus, because the fitness measure does not
rely on the structure of the objective fitness landscape [4]. As another example, long chains of BP1 and/or BP2
are seen in the DFMs evolved for the sextic and par-N classes: the sextic and par-N problems are inherently
modular [1, 77]; hence BP, which exploits modularity, can greatly enhance search in the problems. Long chains
of BP2 are also seen in the DFM evolved for the dec-tart class: this version of the tartarus problem is highly
deceptive due to penalization of some of the necessary intermediate steps towards achieving the goal behavior
[212]; BP favors the retention of subtrees that achieve useful intermediate results: thus the fitness measure
mitigates against the loss of useful subtrees, which would otherwise be discarded. As a further example,
long chains of NS2 are seen in the DFMs evolved for the path-finding problems; the task-specific behavior
descriptors defined for this fitness measure are suited to the highly deceptive path-finding problem domain.

The DFMs shown in table 9.20 are further justified by the exploration-exploitation trade-off that drives
evolutionary search. Exploration is a de facto global search, whereby a large portion of the evolutionary
algorithm search space is probed with the hope of finding promising solutions that are yet to be refined [22,
266]: exploration promotes coverage of the search space, and as such, is useful in the initial GP generations.
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In turn, exploitation is a de facto local search that consists of probing a limited - but promising - region of the
search space: exploitation is used to refine promising solutions in later GP generations, when good points in
the search space have been discovered [22, 266]. FS and NS are ideal choices for the initial GP generations
because the fitness measures support exploration. Section 3.4 of chapter 3 established that FS maintains the
diversity of the GP population, permitting GP to explore new niches (or optima). In turn, section 3.7 of chapter
3 established that NS favors exploration by explicitly rewarding diversification from prior behaviors. Both FS
and NS fall short when it comes to exploitation. FS enforces the maintenance of niches on all GP generations:
this can inhibit necessary exploitation and convergence in later GP generations. In this vein, McKay [6, 15]
empirically shows that FS works better when confined to the initial GP generations, and proceeded by a
more exploitative fitness measure in later generations. NS inhibits exploitation, because the fitness measure
maintains the same level of selective pressure in favor of diversification, even when near-optimal solutions
are found [204]. In a study applying NS to an evolutionary algorithm (EA), Mouret [204] postulates that NS
can work better when confined to the initial generations of the EA, proceeded by a more exploitative fitness
measure in later generations. This hypothesis is empirically proved in [204]: Mouret [204] implements a
multi-objective approach that automatically switches between NS and a more exploitative OF measure. In
switching between the fitness measures, Mouret’s approach [204] achieves better exploitation capability in
later generations compared to NS applied individually throughout the EA. In table 9.20, FS and NS dominate
and are mostly confined to the initial generations of the DFMs.

In a similar vein, section 3.3.2 of chapter 3 motivates that BP performs well when useful modules (or sub-
programs) can be detected. Whereas useful modules can exist in the randomly generated initial population in
trivial problems, more complex problems may require that further exploration is conducted in the preliminary
GP generations, as a precursor to BP: thus, useful modules can be made available for BP to exploit in later GP
generations. In table 9.20, BP is selected for the middle and later DFMGP generations in the problem classes
tackled.

Table 9.21 shows the DFM evolved from the combined training set of the sextic and Keijzer classes, and
the DFM evolved from the combined training set of the par-N and mult-N classes. The DFMs in table 9.21 are
similar to those shown in table 9.20, whereby the explorative fitness measures FS and NS (encoded as D and
G respectively) dominate the preliminary DFMGP generations. Furthermore, the more exploitative BP1 and
BP2 (encoded as B and C respectively) are selected for the middle and later DFMGP generations.

In summary, tables 9.20 and 9.21 show that the GA approach used to evolve the DFMs for DFMGP has
the ability to select the fitness measures that suit the particular on-going phase of GP. For the problem classes
tackled, explorative fitness measures are selected for and confined to the initial DFMGP generations, while the
more exploitative fitness measures are selected in later DFMGP generations. Different DFMs are also evolved
with the different training sets. Therefore, the expectation is that DFMs will generalize to unseen problems
that share the specific properties of the problems used in the training sets.

TABLE 9.21: Evolved Fitness Measure Sequences - Combined Training Sets

Class Evolved DFM

Sextic +
Keijzer

G
0
G
1
G
2
G
3
D
4
D
5
D
6
D
7
D
8
D
9
D
10
D
11
G
12
G
13
G
14
G
15
G
16
G
17
G
18
G
19
D
20
D
21
D
22
D
23
B
24
B
25
B
26
B
27
B
28
B
29
B
30
B
31
B
32
B
33
B
34
B
35
B
36
B
37
B
38
B
39
B
40
B
41
B
42
B
43
B
44
B
45
B
46
B
47
B
48
B
49
B
50

B
51
B
52
B
53
B
54
B
55
B
56
B
57
B
58
B
59
B
60
C
61
C
62
C
63
C
64
C
65
C
66
C
67
C
68
C
69
C
70
C
71
C
72
C
73
C
74
C
75
B
76
B
77
B
78
B
79
B
80
B
81
B
82
B
83
B
84
B
85
B
86
B
87
B
88
B
89
B
90
B
91
B
92
B
93
B
94
C
95
C
96
C
97
C
98
C
99
C
100

Par-N +
Mult-N

G
0
G
1
G
2
G
3
D
4
D
5
D
6
D
7
D
8
D
9
G
10
G
11
G
12
G
13
D
14
G
15
G
16
G
17
G
18
D
19
G
20
G
21
C
22
C
23
D
24
C
25
C
26
C
27
C
28
C
29
C
30
G
31
G
32
C
33
C
34
C
35
C
36
C
37
C
38
C
39
C
40
C
41
B
42
B
43
B
44
B
45
B
46
B
47
B
48
B
49
B
50

B
51
B
52
B
53
B
54
B
55
B
56
B
57
B
58
B
59
B
60
B
61
B
62
B
63
C
64
C
65
C
66
C
67
C
68
C
69
C
70
C
71
C
72
C
73
C
74
C
75
C
76
C
77
C
78
E
79
C
80
C
81
A
82
A
83
A
84
A
85
A
86
A
87
A
88
C
89
C
90
C
91
C
92
C
93
C
94
C
95
C
96
C
97
C
98
C
99
C
100

9.3 Results of the GP approach and DFMGPGP

This section presents the results obtained by the approach described in chapter 8, namely a GP approach
for deriving DFMs for DFMGP. Section 9.3.1 discusses the results obtained from testing the effectiveness of
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the GP approach and DFMGPGP . Subsequently, section 9.3.2 presents the results obtained from testing the
reusability of the derived DFMs within problem classes. Next, section 9.3.3 presents the results obtained from
testing the reusability of the derived DFMs on real world problems. Finally, section 9.3.4 presents an analysis of
the derived DFMs to identify the fitness measures that suit the different phases of search for different problems.

9.3.1 Testing the effectiveness of DFMGPGP

This section presents the results obtained from comparing the performance of DFMGPGP with that of stan-
dard GP on the benchmark problems listed in table 5.1 of chapter 5. The performance of DFMGPGP is also
compared to that of DFMGP applying randomly generated DFMs (obtained by the GP initial population cre-
ation procedure described in section 8.4 of chapter 8); the latter approach is abbreviated as DFMGPRD2.

Table 9.22 shows the results obtained by running DFMGPGP , DFMGPRD2 and standard GP on the tack-
led problems. The table shows the best solution quality, b, achieved over 30 runs of GP/DFMGP; the table
also shows the mean, µ, and standard deviation, σ, of the best solution quality over the 30 runs. As in the
results presented for the GA approach in section 9.2, the transformation function 1 − (x/(x + 1)) is applied
to all symbolic regression quality scores listed in table 9.22, such that all quality scores in the table span the
interval [0, 1], with higher scores indicating better quality.

TABLE 9.22: DFMGPGP vs. DFMGPRD2/Standard GP: Quality Scores

DFM− DFM− Standard GP
GPGP GPRD2 OF BP1 BP2 FS DSS HP NS1 NS2

Sextic
b = 0.99
µ = 0.94
σ = 0.03

b = 0.97
µ = 0.85
σ = 0.05

b = 1.00
µ = 0.86
σ = 0.03

b = 1.00
µ = 0.84
σ = 0.04

b = 1.00
µ = 0.91
σ = 0.04

b = 0.91
µ = 0.80
σ = 0.04

b = 0.93
µ = 0.85
σ = 0.06

b = 0.90
µ = 0.86
σ = 0.06

b = 0.91
µ = 0.80
σ = 0.06

Keijzer
b = 0.92
µ = 0.83
σ = 0.08

b = 0.70
µ = 0.58
σ = 0.11

b = 0.69
µ = 0.62
σ = 0.08

b = 0.71
µ = 0.59
σ = 0.09

b = 0.76
µ = 0.66
σ = 0.09

b = 0.76
µ = 0.67
σ = 0.09

b = 0.75
µ = 0.67
σ = 0.09

b = 0.73
µ = 0.65
σ = 0.07

b = 0.61
µ = 0.49
σ = 0.11

Par-7
b = 0.90
µ = 0.78
σ = 0.06

b = 0.73
µ = 0.57
σ = 0.07

b = 0.73
µ = 0.65
σ = 0.05

b = 0.62
µ = 0.58
σ = 0.02

b = 0.75
µ = 0.65
σ = 0.05

b = 0.59
µ = 0.56
σ = 0.01

b = 0.72
µ = 0.66
σ = 0.03

b = 0.58
µ = 0.54
σ = 0.01

b = 0.60
µ = 0.58
σ = 0.01

Mult-3
b = 0.98
µ = 0.97
σ = 0.01

b = 0.96
µ = 0.91
σ = 0.11

b = 0.93
µ = 0.89
σ = 0.02

b = 0.93
µ = 0.90
σ = 0.02

b = 0.96
µ = 0.92
σ = 0.01

b = 0.95
µ = 0.93
σ = 0.01

b = 0.95
µ = 0.93
σ = 0.01

b = 0.92
µ = 0.88
σ = 0.02

b = 0.74
µ = 0.71
σ = 0.02

Tart
b = 0.74
µ = 0.67
σ = 0.03

b = 0.60
µ = 0.41
σ = 0.04

b = 0.67
µ = 0.51
σ = 0.06

b = 0.64
µ = 0.52
σ = 0.09

b = 0.66
µ = 0.51
σ = 0.06

b = 0.30
µ = 0.14
σ = 0.02

b = 0.74
µ = 0.57
σ = 0.06

b = 0.65
µ = 0.48
σ = 0.07

b = 0.25
µ = 0.14
σ = 0.02

b = 0.69
µ = 0.59
σ = 0.04

Dec-
tart

b = 0.79
µ = 0.73
σ = 0.03

b = 0.48
µ = 0.43
σ = 0.02

b = 0.59
µ = 0.49
σ = 0.04

b = 0.76
µ = 0.66
σ = 0.03

b = 0.78
µ = 0.67
σ = 0.03

b = 0.52
µ = 0.46
σ = 0.02

b = 0.65
µ = 0.50
σ = 0.03

b = 0.61
µ = 0.48
σ = 0.04

b = 0.52
µ = 0.46
σ = 0.02

b = 0.68
µ = 0.56
σ = 0.03

Table 9.22 highlights the best performing GP approach on each problem. DFMGPGP is seen to achieve
near-optimal performance on the sextic, Keijzer, par-7 and mult-3 problems. Importantly,DFMGPGP achieves
the best result on all the tackled problems. Statistical tests are conducted to ascertain the performance advan-
tage of DFMGPGP over DFMGPRD2 and standard GP: the result obtained by running DFMGPGP , (µ0, σ0),
is compared to that obtained by running DFMGPRD2/standard GP on the same problem (µ1, σ1): here, a
pairwise z-test, specified as follows HO : µ0 = µ1, HA : µ0 > µ1, is conducted. Table 9.23 shows the resulting
p-values; here, the p-values that indicate statistical significance (at α = 0.05) are highlighted.

Tables 9.22 and 9.23 indicate that DFMGPGP achieves better quality than both DFMGPRD2 and standard
GP at the 5% level of significance on all problems. Hence DFMGPGP is observed to be more effective than
standard GP on all the tackled problems. Furthermore, the GP evolution is shown to be an important com-
ponent of deriving the DFMs, as DFMGPGP consistently outperforms DFMGPRD2. Nevertheless, as in the
case with the GA approach, the GP is observed to be a power-hungry approach, executing a colossal number
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TABLE 9.23: DFMGPGP vs. DFMGPRD2/Standard GP: Statistical Tests

DFMGPGP

vs.
DFMGPRD2

DFM -
GPGP

vs. OF

DFM -
GPGP

vs. BP1

DFM -
GPGP

vs. BP2

DFM -
GPGP

vs. FS

DFM -
GPGP

vs. DSS

DFM -
GPGP

vs. HP

DFM -
GPGP

vs. NS1

DFM -
GPGP

vs. NS2
Sextic 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Keijzer 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Par-7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Mult-3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Tart 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Dec-tart 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

of DFMGP runs in the quest to discover an optimal DFM. In this regard, table 9.24 shows the total time taken
to train the GP and subsequently run DFMGPGP applying the evolved DFM (this time is abbreviated as GP
+ DFMGPGP ); the time is compared to the time taken to run standard GP.

TABLE 9.24: GP + DFMGPGP vs. Standard GP: Execution Time (seconds)

GP + Standard GP
DFMGPGP OF BP1 BP2 FS DSS HP NS1 NS2

Sextic 3.00× 107 6.28×100 1.93×103 7.93×103 5.40×100 4.10×100 5.75×100 9.30×101

Keijzer 4.90× 107 1.53×103 6.75×103 8.34×103 1.03×103 4.28×102 5.18×102 3.69×103

Par-7 2.05× 108 4.07×104 6.68×104 9.95×104 4.19×104 3.58×103 4.04×103 5.78×104

Mult-3 1.98× 108 2.67×104 3.54×104 4.01×104 2.73×104 8.81×103 9.21×103 3.04×104

Tart 1.62× 108 3.74×104 7.74×104 7.94×104 3.81×104 8.91×103 9.02×103 6.18×104 6.20×104

Dec-
tart

1.54× 108 3.66×104 7.01×104 7.22×104 4.01×104 9.02×103 9.13×103 6.84×104 6.11×104

Similar to the results obtained for the GA approach and DFMGPGA in table 9.3 of section 9.3.1, the key
observation in table 9.24 is that the total time taken to train the GP and subsequently execute DFMGPGP is
markedly higher than the time taken to run standard GP. This is expected because of the additional compu-
tational effort incurred by the GP. As in the case with the GA approach, the GP’s computational expense can
prove worthwile if the evolved DFMs generalize to unseen problem instances; in this case, given a problem
class, the GP need only be executed once, in order to evolve a general problem solver for the class. In this vein,
the ensuing sections use training and test sets to verify the reusability of the evolved DFMs.

9.3.2 Testing the reusability of the derived DFMs within problem classes

This section presents the results obtained from comparing the performance of DFMGPGP , DFMGPRD2 and
standard GP on the problem classes listed in table 5.2 of chapter 5.

Table 9.25 shows the results obtained by running DFMGPGP on unseen instances of the sextic prob-
lem class; here the GP is trained on the sextic training set defined in table 5.2 of chapter 5; subsequently,
DFMGPGP applying the derived DFM is run on the test set; tests 1 to 10 represent test set problems defined
in table 5.2. Table 9.25 shows the best solution quality, b, achieved over 30 runs of GP/DFMGP; the table
also shows the mean, µ, and standard deviation, σ, of the best solution quality over the 30 runs. Table 9.25
highlights the GP approaches that achieve the best mean quality scores on each problem.

Table 9.25 shows that DFMGPGP achieves among the best results on all problems. Standard GP with BP2
performs competitively on the second test problem, producing the same average fitness as DFMGPGP over
the 30 runs; however, DFMGPGP produces a better best fitness on the problem. As argued in section 9.2.2,
BP2’s high performance on the sextic problem class is attributed to these problems being inherently modular,
and BP being suited to modular problems. Nevertheless, DFMGPGP outperforms BP2 by producing the best
results for all the test problems. The justification for DFMGPGP ’s performance advantage is discussed in
section 9.3.4.
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TABLE 9.25: DFMGPGP vs. DFMGPRD2/Standard GP: Sextic Class - Test Set Quality Scores

DFM− DFM− Standard GP
GPGP GPRD2 OF BP1 BP2 FS DSS HP NS1

Test 1
b = 0.99
µ = 0.94
σ = 0.04

b = 0.89
µ = 0.69
σ = 0.18

b = 0.90
µ = 0.85
σ = 0.06

b = 0.72
µ = 0.68
σ = 0.11

b = 0.93
µ = 0.89
σ = 0.02

b = 0.89
µ = 0.85
σ = 0.03

b = 0.89
µ = 0.82
σ = 0.06

b = 0.92
µ = 0.86
σ = 0.04

b = 0.90
µ = 0.82
σ = 0.06

Test 2
b = 0.83
µ = 0.68
σ = 0.10

b = 0.73
µ = 0.50
σ = 0.22

b = 0.74
µ = 0.65
σ = 0.09

b = 0.67
µ = 0.56
σ = 0.07

b = 0.80
µ = 0.68
σ = 0.11

b = 0.36
µ = 0.25
σ = 0.10

b = 0.74
µ = 0.63
σ = 0.13

b = 0.72
µ = 0.62
σ = 0.09

b = 0.31
µ = 0.22
σ = 0.06

Test 3
b = 0.97
µ = 0.90
σ = 0.07

b = 0.79
µ = 0.40
σ = 0.24

b = 0.85
µ = 0.81
σ = 0.06

b = 0.84
µ = 0.78
σ = 0.06

b = 0.89
µ = 0.85
σ = 0.05

b = 0.43
µ = 0.30
σ = 0.07

b = 0.89
µ = 0.74
σ = 0.13

b = 0.81
µ = 0.70
σ = 0.09

b = 0.29
µ = 0.20
σ = 0.05

Test 4
b = 0.69
µ = 0.52
σ = 0.09

b = 0.65
µ = 0.29
σ = 0.18

b = 0.60
µ = 0.37
σ = 0.09

b = 0.62
µ = 0.38
σ = 0.07

b = 0.67
µ = 0.42
σ = 0.08

b = 0.29
µ = 0.10
σ = 0.04

b = 0.50
µ = 0.33
σ = 0.06

b = 0.50
µ = 0.30
σ = 0.09

b = 0.17
µ = 0.13
σ = 0.04

Test 5
b = 0.70
µ = 0.50
σ = 0.08

b = 0.65
µ = 0.23
σ = 0.22

b = 0.52
µ = 0.34
σ = 0.06

b = 0.43
µ = 0.27
σ = 0.06

b = 0.52
µ = 0.40
σ = 0.07

b = 0.25
µ = 0.10
σ = 0.07

b = 0.40
µ = 0.22
σ = 0.05

b = 0.40
µ = 0.20
σ = 0.07

b = 0.09
µ = 0.05
σ = 0.02

Test 6
b = 0.72
µ = 0.46
σ = 0.09

b = 0.59
µ = 0.22
σ = 0.19

b = 0.20
µ = 0.13
σ = 0.05

b = 0.22
µ = 0.15
σ = 0.06

b = 0.34
µ = 0.29
σ = 0.07

b = 0.14
µ = 0.08
σ = 0.04

b = 0.33
µ = 0.17
σ = 0.05

b = 0.30
µ = 0.17
σ = 0.05

b = 0.04
µ = 0.02
σ = 0.02

Test 7
b = 0.64
µ = 0.52
σ = 0.11

b = 0.61
µ = 0.35
σ = 0.18

b = 0.60
µ = 0.48
σ = 0.06

b = 0.54
µ = 0.46
σ = 0.05

b = 0.61
µ = 0.50
σ = 0.06

b = 0.21
µ = 0.11
σ = 0.07

b = 0.59
µ = 0.44
σ = 0.13

b = 0.53
µ = 0.42
σ = 0.09

b = 0.19
µ = 0.11
σ = 0.05

Test 8
b = 0.40
µ = 0.26
σ = 0.08

b = 0.33
µ = 0.15
σ = 0.21

b = 0.24
µ = 0.16
σ = 0.09

b = 0.29
µ = 0.19
σ = 0.07

b = 0.33
µ = 0.20
σ = 0.09

b = 0.20
µ = 0.09
σ = 0.05

b = 0.24
µ = 0.18
σ = 0.09

b = 0.19
µ = 0.11
σ = 0.09

b = 0.13
µ = 0.07
σ = 0.05

Test 9
b = 0.72
µ = 0.47
σ = 0.07

b = 0.58
µ = 0.22
σ = 0.19

b = 0.22
µ = 0.15
σ = 0.10

b = 0.27
µ = 0.20
σ = 0.07

b = 0.42
µ = 0.35
σ = 0.08

b = 0.20
µ = 0.15
σ = 0.07

b = 0.26
µ = 0.13
σ = 0.09

b = 0.26
µ = 0.16
σ = 0.07

b = 0.17
µ = 0.11
σ = 0.06

Test 10
b = 0.90
µ = 0.78
σ = 0.09

b = 0.83
µ = 0.40
σ = 0.19

b = 0.60
µ = 0.48
σ = 0.10

b = 0.81
µ = 0.72
σ = 0.07

b = 0.87
µ = 0.77
σ = 0.08

b = 0.55
µ = 0.43
σ = 0.11

b = 0.80
µ = 0.69
σ = 0.09

b = 0.81
µ = 0.69
σ = 0.09

b = 0.41
µ = 0.33
σ = 0.06

Statistical tests, identical to those reported in table 9.23, are conducted to ascertain the performance ad-
vantage of DFMGPGP over DFMGPRD2 and standard GP in the sextic class. Table 9.26 shows the resulting
p-values; the p-values that indicate statistical significance (at α = 0.05) are highlighted in the table. The results
in table 9.26 ascertain that DFMGPGP largely outperforms both DFMGPRD2 and standard GP at the 5%
level of significance. Also, standard GP with BP2 achieves on par performance withDFMGPGP on two of the
problems.

TABLE 9.26: DFMGPGP vs. DFMGPRD2/Standard GP: Sextic Class - Statistical Tests

DFMGPGP

vs.
DFMGPRD2

DFM -
GPGP

vs. OF

DFM -
GPGP

vs. BP1

DFM -
GPGP

vs. BP2

DFM -
GPGP

vs. FS

DFM -
GPGP

vs. DSS

DFM -
GPGP

vs. HP

DFM -
GPGP

vs. NS1
Test 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Test 2 0.00 0.01 0.00 .0.27 0.00 0.00 0.00 0.00

Test 3 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00

Test 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Test 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Test 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Test 7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Test 8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Test 9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Test 10 0.00 0.00 0.00 .0.24 0.00 0.00 0.00 0.00
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Table 9.27 shows the results obtained by running DFMGP on unseen instances of the Keijzer problem
class: tests 1 to 10 represent the test set problems defined in table 5.2 of chapter 5. The best, b, mean, µ, and
standard deviation, σ, of the best solution quality achieved over 30 GP/DFMGP runs are shown. The best
performing GP approaches are highlighted in the table. Table 9.27 shows that DFMGPGP achieves among
the best results on all problems. Standard GP with HP produces the same average fitness as DFMGPGP

on test 10; nevertheless DFMGPGP produces a better best fitness on the problem. Overall, standard GP is
shown to achieve varied results with no particular fitness measure demonstrating a consistent performance
advantage.

TABLE 9.27: DFMGPGP vs. DFMGPRD2/Standard GP: Keijzer-6 Class - Test Set Quality Scores

DFM− DFM− Standard GP
GPGP GPRD2 OF BP1 BP2 FS DSS HP NS1

Test 1
b = 0.64
µ = 0.55
σ = 0.07

b = 0.55
µ = 0.29
σ = 0.22

b = 0.55
µ = 0.43
σ = 0.10

b = 0.54
µ = 0.43
σ = 0.09

b = 0.57
µ = 0.44
σ = 0.08

b = 0.50
µ = 0.32
σ = 0.20

b = 0.60
µ = 0.47
σ = 0.07

b = 0.52
µ = 0.41
σ = 0.08

b = 0.28
µ = 0.18
σ = 0.06

Test 2
b = 0.91
µ = 0.83
σ = 0.06

b = 0.92
µ = 0.32
σ = 0.24

b = 0.84
µ = 0.73
σ = 0.09

b = 0.89
µ = 0.76
σ = 0.10

b = 0.82
µ = 0.73
σ = 0.08

b = 0.64
µ = 0.56
σ = 0.11

b = 0.90
µ = 0.75
σ = 0.07

b = 0.86
µ = 0.75
σ = 0.10

b = 0.53
µ = 0.39
σ = 0.11

Test 3
b = 0.82
µ = 0.74
σ = 0.13

b = 0.75
µ = 0.32
σ = 0.19

b = 0.75
µ = 0.63
σ = 0.07

b = 0.72
µ = 0.61
σ = 0.06

b = 0.75
µ = 0.64
σ = 0.06

b = 0.50
µ = 0.34
σ = 0.11

b = 0.72
µ = 0.63
σ = 0.06

b = 0.72
µ = 0.64
σ = 0.06

b = 0.27
µ = 0.17
σ = 0.05

Test 4
b = 0.81
µ = 0.72
σ = 0.10

b = 0.70
µ = 0.42
σ = 0.30

b = 0.71
µ = 0.65
σ = 0.06

b = 0.70
µ = 0.62
σ = 0.06

b = 0.72
µ = 0.65
σ = 0.05

b = 0.44
µ = 0.32
σ = 0.09

b = 0.78
µ = 0.67
σ = 0.05

b = 0.69
µ = 0.62
σ = 0.07

b = 0.33
µ = 0.20
σ = 0.10

Test 5
b = 0.65
µ = 0.60
σ = 0.07

b = 0.50
µ = 0.20
σ = 0.33

b = 0.42
µ = 0.31
σ = 0.08

b = 0.50
µ = 0.40
σ = 0.08

b = 0.58
µ = 0.44
σ = 0.13

b = 0.20
µ = 0.14
σ = 0.04

b = 0.49
µ = 0.36
σ = 0.10

b = 0.43
µ = 0.31
σ = 0.11

b = 0.29
µ = 0.07
σ = 0.05

Test 6
b = 0.62
µ = 0.49
σ = 0.07

b = 0.50
µ = 0.22
σ = 0.21

b = 0.40
µ = 0.29
σ = 0.09

b = 0.41
µ = 0.34
σ = 0.08

b = 0.46
µ = 0.39
σ = 0.05

b = 0.12
µ = 0.09
σ = 0.05

b = 0.46
µ = 0.27
σ = 0.07

b = 0.20
µ = 0.10
σ = 0.11

b = 0.07
µ = 0.05
σ = 0.01

Test 7
b = 0.41
µ = 0.28
σ = 0.08

b = 0.21
µ = 0.10
σ = 0.22

b = 0.14
µ = 0.12
σ = 0.01

b = 0.29
µ = 0.18
σ = 0.06

b = 0.27
µ = 0.20
σ = 0.06

b = 0.15
µ = 0.10
σ = 0.02

b = 0.25
µ = 0.18
σ = 0.05

b = 0.22
µ = 0.15
σ = 0.05

b = 0.08
µ = 0.05
σ = 0.02

Test 8
b = 0.30
µ = 0.22
σ = 0.06

b = 0.22
µ = 0.10
σ = 0.19

b = 0.11
µ = 0.09
σ = 0.03

b = 0.11
µ = 0.09
σ = 0.03

b = 0.16
µ = 0.10
σ = 0.05

b = 0.15
µ = 0.10
σ = 0.03

b = 0.18
µ = 0.12
σ = 0.05

b = 0.15
µ = 0.12
σ = 0.03

b = 0.08
µ = 0.04
σ = 0.02

Test 9
b = 0.25
µ = 0.19
σ = 0.04

b = 0.19
µ = 0.09
σ = 0.13

b = 0.16
µ = 0.09
σ = 0.04

b = 0.16
µ = 0.10
σ = 0.03

b = 0.18
µ = 0.11
σ = 0.05

b = 0.12
µ = 0.08
σ = 0.02

b = 0.15
µ = 0.10
σ = 0.03

b = 0.15
µ = 0.10
σ = 0.03

b = 0.08
µ = 0.03
σ = 0.02

Test 10
b = 0.22
µ = 0.12
σ = 0.09

b = 0.18
µ = 0.10
σ = 0.10

b = 0.14
µ = 0.09
σ = 0.03

b = 0.14
µ = 0.10
σ = 0.02

b = 0.18
µ = 0.10
σ = 0.05

b = 0.10
µ = 0.07
σ = 0.02

b = 0.14
µ = 0.10
σ = 0.03

b = 0.16
µ = 0.12
σ = 0.03

b = 0.05
µ = 0.03
σ = 0.01

Table 9.28 shows the result of statistical tests conducted to ascertain the performance advantage of DFM -
GPGP overDFMGPRD2 and standard GP in the Keijzer class; the p-values that indicate statistical significance
(at α = 0.05) are highlighted in the table. Table 9.28 indicates that DFMGPGP largely outperforms both
DFMGPRD2 and standard GP at the 5% level of significance on the problems.

Table 9.29 shows the results obtained by running DFMGP on unseen instances of the par-N problem class:
tests 1 to 5 represent the test set problems defined in table 5.2 of section 5. The best, b, mean, µ, and standard
deviation, σ, of the best solution quality achieved over 30 GP/DFMGP runs are shown. The best performing
GP approaches are highlighted in the table. Table 9.29 shows that DFMGPGP achieves the best result on all
problems. Standard GP with BP2 also performs competitively in the class: this is attributed to BP exploiting the
inherent modularity of the even-N parity problems [1]. Nevertheless, DFMGPGP consistently outperforms
standard GP with BP2.
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TABLE 9.28: DFMGPGP vs. DFMGPRD2/Standard GP: Keijzer-6 Class - Statistical Tests

DFMGPGP

vs.
DFMGPRD2

DFM -
GPGP

vs. OF

DFM -
GPGP

vs. BP1

DFM -
GPGP

vs. BP2

DFM -
GPGP

vs. FS

DFM -
GPGP

vs. DSS

DFM -
GPGP

vs. HP

DFM -
GPGP

vs. NS1
Test 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Test 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Test 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Test 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Test 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Test 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Test 7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Test 8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Test 9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Test 10 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.00

TABLE 9.29: DFMGPGP vs. DFMGPRD2/Standard GP: Even-N Parity Class - Test Set Quality
Scores

DFM− DFM− Standard GP
GPGP GPRD2 OF BP1 BP2 FS DSS HP NS1

Test 1
b = 0.68
µ = 0.63
σ = 0.05

b = 0.57
µ = 0.50
σ = 0.08

b = 0.50
µ = 0.50
σ = 0.00

b = 0.57
µ = 0.53
σ = 0.02

b = 0.59
µ = 0.55
σ = 0.04

b = 0.51
µ = 0.50
σ = 0.00

b = 0.50
µ = 0.50
σ = 0.00

b = 0.55
µ = 0.54
σ = 0.01

b = 0.51
µ = 0.50
σ = 0.00

Test 2
b = 0.65
µ = 0.60
σ = 0.02

b = 0.55
µ = 0.50
σ = 0.06

b = 0.50
µ = 0.50
σ = 0.00

b = 0.53
µ = 0.50
σ = 0.01

b = 0.57
µ = 0.53
σ = 0.01

b = 0.50
µ = 0.50
σ = 0.00

b = 0.50
µ = 0.50
σ = 0.00

b = 0.50
µ = 0.50
σ = 0.00

b = 0.50
µ = 0.50
σ = 0.00

Test 3
b = 0.60
µ = 0.56
σ = 0.03

b = 0.57
µ = 0.50
σ = 0.04

b = 0.50
µ = 0.50
σ = 0.00

b = 0.50
µ = 0.50
σ = 0.00

b = 0.54
µ = 0.52
σ = 0.01

b = 0.50
µ = 0.50
σ = 0.00

b = 0.50
µ = 0.50
σ = 0.00

b = 0.50
µ = 0.50
σ = 0.00

b = 0.50
µ = 0.50
σ = 0.00

Test 4
b = 0.60
µ = 0.56
σ = 0.02

b = 0.53
µ = 0.50
σ = 0.03

b = 0.50
µ = 0.50
σ = 0.00

b = 0.50
µ = 0.50
σ = 0.00

b = 0.53
µ = 0.51
σ = 0.01

b = 0.50
µ = 0.50
σ = 0.00

b = 0.50
µ = 0.50
σ = 0.00

b = 0.50
µ = 0.50
σ = 0.00

b = 0.50
µ = 0.50
σ = 0.00

Test 5
b = 0.56
µ = 0.52
σ = 0.02

b = 0.52
µ = 0.50
σ = 0.00

b = 0.50
µ = 0.50
σ = 0.00

b = 0.50
µ = 0.50
σ = 0.00

b = 0.50
µ = 0.50
σ = 0.00

b = 0.50
µ = 0.50
σ = 0.00

b = 0.50
µ = 0.50
σ = 0.00

b = 0.50
µ = 0.50
σ = 0.00

b = 0.50
µ = 0.50
σ = 0.00

Table 9.30 shows the result of statistical tests conducted to ascertain the performance advantage of DFM -
GPGP over DFMGPRD2 and standard GP in the par-N class; the p-values that indicate statistical significance
(at α = 0.05) are highlighted in the table. The results in table 9.30 show that DFMGPGP outperforms both
DFMGPRD1 and standard GP at the 5% level of significance on all the tackled problems.

TABLE 9.30: DFMGPGP vs. DFMGPRD2/Standard GP: Even-N Parity Class - Statistical Tests

DFMGPGP

vs.
DFMGPRD2

DFM -
GPGP

vs. OF

DFM -
GPGP

vs. BP1

DFM -
GPGP

vs. BP2

DFM -
GPGP

vs. FS

DFM -
GPGP

vs. DSS

DFM -
GPGP

vs. HP

DFM -
GPGP

vs. NS1
Test 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Test 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Test 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Test 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Test 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 9.31 shows the results obtained by running DFMGP on unseen instances of the mult-N problem class:
tests 1 to 5 represent the test set problems defined in table 5.2 of section 5. The best, b, mean, µ, and standard
deviation, σ, of the best solution quality achieved over 30 GP/DFMGP runs are shown. The best performing
GP approach is highlighted in the table. Table 9.31 shows that DFMGPGP achieves the best result on all
problems. Conversely, standard GP achieves varied results with no particular fitness measure demonstrating
a consistent performance advantage.
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Table 9.32 shows the result of statistical tests conducted to ascertain the performance advantage of DFM -
GPGP overDFMGPRD2 and standard GP in the mult-N class; the p-values that indicate statistical significance
(at α = 0.05) are highlighted in the table. Table 9.32 shows that DFMGPGP outperforms both DFMGPRD2

and standard GP at the 5% level of significance on all the tackled problems.

TABLE 9.31: DFMGPGP vs. DFMGPRD2/Standard GP: N-bit Multiplier Class - Test Set Qual-
ity scores

DFM− DFM− Standard GP
GPGP GPRD2 OF BP1 BP2 FS DSS HP NS1

Test 1
b = 0.86
µ = 0.83
σ = 0.01

b = 0.80
µ = 0.60
σ = 0.09

b = 0.75
µ = 0.74
σ = 0.01

b = 0.77
µ = 0.75
σ = 0.01

b = 0.78
µ = 0.75
σ = 0.01

b = 0.72
µ = 0.71
σ = 0.01

b = 0.74
µ = 0.73
σ = 0.01

b = 0.74
µ = 0.72
σ = 0.01

b = 0.60
µ = 0.57
σ = 0.01

Test 2
b = 0.84
µ = 0.80
σ = 0.02

b = 0.70
µ = 0.55
σ = 0.01

b = 0.71
µ = 0.69
σ = 0.01

b = 0.72
µ = 0.70
σ = 0.02

b = 0.72
µ = 0.70
σ = 0.01

b = 0.69
µ = 0.67
σ = 0.02

b = 0.69
µ = 0.67
σ = 0.02

b = 0.60
µ = 0.54
σ = 0.06

b = 0.69
µ = 0.67
σ = 0.01

Test 3
b = 0.78
µ = 0.76
σ = 0.02

b = 0.72
µ = 0.50
σ = 0.03

b = 0.68
µ = 0.66
σ = 0.01

b = 0.71
µ = 0.69
σ = 0.01

b = 0.71
µ = 0.69
σ = 0.01

b = 0.68
µ = 0.66
σ = 0.01

b = 0.73
µ = 0.70
σ = 0.01

b = 0.60
µ = 0.52
σ = 0.04

b = 0.62
µ = 0.60
σ = 0.01

Test 4
b = 0.64
µ = 0.54
σ = 0.02

b = 0.56
µ = 0.50
σ = 0.02

b = 0.50
µ = 0.50
σ = 0.00

b = 0.50
µ = 0.50
σ = 0.00

b = 0.52
µ = 0.50
σ = 0.01

b = 0.50
µ = 0.50
σ = 0.00

b = 0.50
µ = 0.50
σ = 0.00

b = 0.50
µ = 0.50
σ = 0.00

b = 0.50
µ = 0.50
σ = 0.00

Test 5
b = 0.54
µ = 0.52
σ = 0.02

b = 0.50
µ = 0.50
σ = 0.00

b = 0.50
µ = 0.50
σ = 0.00

b = 0.50
µ = 0.50
σ = 0.00

b = 0.50
µ = 0.50
σ = 0.00

b = 0.50
µ = 0.50
σ = 0.00

b = 0.50
µ = 0.50
σ = 0.00

b = 0.50
µ = 0.50
σ = 0.00

b = 0.50
µ = 0.50
σ = 0.00

TABLE 9.32: DFMGPGP vs. DFMGPRD2/Standard GP: N-bit Multiplier Class - Statistical Tests

DFMGPGP

vs.
DFMGPRD2

DFM -
GPGP

vs. OF

DFM -
GPGAP

vs. BP1

DFM -
GPGP

vs. BP2

DFM -
GPGP

vs. FS

DFM -
GPGP

vs. DSS

DFM -
GPGP

vs. HP

DFM -
GPGP

vs. NS1
Test 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Test 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Test 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Test 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Test5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 9.33 shows the results obtained by running DFMGP on unseen instances of the tartarus problem
class: tests 1 to 10 represent the test set problems defined in table 5.2 of section 5. The best, b, mean, µ, and
standard deviation, σ, of the best solution quality achieved over 30 GP/DFMGP runs are shown. The best
performing GP approach is highlighted in the table. Table 9.33 shows that DFMGPGP achieves among the
best results on all problems. Standard GP with NS2 achieves the same average fitness as DFMGPGP on
test 8; however, DFMGPGP achieves a better best fitness on the problem. Standard GP with NS2 achieves
competitive performance on the problems in the class due to mitigating against deception [4]. Nevertheless,
table 9.33 shows that DFMGPGP largely outperforms standard GP by consistently producing the best result
on all the test instances.

Table 9.34 shows the result of statistical tests conducted to ascertain the performance advantage of DFM -
GPGP overDFMGPRD2 and standard GP in the tartarus class; in the table, the p-values that indicate statistical
significance (at α = 0.05) are highlighted. The p-values shown in table 9.34 show that standard GP with NS2
performs on par withDFMGPGP on test 8. Nevertheless,DFMGPGP largely outperforms bothDFMGPRD2

and standard GP at the 5% level of significance on the tackled problems.
Table 9.35 shows the results obtained by running DFMGP on unseen instances of the deceptive tartarus

problem class: test 1 to 10 represent the test set problems defined in table 5.2 of section 5. The best, b, mean,
µ, and standard deviation, σ, of the best solution quality achieved over 30 GP/DFMGP runs are shown. The
best performing GP approaches are highlighted in the table. Table 9.35 shows that DFMGPGP achieves the
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TABLE 9.33: DFMGPGP vs. DFMGPRD2/Standard GP: Tartarus Class - Test Set Quality Scores

DFM− DFM− Standard GP
GPGP GPRD2 OF BP1 BP2 FS DSS HP NS1 NS2

Test 1
b = 0.58
µ = 0.55
σ = 0.02

b = 0.47
µ = 0.30
σ = 0.05

b = 0.45
µ = 0.37
σ = 0.05

b = 0.44
µ = 0.34
σ = 0.06

b = 0.42
µ = 0.36
σ = 0.05

b = 0.25
µ = 0.23
σ = 0.01

b = 0.42
µ = 0.36
σ = 0.05

b = 0.40
µ = 0.33
σ = 0.06

b = 0.24
µ = 0.23
σ = 0.01

b = 0.46
µ = 0.40
σ = 0.02

Test 2
b = 0.51
µ = 0.48
σ = 0.03

b = 0.40
µ = 0.28
σ = 0.05

b = 0.33
µ = 0.25
σ = 0.05

b = 0.36
µ = 0.28
σ = 0.05

b = 0.36
µ = 0.30
σ = 0.05

b = 0.19
µ = 0.18
σ = 0.02

b = 0.34
µ = 0.29
σ = 0.04

b = 0.36
µ = 0.27
σ = 0.04

b = 0.19
µ = 0.18
σ = 0.01

b = 0.39
µ = 0.36
σ = 0.01

Test 3
b = 0.77
µ = 0.74
σ = 0.04

b = 0.69
µ = 0.29
σ = 0.05

b = 0.67
µ = 0.52
σ = 0.11

b = 0.63
µ = 0.52
σ = 0.08

b = 0.60
µ = 0.52
σ = 0.07

b = 0.09
µ = 0.06
σ = 0.02

b = 0.64
µ = 0.50
σ = 0.08

b = 0.65
µ = 0.50
σ = 0.08

b = 0.11
µ = 0.07
σ = 0.02

b = 0.63
µ = 0.57
σ = 0.05

Test 4
b = 0.58
µ = 0.54
σ = 0.03

b = 0.54
µ = 0.32
σ = 0.05

b = 0.45
µ = 0.35
σ = 0.08

b = 0.44
µ = 0.37
σ = 0.06

b = 0.48
µ = 0.40
σ = 0.05

b = 0.33
µ = 0.25
σ = 0.02

b = 0.46
µ = 0.39
σ = 0.05

b = 0.46
µ = 0.37
σ = 0.04

b = 0.26
µ = 0.24
σ = 0.01

b = 0.54
µ = 0.50
σ = 0.02

Test 5
b = 0.69
µ = 0.62
σ = 0.06

b = 0.62
µ = 0.33
σ = 0.05

b = 0.53
µ = 0.46
σ = 0.06

b = 0.48
µ = 0.40
σ = 0.05

b = 0.50
µ = 0.44
σ = 0.05

b = 0.33
µ = 0.29
σ = 0.04

b = 0.42
µ = 0.35
σ = 0.04

b = 0.42
µ = 0.35
σ = 0.03

b = 0.35
µ = 0.28
σ = 0.03

b = 0.59
µ = 0.50
σ = 0.05

Test 6
b = 0.64
µ = 0.56
σ = 0.06

b = 0.48
µ = 0.30
σ = 0.05

b = 0.46
µ = 0.32
σ = 0.08

b = 0.44
µ = 0.35
σ = 0.06

b = 0.44
µ = 0.35
σ = 0.06

b = 0.27
µ = 0.25
σ = 0.01

b = 0.48
µ = 0.43
σ = 0.04

b = 0.37
µ = 0.30
σ = 0.05

b = 0.29
µ = 0.29
σ = 0.00

b = 0.38
µ = 0.35
σ = 0.05

Test 7
b = 0.48
µ = 0.42
σ = 0.06

b = 0.44
µ = 0.32
σ = 0.05

b = 0.40
µ = 0.33
σ = 0.07

b = 0.40
µ = 0.33
σ = 0.07

b = 0.34
µ = 0.29
σ = 0.06

b = 0.18
µ = 0.17
σ = 0.01

b = 0.44
µ = 0.38
σ = 0.04

b = 0.37
µ = 0.30
σ = 0.05

b = 0.22
µ = 0.21
σ = 0.01

b = 0.46
µ = 0.35
σ = 0.05

Test 8
b = 0.52
µ = 0.44
σ = 0.06

b = 0.46
µ = 0.27
σ = 0.05

b = 0.40
µ = 0.33
σ = 0.07

b = 0.43
µ = 0.34
σ = 0.06

b = 0.46
µ = 0.39
σ = 0.05

b = 0.26
µ = 0.24
σ = 0.01

b = 0.48
µ = 0.42
σ = 0.05

b = 0.45
µ = 0.39
σ = 0.04

b = 0.25
µ = 0.24
σ = 0.01

b = 0.48
µ = 0.44
σ = 0.05

Test 9
b = 0.57
µ = 0.49
σ = 0.06

b = 0.46
µ = 0.25
σ = 0.05

b = 0.45
µ = 0.30
σ = 0.05

b = 0.46
µ = 0.37
σ = 0.06

b = 0.42
µ = 0.35
σ = 0.05

b = 0.25
µ = 0.22
σ = 0.01

b = 0.46
µ = 0.40
σ = 0.04

b = 0.40
µ = 0.35
σ = 0.05

b = 0.26
µ = 0.25
σ = 0.01

b = 0.46
µ = 0.40
σ = 0.05

Test 10
b = 0.56
µ = 0.48
σ = 0.06

b = 0.52
µ = 0.28
σ = 0.05

b = 0.43
µ = 0.29
σ = 0.06

b = 0.46
µ = 0.40
σ = 0.05

b = 0.50
µ = 0.42
σ = 0.05

b = 0.25
µ = 0.24
σ = 0.01

b = 0.48
µ = 0.42
σ = 0.06

b = 0.42
µ = 0.32
σ = 0.07

b = 0.25
µ = 0.24
σ = 0.01

b = 0.49
µ = 0.44
σ = 0.06

TABLE 9.34: DFMGPGP vs. DFMGPRD2/Standard GP: Tartarus Class - Statistical Tests

DFMGPGP

vs.
DFMGPRD2

DFM -
GPGP

vs. OF

DFM -
GPGP

vs. BP1

DFM -
GPGP

vs. BP2

DFM -
GPGP

vs. FS

DFM -
GPGP

vs. DSS

DFM -
GPGP

vs. HP

DFM -
GPGP

vs. NS1

DFM -
GPGP

vs. NS2
Test 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Test 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Test 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Test 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Test 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Test 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Test 7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Test 8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 .0.39
Test 9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Test 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

best results on all problems. As in the results shown for DFMGPGA in section 9.2.2, standard GP with BP2
and standard GP with NS2 perform competitively in the class. As argued in section 9.2.2, BP2’s performance
advantage is attributed to the fitness measure mitigating against the loss of useful subtrees, which would
otherwise be discarded by OF measures. Furthermore, NS2’s performance advantage shown in table 9.35
is attributed to the task-specific behavior descriptors mitigating against deception on the deceptive tasks.
Nevertheless, table 9.35 shows that DFMGPGP largely outperforms standard GP by consistently producing
the best result on all the test instances.
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Table 9.36 shows the result of statistical tests conducted to ascertain the performance advantage of DFM -
GPGP overDFMGPRD2 and standard GP in the deceptive tartarus class; in the table, the p-values that indicate
statistical significance (at α = 0.05) are highlighted. The p-values shown in table 9.36 show that DFMGPGP

outperforms both DFMGPRD2 and standard GP at the 5% level of significance on all the tackled problems.

TABLE 9.35: DFMGPGP vs. DFMGPRD2/Standard GP: Deceptive Tartarus Class - Test Set
Quality Scores

DFM− DFM− Standard GP
GPGP GPRD2 OF BP1 BP2 FS DSS HP NS1 NS2

Test 1
b = 0.54
µ = 0.52
σ = 0.01

b = 0.47
µ = 0.38
σ = 0.01

b = 0.43
µ = 0.41
σ = 0.01

b = 0.42
µ = 0.40
σ = 0.01

b = 0.46
µ = 0.43
σ = 0.02

b = 0.41
µ = 0.40
σ = 0.01

b = 0.42
µ = 0.40
σ = 0.01

b = 0.41
µ = 0.40
σ = 0.01

b = 0.37
µ = 0.36
σ = 0.02

b = 0.46
µ = 0.43
σ = 0.02

Test 2
b = 0.54
µ = 0.50
σ = 0.01

b = 0.49
µ = 0.33
σ = 0.01

b = 0.43
µ = 0.40
σ = 0.01

b = 0.43
µ = 0.40
σ = 0.01

b = 0.47
µ = 0.43
σ = 0.01

b = 0.35
µ = 0.34
σ = 0.01

b = 0.42
µ = 0.40
σ = 0.01

b = 0.42
µ = 0.40
σ = 0.01

b = 0.37
µ = 0.36
σ = 0.01

b = 0.46
µ = 0.42
σ = 0.01

Test 3
b = 0.79
µ = 0.76
σ = 0.01

b = 0.71
µ = 0.40
σ = 0.01

b = 0.53
µ = 0.48
σ = 0.03

b = 0.65
µ = 0.63
σ = 0.02

b = 0.71
µ = 0.68
σ = 0.03

b = 0.43
µ = 0.43
σ = 0.01

b = 0.52
µ = 0.49
σ = 0.02

b = 0.50
µ = 0.44
σ = 0.02

b = 0.45
µ = 0.43
σ = 0.01

b = 0.69
µ = 0.65
σ = 0.02

Test 4
b = 0.50
µ = 0.47
σ = 0.01

b = 0.39
µ = 0.34
σ = 0.01

b = 0.39
µ = 0.38
σ = 0.01

b = 0.39
µ = 0.35
σ = 0.02

b = 0.47
µ = 0.40
σ = 0.03

b = 0.33
µ = 0.32
σ = 0.01

b = 0.40
µ = 0.38
σ = 0.02

b = 0.40
µ = 0.39
σ = 0.02

b = 0.31
µ = 0.31
σ = 0.01

b = 0.44
µ = 0.40
σ = 0.01

Test 5
b = 0.76
µ = 0.72
σ = 0.02

b = 0.71
µ = 0.40
σ = 0.01

b = 0.51
µ = 0.47
σ = 0.03

b = 0.68
µ = 0.61
σ = 0.05

b = 0.70
µ = 0.64
σ = 0.02

b = 0.43
µ = 0.43
σ = 0.01

b = 0.54
µ = 0.49
σ = 0.04

b = 0.50
µ = 0.45
σ = 0.04

b = 0.43
µ = 0.43
σ = 0.01

b = 0.69
µ = 0.62
σ = 0.02

Test 6
b = 0.60
µ = 0.48
σ = 0.03

b = 0.50
µ = 0.38
σ = 0.01

b = 0.43
µ = 0.38
σ = 0.03

b = 0.38
µ = 0.35
σ = 0.02

b = 0.48
µ = 0.44
σ = 0.03

b = 0.35
µ = 0.35
σ = 0.00

b = 0.45
µ = 0.40
σ = 0.03

b = 0.44
µ = 0.40
σ = 0.03

b = 0.35
µ = 0.35
σ = 0.00

b = 0.43
µ = 0.40
σ = 0.02

Test 7
b = 0.60
µ = 0.53
σ = 0.03

b = 0.50
µ = 0.38
σ = 0.01

b = 0.41
µ = 0.35
σ = 0.03

b = 0.43
µ = 0.35
σ = 0.04

b = 0.48
µ = 0.43
σ = 0.02

b = 0.34
µ = 0.32
σ = 0.01

b = 0.44
µ = 0.40
σ = 0.04

b = 0.44
µ = 0.40
σ = 0.03

b = 0.32
µ = 0.32
σ = 0.00

b = 0.46
µ = 0.41
σ = 0.02

Test 8
b = 0.54
µ = 0.48
σ = 0.04

b = 0.48
µ = 0.34
σ = 0.01

b = 0.43
µ = 0.40
σ = 0.02

b = 0.43
µ = 0.40
σ = 0.02

b = 0.48
µ = 0.45
σ = 0.02

b = 0.34
µ = 0.34
σ = 0.00

b = 0.43
µ = 0.40
σ = 0.02

b = 0.44
µ = 0.40
σ = 0.03

b = 0.39
µ = 0.41
σ = 0.01

b = 0.44
µ = 0.39
σ = 0.03

Test 9
b = 0.50
µ = 0.48
σ = 0.03

b = 0.46
µ = 0.37
σ = 0.01

b = 0.37
µ = 0.36
σ = 0.01

b = 0.39
µ = 0.35
σ = 0.03

b = 0.49
µ = 0.42
σ = 0.01

b = 0.33
µ = 0.32
σ = 0.00

b = 0.42
µ = 0.39
σ = 0.02

b = 0.39
µ = 0.37
σ = 0.01

b = 0.33
µ = 0.32
σ = 0.00

b = 0.46
µ = 0.41
σ = 0.02

Test 10
b = 0.48
µ = 0.43
σ = 0.04

b = 0.46
µ = 0.33
σ = 0.01

b = 0.36
µ = 0.33
σ = 0.03

b = 0.39
µ = 0.35
σ = 0.03

b = 0.42
µ = 0.38
σ = 0.04

b = 0.30
µ = 0.29
σ = 0.00

b = 0.39
µ = 0.37
σ = 0.02

b = 0.38
µ = 0.36
σ = 0.02

b = 0.30
µ = 0.29
σ = 0.00

b = 0.40
µ = 0.37
σ = 0.02

TABLE 9.36: DFMGPGP vs. DFMGPRD2/Standard GP: Deceptive Tartarus Class - Statistical
Tests

DFMGPGA

vs.
DFMGPRD1

DFM -
GPGA

vs. OF

DFM -
GPGA

vs. BP1

DFM -
GPGA

vs. BP2

DFM -
GPGA

vs. FS

DFM -
GPGA

vs. DSS

DFM -
GPGA

vs. HP

DFM -
GPGA

vs. NS1

DFM -
GPGA

vs. NS2

Test 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Test 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Test 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Test 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Test 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Test 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Test 7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Test 8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Test 9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Test
10

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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As in the case with the results obtained for the GA approach in section 9.2.2, the results in this section show
that the DFMs evolved by the GP approach are reusable within the problem classes: the DFMs solve unseen
problem instances to optimality. Furthermore, the importance of using the GP to train the DFMs is ascertained
by the fact that DFMGP applying randomly generated DFMs does not fair as well as DFMGP applying the
evolved DFMs.

9.3.3 Testing the reusability of the derived DFMs on real world problems

This section presents the results obtained from comparing the performance of DFMGPGP , DFMGPRD2 and
standard GP on the real-world problems listed in table 5.3 of chapter 5.

Table 9.37 shows the results obtained on the real-world problems. Similar to the results presented in section
9.2.3, for the regression problems in the table, DFMGPP1 represents DFMGPGP employing the DFM trained
on the sextic training set, DFMGPP2 represents DFMGPGP employing the DFM trained on the Keijzer train-
ing set, and DFMGPUN represents DFMGPGP employing the DFM trained on the combined sextic and
Keijzer training sets. For the Boolean problems in the table, DFMGPP1 represents DFMGPGP employing
the DFM trained on the par-N training set, DFMGPP2 represents DFMGPGP employing the DFM trained
on the mult-N training set, and DFMGPUN represents DFMGPGP employing the DFM trained on the com-
bined par-N and mult-N training sets. Table 9.37 shows the best, b, mean, µ, and standard deviation, σ, of the
best solution quality achieved over 30 GP/DFMGP runs. The best performing GP approach is highlighted in
the table.

TABLE 9.37: DFMGPGP vs. Standard GP: Real World Quality Scores

DFM− DFM− DFM− Standard GP
GPP1 GPP2 GPUN OF BP1 BP2 FS DSS HP NS1

Dow
b = 0.44
µ = 0.39
σ = 0.02

b = 0.47
µ = 0.43
σ = 0.02

b = 0.51
µ = 0.47
σ = 0.03

b = 0.43
µ = 0.36
σ = 0.02

b = 0.43
µ = 0.37
σ = 0.02

b = 0.43
µ = 0.37
σ = 0.02

b = 0.41
µ = 0.36
σ = 0.02

b = 0.43
µ = 0.39
σ = 0.02

b = 0.41
µ = 0.39
σ = 0.02

b = 0.36
µ = 0.34
σ = 0.01

Abalone
b = 0.14
µ = 0.13
σ = 0.02

b = 0.18
µ = 0.16
σ = 0.01

b = 0.19
µ = 0.17
σ = 0.01

b = 0.14
µ = 0.13
σ = 0.01

b = 0.14
µ = 0.14
σ = 0.01

b = 0.14
µ = 0.14
σ = 0.01

b = 0.13
µ = 0.12
σ = 0.01

b = 0.14
µ = 0.13
σ = 0.01

b = 0.14
µ = 0.13
σ = 0.01

b = 0.12
µ = 0.12
σ = 0.00

Sensor
b = 0.95
µ = 0.93
σ = 0.02

b = 1.00
µ = 0.99
σ = 0.02

b = 0.96
µ = 0.93
σ = 0.03

b = 0.97
µ = 0.90
σ = 0.03

b = 0.96
µ = 0.90
σ = 0.02

b = 0.99
µ = 0.93
σ = 0.02

b = 1.00
µ = 0.95
σ = 0.02

b = 0.97
µ = 0.90
σ = 0.02

b = 0.97
µ = 0.89
σ = 0.02

b = 0.84
µ = 0.81
σ = 0.01

Decoder
b = 0.96
µ = 0.94
σ = 0.02

b = 1.00
µ = 0.99
σ = 0.02

b = 0.97
µ = 0.94
σ = 0.02

b = 0.92
µ = 0.88
σ = 0.02

b = 0.94
µ = 0.89
σ = 0.02

b = 1.00
µ = 0.90
σ = 0.02

b = 1.00
µ = 0.95
σ = 0.01

b = 0.96
µ = 0.90
σ = 0.02

b = 0.96
µ = 0.90
σ = 0.02

b = 0.80
µ = 0.76
σ = 0.02

As in the results obtained for the GA approach in section 9.2.3, table 9.37 shows that one of the DFMGP
approaches achieves the best result on each of the tackled problems. DFMGPUN achieves the best result
on the Dow and abalone problems, while DFMGPP2 achieves the best result on the sensor and decoder
problems. Statistical tests are conducted to ascertain the significance of the differences observed. For each
DFMGP approach, the result obtained on each problem, (µ0, σ0), is compared to the same for the other DFMGP
approaches or standard GP, (µ1, σ1): whereby, a pairwise z-test, specified as follows HO : µ0 = µ1, HA : µ0 >

µ1, is conducted. Tables 9.38, 9.39 and 9.40 show the resulting p-values for DFMGPP1, DFMGPP2 and
DFMGPUN respectively; the p-values that indicate statistical significance (at α = 0.05) are highlighted.

Tables 9.38, 9.39 and 9.40 show that DFMGPP2 consistently outperforms standard GP and the other
DFMGP approaches on the sensor and decoder problems; on the other hand, DFMGPP1 and DFMGPUN

do not perform reliably on the problems. The tables also show that DFMGPUN largely outperforms standard
GP and the other DFMGP approaches on the Dow and abalone problems. DFMGPP2 performs on par with
DFMGPUN on the Abalone problem. Nevertheless,DFMGPP1 andDFMGPP2 do not perform as reliably as
DFMGPUN on the Dow and Abalone problems. As in the case with the results obtained for the GA approach
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TABLE 9.38: DFMGPP1 vs. DFMGPP2/DFMGPUN/Standard GP: Real-World Problems -
Statistical Tests

DFMGPP1

vs.
DFMGPP2

DFMGPP1

vs.
DFMGPUN

DFM -
GPP1

vs. OF

DFM -
GPP1

vs. BP1

DFM -
GPP1

vs. BP2

DFM -
GPP1

vs. FS

DFM -
GPP1

vs. DSS

DFM -
GPP1

vs. HP

DFM -
GPP1

vs. NS1
Dow 0.00 0.00 0.14 0.39 0.19 0.00 0.16 0.28 0.00

Abalone 0.00 0.00 0.22 0.14 0.10 0.00 0.10 0.11 0.00

Sensor 0.00 0.29 0.00 0.00 0.19 0.00 0.00 0.00 0.00

Decoder 0.00 0.34 0.00 0.00 0.00 0.02 0.03 0.03 0.00

TABLE 9.39: DFMGPP2 vs. DFMGPP1/DFMGPUN/Standard GP: Real-World Problems -
Statistical Tests

DFMGPP2

vs.
DFMGPP1

DFMGPP2

vs.
DFMGPUN

DFM -
GPP2

vs. OF

DFM -
GPP2

vs. BP1

DFM -
GPP2

vs. BP2

DFM -
GPP2

vs. FS

DFM -
GPP2

vs. DSS

DFM -
GPP2

vs. HP

DFM -
GPP2

vs. NS1
Dow 0.00 0.00 0.36 0.41 0.34 0.00 0.33 0.13 0.00

Abalone 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Sensor 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Decoder 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

TABLE 9.40: DFMGPUN vs. DFMGPP1/DFMGPP2/Standard GP: Real-World Problems -
Statistical Tests

DFMGPUN

vs.
DFMGPP1

DFMGPUN

vs.
DFMGPP2

DFM -
GPUN

vs. OF

DFM -
GPUN

vs. BP1

DFM -
GPUN

vs. BP2

DFM -
GPUN

vs. FS

DFM -
GPUN

vs. DSS

DFM -
GPUN

vs. HP

DFM -
GPUN

vs. NS1
Dow 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Abalone 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Sensor 0.32 0.00 0.03 0.03 0.10 0.00 0.00 0.00 0.00

Decoder 0.36 0.00 0.00 0.00 0.00 0.14 0.00 0.00 0.00

in section 9.2.3, the inference gained from the data is that DFMGP has the capacity to outperform standard
GP. However, it is difficult to a priori ascertain the particular DFMGP approach that will achieve superior
performance. In this regard, it would be useful if simple heuristics exist that can be used to a priori detect the
properties of the real-world problems, such that training sets with the same properties can be used to deduce
suitable DFMs for DFMGP.

9.3.4 Analysis of the derived DFMs

This section presents an analysis of the derived DFMs to identify the fitness measures that suit the different
phases of search for different problems.

Table 9.41 lists the DFMs evolved by the GP for the problem classes defined in table 5.2 of chapter 5. Each
DFM displayed is the best DFM found over the 30 runs of the GP approach on the given training problems;
while there are elements of the GP population with similar fitness over the 30 runs, there are no other elements
with the same fitness. For illustrative purposes, the DFMs in table 9.41 are expressed in their simplest form
(i.e. each parse-tree branch is evaluated to express it in the simplest arithmetic/logical form).
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TABLE 9.41: Evolved DFMs - Problem Classes

Class Evolved DFM

Sextic

Keijzer

Par-N

Mult-N

Tart.

Table 9.41 shows that a number of the DFMs arithmetically combine the fitness measures. In the literature,
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TABLE 9.41: Evolved DFMs - Problem Classes (contd.)

Class Evolved DFM

Dec. tart.

fitness measures are arithmetically combined in order to simultaneously optimize different objectives. For
example, in [66] (and in this study), the behavioral fitness of a solution program is calculated as a combination
of the OF score and two terms that quantify the usefulness of the solution’s subprograms. Another example of
arithmetically combined fitness measures is novelty-fitness aggregation [72], where the fitness measure used
is a weighted sum of the OF and novelty scores. As a further example, in parsimony studies [267], the OF score
is combined with a parsimony penalty to mitigate bloat. The literature reports varied results with respect to
arithmetically combining fitness measures. For instance, the efforts in [66] (and in this study - see chapter 4)
prove successful, whereby combining the OF and subprogram usefulness scores improves on the performance
of OF-GP on modular problems. However, in [72], novelty-fitness aggregation does not achieve performance
gain over OF-GP; this may be due to the NS behavior descriptor used in [72]. In [267], combining the OF score
with a parsimony penalty enforces parsimony at the expense of degrading the performance of GP, whereby
GP is shown to achieve lower quality scores. In the current study, GP is used to search the space of fitness
measures combinations for DFMGP. This is advantageous, because direct feedback can be obtained of the
particular fitness measure combinations that are producing the desired results; furthermore, the combinations
are optimized with the progress of the GP search. Therefore, the expectation is that the best-fitness DFMs
found by the GP approach contain optimized combinations of the fitness measures.

As in the case with the GA-evolved DFMs in table 9.20 of section 9.2.4, the DFMs shown in table 9.41 se-
lect explorative fitness measures for the preliminary DFMGP generations; subsequently the more exploitative
fitness measures are selected in later DFMGP generations. NS1 (encoded as G) is selected for the preliminary
generations in the sextic and par-N classes. NS2 (encoded as H) is selected for the preliminary generations
in the tart. and dec-tart. classes. As argued in section 9.2.4, NS supports exploration by explicitly rewarding
diversification from prior behaviors; NS in fact inhibits exploitation, because the fitness measure maintains
the same level of selective pressure in favor of diversification, even when near-optimal solutions are found.
Hence NS works better when confined to the initial generations of an evolutionary algorithm, proceeded by
a more exploitative fitness measure in later generations [204]. FS (encoded as D), selected for the preliminary
generations in the Keijzer and mult-N classes, is also an explorative measure. As argued in section 9.2.4, FS
supports exploration by maintaining the diversity of the GP population, permitting GP to explore new niches
(or optima); FS inhibits exploitation and convergence in later generations, because the fitness measure enforces
the maintenance of niches at all GP generations. Hence, like NS, FS works better when confined to the initial
generations, and proceeded by a more exploitative fitness measure in later generations [6, 15].

Similar to the results shown in section 9.2.4, table 9.41 also shows that BP1 and BP2 (encoded as B and C
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respectively) are selected for the middle and/or final DFMGP generations in all classes. As argued in section
9.2.4, BP promotes the retention of useful subtrees, facilitating their exploitation (or refinement). Whereas
useful subtrees can exist in the randomly generated initial population for trivial problems, more complex
problems may require that further exploration is conducted in the preliminary GP generations, as a precursor
to BP: thus, useful subtrees can be made available for BP to exploit in later generations.

Overall, DFMGP applying the shift from explorative to exploitative fitness measures shown in table 9.41 is
expected to outperform standard GP, because the current fitness measure is selected to support the on-going
phase of GP. The ensuing discussion analyzes the DFMs in more detail.

Table 9.41 shows that best-fitness DFM evolved for the sextic class does not arithmetically combine the
employed fitness measures. This means that the GP evolution did not find a better DFM that arithmetically
combines the fitness measures; this may be due to premature convergence at the meta-level, or lack of existence
of a better combination of the given fitness measures. Section 9.4.4 will compare this DFM to the GA-evolved
DFM for the same problem class; the comparison shows that the GP-evolved DFM is similar to the GA-evolved
DFM. Hence the result obtained for the sextic class is important, because it shows that the GP approach is
capable of defaulting to a DFM that resembles the GA-evolved DFM.

Table 9.41 also shows the DFM evolved for the Keijzer class. While section 9.4.4 will show that this DFM is
similar to the GA-evolved DFM for the same class, the key difference between the two is that the DFM in table
9.41 arithmetically combines DSS (encoded as E) and BP2 (encoded as C) in the middle DFMGP generations.
Section 3.5.1 of chapter 3 established that DSS supports exploration by maintaining the population diversity.
Hence the combination of DSS and BP2 is a mix of explorative and exploitative measures. According to the lit-
erature [266], the success of an evolutionary algorithm depends on the ability to maintain the delicate balance
between exploration and exploitation. Therefore, rather than simply switching between purely explorative
and exploitative measures, it may be useful to combine the different types of measures, whereby the fitness
measure directs exploration and exploitation to occur simultaneously when required.

A similar trend is seen with the DFMs evolved for the par-N, mult-N, tart and dec-tart classes: the DFMs
contain arithmetic combinations of explorative and exploitative measures. The DFM for the par-N class con-
tains a combination of DSS and BP2. In turn, the DFM for the mult-N class contains a combination of DSS
and BP1. The DFMs for the tart class contains a combination of NS2 and BP1. Lastly, the DFM for the dec-
tart class contains a combination of NS, OF and BP1. The implication is that the DFMs drive exploration and
exploitation to occur simultaneously (or in parallel) when this is required in DFMGP.

Table 9.42 shows the DFM evolved from the combined training set of the sextic and Keijzer classes; the
table also shows the same for the combined training set of the par-N and mult-N classes.

The DFMs in table 9.42 are similar to those shown in table 9.41, whereby the explorative fitness measures
FS and NS (encoded as D and G respectively) are selected in the preliminary DFMGP generations. Further-
more, the more exploitative BP1 and BP2 (encoded as B and C respectively) are selected for the middle and
later DFMGP generations. The DFMs in table 9.42 also contain arithmetic combinations of explorative and ex-
ploitative measures. The DFM evolved for the regression problems contains a combination of the explorative
DSS (encoded as E) and the exploitative BP1 and BP2. In turn, the DFM evolved for the Boolean problems
contains a combination of the explorative NS1 (encoded as G) and the exploitative BP2. The DFMs also com-
bine two explorative measures, FS and NS1, in the preliminary DFMGP generations. A possible reason for
this is that FS is the preferred fitness measure for the preliminary generations in the Keijzer class, while NS1
is preferred for the preliminary generations in the sextic class; therefore, when presented with a training set
that combines the sextic and Keijzer classes, the GP evolving the DFMs combines FS and NS1 in order to ac-
commodate the different problems in the training set. A similar pattern is seen with combining FS and NS1
on the Boolean training set. Hence, in this case, the arithmetic combinations seem to increase the generality of
the evolved DFMs, accommodating the different classes of problems in the training set.

In summary, tables 9.41 and 9.42 show that the GP approach used to evolve the DFMs for DFMGP has the
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TABLE 9.42: Evolved DFMs - Combined training sets

Class Evolved DFM

Sextic +
Keijzer

Par-N +
Mult-N

ability to select the fitness measures that suit the particular on-going phase of GP. For the problem classes tack-
led, explorative fitness measures are selected for the initial DFMGP generations, while the more exploitative
fitness measures are selected in later DFMGP generations. The GP approach also has the ability to arith-
metically combine the fitness measures in the evolved DFMs. This means that rather than simply switching
between purely explorative and exploitative phases in DFMGPGP , the fitness measures can be combined to
direct the two processes to occur simultaneously when required.

9.4 Comparison of GA/DFMGPGA and GP/DFMGPGP

This section presents a comparison of the GA and GP approaches results. Section 9.4.1 compares the effec-
tiveness of the GA/DFMGPGA approach with that of the GP/DFMGPGP approach. Subsequently, section
9.4.2 compares the reusability of the derived DFMs within problem classes. Next, section 9.4.3 compares the
reusability of the derived DFMs on real world problems. Finally, section 9.4.4 compares the derived DFMs.

9.4.1 Comparing the effectiveness of DFMGPGP with DFMGPGA

This section presents the results obtained from comparing the performance of DFMGPGP with that of DFM -
GPGA on the benchmark problems listed in table 5.1 of chapter 5.

Table 9.43 shows a comparison of the results obtained by running DFMGPGP and DFMGPGA on the
tackled problems. Essentially, table 9.43 presents a side-by-side comparison of the results shown in table 9.22
of section 9.3.1 for DFMGPGP , and in table 9.1 of section 9.2.1 for DFMGPGA. The table shows the best
solution quality, b, achieved over 30 runs of DFMGPGP/DFMGPGA; the table also shows the mean, µ, and
standard deviation, σ, of the best solution quality over the 30 runs. Table 9.43 highlights the DFMGP approach
that achieves the best mean quality scores on each problem.
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TABLE 9.43: DFMGPGP vs. DFMGPGA: Quality Scores

DFMGPGP DFMGPGA

Sextic
b = 0.99
µ = 0.94
σ = 0.03

b = 0.98
µ = 0.94
σ = 0.03

Keijzer
b = 0.92
µ = 0.83
σ = 0.08

b = 0.87
µ = 0.77
σ = 0.08

Par-7
b = 0.90
µ = 0.78
σ = 0.06

b = 0.84
µ = 0.73
σ = 0.05

Mult-3
b = 0.98
µ = 0.97
σ = 0.01

b = 0.99
µ = 0.97
σ = 0.01

Tart
b = 0.72
µ = 0.67
σ = 0.03

b = 0.69
µ = 0.62
σ = 0.04

Dec-tart
b = 0.79
µ = 0.73
σ = 0.03

b = 0.74
µ = 0.69
σ = 0.02

Table 9.43 shows that both DFMGPGP and DFMGPGA achieve near-optimal performance on the sex-
tic and mult-3 problems. Furthermore, DFMGPGP achieves the best result on the Keijzer, par-7, tart and
dec-tart problems. Statistical tests are conducted to ascertain the significance of the performance advantage
of DFMGPGP over DFMGPGA: the result obtained by running DFMGPGP , (µ0, σ0), is compared to that
obtained by running DFMGPGA on the same problem (µ1, σ1): here, a pairwise z-test, specified as follows
HO : µ0 = µ1, HA : µ0 > µ1, is conducted. Table 9.44 shows the resulting p-values, and highlights the values
that indicate statistical significance (at α = 0.05).

TABLE 9.44: DFMGPGP vs. DFMGPGA: Statistical Tests

DFMGPGP

vs.
DFMGPGA

Sextic 0.39
Keijzer 0.03

Par-7 0.01

Mult-3 0.35
Tart 0.03

Dec-tart 0.04

Table 9.44 ascertains that DFMGPGP significantly outperforms DFMGPGA on the Keijzer, par-7, tart and
dec-tart problems. The key difference between DFMGPGP and DFMGPGA is the representation used for the
dynamic fitness measures. Tables 9.41 and 9.42 of section 9.3.4 showed that the DFMs used in DFMGPGP are
abstract syntax trees that facilitate arithmetic combinations of the fitness measures on the DFMGP generations.
On the other hand, tables 9.20 and 9.21 of section 9.2.4 showed that the DFMs used in DFMGPGA are fitness
measure sequences employing a restrictive representation, which dictates that only a single fitness measure
can be applied individually on each DFMGP generation. When evolving the DFMs, the GP approach adapts
the fitness measures to be combined into the DFMs, and also adapts the structure and size of the DFMs.
Conversely, evolution of the DFMs in the GA approach is restricted to adapting fixed-length DFMs. Hence
the GP approach offers more flexibility in terms of adapting the DFMs to suit the given problem (or problem
class). Section 9.4.4 compares the structure of the DFMs used in DFMGPGP with that of the DFMs used in
DFMGPGA, and discusses the reasons for the associated performance gains in more detail.

Table 9.45 shows the total time taken to train the GP and subsequently run DFMGPGP applying the
evolved DFM (this time is abbreviated as GP + DFMGPGP ); the time is compared to the total time taken to
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train the GA and subsequently run DFMGPGA applying the evolved DFM (this time is abbreviated as GA +
DFMGPGA).

TABLE 9.45: GP + DFMGPGP vs. GA + DFMGPGA: Execution Time (seconds)

GP + DFMGPGP GA + DFMGPGA

Sextic 3.00× 107 2.30× 107

Keijzer 4.90× 107 4.25× 107

Par-7 2.05× 108 1.90× 108

Mult-3 1.98× 108 1.69× 108

Tart 1.62× 108 1.41× 108

Dec-
tart

1.54× 108 1.17× 108

Table 9.45 shows that the time taken to train the GP and subsequently executeDFMGPGP is slightly higher
than the time taken to train the GA and subsequently execute DFMGPGA. This is due to bloat occurring
while training the GP, which is a direct consequence of the variable-length representation used in the GP.
Nevertheless, sections 9.2.2, 9.3.2, 9.2.3 and 9.3.3 showed that the DFMs evolved by the GA and GP approaches
are reusable on problem classes, and also on real-world problems. Hence the time taken to train the GA and
GP approaches proves worthwile, because this need only be done once for the problems in a given class.

9.4.2 Comparing the reusability of the derived DFMs within problem classes

This section presents the results obtained from comparing the performance of DFMGPGP with that of DFM -
GPGA on the problem classes listed in table 5.2 of chapter 5. The ensuing results show that DFMGPGP

generally outperforms DFMGPGA on the problem classes. The sextic class presents an anomaly, whereby
DFMGPGP performs on par withDFMGPGA. Section 9.4.4 will show that in the sextic class, the GP approach
generates a DFM that is similar to the GA-evolved DFM. Here, the GP does not find a better DFM; this may be
due to premature convergence at the meta-level, or lack of existence of a better combination of the given fitness
measures. Section 9.4.4 discusses this in more detail. Overall, this section shows thatDFMGPGP outperforms
DFMGPGA, and at the least, the DFMGP approaches are seen to achieve on par performance.

Table 9.46 shows the results obtained by running DFMGPGP/DFMGPGA on unseen instances of the
sextic problem class. Essentially, table 9.46 presents a side-by-side comparison of the results shown in table
9.25 of section 9.3.2 for DFMGPGP , and in table 9.4 of section 9.2.2 for DFMGPGA. The table shows the
best solution quality, b, achieved over 30 runs of GP/DFMGP; the table also shows the mean, µ, and standard
deviation, σ, of the best solution quality over the 30 runs. The best performing GP approaches are highlighted
in the table.

Statistical tests, identical to those reported in table 9.44, are conducted to ascertain the significance of the
quantitative differences shown in table 9.46. Table 9.47 shows the resulting p-values; the p-values that indi-
cate statistical significance (at α = 0.05) are highlighted. Table 9.47 shows that DFMGPGP achieves on par
performance with DFMGPGA on all problems. Therefore, DFMGPGP does not outperform DFMGPGA in
the sextic class.

Table 9.48 shows the results obtained by running DFMGPGP/DFMGPGA on unseen instances of the
Keijzer problem class. The table presents a side-by-side comparison of the results shown in table 9.27 of
section 9.3.2 for DFMGPGP , and in table 9.6 of section 9.2.2 for DFMGPGA. Table 9.48 shows the best, b,
mean, µ, and standard deviation, σ, of the best solution quality achieved over 30 DFMGPGP/DFMGPGA

runs. The best performing GP approaches are highlighted in the table.
Table 9.48 shows that DFMGPGP and DFMGPGA achieve the same average solution quality on test 10.

However,DFMGPGP largely outperformsDFMGPGA on the Keijzer class by consistently producing the best
result on all the test instances.
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TABLE 9.46: DFMGPGP vs. DFMGPGA: Sextic Class - Test Set Quality Scores

DFMGPGP DFMGPGA

Test 1
b = 0.99
µ = 0.94
σ = 0.04

b = 0.98
µ = 0.94
σ = 0.03

Test 2
b = 0.83
µ = 0.68
σ = 0.10

b = 0.80
µ = 0.68
σ = 0.09

Test 3
b = 0.97
µ = 0.90
σ = 0.07

b = 0.99
µ = 0.90
σ = 0.08

Test 4
b = 0.69
µ = 0.52
σ = 0.09

b = 0.69
µ = 0.52
σ = 0.09

Test 5
b = 0.70
µ = 0.50
σ = 0.08

b = 0.72
µ = 0.50
σ = 0.08

Test 6
b = 0.72
µ = 0.46
σ = 0.09

b = 0.70
µ = 0.46
σ = 0.09

Test 7
b = 0.64
µ = 0.52
σ = 0.11

b = 0.64
µ = 0.55
σ = 0.09

Test 8
b = 0.40
µ = 0.26
σ = 0.08

b = 0.39
µ = 0.25
σ = 0.08

Test 9
b = 0.72
µ = 0.47
σ = 0.07

b = 0.69
µ = 0.47
σ = 0.07

Test 10
b = 0.90
µ = 0.78
σ = 0.09

b = 0.90
µ = 0.77
σ = 0.09

TABLE 9.47: DFMGPGP vs. DFMGPGA: Sextic Class - Statistical Tests

DFMGPGP

vs.
DFMGPGA

Test 1 0.48

Test 2 0.44

Test 3 0.44

Test 4 0.49

Test 5 0.44

Test 6 0.44

Test 7 0.32

Test 8 0.41

Test 9 0.44

Test 10 0.41

Table 9.49 shows the result of statistical tests conducted to ascertain the performance advantage of DFM -
GPGP over DFMGPGA in the Keijzer class; the p-values that indicate statistical significance (at α = 0.05) are
highlighted in the table. Table 9.49 indicates that DFMGPGP largely outperforms both DFMGPGA at the 5%
level of significance on the problems.

Table 9.50 shows the results obtained by runningDFMGPGP/DFMGPGA on unseen instances of the par-
N problem class. The table presents a side-by-side comparison of the results shown in table 9.29 of section
9.3.2 for DFMGPGP , and in table 9.8 of section 9.2.2 for DFMGPGA. Table 9.50 shows the best, b, mean, µ,
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TABLE 9.48: DFMGPGP vs. DFMGPGA: Keijzer-6 Class - Test Set Quality Scores

DFMGPGP DFMGPGA

Test 1
b = 0.64
µ = 0.55
σ = 0.07

b = 0.62
µ = 0.50
σ = 0.08

Test 2
b = 0.91
µ = 0.83
σ = 0.06

b = 0.89
µ = 0.76
σ = 0.08

Test 3
b = 0.82
µ = 0.74
σ = 0.13

b = 0.81
µ = 0.69
σ = 0.11

Test 4
b = 0.81
µ = 0.72
σ = 0.10

b = 0.79
µ = 0.67
σ = 0.09

Test 5
b = 0.65
µ = 0.60
σ = 0.07

b = 0.62
µ = 0.51
σ = 0.07

Test 6
b = 0.62
µ = 0.49
σ = 0.07

b = 0.59
µ = 0.47
σ = 0.07

Test 7
b = 0.41
µ = 0.28
σ = 0.08

b = 0.41
µ = 0.26
σ = 0.09

Test 8
b = 0.30
µ = 0.22
σ = 0.06

b = 0.27
µ = 0.18
σ = 0.05

Test 9
b = 0.25
µ = 0.19
σ = 0.04

b = 0.22
µ = 0.14
σ = 0.06

Test 10
b = 0.22
µ = 0.12
σ = 0.09

b = 0.20
µ = 0.12
σ = 0.09

TABLE 9.49: DFMGPGP vs. DFMGPGA: Keijzer Class - Statistical Tests

DFMGPGP

vs.
DFMGPGA

Test 1 0.00

Test 2 0.00

Test 3 0.00

Test 4 0.00

Test 5 0.00

Test 6 0.18

Test 7 0.17

Test 8 0.00

Test 9 0.00

Test 10 0.45

and standard deviation, σ, of the best solution quality achieved over 30 DFMGPGP/DFMGPGA runs. The
best performing GP approaches are highlighted in the table.

Table 9.50 shows that DFMGPGP and DFMGPGA achieve the same average solution quality on test 5.
However, DFMGPGP largely outperforms DFMGPGA on the par-N class by consistently producing the best
result on all the test instances.

Table 9.51 shows the result of statistical tests conducted to ascertain the performance advantage of DFM -
GPGP over DFMGPGA in the par-N class; the p-values that indicate statistical significance (at α = 0.05) are
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TABLE 9.50: DFMGPGP vs. DFMGPGA: Even-N Parity Class - Test Set Quality Scores

DFMGPGP DFMGPGA

Test 1
b = 0.68
µ = 0.63
σ = 0.05

b = 0.65
µ = 0.59
σ = 0.04

Test 2
b = 0.65
µ = 0.60
σ = 0.02

b = 0.59
µ = 0.54
σ = 0.02

Test 3
b = 0.62
µ = 0.56
σ = 0.03

b = 0.58
µ = 0.54
σ = 0.03

Test 4
b = 0.60
µ = 0.56
σ = 0.02

b = 0.55
µ = 0.52
σ = 0.01

Test 5
b = 0.56
µ = 0.52
σ = 0.02

b = 0.54
µ = 0.52
σ = 0.01

highlighted in the table. The results in table 9.51 show that DFMGPGP largely outperforms both DFMGPGA

and standard GP at the 5% level of significance on the tackled problems.

TABLE 9.51: DFMGPGP vs. DFMGPGA: Even-N Parity Class - Statistical Tests

DFMGPGP

vs.
DFMGPGA

Test 1 0.00

Test 2 0.00

Test 3 0.03

Test 4 0.00

Test 5 0.34

Table 9.52 shows the results obtained by running DFMGPGP/DFMGPGA on unseen instances of the
mult-N problem class. The table presents a side-by-side comparison of the results shown in table 9.31 of
section 9.3.2 for DFMGPGP , and in table 9.10 of section 9.2.2 for DFMGPGA. Table 9.52 shows the best, b,
mean, µ, and standard deviation, σ, of the best solution quality achieved over 30 DFMGPGP/DFMGPGA

runs. The best performing GP approaches are highlighted in the table.
Table 9.52 shows that DFMGPGP largely outperforms DFMGPGA on the Keijzer class by producing the

best result on most of the test instances. However, DFMGPGP and DFMGPGA achieve the same average
solution quality on tests 4 and 5. Modelling digital multipliers is a difficult task for evolutionary techniques,
especially when the number of bits in the multiplicands is greater than three [234]; hence a possible reason for
DFMGPGP ’s lack of performance gain on tests 4 and 5 is that DFMGP has reached a performance threshold.

Table 9.53 shows the result of statistical tests conducted to ascertain the performance advantage of DFM -
GPGP over DFMGPGA in the mult-N class; the p-values that indicate statistical significance (at α = 0.05) are
highlighted in the table. Table 9.53 shows that DFMGPGP outperforms DFMGPGA and standard GP at the
5% level of significance on tests 1, 2 and 3. On the other hand, DFMGPGP and DFMGPGA achieve on par
performance on tests 4 and 5.

Table 9.54 shows the results obtained by running DFMGPGP/DFMGPGA on unseen instances of the
tartarus problem class. The table presents a side-by-side comparison of the results shown in table 9.33 of
section 9.3.2 for DFMGPGP , and in table 9.12 of section 9.2.2 for DFMGPGA. Table 9.54 shows the best, b,
mean, µ, and standard deviation, σ, of the best solution quality achieved over 30 DFMGPGP/DFMGPGA

runs. The best performing GP approaches are highlighted in the table.
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TABLE 9.52: DFMGPGP vs. DFMGPGA: N-bit Multiplier Class - Test Set Quality scores

DFMGPGP DFMGPGA

Test 1
b = 0.86
µ = 0.83
σ = 0.01

b = 0.82
µ = 0.79
σ = 0.01

Test 2
b = 0.84
µ = 0.80
σ = 0.02

b = 0.79
µ = 0.77
σ = 0.01

Test 3
b = 0.78
µ = 0.76
σ = 0.02

b = 0.76
µ = 0.73
σ = 0.01

Test 4
b = 0.64
µ = 0.54
σ = 0.02

b = 0.59
µ = 0.54
σ = 0.01

Test 5
b = 0.54
µ = 0.52
σ = 0.02

b = 0.54
µ = 0.52
σ = 0.01

TABLE 9.53: DFMGPGP vs. DFMGPGA: N-bit Multiplier Class - Statistical Tests

DFMGPGP

vs.
DFMGPGA

Test 1 0.00

Test 2 0.00

Test 3 0.00

Test 4 0.33
Test 5 0.49

Table 9.54 shows that DFMGPGP and DFMGPGA achieve the same average solution quality on tests
8 and 10. Nevertheless, DFMGPGP largely outperforms DFMGPGA on the tartarus class by consistently
producing the best result on all the test instances.

Table 9.55 shows the result of statistical tests conducted to ascertain the performance advantage of DFM -
GPGP over DFMGPGA in the tartarus class; in the table, the p-values that indicate statistical significance
(at α = 0.05) are highlighted. The p-values shown in table 9.55 show that DFMGPGP largely outperforms
DFMGPGA at the 5% level of significance on the tackled problems.

Table 9.56 shows the results obtained by running DFMGPGP/DFMGPGA on unseen instances of the
deceptive tartarus problem class. The table presents a side-by-side comparison of the results shown in table
9.35 of section 9.3.2 forDFMGPGP , and in table 9.14 of section 9.2.2 forDFMGPGA. Table 9.56 shows the best,
b, mean, µ, and standard deviation, σ, of the best solution quality achieved over 30 DFMGPGP/DFMGPGA

runs. The best performing GP approaches are highlighted in the table.
Table 9.56 shows thatDFMGPGP andDFMGPGA achieve the same average solution quality on tests 6 and

10. Nevertheless, DFMGPGP largely outperforms DFMGPGA on the deceptive tartarus class by consistently
producing the best result on all the test instances.

Table 9.57 shows the result of statistical tests conducted to ascertain the performance advantage of DFM -
GPGP over DFMGPGA in the deceptive tartarus class; in the table, the p-values that indicate statistical signif-
icance (at α = 0.05) are highlighted. The p-values shown in table 9.57 show that DFMGPGP largely outper-
forms DFMGPGA at the 5% level of significance on the tackled problems.

Overall, the results in this section show that DFMGPGP largely outperforms DFMGPGA on the tack-
led problem classes. DFMGPGP ’s performance gain is attributed to the fact that the DFMs evolved for
DFMGPGP incorporate arithmetic combinations of the fitness measures. Therefore, in DFMGPGP , rather
than simply switching between purely explorative and exploitative measures, combinations of the explorative
and exploitative measures direct the two processes to occur simultaneously when required.
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TABLE 9.54: DFMGPGP vs. DFMGPGA: Tartarus Class - Test Set Quality Scores

DFMGPGP DFMGPGA

Test 1
b = 0.58
µ = 0.55
σ = 0.02

b = 0.53
µ = 0.51
σ = 0.01

Test 2
b = 0.51
µ = 0.48
σ = 0.03

b = 0.45
µ = 0.43
σ = 0.01

Test 3
b = 0.77
µ = 0.74
σ = 0.04

b = 0.73
µ = 0.69
σ = 0.05

Test 4
b = 0.58
µ = 0.54
σ = 0.03

b = 0.57
µ = 0.53
σ = 0.03

Test 5
b = 0.69
µ = 0.62
σ = 0.06

b = 0.64
µ = 0.55
σ = 0.06

Test 6
b = 0.64
µ = 0.56
σ = 0.06

b = 0.62
µ = 0.50
σ = 0.06

Test 7
b = 0.48
µ = 0.42
σ = 0.06

b = 0.48
µ = 0.38
σ = 0.06

Test 8
b = 0.52
µ = 0.44
σ = 0.06

b = 0.52
µ = 0.44
σ = 0.06

Test 9
b = 0.57
µ = 0.49
σ = 0.06

b = 0.54
µ = 0.45
σ = 0.06

Test 10
b = 0.56
µ = 0.48
σ = 0.06

b = 0.54
µ = 0.48
σ = 0.06

TABLE 9.55: DFMGPGP vs. DFMGPGA: Tartarus Class - Statistical Tests

DFMGPGP

vs.
DFMGPGA

Test 1 0.00

Test 2 0.00

Test 3 0.00

Test 4 0.40
Test 5 0.00

Test 6 0.00

Test 7 0.00

Test 8 0.49
Test 9 0.00

Test 10 0.38
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TABLE 9.56: DFMGPGP vs. DFMGPGA: Deceptive Tartarus Class - Test Set Quality Scores

DFMGPGP DFMGPGA

Test 1
b = 0.54
µ = 0.52
σ = 0.01

b = 0.50
µ = 0.48
σ = 0.01

Test 2
b = 0.54
µ = 0.50
σ = 0.01

b = 0.49
µ = 0.46
σ = 0.01

Test 3
b = 0.79
µ = 0.76
σ = 0.01

b = 0.75
µ = 0.72
σ = 0.01

Test 4
b = 0.50
µ = 0.47
σ = 0.01

b = 0.46
µ = 0.43
σ = 0.01

Test 5
b = 0.76
µ = 0.72
σ = 0.02

b = 0.73
µ = 0.69
σ = 0.02

Test 6
b = 0.60
µ = 0.48
σ = 0.03

b = 0.60
µ = 0.48
σ = 0.03

Test 7
b = 0.60
µ = 0.53
σ = 0.03

b = 0.60
µ = 0.48
σ = 0.03

Test 8
b = 0.54
µ = 0.48
σ = 0.04

b = 0.51
µ = 0.45
σ = 0.03

Test 9
b = 0.53
µ = 0.48
σ = 0.03

b = 0.49
µ = 0.45
σ = 0.03

Test 10
b = 0.48
µ = 0.43
σ = 0.04

b = 0.48
µ = 0.43
σ = 0.04

TABLE 9.57: DFMGPGP vs. DFMGPGA: Deceptive Tartarus Class - Statistical Tests

DFMGPGP

vs.
DFMGPGA

Test 1 0.00

Test 2 0.00

Test 3 0.00

Test 4 0.00

Test 5 0.00

Test 6 0.50
Test 7 0.00

Test 8 0.00

Test 9 0.00

Test 10 0.48
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9.4.3 Comparing the reusability of the derived DFMs on real world problems

This section presents the results obtained from comparing the performance of DFMGPGP with that of DFM -
GPGA on the real-world problems listed in table 5.3 of chapter 5.

Table 9.58 shows the results obtained by running DFMGPGP/DFMGPGA on the real-world problems.
The table presents a side-by-side comparison of the results shown in table 9.37 of section 9.3.3 forDFMGPGP ,
and in table 9.16 of section 9.2.3 for DFMGPGA. For the regression problems in the table, DFMGPGP (P1)

and DFMGPGA(P1) indicate DFMGP approaches trained on the sextic training set. Similarly, the suffix (P2)

indicates DFMGP approaches trained on the Keijzer training set. Lastly, the suffix (UN) indicates DFMGP
approaches trained on the combined sextic and Keijzer training sets. In a similar fashion, for the Boolean
problems in the table, the suffixes (P1), (P2) and (UN) indicate DFMGP approaches trained on the par-N,
mult-N, and combined par-N and mult-N training sets respectively. Table 9.58 shows the best, b, mean, µ, and
standard deviation, σ, of the best solution quality achieved over 30 DFMGPGP/DFMGPGA runs. The best
performing GP approaches are highlighted in the table.

TABLE 9.58: DFMGPGP vs. DFMGPGA: Real World Quality Scores

DFM− DFM− DFM− DFM− DFM− DFM−
GPGP GPGP GPGP GPGA GPGA GPGA

(P1) (P2) (UN) (P1) (P2) (UN)

Dow
b = 0.44
µ = 0.39
σ = 0.02

b = 0.47
µ = 0.43
σ = 0.02

b = 0.51
µ = 0.47
σ = 0.03

b = 0.44
µ = 0.39
σ = 0.02

b = 0.44
µ = 0.39
σ = 0.02

b = 0.48
µ = 0.42
σ = 0.03

Abalone
b = 0.14
µ = 0.13
σ = 0.02

b = 0.18
µ = 0.16
σ = 0.01

b = 0.19
µ = 0.17
σ = 0.01

b = 0.14
µ = 0.13
σ = 0.02

b = 0.14
µ = 0.13
σ = 0.01

b = 0.17
µ = 0.15
σ = 0.01

Sensor
b = 0.95
µ = 0.93
σ = 0.03

b = 1.00
µ = 0.99
σ = 0.02

b = 0.96
µ = 0.93
σ = 0.03

b = 0.95
µ = 0.90
σ = 0.03

b = 1.00
µ = 0.99
σ = 0.02

b = 0.95
µ = 0.90
σ = 0.03

Decoder
b = 0.96
µ = 0.94
σ = 0.02

b = 1.00
µ = 0.99
σ = 0.02

b = 0.97
µ = 0.94
σ = 0.02

b = 0.95
µ = 0.92
σ = 0.02

b = 1.00
µ = 0.99
σ = 0.02

b = 0.95
µ = 0.91
σ = 0.02

Table 9.58 shows thatDFMGPGP demonstrates a performance advantage consistent with the previous sec-
tion. DFMGPGP (UN) achieves the best result on the regression problems. Furthermore, bothDFMGPGP (P2)

and DFMGPGA(P2) achieve near-optimal performance on the Boolean problems.
Statistical tests are conducted to ascertain the significance of the quantitative differences shown in table

9.58. On each problem, the result obtained by running the best performing DFMGPGP approach, (µ0, σ0),
is compared to the result obtained by running the best performing DFMGPGA approach (µ1, σ1): here, a
pairwise z-test, specified as follows HO : µ0 = µ1, HA : µ0 > µ1, is conducted. Table 9.59 shows the resulting
p-values; the p-values that indicate statistical significance (at α = 0.05) are highlighted. Table 9.59 indicates
that the bestDFMGPGP approach significantly outperformsDFMGPGA on the regression problems. In turn,
the bestDFMGPGP andDFMGPGA approaches achieve near-optimal, and hence on par performance on the
Boolean problems.

TABLE 9.59: DFMGPGP vs. DFMGPGA/Standard GP: Real-World Problems - Statistical Tests

DFMGPGP

vs.
DFMGPGA

Dow 0.01

Abalone 0.00

Sensor 0.50
Decoder 0.50
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The results in this section show that DFMGPGP largely outperforms DFMGPGA, or at the least achieves
on par performance, on the real-world problems. As in section 9.4.2, DFMGPGP ’s performance gain is at-
tributed to the fact that the DFMs evolved for DFMGPGP incorporate arithmetic combinations of the fitness
measures. Hence, in DFMGPGP , rather than simply switching between purely explorative and exploitative
measures, combinations of the explorative and exploitative measures direct the two processes to occur simul-
taneously when required.

9.4.4 Comparing the derived DFMs

This section compares the DFMs derived by the GP approach with those derived by the GA approach. Table
9.60 compares the DFMs shown in table 9.41 of section 9.3.4 with those shown in table 9.20 of section 9.2.4.

Table 9.60 shows that for each problem class, the GP-evolved DFM is similar to the GA-evolved DFM. For
example, in the sextic class, NS1 (encoded) as G is selected for the initial DFMGP generations in both cases,
whereas BP (BP1/BP2 - encoded as B/C) is selected for the later DFMGP generations. In the Keijzer class, FS
(encoded as D) is selected for the initial DFMGP generations, DSS and BP2 (encoded as E and C respectively)
are selected for the middle DFMGP generations, and BP1 and HP (encoded as B and F respectively) are selected
for the later DFMGP generations. In the par-N class, NS1 (encoded as G) is selected for the initial DFMGP
generations, DSS and BP2 (encoded as E and C respectively) are selected for the middle DFMGP generations,
and BP2 (encoded as C) is selected for the later DFMGP generations. In the mult-N class, FS (encoded as D) is
selected for the initial DFMGP generations, BP2 (encoded as C) is selected for the middle DFMGP generations,
and BP1 and DSS (encoded as B and E respectively) are selected for the later DFMGP generations. In the tart.
class, NS2 (encoded as H) is selected for the initial DFMGP generations, while and BP1 and NS2 (encoded as B
and H respectively) are selected for the later DFMGP generations. In the dec-tart. class, NS2 (encoded as H) is
selected for the initial DFMGP generations, BP2 (encoded as C) is selected for the middle DFMGP generations,
and OF and BP1 (encoded as A and B respectively) are selected for the later DFMGP generations.

Table 9.61 shows that for the DFMs evolved from the combined training set of the sextic and Keijzer classes,
and the DFMs evolved from the combined training set of the par-N and mult-N classes, the GP-evolved DFM
is also similar to the GA-evolved DFM. For the combined sextic and Keijzer classes, FS and NS1 (encoded as
D and G respectively) are selected for the initial DFMGP generations, whereas BP1 and BP2 (encoded as B and
C respectively) are selected for the later DFMGP generations. For the combined par-N and mult-N classes, FS
and NS1 (encoded as D and G respectively) are also selected for the initial DFMGP generations, whereas BP1
and BP2 (encoded as B and C respectively) are selected for the later DFMGP generations.

Overall, tables 9.60 and 9.61 show that both the GP- and GA-evolved DFMs employ a shift from explorative
to exploitative fitness measures in the course of DFMGP, such that the current fitness measure(s) are always
selected to support the on-going phase of GP search. Furthermore, most of the GP-evolved DFMs incorporate
arithmetic combinations of the explorative and exploitative measures, whereby, rather than simply switch-
ing between purely explorative and exploitative measures, combinations of the explorative and exploitative
measures direct the two processes to occur simultaneously when required in DFMGPGP .

TABLE 9.60: Evolved DFMs - Problem Classes

Class GA approach: Best DFM GP approach: Best DFM

Sextic

G
0
G
1
G
2
G
3
G
4
G
5
G
6
G
7
G
8
G
9
G
10
G
11
G
12
G
13
G
14
G
15
G
16
G
17
G
18
G
19
B
20
B
21
B
22
G
23
B
24
B
25

B
26
B
27
B
28
B
29
B
30
B
31
B
32
B
33
B
34
B
35
B
36
B
37
B
38
B
39
B
40
B
41
B
42
B
43
B
44
B
45
B
46
B
47
B
48
B
49
B
50

B
51
B
52
B
53
B
54
B
55
B
56
B
57
B
58
B
59
B
60
C
61
C
62
C
63
C
64
C
65
C
66
C
67
C
68
C
69
C
70
C
71
B
72
B
73
B
74
B
75

B
76
B
77
B
78
B
79
B
80
B
81
B
82
B
83
B
84
B
85
B
86
B
87
B
88
B
89
B
90
B
91
B
92
B
93
B
94
B
95
B
96
B
97
B
98
B
99
B
100
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TABLE 9.60: Evolved DFMs - Problem Classes (contd.)

Class GA approach: Best DFM GP approach: Best DFM

Keijzer

D
0
D
1
D
2
D
3
D
4
D
5
D
6
D
7
D
8
D
9
D
10
D
11
D
12
D
13
D
14
D
15
D
16
D
17
D
18
D
19
D
20
D
21
D
22
D
23
D
24

E
25
E
26
A
27
A
28
A
29
A
30
A
31
C
32
C
33
C
34
C
35
B
36
B
37
B
38
B
39
B
40
B
41
B
42
B
43
B
44
B
45
B
46
B
47
B
48
B
49
B
50

B
51
B
52
B
53
B
54
B
55
B
56
B
57
B
58
B
59
B
60
B
61
B
62
B
63
B
64
B
65
B
66
B
67
B
68
B
69
B
70
B
71
B
72
B
73
B
74
B
75

F
76
F
77
F
78
F
79
F
80
F
81
F
82
F
83
F
84
F
85
F
86
F
87
F
88
F
89
F
90
F
91
F
92
F
93
F
94
F
95
F
96
F
97
F
98
F
99
F
100

Par-N

G
0
G
1
G
2
G
3
G
4
G
5
G
6
G
7
G
8
G
9
G
10
G
11
G
12
G
13
G
14
G
15
G
16
C
17
C
18
C
19
C
20
C
21
C
22
C
23
C
24
C
25

C
26
C
27
C
28
C
29
C
30
C
31
C
32
C
33
G
34
G
35
C
36
C
37
C
38
C
39
C
40
C
41
C
42
C
43
C
44
C
45
C
46
C
47
C
48
C
49
C
50

E
51
E
52
E
53
E
54
E
55
E
56
E
57
E
58
E
59
E
60
E
61
E
62
E
63
E
64
E
65
E
66
E
67
E
68
E
69
E
70
G
71
C
71
C
72
C
73
C
74
C
75

C
76
C
77
C
78
C
79
C
80
C
81
C
82
C
83
C
84
C
85
C
86
C
87
C
88
C
89
C
90
C
91
C
92
C
93
C
94
C
95
E
96
E
97
F
98
E
99
E
100

Mult-N

D
0
D
1
D
2
D
3
D
4
D
5
D
6
D
7
D
8
D
9
D
10
D
11
D
12
D
13
D
14
D
15
D
16
D
17
D
18
D
19
D
20
D
21
D
22
D
23
D
24
D
25

D
26
D
27
D
28
D
29
D
30
D
31
D
32
D
33
D
34
D
35
D
36
D
37
D
38
D
39
D
40
D
41
D
42
D
43
D
44
D
45
D
46
D
47
D
48
D
49
D
50

B
51
D
52
D
53
D
54
D
55
D
56
D
57
C
58
C
59
A
60
A
61
C
62
C
63
C
64
C
65
C
66
C
67
C
68
D
69
D
70
C
71
C
72
C
73
C
74
C
75

C
76
C
77
E
78
E
79
E
80
C
81
C
82
C
83
C
84
C
85
C
86
C
87
C
88
C
89
E
90
E
91
E
92
E
93
E
94
B
95
B
96
B
97
B
98
C
99
A
100

Tart.

H
0
H
1
H
2
H
3
H
4
H
5
H
6
H
7
H
8
H
9
H
10
H
11
H
12
F
13
H
14
H
15
H
16
H
17
H
18
H
19
H
20
H
21
H
22
H
23
H
24

H
25
A
26
H
27
H
28
E
29
H
30
H
31
H
32
H
33
H
34
H
35
H
36
H
37
H
38
H
39
H
40
H
41
H
42
H
43
H
44
H
45
H
46
H
47
H
48
H
49

H
50
H
51
H
52
H
53
H
54
H
55
H
56
H
57
H
58
H
59
H
60
H
61
H
62
H
63
F
64
B
65
B
66
B
67
B
68
B
69
B
70
B
71
B
72
B
73
B
74
A
75

A
76
A
77
A
78
A
79
A
80
B
81
B
82
B
83
B
84
B
85
B
86
B
87
B
88
B
89
B
90
B
91
B
92
B
93
B
94
B
95
B
96
B
97
B
98
B
99
B
100
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TABLE 9.60: Evolved DFMs - Problem Classes (contd.)

Class GA approach: Best DFM GP approach: Best DFM

Dec.
tart.

H
0
H
1
H
2
H
3
H
4
H
5
H
6
H
7
H
8
H
9
H
10
H
11
H
12
H
13
H
14
H
15
H
16
H
17
H
18
H
19
H
20
H
21
B
22
C
23
C
24

C
25
C
26
C
27
C
28
C
29
C
30
C
31
C
32
C
33
C
34
C
35
C
36
C
37
D
38
C
39
C
40
C
41
C
42
C
43
C
44
C
45
C
46
C
47
C
48
C
49
H
50

D
51
D
52
D
53
D
54
D
55
D
56
C
57
C
58
C
59
C
60
C
61
C
62
C
63
C
64
C
65
C
66
C
67
C
68
C
69
C
70
C
71
C
72
C
73
C
74
C
75

C
76
C
77
C
78
C
79
C
80
C
81
C
82
C
83
B
84
B
85
B
86
A
87
A
88
A
89
A
90
A
91
A
92
A
93
A
94
A
95
A
96
B
97
B
98
B
99
C
100

TABLE 9.61: Evolved DFMs - Combined Training Sets

Problem
Class

Fitness Measure Sequence Composite Fitness Measure

Sextic +
Keijzer

G
0
G
1
G
2
G
3
D
4
D
5
D
6
D
7
D
8
D
9
D
10
D
11
G
12
G
13
G
14
G
15
G
16
G
17
G
18
G
19
D
20
D
21
D
22
D
23
B
24
B
25

B
26
B
27
B
28
B
29
B
30
B
31
B
32
B
33
B
34
B
35
B
36
B
37
B
38
B
39
B
40
B
41
B
42
B
43
B
44
B
45
B
46
B
47
B
48
B
49
B
50

B
51
B
52
B
53
B
54
B
55
B
56
B
57
B
58
B
59
B
60
C
61
C
62
C
63
C
64
C
65
C
66
C
67
C
68
C
69
C
70
C
71
C
72
C
73
C
74
C
75

B
76
B
77
B
78
B
79
B
80
B
81
B
82
B
83
B
84
B
85
B
86
B
87
B
88
B
89
B
90
B
91
B
92
B
93
B
94
C
95
C
96
C
97
C
98
C
99
C
100

Par-
N +
Mult-N

G
0
G
1
G
2
G
3
D
4
D
5
D
6
D
7
D
8
D
9
G
10
G
11
G
12
G
13
D
14
G
15
G
16
G
17
G
18
D
19
G
20
G
21
C
22
C
23
D
24
C
25

C
26
C
27
C
28
C
29
C
30
G
31
G
32
C
33
C
34
C
35
C
36
C
37
C
38
C
39
C
40
C
41
B
42
B
43
B
44
B
45
B
46
B
47
B
48
B
49
B
50

B
51
B
52
B
53
B
54
B
55
B
56
B
57
B
58
B
59
B
60
B
61
B
62
B
63
C
64
C
65
C
66
C
67
C
68
C
69
C
70
C
71
C
72
C
73
C
74
C
75

C
76
C
77
C
78
E
79
C
80
C
81
A
82
A
83
A
84
A
85
A
86
A
87
A
88
C
89
C
90
C
91
C
92
C
93
C
94
C
95
C
96
C
97
C
98
C
99
C
100
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9.5 Summary

This chapter presented the results of the two developed approaches, the GA and GP approaches for deriving
DFMs for DFMGP. Both DFMGP applying the GA-evolved DFMs (DFMGPGA) and DFMGP applying the
GP-evolved DFMs (DFMGPGP ) were found to be effective on benchmark problems from different problem
domains, and reliably outperformed standard GP applying the fitness measures individually on the tackled
problems. Furthermore, the derived DFMs were shown to be reusable on problem classes, whereby both
DFMGPGA and DFMGPGP reliably outperformed standard GP on unseen problem instances from the same
problem class used to derive the DFMs; this was shown to be true for problem classes from different problem
domains. In addition, the derived DFMs were also shown to be reusable on real-world problems, whereby both
DFMGPGA and DFMGPGP reliably outperformed standard GP on unseen real-world problems from the
same problem domain as the training problems used to derive the DFMs. Overall, the benefit thatDFMGPGA

and DFMGPGP have over standard GP is that using a different fitness measure or combination of fitness
measures on different generations contributes to obtaining the required balance between exploration and ex-
ploitation needed by the algorithm. A shortcoming of DFMGPGA and DFMGPGP is that the computational
effort is higher than standard GP. This can be expected as two populations are evolved simultaneously, one
for the higher (or meta-) level algorithm evolving the DFMs and a second for the GP algorithm solving the
problem. However, given that evolved DFMs are reusable the benefit outweighs this shortcoming.

The performance of DFMGPGP was also compared to that of DFMGPGA. The results showed that
DFMGPGP is more effective than DFMGPGA, whereby the former approach reliably outperformed the lat-
ter on benchmark problems from different problem domains. DFMGPGP also outperformed DFMGPGA on
unseen problem instances from the problem classes. Furthermore, DFMGPGP outperformed DFMGPGA on
unseen real-world problems. The advantage thatDFMGPGP has overDFMGPGA is thatDFMGPGP allows
for different fitness measures to be combined into a measure to be applied on a generation, while DFMGPGA

applies a single fitness measure per generation. Furthermore, the variable representation used by DFMGPGP

allows greater flexibility for a fitness measure specific to the particular class of problems to be induced.



Chapter 10

Conclusions and Future Work

10.1 Introduction

This chapter presents the overall conclusions based on the research findings of the dissertation. Section 10.2
presents the outcomes with respect to the six objectives outlined in chapter 1. Subsequently, section 10.3 pro-
vides directions for future work building upon this dissertation. Lastly, section 10.4 summarizes the chapter.

10.2 Objectives and Conclusions

• Apply GAs for evolving DFMs for DFMGP.

A genetic algorithm (GA) was implemented to evolve DFMs for DFMGP. Each GA chromosome encoded
a candidate sequence of fitness measures to be applied over the generations of DFMGP. The GA was used
to select the best fitness measure to employ on each generation of DFMGP for the given problem (or set of
problems). The fitness measures made available for the selection improve on different aspects of GP; the fitness
measures were also found to suit different problems in the experiment conducted in chapter 4; furthermore,
a critical analysis of the literature anticipated that some of the fitness measures are better suited to specific
phases of the GP search. The goal in providing a diverse subset of fitness measures for the DFMs was for the
GA approach to be able to produce optimal DFMs for varied problems and problem classes.

DFMGP applying the GA-evolved DFMs was shown to achieve near-optimal performance on a number
of benchmark problems. Furthermore, the GA evolution was found to be an important component of de-
riving the DFMs, as DFMGP applying the evolved DFMs reliably outperformed DFMGP applying randomly
generated DFMs on a number of benchmark problems from different problem domains.

• Apply GP for evolving DFMs for DFMGP.

A genetic programming algorithm (GP) was also implemented to evolve DFMs for DFMGP. Each GP chromo-
some encoded a candidate arithmetic and logical combination of fitness measures. The GP was used to select
the best combination of fitness measures to employ on each generation of DFMGP for the given problem (or
set of problems). The fitness measures made available for the selection were the same as used for the GA
approach, whereby the goal was for the GP approach to be able to produce optimal DFMs for varied problems
and problem classes.

As in the case with the GA approach, DFMGP applying the GP-evolved DFMs achieved near-optimal
performance on a number of benchmark problems. The GP evolution was also found to be an important
component of deriving the DFMs, as DFMGP applying the evolved DFMs reliably outperformed DFMGP
applying randomly generated DFMs on a number of benchmark problems from different problem domains.

• Compare the performance of DFMGP with the conventional GP approach.

The performance of DFMGP applying the GA-evolved DFMs (DFMGPGA) and DFMGP applying the GP-
evolved DFMs (DFMGPGP ) was compared to that of standard GP applying each of the fitness measures

248
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individually on benchmark problems from different problem domains. Both DFMGPGP and DFMGPGA

outperformed standard GP at the 5% level of significance on the majority of the tackled problems, with a few
exceptions seen, where standard GP performed on par with DFMGP. An analysis of the DFMs used in DFMGP
showed that both the GA and GP approaches used to evolve the DFMs selected fitness measures that support
exploration for the preliminary DFMGP generations, and fitness measures that support exploitation for later
DFMGP generations. Exploration promotes coverage of the search space and is more suited to the preliminary
GP generations, whereas exploitation is used to refine promising solutions when good points in the search
space have been discovered and is more suited to later GP generations [22]. The performance advantage of
DFMGP over standard GP is therefore justified by the premise that the fitness measures used on the DFMGP
generations support the more suitable search in the on-going phase of GP.

• Compare the performance of GAs and GP in evolving DFMs.

The performance of DFMGPGA was also compared to that of DFMGPGP on benchmark problems from
different problem domains. DFMGPGP was shown to outperform DFMGPGA at the 5% level of significance
on the majority of the tackled problems, with a few exceptions seen, whereDFMGPGP performed on par with
DFMGPGA. The key differences between DFMGPGP and DFMGPGA are 1) the meta-algorithm used to
derive the DFMs a priori (i.e. GP versus GA), and 2) the representation used for the DFMs. When GP is used to
derive the DFMs, the candidate DFMs are variable-length abstract syntax trees that encode combinations of the
fitness measures. The GP approach adapts the fitness measures to be combined into the DFMs, and also adapts
the structure and size of the DFMs. Conversely, when GA is used to derive the DFMs, the candidate DFMs
are fixed-length fitness measure sequences. Hence evolution of the DFMs in the GA approach is restricted
to adapting fixed-length fitness measure sequences. Importantly, the key advantage of the variable-length
representation used in the GP approach is that it allows the DFMs to grow in complexity to suit the given
problem (or problem class).

An analysis of the evolved DFMs showed that the DFMs used in DFMGPGP arithmetically combine ex-
plorative and exploitative fitness measures for use on some of the DFMGP generations. According to the
literature [266], the success of an evolutionary algorithm depends on the ability to maintain the delicate bal-
ance between exploration and exploitation. The performance advantage of DFMGPGP over DFMGPGA is
justified by the fact that in the former approach, rather than simply switching between purely explorative and
exploitative measures, the combinations of the explorative and exploitative measures direct the two processes
to occur simultaneously when required in DFMGP.

• Assess the reusability of the evolved DFMs.

Two aspects were involved in achieving this objective. The first aspect was to assess the reusability of the
evolved DFMs for problem classes. A set of problem classes from different problem domains was identified for
this assessment. For each problem class, both the GA and GP approaches were trained on a subset of problem
instances from the class, the training set; subsequently the performances of DFMGPGP and DFMGPGA

applying the DFMs evolved for the given problem class were compared to that of standard GP applying each
of the fitness measures individually on unseen problem instances from the class, the test set. Here, a derived
DFM was said to be reusable if DFMGP applying the DFM performed better the standard GP approach on the
test instances. The results showed that both DFMGPGP and DFMGPGA outperformed standard GP at the
5% level of significance on the majority of the test instances across the different problem classes. Hence the
evolved DFMs were shown to be reusable for problem classes. This is an important result, considering that
both the GA and GP approaches exert considerable computational effort to evolve the DFMs. The implications
of reusability on the problem classes are that the total time necessary for the derivations is reduced because
the DFMs need only be evolved once for a given problem class.

The second aspect of this objective was to assess the reusability of the evolved DFMs for complex real-world
problems. A set of real-world problems from different problem domains was identified for this assessment.
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After the DFMs were evolved for the problem classes, both DFMGPGP and DFMGPGA applying the cor-
responding DFM were executed on unseen real-world problems, whereby for each problem class, the unseen
problems tested came from the same problem domain as the problems in the class. In addition, more general
DFMs were evolved for each problem domain by training the GA and GP approaches on the combined set
of all the training problems from the problem classes in the domain; DFMGPGP and DFMGPGA applying
these DFMs were also executed on the real-world problems. The results showed that for bothDFMGPGP and
DFMGPGA, at least one of the DFMs induced a DFMGP that outperformed standard GP at the 5% level of
significance on the tackled problems. Hence DFMGP has the capacity to outperform standard GP on unseen
real-world problems. Nevertheless, it is difficult to a priori ascertain the particular DFM that will achieve this
performance gain on the real-world problems. The performance of DFMGP on unseen problems has to do
with how similar the unseen problems are compared to the training problems used to derive the DFMs with
respect to problem properties addressed by the different fitness measures e.g. local optima, deceptiveness,
bloat. Therefore, definitive training sets can only be obtained if prior knowledge exists of shared problem
properties. Ultimately, it would be useful if simple heuristics exist that can be used to a priori detect the prop-
erties of the real-world problems. Subsequently, training sets with the same properties can be used to deduce
suitable DFMs for DFMGP.

• Analyse the best performing DFMs to identify the fitness measures that are most useful in the different
phases of search for different problems.

The best DFMs found by the GA and GP approach were analyzed. The analysis found that different DFMs
were evolved for different problem classes. By virtue of Wolpert and Macready’s [14] No Free Lunch (NFL)
theorems, there is no universally optimal DFM; rather, different DFMs were evolved for the different classes,
because different fitness measures suit the different classes.

The analysis of the DFMs also found that both the GA- and GP-evolved DFMs employed a shift from explo-
rative to exploitative fitness measures in the course of DFMGP. The fitness measures that support exploration
were selected for the preliminary DFMGP generations, whereas the more exploitative fitness measures were
selected for the middle and later DFMGP generations. Therefore, in the evolved DFMs, the fitness measure(s)
selected on each generation supported the on-going phase of GP search. This pattern was observed to be
consistent for DFMs evolved for different problems and problem classes.

The best DFMs found by the GP approach were also found to arithmetically combine explorative and
exploitative fitness measures on some of the DFMGP generations. These combinations of explorative and
exploitative measures directed the two processes to occur simultaneously in DFMGP when required. The
DFMs containing the arithmetic combinations were associated with performance gains, whereby DFMGPGP

applying these DFMs outperformed DFMGPGA.
Overall, the analysis of the DFMs showed that the benefit that DFMGPGP and DFMGPGA have over

standard GP is that using a different fitness measure or combination of fitness measures on different gen-
erations contributes to obtaining the required balance between exploration and exploitation needed by the
algorithm.

10.3 Future Work

Based on the results of this research on DFMGP and different approaches for evolving the DFMs for DFMGP,
potential future work will be discussed. Future extensions of the research presented in this dissertation in-
clude:

10.3.1 Coevolving the parameters used by the fitness measures in DFMGP

In the current research, the parameters used for the fitness measures applied in DFMGP were tuned a priori.
These included the fitness measure specific parameters, as well as the selection method and genetic operator
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application rates used for each fitness measure within DFMGP. The parameters were tuned by applying the
SMAC (the Sequential Model-based Algorithm Configuration) parameter tuning algorithm [39] to estimate
the optimal configuration for the each fitness measure when used in standard GP. This parameter tuning
approach was adopted as an approximation of the optimal configuration for each of the fitness measures in
DFMGP. However, in reality, the optimal configurations for the fitness measures when used in standard GP
may differ from that when used within DFMGP.

Given the above arguments, a parallel evolutionary algorithm could provide a better solution to param-
eter tuning. Alternatively, a tuning mechanism built into the GA or GP approach used to evolve the DFMs
for DFMGP, based on parameter design approaches such as the Taguchi orthogonal arrays [268], could also
be employed. The results obtained from coevolving the parameters used by the fitness measures would be
compared to those obtained in this study.

10.3.2 Detecting problem properties

The research found that while DFMGP has the capacity to outperform standard GP on unseen real-world prob-
lems, it is difficult to a priori ascertain the problems that can be used to train the DFMs for DFMGP. In this
regard, future work will look at designing simple heuristics that can be used to a priori detect the properties
of real-world problems. Subsequently, training sets with the same properties can be used to deduce suitable
DFMs for DFMGP. For example, the heuristic proposed by Krawiek and Wieloch [158] to detect modularity
in Boolean function synthesis GP can be modified and made applicable to different problems. Another rele-
vant study is the work done by Mersmann et. al. [269], who propose exploratory landscape analysis (ELA)
techniques for evolutionary algorithms; ELA outlines a number of heuristics for detecting problem properties,
including modularity, fitness plateaus, local optima, etc. in the symbolic regression domain. Future work will
involve investigating how ELA can be used to detect problem properties for real-world GP problems, and
whether suitable training sets for DFMGP can be recommended based on the analysis. Future work will also
investigate similar (and more general) heuristics that can be applied to problems from different domains.

10.3.3 Testing other evolutionary algorithm approaches for evolving DFMs

Given this success of the GP approach for evolving DFMs for DFMGP, future work will look at other variations
of genetic programming, namely, grammar-based GP [270] and grammatical evolution [271] to evolve the
DFMs. It is anticipated that these approaches would produce better results as the structure of the DFMs will
be restricted and the search space reduced. Furthermore, grammatical evolution will reduce the bloat and
hence introns in the evolved DFMs.

10.3.4 Testing DFMs on other evolutionary algorithms

Given the effectiveness of dynamic fitness measures for GP, the use of such measures for other evolutionary
algorithms, such as genetic algorithms, will also be investigated.

10.4 Summary

This chapter presented a summary of the findings of the research of this dissertation and the outcomes of
the objectives and how they were fulfilled. Finally, future work based on the observations made during this
research was presented.
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[266] M. Črepinšek, S. H. Liu, and M. Mernik. “Exploration and exploitation in evolutionary algorithms: A
survey”. In: ACM Computing Surveys (CSUR) 45(3) (2013), p. 35.

[267] T. Soule and J. A. Foster. “Effects of code growth and parsimony pressure on populations in genetic
programming”. In: Evolutionary Computation 6(4) (1998), pp. 293–309.

[268] R.N. Kackar. “Off-line quality control, parameter design, and the Taguchi method”. In: (1989), pp. 51–
76.

[269] O. Mersmann et al. “Exploratory landscape analysis”. In: Proceedings of the 13th Annual Conference on
Genetic and Evolutionary Computation - GECCO’11 (Dublin, Ireland). Ed. by N. Krasnogor et al. The ACM
Press, 2011, pp. 829–836.

[270] R. I. Mckay et al. “Grammar-based genetic programming: a survey”. In: 11 (3–4 2010), pp. 365–396.

[271] M. O’Neill and C. Ryan. “Grammatical evolution”. In: IEEE Transactions on Evolutionary Computation
5(4) (2001), pp. 349–358.


	Preface
	Declaration of Authorship
	Declaration of Publications
	Abstract
	Acknowledgements
	Introduction
	Purpose of the study
	Research perspective
	Scope
	Objectives
	Contributions
	Dissertation layout

	An Introduction to Genetic Algorithms and Genetic Programming
	Introduction
	Genetic algorithms
	The genetic algorithm
	Representation scheme
	Initial population creation
	Fitness evaluation and selection
	Genetic operators
	Crossover
	Mutation

	A critical analysis of genetic algorithms

	Genetic programming
	The genetic programming algorithm
	Representation scheme
	Initial population creation
	Full
	Grow
	Ramped half-and-half

	Fitness evaluation and selection
	Genetic operators
	Crossover
	Mutation

	Reproduction
	A critical analysis of genetic programming

	Summary

	A Survey of Fitness Measures in GP
	Introduction
	Objective fitness
	Motivation
	Implementation
	Advantages
	Disadvantages
	Discussion


	Divide-and-conquer fitness
	Layered learning
	Motivation
	Implementation
	Variants
	Advantages
	Disadvantages
	Discussion

	Behavioral programming
	Motivation
	Implementation
	Variants
	Advantages
	Disadvantages
	Discussion


	Fitness sharing
	Motivation
	Implementation
	Variants
	Advantages
	Disadvantages
	Discussion


	Dynamic fitness
	Dynamic subset measures
	Motivation
	Implementation
	Variants
	Advantages
	Disadvantages
	Discussion

	Stepwise adaptation of weights
	Motivation
	Implementation
	Variants
	Advantages
	Disadvantages
	Discussion


	Subjective fitness
	Competitive fitness
	Motivation
	Implementation
	Variants
	Advantages
	Disadvantages
	Discussion

	Cooperative fitness
	Motivation
	Implementation
	Variants
	Advantages
	Disadvantages
	Discussion


	Novelty search
	Motivation
	Implementation
	Variants
	Advantages
	Disadvantages
	Discussion


	Summary

	A Comparison of Fitness Measures in GP
	Introduction
	Experimental methodology
	Fitness measures
	Criteria for comparison
	Solution quality
	Generalization
	Population diversity
	Structural complexity
	Time taken

	Benchmark suite
	Symbolic regression benchmarks
	Supervised classification benchmarks
	Boolean function synthesis benchmarks
	Path-finding benchmarks

	Experiment set-up
	Technical specifications

	Results and discussion
	Solution quality
	Symbolic regression benchmarks
	Supervised classification benchmarks
	Boolean function synthesis benchmarks
	Path-finding benchmarks
	Summary of the solution quality results

	Generalization
	Symbolic regression benchmarks
	Supervised classification benchmarks
	Boolean function synthesis benchmarks
	Path-finding benchmarks
	Summary of the generalization results

	Population diversity
	Symbolic regression benchmarks
	Supervised classification benchmarks
	Boolean function synthesis benchmarks
	Path-finding benchmarks
	Summary of the diversity results

	Structural complexity
	Symbolic regression benchmarks
	Supervised classification benchmarks
	Boolean function synthesis benchmarks
	Path-finding benchmarks
	Summary of the structural complexity results

	Time taken
	Symbolic regression benchmarks
	Supervised classification benchmarks
	Boolean function synthesis benchmarks
	Path-finding benchmarks
	Summary of the time taken results


	Summary

	Methodology
	Introduction
	Critical analysis of related literature
	Justification of the GA approach for evolving DFMs for DFMGP
	Justification of the GP approach for evolving DFMs for DFMGP

	Research methodology
	Objectives
	Objectives one and two
	Overview of the objectives
	Measurements for analysis of the objectives

	Objectives three, four and five
	Overview of the objectives
	Measurements for analysis of the objectives
	Hypothesis testing

	Objective six
	Overview of the objective
	Measurements for analysis of the objective


	Benchmark suite
	Benchmark problems
	Problems used to test the effectiveness of DFMGP
	Problem classes used to test the reusability of the DFMs evolved by the GA and GP approaches
	Real-world problems used to test the reusability of the DFMs evolved by the GA and GP approaches

	Function and terminal sets
	Fitness cases

	Technical specifications
	Summary

	The DFMGP Algorithm
	Introduction
	The DFMGP algorithm
	Representation scheme
	Initial population creation
	Fitness evaluation
	Selection method
	Genetic operators
	Parameter tuning
	Summary

	A GA Approach for Deriving DFMs for DFMGP
	Introduction
	Genetic algorithm for dynamic fitness measure GP
	Representation
	Initial population creation
	Fitness evaluation
	Selection method
	Genetic operators
	Parameter tuning
	Summary

	A GP Approach for Deriving DFMs for DFMGP
	Introduction
	Genetic programming for dynamic fitness measure GP
	Representation
	Terminal Set
	Function Set

	Initial population creation
	Fitness evaluation
	Selection method
	Genetic operators
	Parameter tuning
	Summary

	Results and Discussion
	Introduction
	Results of the GA approach and DFMGPGA
	Testing the effectiveness of DFMGPGA
	Testing the reusability of the derived DFMs within problem classes
	Testing the reusability of the derived DFMs on real world problems
	Analysis of the derived DFMs

	Results of the GP approach and DFMGPGP
	Testing the effectiveness of DFMGPGP
	Testing the reusability of the derived DFMs within problem classes
	Testing the reusability of the derived DFMs on real world problems
	Analysis of the derived DFMs

	Comparison of GA/DFMGPGA and GP/DFMGPGP
	Comparing the effectiveness of DFMGPGP with DFMGPGA
	Comparing the reusability of the derived DFMs within problem classes
	Comparing the reusability of the derived DFMs on real world problems
	Comparing the derived DFMs

	Summary

	Conclusions and Future Work
	Introduction
	Objectives and Conclusions
	Future Work
	Coevolving the parameters used by the fitness measures in DFMGP
	Detecting problem properties
	Testing other evolutionary algorithm approaches for evolving DFMs
	Testing DFMs on other evolutionary algorithms

	Summary

	Bibliography



