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a b s t r a c t 

Personnel scheduling is a difficult problem with many specific requirements that differ between indus- 

tries or companies. This paper proposes an Integer Programming (IP) formulation for the staff scheduling 

problem encountered in practice at an Emergency Medical Services (EMS) system. Two types of heuris- 

tics (a diving heuristic and a VNDS heuristic) are implemented and extensively tested on a set of problem 

instances with different dimensions. Results show that the VNDS heuristic clearly outperforms both the 

diving heuristic and a state-of-the-art commercial IP solver. It is able to find good quality solutions for 

realistic problem instances in relatively short computation times. The characteristics that determine the 

relative difficulty of a problem instance are also investigated. Furthermore, the model is applied to a case 

study at the Portuguese National Institute for Medical Emergencies. For this purpose, the VNDS heuristic 

has been implemented in an expert system with an easy-to-use graphical user interface. A number of dif- 

ferent schedules proposed by the system are compared with the schedule implemented in practice. This 

analysis shows that the VNDS heuristic is a significant improvement over the current manual scheduling 

procedure. Moreover, two what-if scenarios are described to show how the expert system can be used to 

assist managers in making decisions on contracting additional staff or providing training to workers. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Staff scheduling is a common problem to most organisations

and has been widely studied in the literature. Ernst, Jiang, Krish-

namoorthy, and Sier (2004b) define staff scheduling as the crucial

process of deploying timetables for a set of workers within an or-

ganisation to sat isfy demands for various services, while simulta-

neously ensuring a distinctive level of employee satisfaction. More-

over, models also need to consider legal, organisational and con-

tractual constraints ( Vanden Berghe, 2013 ). 

In Emergency Medical Services (EMS) systems, staff scheduling

is of paramount importance, since shortages in the number of re-

quire d personnel directly impact the quality of care patients re-
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eive. Additionally, the shift sequences assigned to personnel also

mpact their competency. If someone is, e.g., assigned to a morn-

ng shift after doing a night shift the previous day, this can lead

o so-called jet fatigue ( Kreeft, 2012 ). Furthermore, employee sat-

sfaction cannot be neglected, as undesirable schedules can lead

o increased staff turnover ( Cline, Reilly, & Moore, 2003 ). In fact,

ulfilment of employee preferences is directly related to on-job-

erformance and for this reason the relative attention given to this

spect in scheduling decisions has grown ( Vanden Berghe, 2013 ). 

This research was motivated by the staff scheduling problem at

nstituto Nacional de Emergência Médica (INEM) in Portugal. Es-

ablished in 1981 under the Ministry of Health, this public insti-

ution aims to guarantee highly specialised health care services in

mergency situations ( Ministério da Saúde, 1981 ). Their actions in-

lude reception of the emergency request, prompt and accurate as-

istance at the scene when necessary, and aided transportation to

he convenient health facility. In order to deliver pre-hospital care

t the scene and during transportation in life-threatening situa-

ions, INEM requires highly qualified professionals and specialised

aterial resources ( INEM, 2017 ). INEM comprises a dispatch cen-
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er and emergency vehicles, which are based in different locations.

oth are staffed by a shared pool of technical personnel who each

ave a different set of skills to perform certain tasks. Furthermore,

orkers belong to different teams which each have their specific

et of tasks and geographical location. However, workers can per-

orm tasks in other teams to help meet staffing requirements. The

roblem then consists of finding a schedule that meets the staffing

equirements on each shift, while ensuring a high level of em-

loyee satisfaction. 

Despite the high complexity in building rosters, several institu-

ions still plan their timetables manually (e.g. the real case-study

ddressed later on at INEM). This requires a lot of work from the

dministrative personnel. Moreover, it is not easy for human plan-

ers to take all the different constraints and objectives into ac-

ount. By contrast, we will show how an expert system can provide

olutions in significantly less time, while simultaneously improving

he solution quality. Additionally, it improves transparency as the

ules the algorithm uses to build a schedule are agreed upon be-

orehand, increasing employee perception about fairness of the re-

ulting rosters. Finally, the decision support system can help man-

gers analyse the impact of different factors, such as the number of

vailable personnel or the skills level of the different workers, on

ifferent key performance indicators (KPIs) of the resulting timeta-

les. This can help the organisation make decisions on e.g. hiring

dditional personnel or providing extra training to workers. 

The contribution of this paper is three-fold. First, we introduce

 new health care staff scheduling problem that arises at an EMS

ystem which involves scheduling both technical and medical per-

onnel. While scheduling medical staff (like nurses or physicians)

as been widely studied, the literature on scheduling technical

ersonnel for medical services is much scarcer. The problem un-

er consideration is unique in the sense that a geographically dis-

ersed workforce needs to be assigned to different services, teams

nd tasks taking into account skills and workforce regulations. We

how how one integrated model can optimise the schedule for this

partly) shared personnel at different locations. Second, an exten-

ive computational study demonstrates that a VNDS heuristic out-

erforms a standard IP model and diving heuristic for this type

f problem. Third, the successful application of the VNDS heuris-

ic on real-life data contributes to decreasing the gap that exists

oday between theory and practice in automated timetabling and

cheduling. 

The remainder of this paper is structured as follows.

ection 2 presents an overview of the literature on staff scheduling

roblems, with an emphasis on EMS systems in particular. Next,

he staff scheduling problem at INEM is explained in Section 3 ,

ollowed by two different solution approaches in Section 4 . In

ection 5 , the model is applied to a real-life dataset provided by

NEM as well as a test set of problems of varying dimensions. Fi-

ally, Section 6 concludes the paper. 

. Literature review 

Personnel scheduling problems arise in a wide variety of set-

ings, such as transportation systems, call centers, and health

are systems ( Ernst et al., 2004b ). Different reviews of the litera-

ure have been published. Brucker, Qu, and Burke (2011) present

eneric mathematical programming formulations for permanence

nd fluctuation centred planning and for two special cases. They

ocus on complexity and discuss some polynomially solvable cases.

an Den Bergh, Beliën, De Bruecker, Demeulemeester, and De

oeck (2013) look at four different sets of problem characteris-

ics, namely (i) personnel characteristics, decision delineation, and

hifts definition, (ii) constraints, performance measures, and flex-

bility, (iii) solution method and uncertainty incorporation, and

iv) application and applicability of research. Finally, an annotated
ibliography of ca. 700 articles with a short summary of each

aper is presented by Ernst, Jiang, Krishnamoorthy, Owens, and

ier (2004a) . The papers are classified according to the type of

roblem addressed, the application areas covered, and the meth-

ds used. 

Health care systems have played a dominant role in the au-

omated personnel scheduling research literature, mainly due to

he nurse scheduling problem (NSP) which has been studied

xtensively. Reviews of models and solution methods for the

SP are provided by Cheang, Li, Lim, and Rodrigues (2003) and

urke, Causmaecker, Vanden Berghe, and Landeghem (2004) . Be-

ides nurses, the scheduling of other types of medical person-

el like physicians have been subject to many research studies

 Erhard, Schoenfelder, Fügener, & Brunner, 2017 ). Although there

s a broad literature on EMS systems, most of the research ef-

orts have focused on EMS location problems. Li, Zhao, Zhu, and

yatt (2011) review the different EMS covering models and solu-

ion techniques, while Ba ̧s ar, Çatay, and Ünlüyurt (2012) present

 taxonomy of EMS location problems classifying the existing lit-

rature with respect to problem type, modeling, and method-

logy. Ingolfsson (2013) presents a broader review on manag-

ng EMS systems, including other aspects like measuring perfor-

ance and forecasting demand, workload and response times.

enderson (2011) outlines some of the key challenges in managing

MS systems and discusses how system-status management can

erve as a tool to address several of these challenges. 

Despite the large number of research papers on workforce

cheduling on the one hand and EMS systems on the other hand,

nly a few papers deal with workforce management related to

MS systems ( Aringhieri, Bruni, Khodaparasti, & van Essen, 2017 ).

ddis, Aringhieri, Carello, Grosso, and Maffioli (2012) study the

MS system of Milano in which operators need to be assigned

o teams and teams to predefined shifts. Whereas we also take

nto account workers at EMS vehicles in neighboring regions,

ddis et al. (2012) focus on the operators working at the EMS

ystem operation center only. As a result, the considered problem

an be solved using a state-of-the-art commercial solver avoid-

ng the need to develop heuristic algorithms. Similar to our study,

radbeer, Findlay, and Fogarty (20 0 0) assume that the number and

ocations of the EMS vehicles are fixed. They propose an evolu-

ionary algorithm to develop personnel rosters for the EMS ve-

icles. In contrast to the problem addressed in this paper, other

tudies have dealt with the integrated EMS location problem and

orkforce scheduling problem. Erdoan, Erkut, Ingolfsson, and La-

orte (2010) propose a solution method for the combined prob-

em of locating ambulances and scheduling the working hours

f ambulance crews in order to maximise the expected coverage

ith probabilistic response times. Similarly, Rajagopalan, Saydam,

harer, and Setzler (2011) determine in a first stage the minimal

umber and location of ambulances per time interval such that

xpected coverage constraints are met. In the second stage ac-

ual crew schedules are developed. Li and Kozan (2009) also ap-

ly a two-stage approach. In the first stage, the shift start times

nd the number of ambulance staff required in each shift are

etermined, while the second stage entails assigning individuals

o the first-stage generated shifts in order to achieve a monthly

four weeks) schedule at minimal cost. Finally, Vile, Gillard, Harper,

nd Knight (2016) develop several techniques, ranging from de-

and forecasting to optimisation methods for determining mini-

um staffing requirements and generate low-cost rosters, that are

ntegrated in a master workforce capacity planning tool for the

MS system in Wales. 

Many solution techniques are applied to solve personnel

cheduling problems. A straightforward approach is to model

he problem as an integer programming formulation and solve

t using a general IP solver ( Bard, Binici, & DeSilva, 2003;
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Isken, 2004 ). Other researchers have used branch-and-price

( Bard & Purnomo, 20 05a; 20 05b; Burke & Curtois, 2010 ), which

uses column generation in each node in the branch-and-bound tree

to solve the LP relaxation ( Hans, 2001 ). 

Despite the vast improvements in computer hardware and com-

mercial IP solvers in the last decades, staff scheduling problems

remain difficult to solve to optimality. Furthermore, optimal solu-

tions that require many hours to calculate are often less valuable

than quick suboptimal solutions, which allow user feedback or sen-

sitivity analysis ( Cheang et al., 2003 ). Also, heuristics are relatively

easy to implement and are able to deal with complex constraints

or objectives (e.g. non-linear cost functions) ( Ernst et al., 2004b ).

This has led researchers to the application of heuristics to person-

nel scheduling problems. Genetic algorithms are a popular type

of metaheuristic in this field ( Aickelin & Dowsland, 20 0 0; 20 04;

Bradbeer et al., 20 0 0; Moz & Vaz Pato, 2007; Pato & Moz, 2008;

Puente, Gómez, Fernández, & Priore, 2009 ). Other approaches in-

clude tabu search ( Bellanti, Carello, Della Croce, & Tadei, 2004 ), it-

erated local search ( Bellanti et al., 2004 ), particle swarm optimisa-

tion ( Altamirano, Riff, Araya, & Trilling, 2012 ), memetic algorithms

combining genetic algorithms with local improvement procedures

( Burke, Cowling, De Causmaecker, & Vanden Berghe, 2001 ), and

hyperheuristics ( Smet, Bilgin, De Causmaecker, & Vanden Berghe,

2014 ). Variable neighbourhood search (VNS) is an increasingly pop-

ular metaheuristic for solving difficult personnel scheduling prob-

lems ( Rahimian, Akartunal, & Levine, 2017; Zheng, Liu, & Gong,

2017 ). VNS is founded on the idea of using different neighbour-

hood structures to avoid getting stuck in local optima, since a local

optimum in one neighbourhood is not necessarily a local optimum

in another neighbourhood. 

Recently, MIP-based heuristics have been successfully applied

to the NSP ( Burke, Li, & Qu, 2010; Santos, Toffolo, Gomes,

& Ribas, 2016; Valouxis, Gogos, Goulas, Alefragis, & Housos,

2012 ). These approaches aim to combine the strengths of

both mixed integer programming and (meta)heuristic approaches.

Burke et al. (2010) first solve the NSP using an IP model that

includes all hard constraints and only a subset of soft con-

straints. Then in a second step, the solution obtained by the

IP model is improved using a variable neighbourhood search

which focuses on the satisfaction of the other soft constraints.

Valouxis et al. (2012) also use a two-phase approach. In the first

phase, they assign nurses to days without considering shifts. The

planning period is divided into groups of seven days, and for each

group an IP model is solved. Next, the resulting solution is im-

proved using local search by recombining partial schedules. In the

second phase, for each day an IP model is solved that assigns

nurses to shifts. This phase only takes costs related to shift assign-

ments into account. This sequence is repeated until the available

computation time is exhausted. Santos et al. (2016) use a two-

pronged method, consisting of cut generation to improve bounds

in order to prove optimality and the use of primal heuristics to

quickly find good solutions. Starting from a feasible initial solu-

tion, they use a variable neighbourhood descent consisting of two

different neighbourhood moves to improve the solution. The first

neighbourhood fixes all assignments except for a number of days.

Then this subproblem is solved to optimality using integer pro-

gramming. Next, the sequence is repeated for a different subset of

days. In a second step, the second neighbourhood fixes all alloca-

tions of shifts, except one. Again, for every shift a subproblem is

solved using integer programming. 

Instead of using standard MIP approaches inside a heuristic

framework, column generation can be used as well ( Gamache,

Soumis, Marquis, & Desrosiers, 1999; Gomes, Toffolo, & Santos,

2017; Joncour, Michel, Sadykov, Sverdlov, & Vanderbeck, 2010 ).

Gomes et al. (2017) combine column generation with variable

neighbourhood search to efficiently find columns with negative
educed costs. Diving heuristics are used to obtain integer feasi-

le solutions. Diving heuristics heuristically select branches in the

ranch-and-price tree using a certain rounding strategy such as

ounding down, up, to the closest integer, or based on a thresh-

ld, until the first integer solution is found ( Joncour et al., 2010 ). 

. Problem statement 

The problem formulation in this paper is based on the real-

ife staff scheduling problem encountered at INEM in Portugal.

NEM consists of two main services: the emergency dispatch cen-

res known as Centro de Orientação de Doentes Urgentes (CODUs)

nd the Emergency Vehicles (EVs). CODUs are responsible for es-

ablishing a link between the caller requesting emergency medi-

al assistance and the EVs by acquiring the calls, delivering voice

ssistance and instructions, and dispatching the convenient trans-

ortation. Both services operate 24/7. 

The CODUs and the EVs share the same workforce of Técni-

os de Emergência Pré-Hospitalar (TEPHs), i.e. technical personnel.

NEM only schedules the set of TEPHs which is, in fact, the largest

roup of emergency staff. Medical doctors and psychologists are

ewer in number and their schedule is built by the institution they

elong to, i.e. hospitals or other health care units. The nurses are

cheduled by INEM, but this schedule is much simpler than that of

he TEPHs due to the significantly smaller size of this group. 

Each TEPH is allocated to one of the two services, the CODUs

r the EVs. Within their service, TEPHs belong to teams. TEPHs can

elong to only a single team or to multiple teams. Each team has

 set of tasks that need to be performed. The assignment of TEPHs

o a team depends on two main factors. First, a TEPH can only per-

orm tasks if (s)he has the required skills, e.g. a licence to drive

n emergency motorcycle. Second, TEPHs’ residence place must be

aken into account in the attribution of tasks, e.g. people cannot be

ssigned to teams from locations that are more than 100 km away.

EPHs are expected to perform tasks in their respective team(s),

ut they can be assigned to tasks from other teams or services to

eet task demands if needed. However, this should be avoided if

ossible. 

The primary objective of the schedule is to ensure functional-

ty of the services. Each day d of the planning horizon is divided

nto three shifts in which tasks are performed: a night shift from

idnight to 8 am, a morning shift from 8 am to 4 pm, and an af-

ernoon shift from 4 pm to midnight. However, the model allows

hat some tasks have a duration that differs from the shift length.

he task then starts at the same time as the shift it is assigned to,

ut can finish either before or after the end of the shift. Workforce

emands are determined in advance and can vary between shifts.

egal rules require a minimum resting time of two shifts between

ach pair of shifts worked. In addition, working time regulations

equire a minimum number of Sundays off over the planning pe-

iod. They also put a limit on the maximum number of consecutive

ays worked and the maximum number of consecutive days off. 

Secondly, the model intends to be equitable for every person.

irst, every person needs to work at least a predetermined num-

er of night shifts, morning shifts, and afternoon shifts. Second,

eople prefer to have the entire weekend off instead of a single

ay. Third, each worker’s contract hours should be met as much

s possible, meaning both overtime and ‘undertime’ are undesir-

ble. Finally, the number of tasks assigned to people from other

eams should be minimised. These last three constraints are soft

onstraints, while the others are hard constraints. 

The following integer programming formulation defines our

roblem. We use the following notation: 

• Sets 
• p ∈ P: the set of people 
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• t ∈ T: the set of tasks 
• d ∈ D: the set of days in the planning horizon 

• w ∈ W: the set of full weekends in the planning horizon 

• s ∈ S: the set of shifts, i.e. S = { night , morning , afternoon } 
• g ∈ G: the set of teams 
• j ∈ J: the set of services 

• Subsets 
• P T t : people that can perform task t 
• P G g : people that belong to team g 

• T P p : tasks that can be performed by person p 

• T G g : tasks that belong to team g 

• T 
J 
j 
: tasks that belong to service j 

• G j : teams that belong to service j 
• Parameters 

• κ: start day of the planning horizon (0 = Monday, 1 = Tues-

day, ... , 6 = Sunday) 
• �p : the number of contract hours of person p , adjusted for

holidays 
• L t : the duration of task t 
• R tds : the required number of people assigned to task t on

shift s of day d 
• θ1 : maximum number of consecutive working days 
• θ2 : maximum number of consecutive days off
• θ3 : minimum number of Sundays off
• θ4 

s : minimum number of shifts of type s worked 

• w 

RE+ 
j 

: weight of penalty variable for excess workforce sup-

ply in service j 
• w 

RE−
j 

: weight of penalty variable for shortage workforce

supply in service j 
• w 

WO : weight of penalty variable for full weekend off
• w 

H+ : weight of penalty variable for excess hours worked 

• w 

H−: weight of penalty variable for shortage hours worked 

• w 

G 
j 
: weight of penalty variable for assigning tasks of a team

to members of another team in service j 
• Decision variables 

• x ptds ∈ {0,1}: equals 1 if person p is assigned to task t on

shift s of day d , 0 otherwise 
• Y RE+ 

tds 
∈ N : penalty variable for excess workforce supply for

task t on shift s of day d 
• Y RE−

tds 
∈ N : penalty variable for shortage workforce supply for

task t on shift s of day d 
• Y WO + 

pw 

, Y WO −
pw 

∈ N : penalty variables for full weekend off for

person p in weekend w 

• Y H+ 
p ∈ N : penalty variable for excess hours worked for per-

son p 
• Y H−

p ∈ N : penalty variable for shortage hours worked for

person p 
• Y G g ∈ N : penalty variable for assigning tasks of team g to

members of another team 

Now, the IP formulation can be written as follows: 

inimise 
∑ 

d ∈ D 

∑ 

s ∈ S 

∑ 

j ∈ J 

∑ 

t ∈ T J 
j 

(
w 

RE+ 
j 

Y 

RE+ 
tds 

+ w 

RE −
j 

Y 

RE −
tds 

)

+ 

∑ 

p∈ P 

∑ 

w ∈ W 

(
w 

WO Y WO + 
pw 

+ w 

WO Y WO −
pw 

)

+ 

∑ 

p∈ P 

(
w 

H+ Y H+ 
p + w 

H− Y H−
p 

)
+ 

∑ 

j∈ J 

∑ 

g∈ G j 
w 

G 
j Y 

G 
g (1) 

∑ 

p∈ P T t 

x ptds − Y RE+ 
tds 

+ Y RE−
tds 

= R tds ∀ t ∈ T , d ∈ D , s ∈ S (2) 

∑ 

∈ T P p 

(
x ptd, night + x ptd, morning + x ptd, afternoon 

)
≤ 1 ∀ p ∈ P , d ∈ D (3) 
i

∑ 

∈ T P p 

(
x ptd, morning + x ptd, afternoon + x pt,d+1 , night 

)

≤ 1 ∀ p ∈ P , d ∈ D \ {| D |} (4) 

∑ 

∈ T P p 

(
x ptd, afternoon + x pt,d+1 , night + x pt,d+1 , morning 

)

≤ 1 ∀ p ∈ P , d ∈ D \ {| D |} (5) 

∑ 

∈ T P p 

∑ 

r∈{ d ,d +1 , ... ,d + θ1 } 

∑ 

s ∈ S 
x ptrs ≤ θ1 

∀ p ∈ P , d ∈ D \ {| D | , | D | − 1 , . . . , | D | − θ1 + 1 } (6) 

∑ 

∈ T P p 

∑ 

r∈{ d ,d +1 , ... ,d + θ2 } 

∑ 

s ∈ S 
x ptrs ≥ 1 

∀ p ∈ P , d ∈ D \ {| D | , | D | − 1 , . . . , | D | − θ2 + 1 } (7) 

∑ 

t∈ T P p 

∑ 

d∈{ 7 −κ, 7 −κ+7 , ... } 

∑ 

s ∈ S 
x ptds ≤ | W | − θ3 ∀ p ∈ P (8) 

∑ 

t∈ T P p 

∑ 

d∈ D 
x ptds ≥ θ4 

s ∀ p ∈ P , ∀ s ∈ S (9) 

∑ 

∈ T P p 

∑ 

s ∈ S 
x pt, 7(w −1)+7 −κ,s − x pt, 7(w −1)+6 −κ,s − Y WO + 

pw 

+ Y WO −
pw 

= 0 ∀ p ∈ P , w ∈ W (10) 

∑ 

∈ T P p 

∑ 

d∈ D 

∑ 

s ∈ S 
L t x ptds − Y H+ 

p + Y H−
p = �p ∀ p ∈ P (11) 

∑ 

p∈ P G g 

∑ 

t∈ T P p \ T G g 

∑ 

d∈ D 

∑ 

s ∈ S 
x ptds − Y G g = 0 ∀ g ∈ G (12) 

 ptds ∈ { 0 , 1 } ∀ p ∈ P , t ∈ T , d ∈ D , s ∈ S (13) 

 

RE+ 
tds 

, Y RE−
tds 

∈ N ∀ t ∈ T , d ∈ D , s ∈ S (14) 

 

WO + 
pw 

, Y WO −
pw 

∈ N ∀ p ∈ P , w ∈ W (15) 

 

H+ 
p , Y H−

p ∈ N ∀ p ∈ P (16) 

 

G 
g ∈ N ∀ g ∈ G (17) 

The objective function (1) minimises the weighted sum of the

enalty variables. Constraints (2) are the coverage requirements.

nderstaffing and overstaffing are allowed at a penalty cost. Peo-

le need to rest 2 shifts between consecutive shifts worked, which

s enforced by constraints (3) –(5) for night shifts, morning shifts,

nd afternoon shifts respectively. People are not allowed to work

ore than θ1 days consecutively (6) and they cannot have more

han θ2 consecutive days off (7) . Over the entire planning horizon,

eople should have at least θ3 Sundays off (8) . Every person needs

o work at least θ4 
s shifts of each type s (9) . Preferably, people get

he entire weekend off instead of a single day (10) . Ideally, peo-

le work their specified number of contract hours, adjusted for the

umber of holidays in the planning period (11) . Finally, tasks be-

onging to a certain team should be assigned to members of that

eam as much as possible (12) . This constraint works as follows:

or every team g , the penalty variable Y G g counts the number of

asks from other teams that are assigned to members of this team.

inally, constraints (13) –(17) define the domains of the binary and

nteger decision variables. 



66 H. Vermuyten et al. / Expert Systems With Applications 112 (2018) 62–76 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Y  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

l  

o

 

f

m

 

t

 

t

 

t

 

t

 

t

 

t

 

t

 

t

 

t

 

t

 

Y  

Y  

Y
 

4

 

w  

p  

t  

p  

a  

g  

s  

d  

r  

s

4. Solution approach 

As is shown in Section 5.4 , solving IP formulation (1) –(12) with

a state-of-the-art commercial IP solver turns out to be intractable

for real-life instances. Therefore, heuristic approaches are needed

to provide good solutions in reasonable computation times. Two

different approaches are compared. Section 4.1 describes a div-

ing heuristic based on column generation. Next, in Section 4.2 we

develop VNDS heuristic that utilises the principles of fix-and-

optimise. 

4.1. Method 1: Diving heuristic 

4.1.1. Column generation 

The model consisting of Eqs. (1) –(12) can be formulated in a

different way. For every person a work pattern can be defined as

the tasks assigned to that person over the planning horizon. Such a

work pattern is referred to as a column . Let a pktds equal 1 if column

k for person p assigns task t on shift s of day d and 0 otherwise.

Also, let c pk be the cost of column k for person p , based on the soft

constraint violations for person p . These consist of the penalties for

receiving only single weekend days off instead of entire weekends,

deviations in working time from contract hours (both overtime and

‘undertime’), and the number of tasks assigned to this person from

other teams than his or her own team. Finally, let K p be the set of

columns for person p . Then we can define the following decision

variable: z pk ∈ {0, 1}: equals 1 if column k is chosen for person p , 0

otherwise. 

Our problem can then be formulated as follows: 

minimise 
∑ 

p ∈ P 

∑ 

k ∈ K p 

(
c pk z pk 

)
+ 

∑ 

d ∈ D 

∑ 

s ∈ S 

∑ 

j ∈ J 

∑ 

t ∈ T J 
j (

w 

RE+ 
j 

Y RE+ 
tds 

+ w 

RE−
j 

Y RE−
tds 

)
(18)

∑ 

p∈ P T t 

∑ 

k ∈ K p 
a pktds z pk −Y RE+ 

tds 
+ Y RE−

tds 
= R tds ∀ t ∈ T , d ∈ D , s ∈ S (19)

∑ 

k ∈ K p 
z pk = 1 ∀ p ∈ P (20)

z pk ∈ { 0 , 1 } ∀ p ∈ P , k ∈ K p (21)

 

RE+ 
tds 

, Y RE−
tds 

∈ N ∀ t ∈ T , d ∈ D , s ∈ S (22)

The objective function (18) minimises the costs of the chosen

work patterns and the understaffing and overstaffing costs. Con-

straints (19) are the coverage requirements. Constraints (20) en-

force that exactly one work pattern is chosen for each person. Fi-

nally, constraints (21) and (22) define the domains of the binary

and integer decision variables. 

Column generation was first developed by Dantzig and

Wolfe (1960) as a method for solving linear programming prob-

lems with an exponential number of variables. In the column gen-

eration method, the LP relaxation of formulations (18) –(22) is ini-

tialised with only a limited set of columns. Subsequently, at each

iteration for every person a subproblem is solved to generate new

columns until no more columns with negative reduced costs can

be found ( Hans, 2001 ). To generate new columns, a pricing prob-

lem is solved which takes into account the constraints related to

an individual. 

Let λtds represent the dual costs associated with constraints

(19) and μp the dual costs associated with constraints (20) . The

reduced cost (RC) of a new column k for person p is then given

by: 

c pk −
∑ 

t∈ T 
∑ 

d∈ D 
∑ 

s ∈ S a pktds λtds − μp . (23)
We define the following decision variable for the pricing prob-

em: a tds ∈ {0, 1} equals 1 if task t is assigned on shift s of day d , 0

therwise. 

The pricing problem for each person p can then be defined as

ollows: 

inimise 
∑ 

t ∈ T 

∑ 

d ∈ D 

∑ 

s ∈ S 
( −λtds a tds ) 

+ 

∑ 

w ∈ W 

(
w 

WO Y WO + 
w 

+ w 

WO Y WO −
w 

)

+ w 

H+ Y H+ + w 

H− Y H− + 

∑ 

j∈ J 

∑ 

g∈ G j 
w 

G 
j Y 

G 
g (24)

∑ 

∈ T P p 

(
a td, night + a td, morning + a td, afternoon 

)
≤ 1 ∀ d ∈ D (25)

∑ 

∈ T P p 

(
a td, morning + a td, afternoon + a t,d+1 , night 

)
≤ 1 ∀ d ∈ D \ {| D |} 

(26)
∑ 

∈ T P p 

(
a td, afternoon + a t,d+1 , night + a t,d+1 , morning 

)
≤ 1 ∀ d ∈ D \ {| D |} 

(27)
∑ 

∈ T P p 

∑ 

r∈{ d ,d +1 , ... ,d + θ1 } 

∑ 

s ∈ S 
a trs ≤ θ1 

∀ d ∈ D \ {| D | , | D | − 1 , . . . , | D | − θ1 + 1 } (28)

∑ 

∈ T P p 

∑ 

r∈{ d ,d +1 , ... ,d + θ2 } 

∑ 

s ∈ S 
a trs ≥ 1 

∀ d ∈ D \ {| D | , | D | − 1 , . . . , | D | − θ2 + 1 } (29)

∑ 

∈ T P p 

∑ 

d∈{ 7 −κ, 7 −κ+7 , ... } 

∑ 

s ∈ S 
a tds ≤ | W | − θ3 (30)

∑ 

∈ T P p 

∑ 

d∈ D 
a tds ≥ θ4 

s ∀ s ∈ S (31)

∑ 

∈ T P p 

∑ 

s ∈ S 
a t, 7(w −1)+7 −κ,s − a t, 7(w −1)+6 −κ,s − Y WO + 

w 

+ Y WO −
w 

= 0 ∀ w ∈ W (32)

∑ 

∈ T P p 

∑ 

d∈ D 

∑ 

s ∈ S 
L t a tds − Y H+ + Y H− = �p − ηζ (33)

∑ 

∈ T P p \ T G g 

∑ 

d∈ D 

∑ 

s ∈ S 
a tds − Y G g = 0 ∀ g ∈ G , if p ∈ G (34)

 

WO + 
w 

, Y WO −
w 

∈ N ∀ w ∈ W (35)

 

H+ , Y H− ∈ N (36)

 

G 
g ∈ N ∀ g ∈ G (37)

.1.2. Column addition 

The column generation loop can be implemented in different

ays (see e.g., Beliën & Demeulemeester, 2006 ). We consider two

ossibilities. A first possibility is to solve the master problem, ob-

ain the dual variables, and then solve one subproblem for every

erson p . All columns that are found with a negative reduced cost

re added to the master problem, after which a new iteration be-

ins. A second possibility is to solve the master problem and then

olve a subproblem for person p . If a column with negative re-

uced cost is found, it is added to the master and the master is

eoptimised. Then we solve the subproblem for person p + 1 and

o on. 
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Algorithm 1. Diving heuristic. 
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.1.3. Finding an integer solution 

The solution found using column generation might not be in-

egral. Therefore, branching is needed to find an integer solution.

owever, as an exact branch-and-price approach requires a pro-

ibitively large amount of computation time for large problem in-

tances, a diving heuristic is used to quickly find good solutions.

n a diving heuristic, the branch-and-price tree is traversed in a

epth-first manner. After solving the LP relaxation, one or more

ariables are selected for branching. In our implementation, all

ractional variables with a value above a certain threshold δ are

xed to one. While branching on the column variables is usually

ot well-suited in a branch-and-price approach because it gener-

tes an imbalanced tree and requires significant changes to the

ricing problems ( Vanderbeck, 20 0 0 ), in a diving heuristic the for-

er is actually advantageous as this reduces the remaining solu-

ion space much more and the latter poses no problem as variables

re always fixed to one and never to zero ( Joncour et al., 2010 ).

ike in a regular branch-and-price approach, after each branching

ecision, new columns are generated as it is not guaranteed that

he columns of the root node can be combined into good integer

olutions ( Beliën & Demeulemeester, 2006 ). Subproblems naturally

nly need to be solved for those people p for which no column

ariable has been fixed yet. Also, all columns for people for which

 column has been fixed are explicitly removed from the master

roblem ( Gamache et al., 1999 ). Algorithm 1 presents the pseudo-

ode for the diving heuristic. 

.2. Method 2: VNDS heuristic 

Fix-and-optimise heuristics (also referred to as MIP-heuristics)

ave been increasingly applied to solve a wide variety of schedul-

ng problems (e.g., Dorneles, De Araújo, & Buriol, 2014; Helber

 Sahling, 2010; Santos et al., 2016; Seeanner, Almada-Lobo, &

eyr, 2013 ). The idea is that a MIP solver iteratively optimises

ubproblems in which only a subset of variables is free (i.e., can

e changed) while all other variables are fixed to their value in

he current solution. Since the solver takes the entire optimisa-

ion problem into account, a new solution is always feasible and at

east as good as the previous solution. An important consideration

s which and how many variables are released in each subprob-

em. The larger a subproblem, the higher the probability that an

mproved solution is found, but this comes at an increased com-

utational cost. 
VNDS was developed by Hansen, Mladenovi ́c, and Perez-

ritos (2001) and is a variant of VNS ( Hansen & Mladenovi ́c, 2001 ).

n important idea behind VNS is the use of different neighbour-

oods to improve the solution. VNS consists of a local search (first

escent) phase and a shake phase, which are repeated until the

topping criterion is met. Local search is used to intensify the

earch whereas the shake phase brings diversity. If the local search

hase gets stuck in a local optimum, VNS moves to the shake

hase, in which a random neighbour of the current solution is se-

ected. The algorithm then reverts to the local search phase. As the

earch progresses, the shake phase uses different neighbourhoods

o explore solutions further removed from the current solution.

he change of neighbourhoods can also be performed during the

ocal search phase, which is referred to as variable neighbourhood

escent (VND). In contrast to VNS, VNDS divides a neighbourhood

nto different subproblems in which only a subset of variables is

onsidered, instead of the entire neighbourhood simultaneously. 

The neighbourhoods for the local search phase can be

earched in different ways by the fix-and-optimise heuristic.

antos et al. (2016) use a fixed sequence of two neighbourhoods.

he first neighbourhood is divided into a fixed number of subprob-

ems, which are solved in sequence. They only explore the second

eighbourhood if the first neighbourhood finds a better solution.

he search then goes back to the first neighbourhood and increases

he size of the subproblems. A second method is proposed by

ames and Almada-Lobo (2011) , who also consider two neighbour-

oods. The first neighbourhood is explored until a local optimum

s reached. Then the second neighbourhood is searched and the al-

orithm reverts to the first one. Instead of solving a fixed sequence

f subproblems in the first neighbourhood, they randomly select a

ubproblem with probabilities based on the frequency and recency

ith which the different subproblems have previously been se-

ected. The size of the subproblems stays the same over the search.

amargo, Toledo, and Almada-Lobo (2014) choose a partition based

n how often variables have changed during the search process.

ariables which have changed often between different incumbent

olutions are more likely to be chosen compared to variables which

ave retained mostly the same value, as the latter are more likely

o already have the value they would have in the optimal solution.

inally, Belo-Filho, Amorim, and Almada-Lobo (2015) randomly se-

ect different neighbourhoods during the search based on how of-

en the neighbourhood has succeeded in improving the solution.

he probability of selecting a neighbourhood increases if it has

een more successful. The sizes of subproblems selected from the

eighbourhood are increased or decreased during the search based

n their required computation time and the optimality gap of the

urrent solution. 

In the next section, we give an overview of the proposed VNDS

mplementation. 

.2.1. Overview 

The VNDS is used to control the search, with a shake phase

o escape local optima. The fix-and-optimise heuristic is used for

he local search phase and incorporates the idea of using different

eighbourhoods to iteratively improve the solution. Algorithm 2

resents the pseudo-code for the VNDS heuristic. 

In the proposed implementation, each neighbourhood has a

xed probability of being chosen at each iteration. This setup

as the advantage of randomness in the neighbourhood sequence,

hich helps to avoid getting stuck in local optima, while only a

ingle set of parameters has to be specified as no updating scheme

as to be provided. 

Section 4.2.2 first describes the constructive method, followed

y the neighbourhood structures used in the local search phase in

ection 4.2.3 and finally the shake phase in Section 4.2.4 . 
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Algorithm 2. VNDS heuristic. 
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4.2.2. Constructive method 

The purpose of the constructive method is to find a feasible

schedule to serve as a starting point for the VNDS. In the problem

formulation of (1) –(12) , all constraints are person-specific, except

for the coverage requirements (2) . Furthermore, since the coverage

requirements allow both understaffing and overstaffing, these con-

straints do not impact the feasibility of a solution. As a result, a

feasible solution can be obtained by solving a MIP model for ev-

ery person, consisting of all constraints specific to that person, i.e.

constraints (3) –(12) . The objective function consists of the penalty

values of the soft constraints (10) –(12) related to the given person.

The solution of each individual MIP model gives a partial schedule

with the task assignments for an individual person over the plan-

ning horizon. To ensure that as many tasks as possible are selected

in each MIP and the solver does not generate nearly empty sched-

ules, each task is given a large negative objective function coeffi-

cient (since it is a minimisation problem). If a partial schedule has

been built for every person, a feasible start solution has been ob-

tained. This constructive method can be used to build feasible start

solutions for general staff scheduling problems, provided the only

linking constraints are the demand coverage requirements and all

other constraints are person-specific. 

4.2.3. Local search phase 

Three different neighbourhood structures are used in the local

search phase: 

Neighbourhood N 

D 
d 

This neighbourhood randomly selects d

consecutive days. All assignments on these days are released,

while other assignments are fixed. The idea behind this

neighbourhood is that it can better match people with the

required skills to tasks on the selected days because it con-

siders all shifts and all people simultaneously. Increasing the

number of free days d increases the probability of finding

better solutions, but it also leads to increased computation

times to solve the subproblem. 

Neighbourhood N 

S This second neighbourhood solves three

subproblems consecutively. In the first subproblem, all as-

signments on the first shift of each day are freed. If the

newly found solution is better, the search proceeds from this

new solution. Next, the second subproblem frees all assign-

ments on the second shift of each day. Finally, the third sub-

problem frees all assignments of the third shift of each day.

While the size of a subproblem might seem quite large, it
turns out that it can be solved relatively easily in practice.

The reason is that the assignments of the other two shifts

are fixed and people can only work one shift per day, so

many possibilities can be immediately discarded. 

Neighbourhood N 

T 
t This last neighbourhood randomly selects t

different tasks. For each selected task, a subproblem is cre-

ated in which all assignments are fixed, except for the as-

signments related to the selected task. These subproblems

are then solved sequentially. Each time a solution is found

that is better than the current one, the search proceeds from

this new solution. Initial tests revealed that solving a sep-

arate subproblem for each selected task yielded better re-

sults than solving a single subproblem in which all selected

tasks are freed simultaneously. This neighbourhood is use-

ful to find small improvements and to diversify the search.

The size parameter t again entails a trade-off between the

probability of finding better solutions and the required com-

putation time. 

At each iteration, one of the neighbourhoods is chosen based

n their predefined probabilities πD 
d 

, π S , and π T 
t . To avoid that the

ame subproblem is solved again, the neighbourhoods N 

S and N 

T 
t 

annot be selected twice in a row. In case two neighbourhoods N 

D 
d 

re selected consecutively, the first and last day of the newly se-

ected subproblem both have to be different from the first and last

ay of the previous subproblem. If the neighbourhood finds a bet-

er solution, the current solution is set to this improved solution.

hen a new iteration begins. This phase continues until it does not

ucceed in improving the solution any further within a predeter-

ined number of iterations, in which case the algorithm moves to

he shake phase. 

.2.4. Shake phase 

The shake phase in VNDS is used to escape local optima. It al-

ays starts from the best solution. The neighbourhood structure

 

P 
p used in our implementation randomly selects p people. Next,

he solution is fixed, except for the assignments belonging to the

elected people. Their partial schedules are changed randomly by

olving the same person-specific MIP model of the constructive

ethod of Section 4.2.2 . This time the objective function weights

or every task are chosen at random, so that each time a differ-

nt schedule will be generated. The generated partial schedules are

hen integrated in the current solution. Because understaffing and

verstaffing are allowed and all other person-specific constraints

re satisfied by the person-specific MIP model, this phase always

reserves the feasibility of the solution. 

At the start of the algorithm p is set to one. If the local search

hase succeeds in improving the solution returned by the shake

hase, p is reset to one and the best solution is updated. Other-

ise, p is increased by one, so that the probability of escaping the

ocal optimum increases. 

. Computational results 

The algorithms are coded in C++14 and compiled with Microsoft

isual Studio 2015. The callable library of ILOG CPLEX 12.6.2 is

sed as a MIP solver. All tests are executed on a PC with an Intel

ore i5-5200U CPU of 2.20 GHz and 8 GB of RAM under the Win-

ows 10 operating system. In all tests, the maximum computation

ime was set at 1 h, unless specified otherwise. 

The C++ codes for the diving heuristic, the VNDS heuristic, and

he instance generator of Section 5.2 , as well as detailed informa-

ion on all problem instances can be found at the following web-

ite: https://orcorner.wordpress.com/research-data/ . 

https://orcorner.wordpress.com/research-data/
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Fig. 1. Locations of the different INEM sites. 

Table 1 

Overview of the different types of tasks at INEM and their durations. 

CODU EVs 

Task type CODU Shift CODU AEM AEM Team SIV TIP UMIPE MEM 

Responsible Task Driver Responsible Task Task Task Task 

Duration 8 h 12 h 
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Table 2 

Objective function weights used in the computational tests. 

Parameter w 

RE+ w 

RE−
CODU 

w 

RE−
EV 

w 

WO w 

H+ w 

H− w 

G 
CODU w 

G 
EV 

Weight 10 100 10 0 0 10 1 1 10 20 

 

r  

c  

s  

t  

i  

r  

a  

F  

p

 

p  

g  

s  

t  

s  

S  

p  

d  

i  

s  

j  

c  

t  

t

.1. Case study at Instituto Nacional de Emergência Médica 

While INEM has branches in every part of Portugal, the scope of

ur case study is the Lisbon region and some neighbouring regions,

hich are coordinated by the Lisbon CODU and where INEM has

ehicles: Almada, Cascais, Elvas, Estremoz, Ponte de Sor, Sacavém,

etúbal, Seixal, Tomar, and Torres Novas (see Fig. 1 ). 

The total workforce for all these branches consists of 289

EPHs. They are divided into 22 teams, 5 in the CODU and 17 for

he EVs in the different regions. In the CODU, two types of tasks

xist: the regular CODU task which involves answering emergency

alls and dispatching emergency medical transportation, and the

hift responsibility task. The EVs consist of different types of am-

ulances, namely Medical Emergency Ambulances (AEM), Immedi-

te Life-Support Ambulances (SIV), Inter-hospital Pediatric Trans-

orts (TIP), Mobile Units of Psychological Emergency Intervention

UMIPE), and Medical Emergency Motorcycles (MEM). Every type

f ambulance requires one TEPH, except for the AEMs which re-

uire two TEPHs. This gives a total of eight types of tasks, which

re summarised in Table 1 . Each task has a duration equal to the

hift length of 8 hours, except for the MEM tasks, which have a du-

ation of 12 h. However, these tasks pose no problem in our model

ormulation, because they are only assigned to morning shifts and

nly impact the working time constraints (11) . While the same

ypes of tasks are done by multiple teams, they are represented

y different tasks in the model. Since TEPHs should preferably be

ssigned to tasks within their own teams, each team has its own

istinct set of tasks. As a result, there are 61 different tasks in

he problem instance (10 for the CODU and 51 for the EVs). The

lanning horizon is four weeks (28 days). Over the entire plan-

ing horizon a total of 4527 task-demands (i.e., 
tds R tds ) need to

e filled in. The problem dimensions are shown in Table 3 . 
Additionally, it is necessary to account for the working time

egulations. These state that people cannot work more than 6 days

onsecutively, cannot have more than 5 consecutive days off, and

hould have at least 1 Sunday off every four weeks. This implies

hat θ1 = 6 in constraints (6) , θ2 = 5 in constraints (7) , and θ3 = 3

n constraints (8) . Furthermore, out of equity considerations with

egards to shift distributions, it is required that each person works

t least 2 shifts of each type, i.e. θ4 
s = 2 , ∀ s ∈ S in constraints (9) .

inally, a standard contract specifies a working time of 140 hours

er month, implying that �p = 140 , ∀ p ∈ P in constraints (11) . 

The satisfaction of the task demands is considered the most im-

ortant objective of the schedule. Therefore, w 

RE−
EV 

and w 

RE−
CODU 

are

iven the highest values. However, understaffing in the EVs is con-

idered worse than understaffing in the CODU, as the CODU con-

inues to operate without significant problems if there is a small

hortage in personnel during a certain shift, thus w 

RE−
EV 

> w 

RE−
CODU 

.

econdly, because EVs are located in different regions, assigning

eople to tasks outside of their team (if allowed based on the

istance of the location) is worse for the EVs than for the CODU,

.e. w 

G 
EV 

> w 

G 
CODU 

. The weights used in the computational tests are

ummarised in Table 2 . Note that the dimensions of the various ob-

ectives are different, which needs to be taken into account when

hoosing these objective function weights. In Section 5.5 , a sensi-

ivity analysis is carried out to investigate the impact of changes in

hese weights. 
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Table 3 

Summary of the instances. ‘# x var.’ denotes the number of x ptds variables. ‘SL’ is 

the skill level in percent. An SL of p percent means every person on average has 

the required skills for p percent of all tasks. Finally, ‘util.’ refers to the utilisation 

level in percent, i.e. the total demand per day per shift for all tasks divided by the 

available number of people, adjusted for available monthly working time. 

Instance |P| |T| |D| # x var. SL util. 

INEM 289 61 28 1,480,836 54 90 

INEM MD 289 61 56 2,961,672 54 90 

INEM MP 417 61 28 2,136,708 53 92 

INEM LS 289 103 28 2,500,428 55 83 

INEM HS 289 61 28 1,480,836 100 90 

Test01 291 47 28 1,14 8,86 8 67 88 

Test02 346 55 28 1,598,520 52 135 

Test03 314 59 28 1,556,184 33 129 

Test04 296 70 28 1,740,480 51 134 

Test05 331 73 28 2,029,692 48 107 

Test06 259 57 28 1,240,092 91 69 

Test07 272 53 56 2,421,888 54 96 

Test08 292 44 28 1,079,232 64 85 

Test09 344 56 28 1,618,176 85 119 

Test10 269 61 56 2,756,712 98 83 

Test11 296 53 56 2,635,584 71 107 

Test12 335 72 28 2,026,080 99 72 

Test13 306 67 28 1,722,168 61 102 

Test14 286 57 28 1,369,368 91 87 

Test15 281 56 28 1,321,824 94 84 
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5.2. Test sets 

In this section, the performance of the different algorithms is

tested on problem instances with different dimensions. To the best

of our knowledge, no instances exist in the literature that can be

used to test our model without major changes. Therefore, a test set

is generated and made publicly available. 

First, four datasets are derived from the real data of INEM by

changing one of the problem dimensions. These are respectively:

INEM MD (more days), INEM MP (more people), INEM LS (less

symmetry), and INEM HS (high symmetry). The INEM MD instance

is obtained by extending the planning horizon from 28 to 56 days.

The same task demands R tds are used for both months. In the INEM

MP instance the number of workers is increased to 417. This num-

ber is chosen so that each team’s size increases by the same fac-

tor. The task demands R tds are increased at the same rate as the

number of workers. The INEM LS dataset is constructed by split-

ting tasks into two or more tasks, and assuming that people that

have the skills to do the old task can only do one of the new tasks,

so that symmetry is reduced. All task demands R tds are divided

proportionally over the new tasks. Finally, the INEM HS dataset is

derived by assuming that every worker can do every task, so that

symmetry is maximised. All other parameters are kept unchanged.

Next, an instance generator was developed that builds problem

instances with random dimensions. The generator works as fol-

lows. First the problem dimensions are determined. The number

of people |P|, the number of tasks |T|, and the number of teams

|G| are drawn from uniform distributions U (250, 350), U (40, 80),

and U (5, 15) respectively. With a probability of 0.20 the number

of days |D| is set to 56, otherwise |D| is set to 28. The maximal

problem size is limited to 3,0 0 0,0 0 0 x ptds variables, roughly double

the size of the INEM instance. In a second step, each person p and

task t are randomly assigned to a team g , as defined by the sets P G g 

and T G g . The distribution of skills is determined by the overal skill

level, which is the probability that a random person p has the re-

quired skills to do a certain task t , i.e. whether p ∈ P T t and t ∈ T P p .

This skill level is chosen from a uniform distribution U (0.2, 1.0). In

the third phase, demands R tds are generated for each task t , day d ,

and shift s of the planning horizon. These demands are based on

the number of people that have the required skills for a given task

t (i.e., the supply), which is calculated as | P T t | , as well as the utili-
ation level. The utilisation level ρ = 

demand 
supply 

is chosen from a uni-

orm distribution U (0.6, 1.2). Since people can work only one shift

er day and only 17.5 out of 28 days according to their contract

ours, the supply per day per shift for task t ( σ t ) is calculated as

ollows, σt = 

17 . 5 
28 

1 
3 | P T t | . Finally, for each shift s of each day d , the

ctual demand R tds for each task t is drawn from a Poisson distri-

ution P ( μt ) with parameter μt = ρ σt . Finally, all task durations

 t are set to 8 hours. The generator was used to produce an addi-

ional set of 15 instances, leading to a total of 20 instances to val-

date our algorithm. Information on these instances is summarised

n Table 3 . 

.3. Algorithm configurations and parameter settings 

For the diving heuristic, initial tests revealed that the column

eneration phase suffers from the tailing-off effect, where a large

umber of iterations is required to find the optimal solution. To

imit the total computation time to 1 h, the column generation

hase is terminated before the LP optimum has been found. The

llowed computation time for the root node is set at 1800 s, while

he remaining 1800 s are used for all subsequent nodes combined.

he reason for this choice is that increasing the computation time

or the root node relative to that of other nodes allows the heuris-

ic to find better solutions, since early branching decisions are

ever reversed and have a large impact on the search process later

n. 

For the VNDS heuristic, initial tests showed that for the neigh-

ourhood N 

T 
t , t = 10 provides a good trade-off between the size of

he neighbourhood and the required computation time. If t is cho-

en smaller, N 

T 
t rarely succeeds in improving the solution, while

or larger t , the required computation time becomes too large. Ad-

itionally, the maximum number of iterations without improve-

ent in the local search phase (max_iter) is set to 10, since ex-

eriments showed that at that point the heuristic has usually con-

erged to a local minimum. Moreover, the maximal computation

ime for a single subproblem is limited to 120 s. 

In a second step, the performance of each of the individual

eighbourhoods is investigated and compared with the perfor-

ance of the heuristic when the different neighbourhoods are

ombined. All tests are executed on five representative problem in-

tances with different sizes and characteristics, namely the INEM,

NEM MP, Test03, Test05, and Test10 instances. For each instance,

he VNDS is run three times, giving a total of fifteen observa-

ions for each of the configurations. The different configurations

nd their results on the five datasets are summarised in Table 4 .

he results show that the neighbourhoods N 

D 
d 

and N 

S individually

chieve the best results, while the N 

T 
t neighbourhood only finds

mall improvements, as was expected from the theoretical descrip-

ion in Section 4.2.3 . Furthermore, while increasing d in neighbour-

ood N 

D 
d 

increases performance slightly for most instances, for the

est10 instance it actually deteriorates performance. The reason is

hat the computation time increases substantially when d is large

nd thus the heuristic fails to converge to a good solution in the

iven time limit. Therefore, the maximum size of neighbourhood

 

D 
d 

is limited to d = 4 . 

To examine the statistical differences in performance between

he configurations, a non-parametric Kruskal–Wallis test is used,

ince the normality and homoscedasticity assumptions are not sat-

sfied. In all tests, the significance level is set at 0.05. The p -value

hen comparing all eleven configurations is less than 0.0 0 0 0,

eaning there are significant differences in performance. We hy-

othesise that the configurations that combine different neigh-

ourhoods are better than each of the configurations with stan-

alone neighbourhoods. Therefore, two additional tests are exe-

uted. First, a Kruskal–Wallis test is used to check whether there
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Table 4 

Results for the different (combinations of) neighbourhoods in the VNDS heuristic. For each configuration and 

dataset, the results listed here are the average of three algorithm runs with different seeds. The available com- 

putation time per run was limited to 1 h. 

Configuration Probabilities (pct.) Results 

N 

D 
2 N 

D 
3 N 

D 
4 N 

S N 

T 
10 INEM INEM MP Test03 Test05 Test10 

1 100 0 0 0 0 27,416 41,341 54,123 27,807 139,909 

2 0 100 0 0 0 27,177 41,038 53,319 27,615 136,228 

3 0 0 100 0 0 27,108 41,177 53,243 27,594 459,961 

4 0 0 0 100 0 27,498 41,326 60,966 28,140 27,381 

5 0 0 0 0 100 382,520 2,022,310 82,382 43,850 3,019,970 

6 40 30 20 8 2 27,024 40,797 53,113 27,465 25,604 

7 35 27.5 17.5 15 5 27,037 40,795 53,233 27,487 25,719 

8 35 27.5 17.5 10 10 27,031 40,844 52,989 27,497 25,752 

9 30 25 15 25 5 27,024 40,855 53,313 27,501 25,838 

10 30 25 15 20 10 27,009 40,841 53,303 27,502 25,883 

11 30 25 15 15 15 27,026 40,851 53,226 27,500 25,928 
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re significant differences in performance between configurations

6), (7), (8), (9), (10), and (11). This test yields a p -value of 0.9901

eaning all six configurations have a similar performance. Next,

e compare the performance of each of the standalone neigh-

ourhoods with the performance of configuration (6) using non-

arametric Wilcoxon signed-rank tests. A Bonferroni correction is

sed to avoid type I error inflation. All five tests are significant,

eaning configuration (6) achieves significantly better results than

ach of the standalone neighbourhoods. Based on these tests, two

onclusions can be drawn. First, it is clear that combining the dif-

erent neighbourhoods increases performance and makes the algo-

ithm more robust. Indeed, for the Test10 instance, the individual

 

D 
d 

neighbourhoods perform poorly, while the configurations con- 

isting of all neighbourhoods do not suffer from this problem. Sec-

nd, the concrete probabilities of the different neighbourhoods do

ot have a significant impact on the performance, which is posi-

ive as it makes the heuristic quite robust to its parameter settings.

ased on these tests, we choose the probabilities of configuration

6) in all subsequent tests. 

.4. Results 

First, CPLEX was used to solve the INEM instance. If the com-

utation time is limited to only 1 h, CPLEX performs very poorly

ith a best found solution of 1,994,304 (corresponding to a 98.67

ercent optimality gap). By contrast, both the diving heuristic and

he VNDS heuristic succeed in finding significantly better solu-

ions with objective values of 107,4 4 4 (75.39 percent optimality

ap) for the diving heuristic where in each iteration of the column

eneration phase a subproblem is solved for each person, 76,556

65.46 percent optimality gap) for the diving heuristic where dur-

ng the column generation phase the master is reoptimised after

ach addition of a new column, and an average of 27,024 (2.15 per-

ent optimality gap) for the VNDS heuristic respectively. Moreover,

ven if CPLEX is given an available computation time of 5 hours,

ts best found solution with a value of 29,130 (corresponding to

 9.23 percent optimality gap), is still significantly worse than

he solution found by the VNDS heuristic in only 1 h. These re-

ults illustrate the practical value of using a heuristic approach in

ractice. 

The results for the diving heuristic with both column genera-

ion schemes and the VNDS heuristic are provided in Table 5 . Be-

ause the VNDS heuristic is stochastic, we take the average re-

ults over three algorithm runs. Three runs were deemed suffi-

ient since the standard deviation between the different runs was

ather small (i.e., an average coefficient of variation of only 0.26

ercent). The results of both the LP relaxation and the IP model

f Eqs. (1) –(12) solved by CPLEX are also presented. The average
olution time of the LP relaxation equals 945 seconds, with a max-

mum of 3254 s for the Test11 instance. These numbers illustrate

hat the problem instances are hard to solve. From the results of

able 5 , three observations can be made. First, all three heuris-

ics outperform CPLEX within the available computation time of

nly 1 h. Second, the column generation scheme has a clear im-

act on the performance of the diving heuristic. The scheme where

he master is reoptimised each time a new column with negative

educed cost has been found achieves notably better results than

olving a subproblem for every person during each iteration. Third,

or our problem, both diving heuristic implementations perform

oorly relative to the VNDS heuristic, which achieves very good

esults. For 10 instances of the 20 instances, the VNDS heuristics

nds solutions with an optimality gap of under 3 percent, while

or another 4 instances the gap is under 5 percent. For only 3 in-

tances the gap exceeds 10 percent. These results clearly demon-

trate the strength of the proposed VNDS heuristic for this type of

roblem. The small standard deviation between different algorithm

uns also shows that the algorithm is quite successful in escaping

rom bad local optima. Two possible reasons for the poor perfor-

ance of the diving heuristics are the fact that understaffing and

verstaffing are allowed in constraints (19) and the large difference

n objective function coefficients, which lead to a slow convergence

f the column generation phase. 

For the VNDS heuristic, we investigate which factors determine

hether an instance is hard to solve. Therefore, a linear regres-

ion model is fitted with the optimality gap as dependent variable

nd four instance characteristics as predictor variables, namely the

umber of x ptds variables, the LP relaxation solution time, the skill

evel, and the utilisation. We also include an interaction term for

he skill level and utilisation, since a lower utilisation might not

ake the problem easier if the skill level also decreases. The re-

ults are listed in Table 6 . The adjusted R 

2 of the model equals

.779, meaning around 78 percent of the variance in the optimal-

ty gaps between instances is explained by the four dataset char-

cteristics. Contrary to what one might expect, neither the number

f x ptds variables nor the LP relaxation solution time have a sig-

ificant impact on the performance of the VNDS heuristic. On the

ther hand, when taken together, the skill level and utilisation are

ood predictors of the difficulty of a problem instance. As the util-

sation increases and the skill level decreases, the performance of

he VNDS heuristic decreases. This can be observed for the Test02,

est03, and Test04 instances, which are the only ones with gaps

bove 10 percent. These instances simultaneously have high utili-

ations of 135, 129, and 134 percent respectively and low skill lev-

ls of only 52, 33, and 51 percent respectively. However, we have

o be careful in generalising conclusions from this limited experi-

ent consisting of only 20 instances. 
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Table 5 

Results. ‘Diving A’ denotes the diving heuristic with the first column generation scheme where for every person a subproblem is solved in 

each iteration. ‘Diving B’ denotes the diving heuristic with the second column generation scheme where the master is reoptimised each 

time a new column is added. For the VNDS heuristic, ‘avg. obj.’ and ‘SD obj.’ are the average and the standard deviation of the objective 

values of three algorithm runs with different seeds. The average gap is calculated as 1 − LP opt . 
avg . obj . 

and expressed as a percentage. For the IP 

model, the diving heuristic, as well as the VNDS heuristic, the available computation time was limited to 1 h. 

Instance LP relaxation CPLEX IP Diving A Diving B VNDS 

Time (s) Opt. Obj. Gap Obj. Gap Obj. Gap Avg. obj. SD obj. Avg. gap 

INEM 180 26,442 1,994,304 98.67 107,4 4 4 75.39 76,556 65.46 27,024 42 2.15 

INEM MD 572 50,506 2,255,012 97.76 358,032 85.89 367,952 86.27 51,488 55 1.91 

INEM MP 272 39,218 2,821,106 98.53 189,018 79.25 100,314 60.91 40,797 16 3.87 

INEM LS 372 41,386 3,698,754 98.94 228,692 81.90 191,966 78.44 42,452 136 2.51 

INEM HS 304 25,128 441,896 94.31 263,890 90.48 100,720 75.05 26,062 351 3.58 

Test01 505 19,892 253,624 92.16 80,406 75.26 58,638 66.08 20,389 20 2.44 

Test02 1557 61,949 737,112 91.60 516,696 88.01 298,520 79.25 74,090 6 16.39 

Test03 638 47,486 417,742 88.63 480,520 90.12 214,088 77.82 53,113 191 10.59 

Test04 1227 55,322 557,332 90.07 597.340 90.74 307,248 81.99 61,845 7 10.55 

Test05 829 26,711 251,460 89.38 202,948 86.84 81,446 67.20 27,465 31 2.74 

Test06 375 15,140 3,887,199 99.61 61,235 75.28 32,247 53.05 15,542 4 2.59 

Test07 1596 18,337 1,251,654 98.53 514,448 96.44 125,758 85.42 18,799 115 2.46 

Test08 251 10,386 89,688 88.42 54,612 80.98 41,824 75.17 10,462 0 0.73 

Test09 1852 38,398 1,251,960 96.93 240,842 84.06 121,378 68.36 41,258 21 6.93 

Test10 2573 25,120 5,157,815 99.51 267,577 90.61 110,027 77.17 25,604 195 1.89 

Test11 3254 22,065 1,454,516 98.48 434,378 94.92 144,192 84.70 23,269 20 5.18 

Test12 689 15,742 4,022,071 99.61 126,017 87.51 45,007 65.02 16,501 23 4.60 

Test13 563 6452 883,480 99.27 164,252 96.07 68,164 90.53 6944 66 7.09 

Test14 626 14,193 4,580,454 99.69 120,256 88.20 52,846 73.14 14,625 4 2.95 

Test15 659 10,944 2,581,719 99.58 92,371 88.15 42,821 74.44 11,408 7 4.07 

Table 6 

Results of the regression model. 

Factor Estimate Standard error t -statistic p -value 

(Intercept) −0.3421 0.0511 −6.6904 0.0 0 0 0 

Number of x ptds variables 0.0 0 0 0 0.0 0 0 0 −0.1281 0.8985 

LP relaxation solution time 0.0 0 0 0 0.0 0 0 0 −0.9187 0.3623 

Skill level 0.3109 0.0631 4.9320 0.0 0 0 0 

Utilisation 0.3761 0.0440 8.5440 0.0 0 0 0 

Skill level × Utilisation −0.2844 0.0666 −4.2717 0.0 0 0 0 
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5.5. Validation and implementation 

In this section, the solutions proposed by the VNDS heuristic

are compared with the actual schedule used by INEM. The VNDS

is implemented, since it clearly outperforms both diving heuristics.

The impact of different objective function weights on the proposed

schedule is explored. Furthermore, two what-if scenarios are inves-

tigated to show how an expert system can assist in taking manage-

rial decisions. 

In a first step, we have implemented the VNDS heuristic in a

decision support system with a GUI that aims at achieving three

objectives. First, it allows easy data input. The imported data are

listed in a tree view so that they can be validated by the user.

Second, it visualises the found solution in two different ways. A

first tab shows the tasks assigned to each person over the plan-

ning horizon (see Fig. A.2 ). During the search, the fixed decisions

are indicated in green, while improvements to the solution by one

of the neighbourhoods are indicated in blue. A second tab shows

for each task the demand in each period and the number of work-

ers that are assigned (see Fig. A.3 ). If there is understaffing, the

corresponding cells are indicated in red. Conversely, overstaffing is

indicated in blue. Third, both the objective function weights as well

as the allowed computation time can easily be changed in the set-

tings menu (see Fig. A.4 ). This expert system helps in illustrating

how the algorithm works and in visualising the proposed solution

to the different stakeholders involved in the project. 

In what follows, we compare the proposed schedule with the

actual schedule that was implemented by INEM. In this actual

schedule, there are only 278 people listed compared to 289 for the

data of the INEM instance that were provided to us initially, while
he demand in the actual schedule is 4770 tasks versus 4527 in

he INEM instance. Finally, in the implemented schedule there is

ne holiday meaning the contract hours are 132 instead of 140 as

s assumed in the original dataset. To make a fair comparison, we

reate a new dataset named ‘INEM2’, with the same data as in the

ctual schedule that was implemented. 

Six different scenarios are considered for the choice of the ob-

ective function weights. The first is the base case, which uses the

ame objective function weights as in the computational tests of

ections 5.3 and 5.4 . These weights were chosen based on the

tated importance of the different objectives, taking into account

he different dimensions in which they are measured. The second

cenario attributes a higher importance to the working time ob-

ective. The third scenario gives a higher focus to assigning tasks

o people within their own team. The fourth scenario considers

ull weekends off more important. The fifth scenario lowers the

enalty for understaffing in the EVs and increases the penalties for

oth overtime and undertime, but with a higher relative cost for

vertime. Finally, the sixth scenario explores the impact of giving

ll objective terms the same weights. All scenarios with the respec-

ive objective function weights are shown in Table 7 . 

The performance on four dimensions is compared: the demand

overage, the actual working time compared to the contract hours,

he number of full weekends off and the percentage of tasks that

re assigned to members within their own teams. For the first di-

ension, the total amount of understaffing and overstaffing are

alculated. For the second dimension, we look at the average work-

ng hours over the planning horizon per worker, the average short-

ge in hours worked per worker (‘undertime’), and the average

umber of hours of overtime per worker. This gives a total of eight
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Table 7 

Objective function weights used in the different scenarios. 

Scenario w 

RE+ w 

RE−
CODU 

w 

RE−
EV 

w 

WO w 

H+ w 

H− w 

G 
CODU w 

G 
EV 

1. Base case 10 100 10 0 0 10 1 1 10 20 

2. Higher focus on working time 10 100 10 0 0 10 10 10 10 20 

3. Higher focus on tasks within group 10 100 10 0 0 1 1 10 50 100 

4. Higher focus on full weekends off 10 100 10 0 0 1 1 200 10 20 

5. Understaffing less, overtime more costly 10 100 100 15 5 10 10 20 

6. All weights equal 100 100 100 100 100 100 100 100 

Table 8 

Comparison of the schedules obtained by the VNDS with the real schedule implemented by INEM. US denotes total 

understaffing over the planning horizon, i.e. 
∑ 

tds Y 
RE−

tds 
. OS denotes total overstaffing over the planning horizon, i.e. ∑ 

tds Y 
RE+ 

tds 
. HW denotes the average number of hours worked per person over the planning horizon. UT denotes the 

average shortage in hours worked over all workers, i.e. 
∑ 

p Y 
H−
p / | P | . OT denotes the average excess in hours worked over 

all workers, i.e. 
∑ 

p Y 
H+ 
p / | P | . WO denotes the average number of full weekends off per person. Finally, TWT denotes the 

percentage of tasks that are done by someone of the team to which the task is assigned. For the schedule implemented 

by INEM, no data on the UT and OT were available, which is indicated by “n/a” in the corresponding cells. 

Instance Scenario US OS HW UT OT WO TWT 

Target 0 0 132 0 0 4 100 

INEM2 Schedule implemented by INEM 727 26 117 n/a n/a 0.99 83.40 

INEM2 Base case 0 0 140 −3.15 10,78 1.44 92.75 

INEM2 Higher focus on working time 0 0 140 0,00 7.63 1.46 91.64 

INEM2 Higher focus on tasks within group 0 0 140 −4.99 12.62 1.33 92.62 

INEM2 Higher focus on weekends off 0 12 140 −3.02 10.99 1.51 91.99 

INEM2 Understaffing less, overtime more costly 25 0 137 0.00 4.86 1.56 91.88 

INEM2 All weights equal 46 6 137 0.00 5.18 1.58 92.02 

INEM2 HS Understaffing less, overtime more costly 31 0 137 0.00 4.60 1.57 91.98 

INEM Understaffing less, overtime more costly 0 0 128 −5.11 1.13 1.64 85.09 
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PIs to compare the different schedules. Table 8 gives the results.

he actual schedule used by INEM fails to meet 727 of 4770 de-

ands for tasks over the entire planning horizon. At the same

ime, however, on 26 occasions more people are assigned than nec-

ssary. By contrast, the base case schedule proposed by the VNDS

euristic perfectly meets the demand requirements. Next, people

ork only 117 hours on average in the actual schedule, consider-

bly below their target of 132 hours. In the base case schedule of

he VNDS heuristic on the other hand, the average working time

quals 140 hours, which means that the schedule uses overtime

an average of 1 shift per person) to meet all demand require-

ents. Furthermore, in the proposed schedule people receive on

verage 1.44 full weekends off compared to only 0.99 weekends

n the actual schedule. Finally, the number of tasks assigned to

embers within the team is also higher in the proposed schedule

91.64%) than in the schedule implemented in practice (83.40%).

herefore, we can conclude that the VNDS heuristic is a clear im-

rovement over the time-consuming manual scheduling procedure.

Next, the different scenarios are compared. Increasing the ob-

ective function weights for the overtime and ‘undertime’ gives the

ame average working time of 140 h as in the base case. However,

he average ‘undertime’ and overtime are considerably smaller,

eaning there is less variation in the working time between

ifferent people. Since already more than 90 percent of tasks are

ssigned to members within the team, increasing the objective

unction weights for this factor does not have an impact on the

chedule, as is shown by scenario (3). When the objective function

eight for full weekends off is increased, there is a small increase

n the number of full weekends off per person from 1.44 to 1.51.

hen overstaffing in the EVs is penalised less and at the same

ime overtime is more costly, the variation in the working time

etween different people decreases, with only 4.86 hours overtime

n average. Also the number of full weekends off increases due

o the fact that less overtime is used. However, this comes at

he cost of 25 demands that could not be met. Finally, when all

bjective function weights are given the same value, understaffing

nd overstaffing increase further, because their relative importance

ecreases. 
p  
Both the base case schedule as well as the schedule of scenario

5) (with understaffing valued less and overtime valued more)

core well on different KPIs. Which one is best depends on the

reference of the organisation. 

The decision support system can also be used to test the im-

act of certain management decisions. We consider two scenarios.

 first scenario checks the value of giving workers training so that

eople are qualified to perform more types of tasks. To illustrate

his the INEM2 dataset is adapted to the extreme case where every

erson would have the required skills for every task. This dataset

s referred to as INEM2 HS. A second scenario compares the sched-

les found for the INEM2 instance with the schedules found for the

NEM instance, where an additional 11 people are available to meet

he demand requirements. We test both scenarios with the objec-

ive function weights used in scenario (5). The results are listed

n the bottom of Table 8 . The results show that increasing train-

ng in this case does not improve the quality of the schedule. On

he other hand, increasing the available workforce by 11 people en-

bles us to meet all demand requirements, with less overtime and

ore full weekends off. Of course, the average working time de-

reases and the average worker works 5.11 hours less than their

ontract hours. The organisation can use the decision support sys-

em to quickly carry out various what-if scenarios. 

. Conclusion 

This paper addresses a real-life personnel scheduling problem

t a medical emergency service. First, the problem is formulated

s an integer program. Because the integer programming formula-

ion turns out to be intractable for real-life problem instances, a

iving heuristic and a VNDS heuristic are developed. In the diving

euristic, the LP relaxation is reformulated by decomposing on the

taff members and solved using column generation. Integer solu-

ions are obtained by heuristically branching on all variables with

 value above a certain threshold until for each person the sched-

le has been fixed. Moreover, two different column generation

chemes are compared. The VNDS heuristic combines the princi-

les of fix-and-optimise and VNDS. The fix-and-optimise heuristic
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uses a MIP solver to solve a sequence of subproblems in which

only a subset of the variables can be changed, while all other vari-

ables are fixed to the value of the current solution. This fix-and-

optimise method is embedded within the VNDS framework, which

controls the search. A local search phase iteratively improves the

current solution by combining different neighbourhood structures,

while a shake phase is used to escape local optima. 

Both heuristics are extensively tested on a real-life case study

at Instituto Nacional de Emergência Médica (INEM) as well as a

set of nineteen instances of different dimensions. Four instances

are derived from the INEM dataset by changing one of the prob-

lem dimensions. A random instance generator is developed to con-

struct fifteen additional instances. The MIP-heuristic significantly

outperforms both diving heuristic implementations. It achieves

good results with an average optimality gap across all instances of

4.76 percent in only one hour of computation time. For the MIP-

heuristic, computational experiments show that the most impor-

tant factor that contributes to the difficulty of a problem instance

is the utilisation level (i.e., the total demand for tasks divided by

the available number of employees). Contrary to what one might

expect, there is no significant correlation between the performance

of the MIP-heuristic and the size of the problem instances as mea-

sured by the number of decision variables. 

The solution provided by the VNDS heuristic is also compared

with the actual schedule implemented by INEM. To facilitate the

application of the algorithm in practice and illustrate its useful-

ness to management, the VNDS heuristic has been implemented in

an expert system with a GUI that visualises the search process and

the found solution. Six schedules proposed by the expert system

using different objective function weights are compared and eval-

uated on eight KPIs. All schedules outperform the actual schedule

implemented by INEM. Also two what-if scenarios are investigated

to demonstrate how the expert system can help the organisation

in making managerial decisions. 

While different solution approaches are provided in the liter-

ature, developing an expert system for real-life staff scheduling

problems based on these theoretical concepts is not straightfor-
Fig. A.2. Graphical user interface: visualisation of the current best solution. This view s

indicate the new assignments obtained by the neighbourhood, while the green cells indic

that the user can check whether all data are correct. (For interpretation of the reference

article.) 
ard. Indeed, while diving heuristics perform well on the NSP, for

ur problem setting they proved ineffective. Furthermore, for the

NDS heuristic, the neighbourhood decompositions used in the lo-

al search phase need to be tailored to the problem formulation

nd different parameter configurations need to be tested. 

Finally, we provide some ideas for future research. First, it

ould be interesting to extend the current scheduling tool to take

are of holidays. People could specify certain days off they would

ike to receive and the algorithm could try to respect these pref-

rences as much as possible. As a second idea, a more in-depth

enchmarking of different schedules proposed by the heuristic

ould be carried out. One such possibility is the use of data envel-

pment analysis to see which schedules are on the efficient fron-

ier based on a given set of KPIs (see, e.g., Van den Bergh, De

ruecker, Beliën, De Boeck, & Demeulemeester, 2013 ). Third, an

fficient scheduling tool for our problem is now available, but it

ight still be difficult to understand and use for people not famil-

ar with operations research. For example, the input data need to

e provided in the specific format that the algorithm can use. Fur-

hermore, understanding how the algorithm works and what its

imitations are is important for the expectations of the user. The

uestion is thus how to ensure that the layperson can work ef-

ectively with the decision support system. Finally, another future

esearch direction could be the design of methods to deal with

escheduling in the course of the planning period. A methodology

ay be developed and embedded in the decision support system. 
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ppendix A. Graphical user interface 
hows the tasks assigned to each person over the planning horizon. The blue cells 

ate decisions that were fixed. In the left tree view, the problem data are shown so 

s to colour in this figure legend, the reader is referred to the web version of this 



H. Vermuyten et al. / Expert Systems With Applications 112 (2018) 62–76 75 

Fig. A.3. Graphical user interface: visualisation of the current best solution. This view shows the supply and demand for each task over the planning horizon. Red cells 

indicate understaffing, while blue cells indicate overstaffing. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 

this article.) 

Fig. A.4. Graphical user interface: settings dialog. 
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