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Highlights

• Proposed a deep learning model for automatic detection of atrial fibrilla-

tion.

• An end-to-end model using CNN and RNN was developed to extract high

level features.

• The model was trained and validated on three different publicly available

databases.

• A post-processing scheme was also used to reduce the number of false

positives.

1



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

A Deep Learning Approach for Real-Time Detection of Atrial Fibrillation

Rasmus S. Andersena, Abdolrahman Peimankara, Sadasivan Puthusserypadya,∗

aDepartment of Electrical Engineering, Technical University of Denmark, Kongens Lyngby, 2800, Denmark

Abstract

Goal : To develop a robust and real-time approach for automatic detection of Atrial Fibrillation (AF) in long-

term electrocardiogram (ECG) recordings using deep learning (DL). Method : An end-to-end model combining the

Convolutional- and Recurrent-Neural Networks (CNN and RNN) was proposed to extract high level features from

segments of RR intervals (RRIs) in order to classify them as AF or normal sinus rhythm (NSR). Results: The model

was trained and validated on three different databases including a total of 89 subjects. It achieved a sensitivity and

specificity of 98.98% and 96.95% respectively, validated through a 5-fold cross-validation. Additionally, the proposed

model was found to be computationally efficient and it was capable of analyzing 24 hours of ECG recordings in

less than one second. The proposed algorithm was also tested on the unseen datasets to examine its robustness in

detecting AF for new recordings which resulted in 98.96% and 86.04% for specificity and sensitivity, respectively.

Conclusion: Compared to the state-of-the-art models evaluated on standard benchmark ECG datasets, the proposed

model produced better performance in detecting AF. Additionally, since the model learns features directly from the

data, it avoids the need for clever/cumbersome feature engineering.

Keywords: Electrocardiogram (ECG), Atrial Fibrillation, Deep Learning, Convolutional Neural Networks

(CNNs), Recurrent Neural Networks (RNNs), Long Short-Term Memory (LSTM).

1. Introduction

The prevalence of Atrial Fibrillation (AF) is increasing worldwide causing it to be one of the most important

health issues in western countries (Zoni-Berisso et al., 2014; Fuster et al., 2006; Stewart et al., 2004). AF causes a

significant decrease in quality of life and is a leading risk factor for stroke. Aditionally, AF is often associated with

comorbidities such as hypertension, diabetes and heart failure (Stewart et al., 2004; Le Heuzey et al., 2004). AF5

requires long-term pharmacological treatment and hospitalisations resulting in a substantial and growing economic

burden on the healthcare system (Fuster et al., 2006; Stewart et al., 2004; Le Heuzey et al., 2004).

The diagnosis of AF is based on history and clinical evaluation and requires electrocardiogram (ECG) docu-

mentation by at least a single-lead recording during the arrhythmia (Fuster et al., 2006). The fact that an ECG

recording of the arrhythmia is a diagnostic criterion can make the process cumbersome, especially if the arrhythmia10

is paroxysmal and not easily provoked during a recording session. These cases suggest an ambulatory solution
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Email addresses: Rasmus.S.Andersen@dk.ey.com (Rasmus S. Andersen), apeima@elektro.dtu.dk (Abdolrahman
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(e.g., Holter monitoring) with extended recording time (+24 hours) to capture the arrhythmic event. Extended

recordings from wearable ECG recorders introduce an infeasible amount of data for the physician to inspect and

analyse and hence requires analytic software to automatically determine onset and duration of arrhythmic episodes.

Signal processing and machine learning advocate for new and advanced methods for detection of arrhythmias, which15

could facilitate and accelerate the diagnostic process of AF.

Deep Learning (DL) have experienced a huge breakthrough in the last decade, beating state-of-the-art results

in many applications such as machine vision and natural language processing (LeCun et al., 2015; He et al., 2016,

2015). The high capacity of DL models along with recent advances in parallel computing on Graphics Processing

Units (GPUs) have allowed DL to outperform any other classification algorithm assuming the amount of data is20

sufficient. Because of their strong predictive capabilities, the application of DL model in biomedical signals is of

keen interest. Up to now, most DL based ECG classification models have placed emphasis on classifying ECG

beats. Kiranyaz et al. (2016) developed a 1-D convolutional neural network (CNN) real-time patient-specific ECG

classification algorithm for the detection of ventricular ectopic beats and supraventricular ectopic beats with very

high accuracy. Al Rahhal et al. (2016) proposed a DL approach for active classification of ECG signals which helps25

classifying the most difficult beats by adding them in the next training phase of the algorithm. Zubair et al. (2016)

and Majumdar & Ward (2017) studied the possibility of beat-by-beat ECG classification into five major classes

recommended by the Association for the Advancement of Medical Instrumentation (AAMI) using CNNs and greedy

deep dictionary learning, respectively. Rajpurkar et al. (2017) developed a CNN algorithm for classifying ECG beats

into fourteen different classes. In another study, Acharya et al. (2017) designed a deep CNN model for ECG beats30

detection into five common classes recommended by AAMI. Wu et al. (2016) used a deep belief networks to classify

heartbeats into five classes. It should also be mentioned here that there is an interesting recent study by Mjahad

et al. (2017) which reported a non-featured ECG arrhythmia classification.

In addition, there are other studies applying traditional machine learning pipelines using handcrafted feature

extraction methods and traditional classification algorithms for ECG arrhythmia classification such as the ones35

reported in (Alonso-Atienza et al., 2012; Yu & Chou, 2008; Pawiak, 2018; Homaeinezhad et al., 2012; Shadmand

& Mashoufi, 2016; Khalaf et al., 2015; Ceylan et al., 2009; Khorrami & Moavenian, 2010; Martis et al., 2012;

Moavenian & Khorrami, 2010).

This study presents a novel DL model capable of detecting AF in long-term ECG recordings. The model learns

features directly from the data and hence bypasses the need for feature engineering and prior domain knowledge.40

The proposed model outperforms state-of-the-art models evaluated on standard benchmark datasets and is compu-

tationally efficient allowing it to process 24 hours of recording in less than one second. In this paper, we investigate

the performance of the proposed model on three different benchmark datasets. Additionally, the model is evaluated

on heathy subjects with NSR to investigate any occurrence of false predictions.

The remainder of this paper consists of 6 sections. In Section 2, the theoretical background of CNNs and RNNs45

is briefly described. In Section 3, the components of the proposed model are introduced. The experimental results

of the AF detection using the developed algorithm are presented and discussed in Section 4 and Section 5, and
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Figure 1: Temporal convolution. A receptive field of size ksize = 3 moving across a 1D time-series. The three corresponding
weights (wi1, wi2, wi3) for the ith filter are shown and the bias is left out for clarity. Here, N represents length of the input
signals.

lastly, Section 6 concludes the paper.

2. Technical Background

Conventional machine learning methods have long been limited in their ability to process natural data in their50

raw form. Clever feature engineering is required to transform the data into a suitable internal representation from

which the classifier can separate the classes (LeCun et al., 2015). DL breaks with this convention and beat state-

of-the-art performance within many fields of machine learning without the need for prior domain knowledge and

expertise. By stacking simple non-linear modules, DL methods are capable of extracting and classifying highly

abstract features from raw data (LeCun et al., 2015; Nielsen, 2015).55

In this study, two different types of DL network architecture are combined into a single classifier intended to

detect and classify AF in long-term ECG recordings. The first part of the model consist of a multi-layer CNN,

which extract features from the raw input sequence. The second part of the model uses a Recurrent Neural Network

(RNN) structure known as Long Short-Term Memory (LSTM) to process the sequential features extracted by the

CNN. Lastly, the output from the LSTM layer is passed to a single sigmoid neuron corresponding to a logistic60

classifier, which provides the posterior probability of input sequence containing AF. It is worth to note that the

performance of the combined model can be enhanced through the training phase because both CNN and LSTM

networks learn different functions. Therefore, a combination of these two networks achieves a higher classification

accuracy (Geras et al., 2015; Shi et al., 2015; Sainath et al., 2015).

2.1. CNN Structure65

Conventional neural networks, in which each neuron is connected to every neuron in the adjacent layer, is unable

to take advantage of any spatial or temporal structure presented in the data (Nielsen, 2015). CNNs present a clever

way of incorporating this information while simultaneously reducing the network complexity. Three key concepts

lay the foundation of CNN: receptive field, weight sharing, and pooling.

3
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Figure 2: Convolutional network architecture with input layer, convolutional layer and pooling layer.

In CNNs, each neuron in the first hidden layer is connected only to a small region of the input neurons, known

as the receptive field. Each connection learns a weight, and the neuron also learns an overall bias. Next, the window

is slid across the entire input sequence, and each neuron in the hidden layer learns to analyse a specific part of

the input sequence as shown in Fig. 1. The size or length of the receptive field is known as the kernel size ksize.

Now instead of learning new weight and biases for each neuron in the hidden layer, the CNN learns only one set

of weights and a single bias, which is applied to all neurons in the hidden layer. This is known as weight sharing.

Mathematically, this can be expressed as:

aij = ϕ

(
bi +

3∑

k=1

wikxj+k−1

)
= ϕ

(
bi + wT

i xj

)
, (1)

where aij is the activation or output of the j’th neuron of the i’th filter in the hidden layer, ϕ is the neural70

activation function, bi is the shared overall bias of filter i, wi = [wi1 wi2 wi3]T is vector with shared weight and

xj = [xj xj+1 xj+2]T . From a signal processing point of view, this can be expressed as convolution operation, where

the input sequence, xj , is convolved with a filter with impulse response wi (Goodfellow et al., 2016). Hence the

output of the hidden layer is a filtered version of the input sequence and the learned weights corresponds to the

impulse response of the filter. All neurons in the first hidden layer are hence trained to detect the same feature,75

just at different locations in the input sequence. Because of this property, the activations of the hidden layer is

commonly referred to as a feature map (Nielsen, 2015).

To be able to detect more than a single localised feature, the network needs to compute additional feature

maps. A complete convolutional layer hence consists of several feature maps. In Fig. 2, there is nfilters different

feature maps (i = 1, . . . , nfilters), each defined by a set of three shared weights and a single shared bias. The80

resulting network can now detect nfilters different kind of features, with each feature being detectable across the
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entire sequence (Nielsen, 2015).

Lastly, it is common to periodically insert a pooling layer in between successive convolutional layers (Nielsen,

2015; Goodfellow et al., 2016). The pooling layer simplifies the information in the output from the convolutional

layer by sub-sampling. More specifically, the pooling layer summarises a region of e.g. psize = 2 by returning the85

maximum value in that window. This is known as max pooling and is visualized in Fig 2. The moving window in

a pooling layer typically uses strides of the same length as the pooling window compared to convolutional layers

which normally uses a stride of 1. The output of a max-pooling layer with window size psize = 2 is hence half the

length of the input. Figure 2 provides a general overview of the CNN architecture with convolution and pooling.

In modern literature, this structure provides the core component in deep convolutional models (Krizhevsky et al.,90

2012).

2.2. LSTM Structure

RNNs are another type of network architectures specifically designed to encompass sequential information. They

are commonly used in sequence classification. The RNN structure, as opposed to a regular neural network, is capable

of learning temporal dependencies and hence have shown superiority when working with time series data such as95

ECG signals. In traditional neural networks, all inputs are assumed to be independent of each other, but for most

time-series and sequences this is not a valid assumption. RNNs work by performing the same task for every element

in a sequence with the current output being dependent on previous computations hence the name recurrent. This

study features an advanced type of RNN known as the LSTM introduced by Hochreiter and Schmidhuber in 1997

(Hochreiter & Schmidhuber, 1997). The LSTM network addresses the problem of unstable gradients and allows100

the network to learn long-term dependencies. In addition, it has been shown that the LSTM network outperforms

other traditional RNN architectures (Graves & Schmidhuber, 2005).

The core idea behind the LSTM architecture is a continuously updated memory cn. The LSTM memory block

is illustrated in Fig. 3. It now has the ability to remove or add information to this memory at each time step in a

sequence, carefully controlled by a forget gate fn and an input gate in, which employ the same overall structure of

a single layer neural network with a sigmoid activation function.

fn = ϕ(bf + uT
f xn + wT

f hn−1) (2)

in = ϕ(bi + uT
i xn + wT

i hn−1). (3)

Here xn is the input sequence at time step n, and hn−1 is the output vector from the LSTM at the previous time

step. The parameters ui, wi, uf , and wf are the input and recurrent weight vectors of the input and forget gates,

respectively, and b’s are all bias terms. The sigmoid activation function of the gates always return a value between105

0 and 1 and hence control how much of each component should pass through.

The memory cn is updated by partially forgetting the existing memory and adding a new memory content c̃n

cn = fncn−1 + inc̃n, (4)

5



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

tanh

tanh

nh

1nh

nx

1nc
nc nc

nc
~

no

LSTM memory blocks

nf ni

Input 
gate

Forget 
gate

Output 
gate

  

Figure 3: Architecture of a LSTM memory block.

where the new memory content is given by

c̃n = tanh(bc + uT
c xn + wT

c hn−1). (5)

The output is also gated by an output gate on of similar structure as the input and the forget gate. The output of

the LSTM is hence given by

hn = on tanh(cn), (6)

where the output gate is computed as

on = ϕ(bo + wT
o xn + uT

o hn−1). (7)

The parameters uo and wo are the input and recurrent weight vectors of the output gate. Notice that the output

gate is not only dependent on the input and previous output but also on the current memory. LSTM is able to

decide whether to keep the existing memory or forget it via the introduced gates. Intuitively, this is an important

property, as the network is capable of remembering features from early stages of a sequence and hence capture110

long-term dependencies (Chung et al., 2014).

One shortcoming of conventional LSTMs is that they are only able to make use of the previous context. If

the network is not implemented in a real-time setting, there is no need not to exploit the future context as well

(Graves & Jaitly, 2014). Bidirectional LSTMs (BiLSTM) do this by processing the data in both directions with

two separate hidden layers, which are then fed forward to the same output layer. The output yn is now a function

6
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Figure 4: Illustration of an unfolded bidirectional LSTM. The input sequence is fed into two seperate hidden layers and
processed in both directions before combining the two outputs in the output layer.

of the hidden state for the forward pass sfn and for the backward pass sbn along with the corresponding weights and

biases as illustrated in Fig.4.

yn = σ(wfs
f
n + wbs

b
n + bh) (8)

where wf and wb are the forward and backward weights, respectively, and σ represents the softmax function.

2.3. Training the Model

Choosing the parameters of the network (weights and biases) which achieve the optimal performance in a

given task, is considered a non-convex optimisation problem, which requires a cost function (J ) to evaluate the

performance of the network. Detection of AF is considered a binary classification problem and hence the binary

cross-entropy (Eq. (9)) is used as cost function in this study.

J = − 1

Nt

∑

x

(y ln(a) + (1− y) ln(1− a)), (9)

where a is the activation of the output layer, y is the desired output and Nt is the total number of training inputs.

Both a and y depends on the input x, but this is left out for notational simplicity.115

The output of the network a is parametrised by all the weights and biases of the network and hence the cost

function evaluates the performance of the network with regard to the trainable parameters. J is typically defined

in a high dimensional space and contains non-linearities, which makes the optimisation non-convex (Nielsen, 2015).
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The optimisation problem is solved by employing an iterative scheme known as the Stochastic Gradient Descent

(SGD).120

3. Materials and Methods

3.1. Data

Three different databases (freely available from Physionet (Goldberger et al., 2000)) are used in the training

and validation of the proposed model. They are the MIT-BIH AF Database (AFDB) (Moody & Mark, 1983), the

MIT-BIH Arrhythmia Database (MITDB) (Moody & Mark, 2001) and the MIT-BIH NSR Database (NSRDB)125

(Goldberger et al., 2000).

The AFDB includes 25 long-term ECG recordings of human subjects with AF (mostly paroxysmal). The

individual recordings are approximately 10 hours in duration and contain two-channel ECG signals each sampled at

250 samples/second with 12-bit resolution over a range of ± 10 millivolts (Goldberger et al., 2000; Moody & Mark,

1983). Each recording contains a beat annotation file prepared using an automatic R-peak detection algorithm.130

In this study, two of the 25 recordings (record 00735 and 03665 ) have been excluded from further analysis as the

signals are unavailable.

MITDB contains 48 half-hour excerpts of two-channel ambulatory ECG recordings, obtained from 47 subjects

(records 201 and 202 are from the same subject) studied by the BIH Arrhythmia Laboratory between 1975 and 1979.

The recordings were digitised at 360 samples/second/channel with 11-bit resolution over a 10 mV range (Moody135

& Mark, 2001). Additionally, each recording contains an annotation file, with not only the location and type of

each beat but also the onset and type of any arrhythmia in the recording (Moody & Mark, 2001; Goldberger et al.,

2000). It is important to notice the split of recordings into the 100 series and the 200 series. The 100 series contains

random samples of the population without any episodes of AF. Additionally, three of the recordings include paced

beats (record 102, 104 and 107). The 200 series was manually selected to include less common arrhythmias such as140

ventricular bigeminy and trigeminy, along with 8 AF subjects (Moody & Mark, 2001; Goldberger et al., 2000).

Table 1: Overview of the three databases included in the study. The table shows the average record duration, the number of
AF episodes, the average AF episode duration and the number of unique rhythms for each database. The number of R-peaks
analyzed for each database is also reported in the last column.

Database Record Duration (Hours) AF Episodes AF Duration (Seconds) Unique Rhythms R-peaks

AFDB 10.19 291 1155.4 4 828000

MITDB 0.50 33 16.2 15 86400

NSRDB 24.31 0 0.0 1 1555200

The NSRDB contains 18 long-term ECG recordings of subjects referred to the Arrhythmia Laboratory at

Boston’s Beth Israel Hospital (now the Beth Israel Deaconess Medical Center). Subjects included in this database

were found to have no significant arrhythmias and is hence considered NSR (Goldberger et al., 2000). The recordings

8
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were digitised at 128 samples/second/channel. Along with each digitised recording is a reference annotation file145

containing the location and type of each beat. Lastly, each database is summarised in Table 1.

3.2. Model Overview

DL offers a unique approach in which the features are learned directly from the input signal and hence no

prior domain knowledge is required to engineer useful features. The novel algorithm proposed in this study is a

multi-layer DL network featuring both convolutional and recurrent layers. An overview of the network architecture150

can be found in Fig. 5. Furthermore, a detailed structure of the different layers including their output dimensions

is shown in Fig. 6.

Conv. 1 Conv. 2 Pooling LSTM Classification

Raw ECG
(AFDB) 

Extracting 
RRIs

l-beat
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Validation set

Preprocessing

Training deep network

Evaluate the trained deep 
network using 5-fold CV on 
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Figure 5: Flowchart of the proposed method. The method includes a training phase in which the optimal parameters for
the network architecture is estimated, an evaluation phase for validating performance measures and a generalisation phase
to report performance on previously unseen data sets.

Input sequence
(1 × 30) RRIs

1st CNN layer
(30 × 60)

2nd CNN layer
(30 × 80)

Pooling layer
(15 × 80)

LSTM layer
(1 × 100)

Output layer
(1 × 1)

Figure 6: A detailed structure of the used layers in the DL model. The numbers in the parenthesis show the output dimension
of each layer.

3.2.1. Preprocessing

The raw ECG recordings from the databases are converted to RRI sequences to reduce computational complexity

and highlight AF behaviour. Measuring the interval between adjacent beats also known as RRI has shown good155

9
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performance in detection of certain cardiac arrhythmias (Stein et al., 1994; Dash et al., 2009; Lake & Moorman,

2010; Colloca et al., 2013). The RRI sequence captures one of the hallmarks of AF, namely the irregular ventricular

contraction rate. Furthermore, employing RRIs instead of raw ECG reduces the computational complexity, as only

the information about R peak differences are stored as opposed to using all intermediate samples in the raw signal.

Converting the ECG recordings to RRI sequences requires segmentation of the ECG signals to obtain R peak

locations. The R-peak detection algorithm is not a part of this study, and hence R-peak locations are obtained

from the database annotation files. After locating the R-peaks, the RRI is calculated as:

RRI(n) =
Rpeaks(n+ 1)−Rpeaks(n)

fs
, (10)

where Rpeaks(n) is the location of the n’th R peak in terms of samples and fs is the sampling frequency in Hz.160

After extracting the RRIs for each recording in the databases, each RRI sequence is segmented into smaller

signals of length l beats (l = 31), which is equal to 30 RRIs, used as input for the model. It should be also noted

that the shift between two segments is equal to 10 beats. Because the model is now classifying l-beat segments, it

is necessary to convert the beat-to-beat rhythm annotations into an l-beat resolution. This conversion is achieved

by classifying any l-beat segment as true AF only if the number of true AF beats exceeds a predefined threshold165

TAF (Dash et al., 2009), which is set to be 0.5 in this study. The resulting l-beat segments of RRI along with the

corresponding binary label is used as the input and desired output, respectively.

3.2.2. Convolutional Layers

The input is fed directly into two successive convolutional layers, which extract temporal dependent features

from the signal. The first convolutional layer has a kernel size of ksize,1 = 5 and outputs nfilters,1 = 60 features.170

Each feature is a filtered version of the input sequence, where the learned parameters of the layer correspond to the

impulse response of the filter. To preserve the temporal dimension, the input is zero-padded before the convolution is

applied. The input to the second convolutional layer is now a sequence of 60 features with same temporal dimension

as the input. The second convolutional layer will extract more abstract features based on the features extracted in

the first layer. The second convolutional layer uses a kernel size of ksize,2 = 3 and outputs nfilters,2 = 80 features.175

Once again the temporal dimension is preserved using zero-padding. The learned parameters of the second layer

are not as easily interpreted as in the first layer because the input is now a 60-dimensional sequence. Instead,

the parameters should be interpreted as tuned weights which produce the optimal features given the network

architecture and data. The choice of kernel size for each layer is based on a coarse grid search of common values

ksize ∈ {3, 5, 7, 10, 12}.180

3.2.3. Pooling Layer

Following the two successive convolutional layers is a pooling layer. This layer performs the max-pooling

operation using a kernel size of psize = 2 with strides of two. The resulting output has half the temporal dimension

of the input and hence reduces complexity for the following layer.

10
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3.2.4. LSTM Layers185

The output from the pooling layer is fed into a bidirectional LSTM layer with nunits = 100 hidden units. The

bidirectional setting of the LSTM layer enables it to learn long-range context in both input directions (Graves &

Jaitly, 2014).

3.2.5. Classification

The output from the LSTM layer is fed into a single sigmoid neuron, as this is the non-redundant convention

for binary classification in any neural network. The output of the sigmoid neuron is interpreted as the posterior

probability of the i’th input sequence belonging to the AF class given the parameters of the model. The classification

is now performed as follows:

ŷi =





1 if p(yi = AF| xi, MODEL) ≥ T

0 otherwise,

(11)

where ŷi is the predicted class. The probability threshold T has a default value of 0.5 but can be altered to change190

the trade-off between the number of false positives and false negatives respectively.

3.2.6. Optimization

The network is trained using SGD with Nesterov accelerated gradient (NAG) (Nesterov, 1983). By applying

NAG to the SGD scheme, it is possible to speed up the convergence and hence reduce the number of training epochs

required to reach an optimum. On the contrary, the introduction of NAG will require fitting one additional hyper-195

parameter, the momentum coefficient µ. In practice, however, only a sparse set of values {0.999, 0.995, 0.99, 0.9, 0}
are considered, as these have shown to produce the best results in multiple situations (Sutskever et al., 2013).

The final network requires fine-tuning of 3 hyperparameters: the learning rate η, the momentum coefficient µ

and the regularisation parameter λ for the L2 weight regularisation. Additionally, the use of dropout with different

dropout probability p should be investigated throughout the network structure.200

3.3. Evaluation Protocol

To evaluate the performance of the model, a number of standard statistical measures are employed. These

feature: (i) Sensitivity (Se) defined as the ratio between True Positive (TP) segments and all positive segments;

(ii) Specificity (Sp) defined as the ratio between True Negatives (TN) segments and all negative segments, (iii)

Accuracy (Acc) defined as correctly classified segments divided by the total number of segments; (iv) False Positive205

Rate (FPR) defined as the ratio between False Positive (FP) segments and all negative segments; and (v) Positive

Predictive Value (PPV) defined as the ratio of TP segments and all segments classified as positive. Lastly the

Receiver Operating Characteristics (ROC) are used to visualise the trade-off between Se and FPR. The Area Under

the Curve (AUC) is also used as a quantitative performance measure.
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3.3.1. Parameter Tuning210

The 23 recordings from the AFDB is randomly split into a training set of 18 recordings and a test set of 5

recordings. The training set is again randomly divided into a training set of 14 recordings and a validation set of

4 recordings.The network is then trained on the training set and the performance is evaluated on the validation

set. When the optimal setting is determined from the validation set, the model is trained on both the training

and validation set before the final performance is evaluated on the test set. This setup assures that the reported215

performance is assessed on previously unseen data and hence prevents overfitting to the test set.

A total of three different hyperparameters is to be estimated during this phase of training. These include η, µ,

and λ which are calculated using a random search technique as proposed by Bergstra & Bengio (2012). This method

is reported to be more efficient for hyperparameter optimisation than a traditional grid search. The proposed model

contains 159,841 trainable parameters (weights and biases) and is implemented in Python v2.7.13 using the Keras220

v2.0.3 API developed by Chollet et al. (2015). The Keras API is a high-level neural networks API focussing on

enabling fast experimentation. The matrix analysis was handled using Theano v0.9.0 with GPU support.

3.3.2. Model Validation

To assess the uncertainty of the reported performance a 5-fold cross validation scheme is used with the network

setting from the previous evaluation. The network is now trained on 4/5 of the recordings in the AFDB and tested225

on the remaining 1/5. This process is iterated five times until all recordings have featured in the test set. The final

performance is now calculated as the average of the five runs. The generalisation capability of the model is assessed

by evaluating the performance of the model on the 48 short-term recordings from the MITDB. This dataset contains

8 AF subjects, but also events of ventricular bigeminy, ventricular trigeminy, atrial flutter and other arrhythmias,

which are likely to confound with the learned features of the model (Colloca et al., 2013). Finally, the model is230

evaluated on the 18 long-term recordings from the NSRDB, which contain no significant arrhythmias. The NSRDB

will provide a good estimate of the expected number of FPs in healthy subjects.

4. Results

An exhaustive random sampling approach was performed to obtain the best possible setting of hyperparameters

on the training set. A total of three successive trials of 100 parameter settings was conducted, each with reduced235

search range of the parameters. The final setting is reported in Table 2. Additionally, dropout was applied to the

input and recurrent states of the LSTM layer with dropout probability p = 0.2.

Table 2: Optimal setting for hyper-parameters on the training set

Parameter Value

Learning rate, η 0.0013

Momentum coefficient, µ 0.99

Regularization term, λ 0.000 017
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Figure 7: Training (black line) and validation (blue line) cost at each epoch during training.

Training of the network with the parameter settings in Table 2 achieved convergence after approximately 50

epochs. One epoch of training corresponds to the model having iterated over each training example once in the

SGD scheme. The training phase of the model is illustrated in Fig. 7, which shows the training and validation loss240

of the model for each training epoch. The curves show no significant signs of overfitting as the validation curve

follows that of the training. The fluctuations in the validation curve is likely due to the relatively small size of the

validation set.

To quantify the effect of the postprocessing scheme, the results are reported both before and after postprocessing.

The uncertainties of the results are addressed using a 5-fold crossvalidation scheme. The model is trained for 50245

epochs in each of the five folds and the results are listed in Table 3 and the corresponding ROC is illustrated in

Fig. 8a. Table 3 clearly shows the improvements of the postprocessed results compared to original results.

Table 3: Results of 5-fold crossvalidation of AFDB

Measure Original Results (%) Postprocessed Results (%)

Se 98.17 ± 0.98 98.98 ± 0.21

Sp 96.29 ± 1.61 96.95 ± 1.58

Acc 97.10 ± 0.66 97.80 ± 0.61

PPV 94.99 ± 2.75 95.76 ± 2.67

FPR 3.71 ± 1.77 3.05 ± 1.72

The trained model is validated on the MITDB, which contains 48 short-term recordings which are completely

unknown to the model. The MITDB contains many different arrhythmias, but as the model is trained to identify

AF, the dataset is converted into a binary classification problem; AF or non-AF. The performance of the model is250

listed in Table 4 and the corresponding ROC curve is illustrated in Fig. 8b.

Lastly, the model is validated on the NSRDB, which contains 18 long-term recordings without any significant

arrhythmias. Most of the performance measures are not applicable is this case because the recordings do not include
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Figure 8: ROC curves (solid orange lines) together with the curves for random guessing (dashed blue lines). (a) AFDB
training set. (b) MITDB test set.

any AF episodes. Validation of the model on the NSRDB provides a good estimate of the expected FPR in healthy

subjects.Results reported in Table 4 confirms the capability of the proposed algorithm in detecting AF on unseen255

datasets.

5. Discussion

The performance achieved on the AFDB beats state-of-the-art results indicating that the unique data-driven

features created by the DL model outperforms traditional feature engineering. On the MITDB, the model struggles

with a high number of FPs which significantly reduces the performance.260

The proposed model includes a total of 159,841 trainable parameters, and hence the computational complexity

of this model far exceeds traditional feature engineered methods (Asgari et al., 2015; Dash et al., 2009; Lee et al.,
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Table 4: Results of the proposed model on two previously unseen data sets

Measure MITDB (%) NSRDB (%)

Se 98.96 –

Sp 86.04 95.01

Acc 87.40 –

PPV 45.45 –

FPR 13.96 4.99

2013; Pürerfellner et al., 2014). The model was trained on a NVIDIA GeForce 940M GPU with 384 Cuda cores

and 2GB DDR3 memory for 40 minutes before convergence and can analyse and classify 24 hours of RRIs in

0.92 seconds. This computational assessment is performed using a batch size of 256, which is only limited by the265

memory of the GPU. Any GPU with more dedicated memory will hence speed up the process and allow for even

faster classification of long-term recordings.

5.1. Data

For any data-driven model and especially with DL models, it is worth analysing the data. As the features are

learned directly from the data and not from prior domain knowledge, as with feature engineering, intuitively the270

features rely heavily on the data. This model is trained on the AFDB, which contains a good representation of both

AF and NSR but also episodes of atrial flutter. The model is trained as a binary classifier, and hence the learned

features provide excellent separability between AF and everything else.

When the model is evaluated on the MITDB, the class distribution of the data have suddenly changed. New

and previously unseen types of arrhythmias such as ventricular bigeminy and trigeminy may confound with the275

learned features of the model (Colloca et al., 2013). The sudden introduction of new arrhythmias could explain

the significant increase in FPs when comparing to the results from the AFDB in Table 3. To investigate this, a

modified evaluation is performed. Table 5 presents the results achieved on the MITDB in which segments with

certain arrhythmias are excluded. For instance, the results reported in the third column (Paced Beats) show the

performance of the algorithm on the MITDB by excluding the RRIs for the Paced Beats. Similarly, the fourth280

column (V. Bigeminy & Trigeminy) report the results by excluding theses type of beats from the RRIs. It should

be mentioned that the reported results in Table 5 have all been post processed.

The results of this analysis suggest that neither paced beats, ventricular bigeminy or trigeminy had a significant

impact on the number of FPs. For example, By excluding the subject with paced beats and neglecting any FPs

within episodes of ventricular bigeminy and trigeminy, the FPR was reduced from 13.96% to 12.06%. These results285

indicate that the investigated arrhythmias are not alone responsible for the high number of FPs. This study only

investigates the classification of AF from NSR. However, the proposed model can be further developed to distinguish

different arrhythmia using a multi-class classification approach in order to further reduce the FPs.

The model was also evaluated on the NSRDB which contains no significant arrhythmias and hence provides a
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Table 5: Modified results obtained on the MITDB. Segments with certain arrhythmias have been excluded from the dataset.
Each column indicates which arrhythmias have been excluded. All results have been postprocessed.

Measure Original Results (%) Paced Beats (%) V. Bigeminy & Trigeminy (%) Combined (%)

Se 98.96 99.82 98.96 99.82

Sp 86.04 84.87 88.91 87.94

Acc 87.40 86.53 90.00 89.30

PPV 45.45 45.18 52.09 51.71

FPR 13.96 15.13 11.09 12.06
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Figure 9: False predictions during NSR. Noisy ECG signals prevent detection of R-peaks and introduce artifacts in the RRI
time-series resulting in segments wrongly classified as AF. (a) ECG signal along with true and predicted labels, (b) False
predictions during NSR. Noisy ECG signals prevent detection of R-peaks and introduce artifacts in the RRI time-series
resulting in segments wrongly classified as AF.

good estimate of the expected number of FPs in healthy subjects. Comparing the results obtained on the NSRDB290

to the results on the AFDB shows an increase in the FPR from 3.05% to 4.99%, which suggest further investigation

of the data in the NSRDB. Inspecting the raw ECG signals reveals multiple noisy segments in which the automatic

R-peak segmentation algorithm has failed to detect the R-peaks. This translates directly into artifacts in the RRI

times-series as the ventricular rhythm suddenly appears irregular, resulting in segments being wrongly classified as

AF as illustrated in Fig. 9.295

R-peak segmentation in noisy ECG signals requires clever filtering more advanced algorithms than was used

for annotating the NSRDB. An alternative solution would be to classify the noise level in the ECG signal for each

segment and reject segments surpassing an estimated threshold. In this way, segments containing a high noise level

would be rejected instead of wrongly classified as AF.

5.2. Postprocessing300

The postprocessing scheme applied on this algorithm is a quick and efficient solution to correct single segment

artifacts or outlier. The idea is to nullify any such occurrence because AF is typically seen in episodes and not

in quick bursts. By visualising the predictions on entire recordings along with the corresponding true rhythm
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annotation, it is clear that the postprocessing scheme enhances the performance. In Fig. 10, the predicted labels

of two recordings from the test set of the AFDB is illustrated with corresponding true labels before and after the305

postprocessing. Notice how single segment misclassifications are corrected and aligned with the true label. The

width of the median filter could be further increased to strengthen this effect but at the cost of missing short

episodes of paroxysmal AF.

0 10000 20000 30000 40000

0 10000 20000 30000 40000

0 10000 20000 30000 40000

RRI time series
2.0

1.5

1.0

0.5

0 10000 20000 30000 40000

0 10000 20000 30000 40000

0 10000 20000 30000 40000

0 10000 20000 30000 40000

AF

NSR

AF

NSR

AF

NSR

True AF Label

Predicted AF Label

Postprocessed

Time [s]

V
ol

ta
g
e 

[m
V
]

C
la

ss
es

Figure 10: Effect of post-processing scheme: top figure illustrates the raw RRIs of record 08378 in the AFDB. The three
remaining figures show the true AF label (green) along with the predicted AF label (red) and the predicted label after
post-processing (black). Notice how the single segment misclassifications are corrected after the post-processing scheme is
applied.

In this study, the entire recording is processed at once, and hence it is possible to utilise the predictions of both

past and future inputs in the postprocessing scheme. Because the processing is non-causal, it is not applicable in310

a real-time setting. Even though the filtering method is not suitable, the general idea of smoothing the output

predictions is still viable. A real-time implementation of this system would require a buffer which continuously kept

track of previous predictions. This is easily implemented but less efficient if the entire record is already available

as in this study.

6. Conclusion315

In this work, an automatic real-time AF detection method based on the DL approach was proposed. It eliminates

the need for traditional feature engineering, as the DL model learns data-driven features to distinguish AF from the

remaining rhythms in the signals. Therefore, this algorithm can be easily used “in house” by clinicians/cardiologists
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to detect AF. The proposed method shows a high performance on the AFDB dataset with a Se and Sp of 98.98%

and 96.95%, respectively. Furthermore, the proposed post-processing scheme successfully reduced the number of320

FPs, which resulted in a decrease in the FPR from 3.71% to 3.05%.

Further validation of the proposed model on the MITDB revealed a significantly higher number of FPs and

hence a reduction in Sp to 87.70% and an increased FPR of 12.21%. These results suggested that the previously

unseen rhythms in the MITDB might confound with the learned features of the model. Because the features were

learned directly from the data, it was impossible to account for any rhythms not contained in the training set325

and hence it was expected to see an increased FPs. The model was also tested on the NSRDB which contains 18

long-term recordings with no significant arrhythmias. The test provided a good estimate of the expected number

of FPs in a healthy subject. The results indicated a relatively high FPR of 4.99%. Further investigation of the

NSRDB confirmed that the automatic R-peak segmentation algorithm used for the beat annotations had failed

to detect R-peaks in multiple segments of the recordings due to noisy ECG signals. The mis-classified R-peaks330

introduced artifacts in the RRI time-series in which the ventricular rhythm appeared irregular. Inspection of the

model’s performance on the noisy ECG segments indicated a high number of FPs as expected. A possible solution

to this problem would be to identify the noise level in each ECG segment and reject segments with a noise level

higher than a predefined threshold.
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