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Abstract

Label ranking aims to learn a mapping from instances to rankings over a finite
number of predefined labels. Random forest is a powerful and one of the most suc-
cessful general-purpose machine learning algorithms of modern times. In this paper,
we present a powerful random forest label ranking method which uses random de-
cision trees to retrieve nearest neighbors. We have developed a novel two-step rank
aggregation strategy to effectively aggregate neighboring rankings discovered by the
random forest into a final predicted ranking. Compared with existing methods, the
new random forest method has many advantages including its intrinsically scal-
able tree data structure, highly parallel-able computational architecture and much
superior performance. We present extensive experimental results to demonstrate
that our new method achieves the highly competitive performance compared with
state-of-the-art methods for datasets with complete ranking and datasets with only
partial ranking information.
Keywords: Preference learning; label ranking; random forest; decision tree.

1 Introduction

Label ranking aims to learn a mapping from instances to rankings over a finite
set of predefined labels. It extends the conventional classification and multi-
label classification in the sense that it needs to predict a ranking of all class

∗ Corresponding author.
Email addresses: zhou.yangming@yahoo.com (Yangming Zhou),

guoping.qiu@nottingham.ac.uk (Guoping Qiu).

Preprint submitted to Elsevier 19 June 2018

ar
X

iv
:1

60
8.

07
71

0v
3 

 [
cs

.L
G

] 
 1

6 
Ju

n 
20

18



labels instead of only one or several class labels. Both classification and multi-
label classification can be considered as a special case of label ranking learning.
Specifically, when only the top label is required, label ranking reduces to a
classification problem, when a calibrated label is introduced, label ranking is
equivalent to a multi-label classification problem [1]. Due to its generality, label
ranking has found in many practical applications such as natural language
processing, recommender systems, bioinformatics and meta-learning [2].

In this paper, we propose a new label ranking method based on random forests
(LR-RF). Random forests has been widely used to solve a number of machine
learning, computer vision and medical image analysis tasks, and has achieved
excellent performances [3, 4]. The random forest has many advantages, which
make it competitive for solving label ranking problem to existing approaches.
Firstly, the tree structure of our LR-RF makes the retrieval of nearest neigh-
bours more efficient than instance-based approaches. Secondly, both the con-
struction and prediction processes of our proposed method can be executed
in a parallel way. To turn the random forest into an effective ranking method,
we have proposed a “top label as class” method to guide the construction of
decision tree, and we also developed a novel two-step rank aggregation strat-
egy which effectively aggregate the neighboring rankings into a final predicted
ranking. We identify the main contributions of this work as follows.

• We explore the usefulness of random forest to solve the label ranking prob-
lem (denoted as LR-RF). A “top label as class” method is designed for
guiding the construction of decision tree, and we also developed a novel
two-step rank aggregation strategy which effectively aggregate the neigh-
boring rankings into a final predicted ranking. Experimental results show
that our proposed LR-RF method is highly competitive with the state-of-
the-art label ranking algorithms.
• We extend our proposed LR-RF to the case with only partial ranking infor-

mation. In this scenario, our proposed LR-RF significantly better than the
state-of-the-art algorithms, the advantage is more obvious as the missing
probability increases.

The paper is organized as follows. In the following section, we briefly review the
related work in the literature. Section 3 describes the label ranking problem
in a more formal setting and introduces several common distance measures
for rankings. In Section 4, we present our label ranking method based on the
random forest model. Section 5 is dedicated to an experimental evaluation of
the proposed LR-RF based on benchmark datasets. Section 6 conducts several
important investigations of the proposed LR-RF algorithm. Finally, Section 7
concludes the paper.
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2 Related work

Due to the practical significance, label ranking has attracted increasing atten-
tion in the recent machine learning literature, and a large number of methods
have been proposed or adapted for label ranking [5–15]. An overview of label
ranking algorithms can be found in [16, 17]. Existing label ranking methods
can be mainly divided into three categories.

One is known as reduction approaches which transform the label ranking prob-
lem into several simpler binary classification problems, and then the solutions
of these classification problems are combined into a predicted ranking. Label
ranking by learning pairwise preferences and by learning utility functions are
two widely used schemes in the reduction approaches. For example, ranking by
pairwise comparison (RPC) learns binary models for each pair of labels, and
the predictions of these binary models are then aggregated into a ranking [6];
while constraint classification (CC) and log-linear models for label ranking
(LL) seek to learn linear utility functions for each individual label instead of
preference relations for each pair of labels [18,19].

The second category is probabilistic approaches which represent label ranking
based on statistical models for ranking data, i.e., parametrized probability
distributions on the class of all rankings. For example, Cheng et al. have
developed instance-based (IB) learning algorithms based on the Mallows (M)
and Plackett-Luce (PL) models [7,8], and Zhou et al. proposed a label ranking
method based on Gaussian mixture models [9].

Both reduction approaches and probabilistic approaches have shown good per-
formances in the experimental studies, while they also come with some dis-
advantages. For reduction approaches, theoretical assumptions on the sought
“ranking-valued” mapping, which may serve as a proper learning bias, may
not be easily translated into corresponding assumptions for the classification
problems. Moreover, it is often not clear that minimizing the loss function on
the binary problems leads to maximizing the performance of the label ranking
model in terms of the desired loss function on rankings [20]. For probabilis-
tic approaches, their success also do not come for free but at a large cost
associated with both memory and time. For example, the instances-based
approaches involve costly nearest neighbour search and the aggregation of
neighboring rankings is also slow as it requires using complex optimization
procedures, such as the approximate expectation maximization in IB-M and
the minorization maximization in IB-PL [21]. Both IB-M and IB-PL are lazy
learners, with almost no cost at training phase but a higher cost at predict-
ing phase. It can be costly or even impossible in the resources-constrained
applications.
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Besides the reduction approaches and probabilistic approaches, tree-based ap-
proaches are also very popular in label ranking. Several label ranking methods
based on decision tree were designed for label ranking. For example, Cheng
et al., proposed the first adaptation of decision tree algorithm for label rank-
ing, called label ranking tree (LRT) [7]. A new version of decision trees for
label ranking called entropy-based ranking tree (ERT) and a label ranking
forest using this ERT as base learner were developed [13]. Recently, a bagging
algorithm which takes the weak LRT-based models as base classifiers was pro-
posed. Experimental results show that bagging these weak learners improves
not only the LRT algorithm, but also the instances-based algorithms [14]. Ac-
tually, our proposed random forest for label ranking (LR-RF) in this work
falls this category. In the Section 5, we experimentally compare our LR-RF
with the state-of-the-art algorithms from these categories.

3 Label ranking

Label ranking can be considered as a natural extension of the conventional
classification problem. Given an instance x from an instance space X , instead
of predicting one or several possible class labels, label ranking tries to associate
x with a total order of all class labels. This means that there exists a complete,
transitive and asymmetric relation �x on L, where λi �x λj shows that λi
precedes λj in the ranking assigned to x.

We can identify a ranking �x with a permutation πx on {1, 2, . . . ,m} such
that πx(i) = πx(λi) is the position of λi in the ranking. This permutation
encodes the ranking given by

λπ−1
x (1) �x λπ−1

x (2) �x . . . �x λπ−1
x (m) (1)

where π−1x (i) is the index of the class label at position i in the ranking. For
example, given a label set L = {λ1, λ2, λ3, λ4, λ5}, and an observation over
these labels λ4 � λ2 � λ3 � λ5 � λ1, then we can represent this ranking
by a permutation [5 2 3 1 4]. The set of all permutations of {1, 2, . . . ,m} is
denoted by Ω. By abuse of terminology, we refer to elements π ∈ Ω as both
permutations and rankings.

Like in classification, we do not assume the existence of a deterministic X → Ω
mapping. Instead, every instance is associated with a probability distribution
over Ω [7]. It means that, for each x ∈ X , there exists a probability distri-
bution P(·|x) such that, for every π ∈ Ω, P(π|x) is the probability that π
is the ranking associated with x. The objective of label ranking is to learn a
model in the form of a mapping X → Ω. Generally, training data consists of
a set of instances T = {〈xi, πi〉}, i = 1, 2, . . . , n, where xi is the feature vector

4



containing the value of d feature attributes describing instance i, and πi is the
corresponding target ranking. Ideally, complete rankings are given as train-
ing information. However, it is much more important to allow for incomplete
ranking information in the form of a partial ranking

λπ−1
x (1) �x λπ−1

x (2) �x . . . �x λπ−1
x (m′) (2)

where m′ < m and {π−1x (1), π−1x (2), . . . , π−1x (m′)} ⊂ {1, 2, . . . ,m}. In the
above example, it is possible that only partial ranking information is pro-
vided for instance x, i.e., λ4 �x λ3 �x λ1, while no preference information is
available for λ2 and λ5.

To evaluate the predictive performance of a label ranking algorithm, a suitable
evaluation function is necessary. Kendall tau distance [22] is one of the most
widely used distance measures for rankings. It essentially measures the total
number of discordant label pairs (label pairs that are ranked in the opposite
order in two rankings). Formally,

DK(π, σ) = #{(i, j)|π(i) > π(j) ∧ σ(i) < σ(j)} (3)

where 1 6 i < j 6 m. Kendall tau distance is an intuitive and easily inter-
pretable performance measure. The time complexity of computing the Kendall
tau distance between two rankings is O(m logm). By normalizing Kendall tau
distance to the interval [−1, 1], we can obtain Kendall’s tau coefficient,

τ = 1− 4DK(π, σ)

m(m− 1)
(4)

which is a well-known correlation measure. Kendall’s tau coefficient measures
the proportion of the concordant pairs of labels in two rankings. Therefore,
this measure can still work with partial rankings, as long as there is at least
one pair of labels per instance. When τ = 1, it means that the labels in ranking
π and σ are sorted in the same order, while τ = −1 indicates that the labels in
these two rankings are sorted in opposite order. In label ranking, performance
comparisons among label ranking algorithms are often based on Kendall’s
tau coefficient. Two alternative distance measures on rankings include the
Spearman distance

DS(π, σ) =
m∑
i=1

(π(i)− σ(i))2 (5)

and the Spearman footrule distance

DF (π, σ) =
m∑
i=1

|π(i)− σ(i)| (6)

Both this two kinds of Spearman distances between two rankings can be com-
puted in linear time O(m). Additionally, all the three distance measures can
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be extended in a natural way to several rankings. For example, the general-
ized Kendall distance between a complete π and a set of rankings σ1, . . . , σk
is given by

DK(π, σ1, . . . , σk) =
k∑
i=1

DK(π, σi) (7)

4 Random forest for label ranking

Random forest is a powerful learning algorithm proposed in [23], which com-
bines several randomized decision trees and aggregates their predictions by
averaging. It has been one of the most successful general-purpose algorithms
in modern times. In this section, we present a label ranking method based on
random forest model, denoted as LR-RF. The proposed LR-RF works in two
phases. It first constructs multiple decision trees by using different training in-
stances at construction phase (Section 4.1), and then at the prediction phase,
query instance passes through all trees, a two-step rank aggregation strategy
is applied to aggregate the neighboring rankings into a final predicted ranking
(Section 4.2). Fig. 1 illustrates the entire process from a query instance x to
finally obtain the predicted ranking π̂

Query Instance x

..
.

..
.

..
.

...Tree 1 Tree 2 Tree k 

Predicted Result

π21 π22, ...
 Borda Count  Borda Count Borda Count

 Borda Count

π11 ,π12 ,... π21 , π22 ,... πk 1 ,πk 2, ...

π̂1, π̂2 ,... , π̂k

π̂1 π̂2
π̂k

π̂

Neighboring Ranking
Set k

Neighboring Ranking
Set 2

Neighboring Ranking
Set 1

Predicted 
Ranking Set

Fig. 1. A schematic illustration of random forest for label ranking.
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4.1 Construction of the random forest

To build a random forest, we need to generate nbrtree different training data
sets Ti, i = 1 . . . nbrtree, and each one is used to train a decision tree indepen-
dently. Each training data set is drawn at random, with replacement, from the
original data set T . Then a decision tree is grown on this new training dataset.
Specifically, at each node of each tree, a split is performed by maximizing the
information gain G over ns = blog2 dc+ 1 attributes chosen uniformly at ran-
dom among the d original attributes. Finally, construction of individual tree is
stopped until one of the stopping conditions is satisfied. In the forest, all the
trees grown are not pruned. To generate such a tree, we partition the train-
ing data set T in a recursive manner, using one-dimensional splits defined by
thresholds for an attribute value. The split function at each node is defined
as follows xi > xithreshold go to left child

otherwise, go to right child
(8)

where xi and xithreshold are split attribute and split threshold of a best split
point, respectively. Based on the above split function, we can split the training
data of current node into the left child node and the right child node accord-
ingly. To narrow down the search space for the split function, we only use a
small group of attributes to split on rather than using all attributes each time.
As different split attributes or split thresholds will bring about different par-
titions on the training data, it is necessary to find a best split point for each
node. In our algorithm, we use the top class labels of the rankings associated
with each instance as supervising information to find the best split and guide
the growing of the random trees.

In recent years, many methods have been proposed for using ranking infor-
mation to guide the construction of decision tree. The simplest is Ranking As
Class (RAC) [24], which simply treats rankings as classes: ∀πi ∈ Ω, πi → λi.
This allows the use of many supervised construction methods developed for
classification in label ranking problems. However, if the RAC approach is ap-
plied, the number of classes can be extremely large, up to a maximum number
of m!, where m is the total number of labels. Additionally, two complicated and
specially designed methods have also been proposed for label ranking, such as
Minimum Description Length Principle for Ranking data (MDLP-R) [24] and
Entropy-based Discretization for Ranking (EDiRa) [12]. Specifically, EDiRa
takes into account the properties of rankings: how many distinct rankings are
present in current node, and how similar they are to each other.

It is difficult to determine which methods is best to guide the construction
of decision tree because many evaluation measures can be used to evaluate
their performance [25]. In fact, all aforementioned methods can be used for
handling ranking information. In our case, we make a compromise between
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the simple and the complicated methods, and propose to use the top label
of a ranking to determine a class, i.e., Top Label As Class (TLAC). TLAC
replaces the rankings by classes only consider the top label in the rankings
regardless of other labels. For example, in Table 1, even though example 2
and 3 have distinct rankings [2 3 1] and [3 2 1] respectively, TLAC assigns the
same class λ3 to them because their top labels are same.

Table 1
Some selected examples from iris data set.

TID x1 x2 x3 x4 π λTLAC

1 -0.556 0.250 -0.864 -0.917 [1 2 3] λ1

2 0.167 0.000 0.186 0.167 [2 3 1] λ3

3 0.222 -0.167 0.424 0.583 [3 2 1] λ3

4 0.056 0.167 0.492 0.833 [3 1 2] λ2

5 -0.611 -1.000 -0.153 -0.250 [2 1 3] λ2

6 -0.111 -0.167 0.085 0.167 [2 3 1] λ3

With the help of TLAC, the well-known information gain is become available
in label ranking. Information gain is a widely-used splitting criterion to find
the best split points in decision trees [26]. It essentially measures the change
of class entropy before and after the partition caused by a split point. A split
point at each node is represented by a split attribute and corresponding split
threshold. For each split point, the entropy of the original data is compared
with the weighted sum of the entropy of data in the left node and the right
node. Let G be the information gain, then at the split node j, the information
gain obtained by a split point θ in attribute A is defined as

G(A, θ; Tj) = E(Tj)−
∑

i∈{l,r}

|T ij |
|Tj|

E(T ij ) (9)

where |Tj| represents the number of instances contained in current node j,
while |T lj | and |T rj | are the number of instances on its left child node and the
number of instances on the right child node, respectively, with the split point
θ in attribute A. The entropy for data in node j is defined as

E(Tj) = −
∑
λi
′
p(λi

′) log p(λi
′) (10)

where p(λi
′) represents the proportion of instances whose top label of the

ranking is λi
′ in the data set Tj.

A good split means it minimizes the overall entropy in its left child node and
right child node. This can be achieved by finding the best split point at node
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j by

θ∗ = arg max
θ∈Sj
G(A, θ; Tj) (11)

where Sj is the set of all potential split points at node j. Based on this split
criteria, the decision tree always chooses a split point which effectively splits
the data at current node. This can be done recursively until the depth of the
tree reaches a maximum allowable depth dmax or the entropy of data in current
node is less than ε0.

4.2 Prediction based on neighboring rankings

Once the whole random forest is constructed, it can be used to predict the
potential ranking associated with a query instance. During prediction phase,
we pass a query instance through all trees simultaneously (starting at the
root node) until it reaches the leaf nodes. We call training examples stored in
the leaf node as the neighbors of the query sample, and the rankings associ-
ated with neighbors as neighboring rankings. The predicted ranking is then
obtained by aggregating these neighboring rankings with a two-step rank ag-
gregation procedure.

The problem to aggregate the rankings of neighbors into a ranking is known
as rank aggregation [27]. Rank aggregation has been studied extensively in
the context of social choice theory and meta-search [28]. Rank aggregation
can be obtained by optimizing different rank distance measures. For exam-
ple, when Kendall tau distance is optimized, the achieved rank aggregation is
called Kemeny optimal aggregation. It has been shown that the Kemeny opti-
mal aggregation is the best compromise ranking. However, finding a Kemeny
optimal aggregation is NP-hard even when k = 4 [29]. In our algorithm, we
resort to an efficient procedure called Borda’s method to approximately solve
it. The Borda’s method was originally applied to aggregate label rankings by
Klaus Brinker and Eyke Hüllermeier [30]. The principle of Borda’s method is
shown in Definition 1.

Definition 1 (Borda’s method) Given a collection of complete rankings
σ1, . . . , σk, for each label λi ∈ L and ranking σj, Borda’s method first assigns a
score sij = σj(i), and then the average Borda score si is defined as 1

k

∑k
j=1 sij.

The labels are then sorted in decreasing order of their average Borda score,
and ties are broken at random.

The rank aggregation obtained by Borda’s method is an optimal aggregation
with respect to the Spearman distance DS [31]. Moreover, it has been shown
that Kendall tau distance DK can be approximated very well by Spearman
distance DS [32], i.e., 1√

m
DK(π, σ) 6 DS(π, σ) 6 2DK(π, σ), where m is the

number of labels in the ranking. It means that there is a close relation between
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Kendall tau distance and Spearman distance. Therefore, rank aggregation
obtained by Borda’s method can be a good approximation of the Kemeny
optimal aggregation without much sacrifice of predictive performance.

A primary advantage of Borda’s method is that it is computationally very
easy, and it can perform the aggregation of k complete rankings with m labels
in linear time O(k · m). However, it also shows its shortcomings in general-
ising to partial rankings. To solve this problem, Cheng et al. [7] proposed a
generalized Borda’s method (as shown in Definition 2) to extend traditional
Borda’s method to partial rankings is by apportioning all the excess score
equally among all missing candidates.

Definition 2 (Generalized Borda’s method) Given a set of partial rank-
ings σ1, . . . , σk, for each label λi and partial ranking of m′ < m labels, if it is a
missing label, then it receives sij = (m+1)/2 votes; if it is an existing label with
rank r ∈ {1, . . . ,m′}, then its Borda score is sij = (m′+1−r)(m+1)(m′+1).
The average Borda score si is defined as 1

k

∑k
j=1 sij. The labels are then sorted

in decreasing order of their average Borda score.

In the prediction phase of our LR-RF, we use a two-step rank aggregation
strategy to aggregate the neighboring ranking. At the first step, we consider
each decision tree individually, and each decision tree makes the same contri-
bution to generate the final predicted ranking. Therefore, we need to aggregate
all the rankings of neighbors, and a rank aggregation can be obtained at each
tree. At the second step, we aggregate all the predicted ranking of nbrtree trees
into a final predicted ranking. In the two-step rank aggregation procedure, we
need to perform nbrtree+1 aggregations in total. It is noteworthy that both the
construction and prediction of each decision tree can be executed in parallel.
The pseudo-code of the proposed LR-RF algorithm can be found in Algorithm
1.

Recently, a label ranking forest (LRF) was proposed in literature [13]. LRF
adopts the random forest framework as well as our proposed LR-RF. Both
LRF algorithm and our proposed LR-RF algorithm adopt the framework of
random forest. However, our LR-RF distinguishes itself from LRF algorithms
by following four aspects. (1) Entropy-based discretization method is used
to construct decision trees in LRF, while our LR-RF employs a very simple
method (i.e., Top Label As Class) to guiding the construction of decision tree
(see Section 4.1). (2) Our LR-RF is significantly better than LRF in terms of
computational accuracy (see Section 5.4). (3) LRF was only evaluated on 15
datasets with complete ranking information, while our LR-RF performs well
on both 16 datasets with complete ranking information and 16 datasets with
incomplete ranking information (see Section 5).
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Algorithm 1: Pseudo-code of the proposed LR-RF Algorithm

Input: a given query instance x, training data T , number of trees nbrtree
and tree depth dmax.

Output: a predicted ranking πx for the query instance x
1 begin
2 /∗ Construction phase ∗/
3 for i = 1, 2, . . . , nbrtree do
4 create a new data set Ti of size n from T ;
5 while a stopping condition is not met do
6 select ns attributes from the original d attributes;
7 find the split attribute A and its best split point θ∗;
8 split the data Tj according to the θ∗ in attribute A;

9 /∗ Prediction phase ∗/
10 for i = 1, 2, . . . , nbrtree do
11 pass the query x through i-th tree;
12 find the nearest neighbors of x in the tree;
13 aggregate all the neghboring rankings into a predicted ranking π′i by

Borda’s method (first-step);

14 aggregate nbrtree rankings π′1, . . . , π
′
nbrtree into a final predicted ranking πx

by Borda’s method (second-step);

15 return a predicted ranking πx

4.3 Complexity analysis

In this section, we discuss the computational complexity of the proposed LR-
RF method and the state-of-the-art methods. We consider the case of dataset
with complete ranking information.

We suppose that the dataset is composed of n instances, and each instance has
d attributes and is associated with a ranking of m class labels. Our proposed
LR-RF algorithm has two key components: decision tree and Borda’s method.
Borda’s method is used to obtain the consensus ranking by aggregating the
rankings. Its computational complexity is O(m ·n+m log(m)), where the first
part is due to counting and the second part is for the sorting process [14].
For each decision tree, we suppose that the maximum depth of the tree is
dmax. At each level of the tree, each attribute is processed once over the whole
dataset. The complexity of the learning process is dmax multiplied by the
complexity of the operations performed at each level. Based on the TLAC
strategy, the decision tree stops when all rankings have same top labels or it
reaches the maximum allowable tree depth dmax. At each node, ns = blog2 dc+
1 attributes are randomly selected from d attributes to determine the best
one. For each attribute xi, a good split point θ is identified according to

11



Eq. (11) of complexity O(m2 · n). We calculate the spilt point for each one
of ns attributes selected from d attribute and considering every value n as
threshold. Therefore, the overall complexity for constructing such a decision
tree is O(ns ·m2 · n2 · dmax).

Our proposed LR-RF algorithm is composed of nbrtree decision trees. At the
training phase, the total computational complexity of our proposed LR-RF
algorithm is O(nbrtree · ns ·m2 · n2 · dmax). While for the predicted phase, the
complexity of our proposed LR-RF algorithm is ((m ·n+nbrtree ·m log(m)) +
(m ·nbrtree+m log(m))) where the first part is for generating nbrtree predicted
ranking by each tree, and the second part is for aggregating nbrtree rankings
into a final predicted ranking.

Label ranking tree (LRT) was originally proposed in [7]. The computational
complexity for the whole learning process of LRT is O(d ·m2 · n2 · log(n)), as
indicated in [14]. To reduce the complexity of computing the splitting point,
Aledo et al., presented two modified versions of the LRT algorithms in [14].
Specially, the splitting points were selected by using two well-known unsuper-
vised discretization criteria: equal-width and equal-frequency. Therefore, the
complexity of the whole learning process is reduce to O(d ·m2 ·n · log(n)). That
is, the complexity regarding LRT has been reduced by O(n). Compare to the
original LRT, our decision tree is more efficient, i.e., ns = blog2 dc + 1 6 d.
However, two modified versions of the LRT algorithm are more efficient than
the decision tree used in our LR-RF.

Let nbrpr be the number of pairwise preferences that are associated with in-

stance xi, and z = 1
n

∑n
i=1 |nbrpr| 6

m(m−1)
2

be the average number of pairwise
preferences over all instances. Given a base learner with complexity O(nc), the
complexity of label ranking by learning pairwise preferences (RPC for short)
is O(znc) and the complexity of constraint classification (CC for short) is
O(zc · nc). For the cases that a base learner with a polynomial time complex-
ity (i.e., c > 1), RPC is at least as efficient as CC. Otherwise CC is faster. The
total complexity of the boosting-based algorithm proposed for log-linear mod-
els (LL for short) is O(z ·n+d ·m) ·nbriter, where d is the number of attributes
of an instance and nbriter is the number of iterations [6]. For the complexity
of the instance-based methods with Mallows model (IB-M for short) and with
the Plactett-Luce model (IB-PL for short), a direct comparison is complicated
because IB-M and IB-PL are lazy learners, with almost no cost training phase
but high cost at prediction phase. Although they have complex local estima-
tion procedures, their implementations are very efficient and quite comparable
to the corresponding counterpart for classification [21].
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5 Computational results

In this section, we present an empirical evaluation of the proposed LR-RF
with main state-of-the-art label ranking methods.

5.1 Data sets

In our experiments, we evaluate the proposed LR-RF on the label ranking
data sets from the KEBI Data Repository. These data sets are obtained by
transforming multi-class and regression data sets from the UCI repository of
machine learning databases and the Statlog collection into label ranking data
sets in two different ways. (A) For classification data, a naive Bayes classifier
is first trained on the complete data set. Afterwards, for each instance, all
the class labels in the data set are ordered according to their predicted class
label probabilities, breaking ties by ranking the class label with lower index
first. (B) For regression data, some numerical attributes are removed from
the set of predictors, and each one is treated as a label. To obtain a ranking,
the attributes are standardized and then ordered by size. A summary of the
benchmark data sets and their characteristics is provided in Table 2 1 .

5.2 Experimental settings

Results were obtained in terms of Kendall’s tau coefficient from five repeti-
tions of a ten-fold cross-validation. At each repetition, the dataset is randomly
partitioned into 10 equal parts (or folds). Of the 10 parts, a part is retained
as the validation data for testing the algorithm, and the remaining 9 parts are
used as training data. The cross-validation process is then repeated 10 times,
with each part uses exactly once as the validation data. The 10 results from
the folds can then be averaged to yield an overall result. To model incomplete
observations, we modified the training data according to the following rule.
Given a ranking, we associate each label with a random probability. If the
probability is less than a fixed missing probability p0 (0 6 p0 6 1), we delete
it from the ranking and keep it in the ranking otherwise. Hence, p0× 100% of
the labels in the original data sets will be deleted on average. It is a general
practice to model incomplete instances in label ranking [7, 8].

Our proposed LR-RF 2 algorithm was implemented by MATLAB 2014b run-

1 All label ranking data sets are publicly available at website: http://www.uni-
marburg.de/fb12/kebi/research/repository/labelrankingdata
2 The source code of the proposed LR-RF algorithm is now publicly available at
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Table 2
The description of experimental data sets (the type indicates the way in which the
data set has been generated).

Data sets type #instances #features #labels

authorship A 841 70 4

bodyfat B 452 7 7

calhousing B 37152 4 4

cpu-small B 14744 6 5

elevators B 29871 9 9

fried B 73376 9 5

glass A 214 9 6

housing B 906 6 6

iris A 150 4 3

pendigits A 10992 16 10

segment A 2310 18 7

stock B 1710 5 5

vehicle A 846 18 4

vowel A 528 10 11

wine A 178 13 3

wisconsin B 346 16 16

ning on a MacBook Pro with an Intel Core i5 processor (2.6 GHz and 8 GB
RAM). To run our LR-RF algorithm, there are three parameter values needed
to decide in advance. We set the number of decision trees nbrtree = 50 in our
random forest, the maximum allowable depth of the decision tree dmax = 8.
These two parameter values are determined based on the experimental analysis
and discussion in Section 6.2 and 6.3 respectively.

5.3 Experimental results

In recent years, a variety of label ranking algorithms have been proposed
in the literature [16, 17]. The representative algorithms mainly include con-
straint classification (CC) [18], log-linear model (LL) [19], ranking by pairwise
comparison (RPC) [6], instance-based methods with the Mallows model (IB-

GitHub: https://yangmingzhou.github.io/LabelRanker/.

14



M) [7] and the Plackett-Luce model (IB-PL) [8], label ranking tree (LRT) [7]
and label ranking forest (LRF) [13]. However, some source codes or executed
programs of these algorithms are not available. We are only able to compare
the performance of the proposed LR-RF algorithm with the reference algo-
rithms RPC, IB-PL, and LRT by means of the WEKA-LR 3 . WEKA-LR is
a label ranking extension for WEKA. It implements three label ranking al-
gorithms, including RPC, IB-PL, and LRT, only in case of complete ranking
information. For incomplete ranking information, it is still not available. In the
following, we focus on comparing the proposed LR-RF algorithm with these
three algorithms. With the help of WEKA-LR, we run these algorithms with
default parameters in our platform. All the experimental results are obtained
based on 10-fold cross-validation.

• Ranking by pairwise comparisons (RPC) has two default parameters. Specif-
ically, the logistic regression is selected as the base classifier, and the voting
scheme is soft voting [6].
• Instance-based methods with the Plackett-Luce model (IB-PL) has one de-

fault parameter, i.e., the number of nearest neighbours k used for prediction
of new rankings. In the experiments, we run IB-PL with four kinds of dif-
ferent neighborhood size (i.e., {5, 10, 15, 20}) [8].
• Label ranking tree (LRT) does not need to set any parameter [7].

To analyse these results, we use a two-step statistical test procedure to per-
form performance comparisons [33]. Firstly, we conduct a Friedman test which
makes the null hypothesis that all algorithms are equivalent. If the null hy-
pothesis is rejected, we then proceed with a post-hoc test named two-tailed
Bonferroni-Dunn test. Both Friedman test and the two-tailed Bonferroni-Dunn
test are based on the average ranks. We order the algorithms for each data set
separately, the best performing algorithm obtaining the rank of 1, the second
best rank 2, and so on. In case of ties, average ranks are assigned. Finally,
we obtain the average rank of each algorithm by averaging the ranks of all 16
datasets.

Table 3 represents the comparative results between the proposed LR-RF algo-
rithm and the state-of-the-art algorithms on data sets with complete ranking
information. The best performance on each data set is in bold. We clearly
observe that there is no a single algorithm can achieve the best performance
across all 16 data sets. Compared to other reference algorithms, our proposed
LR-RF achieves highly competitive performance. Specifically, the proposed
LR-RF algorithm achieves the best performance on 5 out of 16 data sets, and
obtaining the smallest average ranks 2.75 (4.25, 3.97, 3.19, 3.97, 4.47 and 5.41
are respectively obtained by the reference algorithm RPC, LRT and IB-PL

3 The package WEKA-LR is publicly available at: https://www.uni-
marburg.de/fb12/kebi/research/software
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Table 3
Comparative results between the proposed LR-RF algorithm with state-of-the-art
algorithms in case of complete ranking. For each dataset, the rank of each algorithm
is indicated in parentheses. The number of winning datasets of each algorithm is
also provided at the last row.

Data sets RPC IB-PL5 IB-PL10 IB-PL15 IB-PL20 LRT LR-RF

authorship 0.908(2.0) -0.203(4.0) -0.271(5.0) -0.276(6.0) -0.344(7.0) 0.887(3.0) 0.913(1.0)

bodyfat 0.282(2.0) 0.410(1.0) 0.095(6.0) 0.170(4.0) 0.070(7.0) 0.110(5.0) 0.185(3.0)

calhousing 0.244(7.0) 0.341(5.0) 0.295(6.0) 0.401(2.0) 0.471(1.0) 0.357(4.0) 0.367(3.0)

cpu-small 0.449(4.0) 0.400(6.0) 0.515(1.5) 0.490(3.0) 0.367(7.0) 0.423(5.0) 0.515(1.5)

elevators 0.749(3.0) 0.721(5.5) 0.721(5.5) 0.721(5.5) 0.721(5.5) 0.756(1.5) 0.756(1.5)

fried 0.999(1.0) 0.760(4.0) 0.508(5.0) 0.421(6.0) 0.394(7.0) 0.890(3.0) 0.926(2.0)

glass 0.885(7.0) 1.000(2.5) 1.000(2.5) 1.000(2.5) 1.000(2.5) 0.889(5.0) 0.888(6.0)

housing 0.670(3.0) 0.266(4.0) -0.048(7.0) -0.018(5.0) -0.032(6.0) 0.803(1.0) 0.792(2.0)

iris 0.889(5.0) 0.978(1.5) 0.978(1.5) 0.858(6.0) 0.804(7.0) 0.960(4.0) 0.966(3.0)

pendigits 0.932(4.0) 0.975(1.0) 0.840(5.0) 0.812(6.0) 0.787(7.0) 0.943(2.0) 0.939(3.0)

segment 0.934(7.0) 1.000(2.5) 1.000(2.5) 1.000(2.5) 1.000(2.5) 0.953(6.0) 0.961(5.0)

stock 0.779(6.0) 0.904(2.0) 0.851(4.0) 0.808(5.0) 0.737(7.0) 0.889(3.0) 0.922(1.0)

vehicle 0.850(6.0) 0.929(3.0) 0.940(1.0) 0.930(2.0) 0.857(5.0) 0.831(7.0) 0.860(4.0)

vowel 0.652(4.0) 0.841(2.0) 0.451(5.0) 0.279(6.0) 0.162(7.0) 0.794(3.0) 0.967(1.0)

wine 0.903(6.0) 0.940(5.0) 1.000(1.0) 0.989(3.0) 0.996(2.0) 0.884(7.0) 0.953(4.0)

wisconsin 0.633(1.0) 0.612(2.0) 0.063(5.0) -0.028(7.0) 0.049(6.0) 0.351(4.0) 0.478(3.0)

avg.rank 4.25 3.19 3.97 4.47 5.41 3.97 2.75

IB-PLx means that IB-PL algorithm neighborhood size x.

with neighborhood sizes 5, 10, 15, and 20).

We resort to two-step statistical method to check the significant difference
among these algorithms. According to the Friedman test, we calculate FF =
2.93. With seven algorithms and 16 data sets, FF is distributed according
to the F distribution with 7 − 1 = 3 and (7 − 1) × (16 − 1) = 90 degrees
of freedom. The critical value of F (6, 90) at the significance level 0.05 is
2.21 (2.93 > 2.21),so we reject the null-hypothesis. We then proceed with
a post-hoc two-tailed Bonferroni-Dunn test in order to compare our LR-RF
algorithm with other reference algorithms. At the same significance level,
the Critical Difference (CD) for the two-tailed Bonferroni-Dunn in our ex-

periment is 2.638
√

7·8
6·16 = 2.01. We observe that our LR-RF is only sig-

nificantly better than reference algorithm IB-PL with neighborhood size 20
(5.41 − 2.75 = 2.66 > 2.01). Compared with remaining five reference algo-
rithms, our LR-RF is better but there is no significant difference.
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5.4 Compared with reported results of the state-of-the-art algorithms

Given that source codes or executable programs of reference algorithms are not
available in case of partial ranking information. In this section, we compare
the performance of the proposed LR-RF algorithm with results reported in
the literature. By comparing the results reported and the results obtained
by running WEKA-LR, we obverse there are only some slight differences for
RPC, IB-PL and LRT. Moreover, it is well known that the executed platform
is only closely related to computational time of an algorithm. Consequently, it
is also credible to compare the results (in terms of accuracy) of the proposed
algorithm with results reported of the reference algorithms. The reference
algorithms mainly include constraint classification (CC) [18], log-linear model
(LL) [19], ranking by pairwise comparison (RPC) [6], instance-based methods
with the Mallows model (IB-M) [7] and Plactett-Luce model (IB-PL) [8], label
ranking tree (LRT) [7], three ensemble approaches constructed by respectively
applying bagging to the three LRT based algorithms (LRT+bag, W-LRT+bag
and F-LRT+bag) [14], and two label ranking forests based on ranking trees
(LRF-RT for short) and entropy-based ranking trees (LRF-ERT) respectively.
It is worth noting that the results of all reference algorithms are taken directly
from the literature [7,14,21], and their experimental settings are displayed as
follows.

• Constraint classification (CC) is an online-variant as proposed in [18], using
a noise-tolerant perceptron algorithm as a base learner.
• Log-linear models for label ranking (LL) uses the linear combination base

ranking functions, which map instance/label pairs to real numbers [19].
• Ranking by pairwise comparison (RPC) uses the logistic regression as the

base learner [6].
• Label ranking tree (LRT) does not need to set any parameter [7].
• For the instance-based methods with the Mallows model (IB-M) and Plackett-

Luce model (IB-PL), the neighborhood size k ∈ {5, 10, 15, 20} is determined
through cross validation on the training set. To guarantee a fair compari-
son, we used the Euclidean distance as a distance metric on the instance
space [7, 8, 21].
• The ensemble approaches constructed by applying bagging to the three LRT

based algorithms (LRT, W-LRT and F-LRT): LRT+bag, W-LRT+bag and
F-LRT+bag, where W-LRT and F-LRT are two modification versions of the
LRT algorithm by respectively using unsupervised discretization criteria:
equal width and equal frequency [14].
• Label ranking forest (LRF) was proposed in literature [13], which builds a

label ranking forest based on ranking trees (LRF-RT for short) or entropy-
based ranking trees (LRF-ERT) [13]. Since the results of LRF is not avail-
able for the case of incomplete ranking information, we only consider the
results of LRF in complete ranking information (see Table 4).
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Table 4-6 show performance comparisons between the proposed LR-RF algo-
rithm and state-of-the-art label ranking algorithms on three cases: complete
ranking (p0 = 0.0), missing labels ranking with p0 = 0.3 and missing labels
ranking with p0 = 0.6. All these results are obtained by five times 10 folds
cross-validation. Compared to state-of-the-art algorithms, we clearly observe
that our proposed LR-RF achieves the best performance in terms of average
rank in all three cases. Moreover, when the missing probability p increases,
the average rank of our LR-RF decreases.

To compare our LR-RF algorithm with these reference algorithms, we use
mentioned-above two-step statistical test procedure, i.e., a Friedman test and a
two-tailed Bonferroni-Dunn test. According to the average ranks of each meth-
ods, we can calculate FF = 4.18, 6.67 and 9.34 for cases with complete ranking,
30% missing labels and 60% missing labels, respectively. All the three FF val-
ues are larger than the critical value of the Friedman test F0.05(11, 154) = 1.79
and F0.05(9, 135) = 1.92. Consequently, the Friedman test rejects the null
hypothesis in all three cases, which suggests these seven methods are not
equivalent in all three cases. After rejecting the null-hypothesis, we conduct
two-tailed Bonferroni-Dunn test for each case.

Table 4 shows the comparative results in case of complete ranking information.

At the significance level 0.05, CD is 2.871
√

12·13
6·15 = 3.78. From Table 4, we

only observe that our proposed LR-RF algorithm significantly outperforms LL
(9.40− 3.73 = 5.67 > 3.78), LRT (7.60− 3.73 = 3.87 > 3.78) and LRT+ERT
(8.83 − 3.73 = 5.10 > 3.78). Compared to other reference algorithms, our
LR-RF achieves better performance in terms of average rank but there is no
significant differences between their performance.

Table 5 summarizes the comparative results in case of incomplete ranking

information with p = 0.3. At the significance level 0.05, CD is 2.773
√

10·11
6·16 =

2.97. As we can see from Table 5, our proposed LR-RF also achieves the
best performance in terms of average rank, and it significantly outperforms
reference algorithms CC (6.16− 2.88 = 3.28 > 2.97), LL (7.81− 2.88 = 4.93),
RPC (5.97− 2.88 = 3.09 > 2.97), IB-M (6.91− 2.88 = 4.03 > 2.97) and LRT
(7.00 − 2.88 = 4.12 > 2.97). We also observe that our LR-RF is better than
IB-PL algorithm, and the critical value is only slightly less than CD value,
i.e., 5.84− 2.88 = 2.96 < 2.97.

Table 6 presents the comparative results in case of incomplete ranking infor-
mation with p = 0.6. At the significance level 0.05, CD is also 2.97. From this
table, we observe that our proposed LR-RF algorithm significantly outper-
forms reference algorithms CC (5.94− 2.56 = 3.38 > 2.97), LL (6.84− 2.56 =
4.28 > 2.97), IB-M (7.66− 2.56 = 5.10 > 2.97), IB-PL (7.25− 2.56 = 4.69 >
2.97) and LRT (7.31 − 2.56 = 4.75 > 2.97). Compared to reference algo-
rithm W-LRT+bag, the difference is slightly less than corresponding CD (i.e.,
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5.38− 2.56 = 2.82 < 2.97).

Besides the above observations, we also can draw from Table 4-6:

• Comparing performances of LR-RF in these three cases, we find that our
LR-RF has stronger ability to deal with data set with partial ranking in-
formation. When the probability of missing labels p0 becomes higher, the
advantage of the LR-RF is more obvious. When p0 = 0 increase to p0 = 0.3
and p0 = 0.6, we find the average ranks of LR-RF decrease and achieves the
best performance on much more data sets.
• Comparing with four tree-based methods, our LR-RF achieves the best

performance in terms of average rank on all three cases. Our proposed LR-
RF significantly outperforms LRT in all cases. This results confirm the
conclusion that a ensemble model (e.g., LR-RF) can produce substantial
improvements in the performance compared with the use of a single model
(e.g., LRT).
• Comparing with reduction methods and probabilistic methods, our LR-RF

also shows highly competitive performance. In case of complete ranking
information, our LR-RF significant outperforms LL. In case of incomplete
ranking information, our LR-RF demonstrates better performance, and is
significantly outperforms algorithms CC, LL, IB-M and even RPC and IB-
PL. This results show that our LR-RF is highly competitive compared with
the state-of-the-art algorithms.

6 Discussion and analysis

This section is devoted to an experimental analysis and discussion of the pro-
posed LR-RF algorithm. Specifically, we investigate the impact of the noise
on the performance of the proposed LR-RF algorithm, and conduct sensi-
tive analysis on two important parameters, i.e., nbrtree and dmax. These three
experimental analyses are based on four representative data sets (i.e., glass,
housing, iris, and wine) selected from benchmarks.

6.1 The impact of noise on the performance of our LR-RF algorithm.

In this set of experiments, we perform experiments to gain some understand-
ing about how the noise at the label information (i.e., the missing probability
p0) affects the performance of the proposed LR-RF algorithm. We did experi-
ments with LR-RF on four selected data sets for different missing probability
p0, varying p0 from 0.1 to 0.8 by steps of 0.1. Figure 2 shows the learning
curves, which present the performance of LR-RF as a function of the missing
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Fig. 2. Ranking performance (in terms of Kendall’s tau correlation) of the LR-RF
as a function of the probability of missing label p0.

From Figure 2, we can clearly observe that the learning curves are relatively
flat when p0 varies from 0.10 to 0.60. When the probability of missing label p0
continues to increase, the performance of our LR-RF algorithm rapidly wors-
ening. The results indicate that our proposed method LR-RF has a strong
robustness, and it is able to deal with data with missing label ranking in-
formation. It agrees with the conclusions obtained from the computational
studies in Section 5.4.

6.2 Sensitivity analysis to the nbrtree parameter

The third set of experiments investigate how the parameter nbrtree affects
the accuracy of the proposed LR-RF method. We did experiments on data
with complete ranking for different nbrtree values, varying nbrtree from 1 to 75
by steps of 5, and fixing other parameter value at the same time. Specifically,
when nbrtree equals to 1, the LR-RF is a single decision tree. This label ranking
tree distinguishes itself from LRT [7] by the way to use ranking information
for guiding the construction of a decision tree.

In Figure 3, we are able to see how the different number of trees nbrtree af-
fects the performance of the LR-RF. It is interesting to find that, when nbrtree
increases from 1 to 10, the computational accuracy of the LR-RF algorithm
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Fig. 3. Ranking performance (in terms of Kendall’s tau correlation) of the LR-RF
as a function of the number of trees nbrtree.

significantly improves, while the computational accuracy of the LR-RF algo-
rithm keeps relatively steady if nbrtree continues to increase until 75. We can
draw a preliminary conclusion that an ensemble (e.g., random forest) of deci-
sion trees can outperforms a single decision tree. In addition, this analysis also
shows that a reasonable nbrtree value plays an important role in the success
of the LR-RF. Fortunately, the reasonable value of parameter nbrtree has a
large range. It is easy to determine a suitable value for parameter nbrtree. In
our proposed method LR-RF, we roughly fix the total number of decision tree
nbrtree as 50.

6.3 Sensitivity analysis to the dmax parameter

We also study how the tree depth dmax affects the performance of the proposed
LR-RF algorithm. We did experiments on data with complete ranking for
different dmax values, varying dmax from 1 to 15 by steps of 1, and fixing other
parameter value at the same time.

Figure 4 describes the influence of tree depth dmax on the performance of the
proposed LR-RF algorithm. When the value of parameter dmax is small, we
observe that as the dmax increases the overall performance of LR-RF algorithm
also increases, and then the performance of the LR-RF algorithm keeps a
relative steady value if we continue to increase the value of parameter dmax.

24



 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15

K
e
n
d
a
ll’

s
 t
a
u
 c

o
rr

e
la

ti
o
n

depth of the tree

glass
housing

iris
wine

Fig. 4. Ranking performance (in terms of Kendall’s tau correlation) of the LR-RF
as a function of the depth of tree dmax.

We clearly observe that the performance of LR-RF algorithms keeps steady
in a wide range, i.e., dmax > 8. Moreover, the tree depth is a function of the
problem complexity. For a given dmax value, the number of possible nodes is
up to 2dmax in a random tree. Therefore, in our algorithm, we roughly set the
value of parameter dmax as 8.

7 Conclusions and future work

In this paper, we have developed a novel label ranking method based on ran-
dom forest (LR-RF). The empirical results show that our method is highly
competitive with state-of-the-art methods in terms of predictive accuracy for
datasets with complete ranking and datasets with partial ranking informa-
tion. In addition to achieving state of the art performances, the new method
has some further advantages. Firstly, the tree structure of our LR-RF makes
the retrieval of nearest neighbours more efficient and scalable than traditional
instance-based approaches. Secondly, both the construction and prediction
processes of our method can be executed in a parallel way. Thirdly, our LR-
RF method is a tree-based method, tree structure can clearly express much
more information about the problem and it is easy to understand even for
people without a background on learning algorithms. It is worth noting that
our proposed LR-RF shares the third and fouth advantage with two recent
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algorithms proposed in [14] and [13].

We also performed three sets of experiments to investigate the impact of noise
on the performance of the LR-RF, and study the influence of parameter nbrtree
and dmax on the accuracy of the LR-RF, respectively. The analysis results also
show that our method has a strong robustness on the missing label information
and parameter values selection.

For future work, we plan to compare and analyse the different methods to
use ranking information for the construction of a decision tree, and select the
suitable one to guide the growing of the decision trees in a random forest. It
is possible to further improve the performance of LR-RF by use the suitable
method for using the ranking information.
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[24] C. R. de Sá, C. Soares, A. Knobbe, P. Azevedo, A. M. Jorge, Multi-interval
discretization of continuous attributes for label ranking, in: Discovery Science,
Springer, 2013, pp. 155–169.
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