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Abstract

Literature reviews are essential for any researcher trying to keep up to date with the burgeoning software engineering
literature. Finding relevant papers can be hard due to the huge amount of candidates provided by search. FAST2 is
a novel tool for assisting the researchers to find the next promising paper to read. This paper describes FAST2 and
tests it on four large systematic literature review datasets. We show that FAST2 robustly optimizes the human effort to
find most (95%) of the relevant software engineering papers while also compensating for the errors made by humans
during the review process. The effectiveness of FAST2 can be attributed to three key innovations: (1) a novel way of
applying external domain knowledge (a simple two or three keyword search) to guide the initial selection of papers—
which helps to find relevant research papers faster with less variances; (2) an estimator of the number of remaining
relevant papers yet to be found—which helps the reviewer decide when to stop the review; (3) a novel human error
correction algorithm—which corrects a majority of human misclassifications (labeling relevant papers as non-relevant
or vice versa) without imposing too much extra human effort.

Keywords: Active learning, literature reviews, text mining, semi-supervised learning, relevance feedback, selection
process.

1. Introduction

This article presents and assesses an automatic assis-
tant for researchers seeking research papers relevant to
their particular topic. The goal of this assistant, called
FAST2, is to reduce the effort required for such a search
thereby (a) enabling researchers to find more relevant pa-
pers faster; thus (b) allowing the contribution of more re-
searchers to be wildly recognized. Many such assistants
have been previously proposed (Cormack and Grossman,
2014; Wallace et al., 2010b; Miwa et al., 2014; Yu et al.,
2018), but those prior works did not fully address three
core problems solved by FAST2 (see our research ques-
tions, listed on the next page).

Why is it important to reduce the effort associated with
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literature reviews? Given the prevalence of tools like
SCOPUS, Google Scholar, ACM Portal, IEEE Xplorer,
Science Direct, etc., it is a relatively simple task to find
a few relevant papers for any particular research query.
However, what if the goal is not to find a few papers, but
instead to find most of the relevant papers? Such broad
searches are very commonly conducted by:

• Researchers exploring a new area;
• Researchers writing papers for peer review, to ensure

reviewers will not reject a paper since it omits impor-
tant related work;

• Researchers conducting a systematic literature review
on a specific field to learn about and summarize the lat-
est developments.

Literature reviews can be extremely labor intensive due
to the low prevalence of relevant papers. Here in this pa-
per, we take the example of systematic literature reviews
to demonstrate this problem. For example, systematic lit-
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Table 1: Statistics from the literature review case studies in this paper

Dataset Topic Original Title
#candidate
papers |E|

#relevant
papers |R|

Prevalence
(|R|/|E|)%

Wahono Defect prediction

A systematic literature review
of software defect prediction:

research trends, datasets,
methods and frameworks

7002 62 0.9%

Hall Defect prediction
A systematic review of theory
use in studies investigating the

motivations of software engineers
8911 104 1.2%

Radjenović
Defect prediction

metrics
Software fault prediction metrics:

A systematic literature review
6000 48 0.8%

Kitchenham Literature review
A systematic review of systematic

review process research in SE
1704 45 2.6%

Datasets used in the authors’ prior work (Yu et al., 2018). The first three datasets are generated by reverse engineering
from the original publications (using the same search string to collect candidate papers and treating the final inclusion list
as ground truth for relevant papers).

erature reviews are the primary method for aggregating
evidence in evidence-based software engineering (Keele,
2007). In such reviews, researchers thoroughly analyze
all the research papers they can find to synthesize answers
to some specific research questions. One specific step in
systematic literature review, which is called primary study
selection, is to find most (if not all) of the relevant papers
to the research questions. This step is identified as one of
the most difficult and time consuming steps in systematic
literature review (Carver et al., 2013) as it requires hu-
mans to read and classify thousands of candidate papers
from a search result. Table 1 shows four systematic lit-
erature reviews where thousands of papers were reviewed
before revealing just a few dozen relevant papers. Shemilt
et al. (2016) estimated that assessing one paper for rele-
vancy takes at least one minute. Assuming 25 hours per
week for this onerous task, the studies of Table 1 would
take 16 weeks to complete (in total). Therefore, reducing
the human efforts required in this primary study selection
step is thus critical for enabling researchers conducting
systematic literature reviews more frequently.

Many researchers have tried reducing the effort as-
sociated with literature reviews (Malheiros et al., 2007;
Bowes et al., 2012; Jalali and Wohlin, 2012; Wohlin,
2014; O’Mara-Eves et al., 2015; Paynter et al., 2016; Co-
hen et al., 2006; Adeva et al., 2014; Liu et al., 2016; Ros

et al., 2017). Prior work from the authors (Yu et al., 2018)
focused on retrieving most relevant papers with least ef-
fort and found that active learning is the best way to
achieve that. In the state of the art active learning ap-
proaches (Cormack and Grossman, 2014; Wallace et al.,
2010b; Miwa et al., 2014), a support vector machine
(SVM) is updated whenever a human reviewer decided
if a paper is relevant/non-relevant to a specific research
question. The active learner then reflect over the updated
SVM to select which paper is most informative to read
next. In this active learning manner, human review ef-
forts are focused on the papers that either is most likely
to be relevant or can improve the current classifier most.
Furthermore, advantages from different active learning
approaches are adopted to derive a new approach FAS-
TREAD (Yu et al., 2018), which outperformed the previ-
ous state of the art approaches (Cormack and Grossman,
2014; Wallace et al., 2010b; Miwa et al., 2014).

While a useful tool, FASTREAD does not address three
important research questions (that are resolved in this pa-
per):

RQ1: “How to start?”; i.e., how to control initial pa-
per selection. The resulting incremental learners can vary
wildly, depending on the initial selection of examples.
This is important since, as shown below in Section 2.5,
a poor initial selection of papers can greatly increase the
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number of papers that must be read. But as shown in this
paper:

The first relevant paper can be identified earlier,
robustly, by applying a little domain knowledge
to guide the initial sampling.

How to start?

RQ2: “When to stop?”; i.e., how to know when can
the review be safely stopped. While there is probably al-
ways one more relevant paper to find, it would be useful
to know when most papers have been found (say, 95%
of them (Cohen, 2011)). Without the knowledge of how
many relevant papers that are left to be found, researchers
might either:

• Stop too early, thus missing many relevant papers.
• Stop too late, causing unnecessary further reading, even

after all relevant items are find.

This paper shows that the rate at which incremental SVM
tools finds papers follow a simple mathematical relation-
ship. Hence:

During the review process, the current achieved
recall of relevant papers can be accurately esti-
mated through a semi-supervised logistic regres-
sor. Therefore it is possible to determine when a
target recall (say, 95%), has been reached.

“When to Stop?”

We show, in Section 4.4 that our stopping rule is more ac-
curate than other state of the art stopping criteria (Wallace
et al., 2013a).

RQ3: “How to correct?”. Human reviewers are not
perfect, and sometimes they will label relevant papers as
non-relevant, and vice versa. Practical tools for support
literature reviews must be able to recognize and repair in-
correct labeling. We show here that:

The human labeling errors can be efficiently iden-
tified and corrected by periodically rechecking
few of the labeled papers, whose labels the active
learner disagrees most on.

How to correct?

This paper is structured as follows. The rest of this sec-
tion states our contributions; connections to prior work;
and some caveats. After that, background notes are pre-
sented selecting relevant papers in Section 2, techniques
and experimental results for the how to start problem in
Section 3, answering to the when to stop problem in Sec-
tion 4, and results for How to correct problem when hu-
man errors are taken into consideration in Section 5. Sec-
tion 6 describes the overall tool FAST2 as a combination
of all the techniques from Section 3 to Section 5 and dis-
cusses the threats to validity. Conclusions are provided in
Section 7.

Note that all our case studies are systematic literature
reviews from the field of software engineering. We use
that data since that is our “home” domain and it seems
more responsible to draw data from an area that we know
most about. That said, there is nothing in principle stop-
ping the reader from applying these methods to their own
home domains. To that end, we offer a full reproduction
package with all this study’s code and data (Yu and Men-
zies, 2017).

1.1. Contributions

This paper offers:
1. A starting tactic for literature reviews to find the first

relevant paper faster, robustly.
2. An early stopping rule which, for our test data, is far

more accurate than other state of the art stopping cri-
teria.

3. An error correcting strategy that mitigates human er-
rors in literature reviews.

4. A software tool called FAST2 that implements the
above three points, thus addressing three open issues
in prior fast reading tools, i.e. how to start, when to
stop, how to correct.

5. A reproduction package with all this study’s code and
data (Yu and Menzies, 2017).
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Figure 1: This paper explores tools for reducing the effort and difficulty associated with the select papers phase of systematic literature reviews.
We do this since Carver et al. (2013) polled researchers who have conducted literature reviews. According to their votes, select papers was one of
the hardest, most time-consuming tasks in the literature review process. For tools that support other aspects of SLRs such as searching databases
and extracting data, see summaries from Marshall et al. (2015).

1.2. Connection to Prior Work

This paper is a significant improvement over FAS-
TREAD, the tool proposed in our prior work (Yu et al.,
2018) on automatic support for literature reviews. In this
prior work (Yu et al., 2018), the authors
1. Analyzed the shortcomings of existing systematic

review tools, e.g. Abstrakr 1 (Wallace et al.,
2012), EPPI-Reviewer 2 (Thomas et al., 2010),
Rayaan 3 (Ouzzani et al., 2016).

2. Compared different approaches, such as search-query
based methods (Zhang et al., 2011; Umemoto et al.,
2016), reference-based methods (Jalali and Wohlin,
2012; Felizardo et al., 2016; Wohlin, 2014), supervised
learning (Cohen et al., 2006; Adeva et al., 2014), semi-
supervised learning (Liu et al., 2016), unsupervised
learning (Malheiros et al., 2007), and found that ac-
tive learning is the most efficient in reducing the cost
of primary study selection.

3. Constructed three software engineering systematic lit-
erature review datasets by reverse engineering from the
original publications.

4. Mixed and matched the state of the art active learning
approaches (Wallace et al., 2010b; Miwa et al., 2014;
Cormack and Grossman, 2014) to generate 32 possible

1http://abstrackr.cebm.brown.edu
2http://eppi.ioe.ac.uk/cms/er4/
3http://rayyan.qcri.org/

combinations.
5. The resulting best method FASTREAD had top rank

performance across all datasets and significantly out-
performed the three existing state of the art methods.

More details on FASTREAD will be provided in Sec-
tion 2.4. While FASTREAD was the state of the art ap-
proach for selecting which papers to read next, it offered
no support for the RQ1, RQ2, RQ3 issues that are solved
in this paper.

1.3. Caveats
One caveat for the following results is that all our test

data comes from the software engineering literature. We
constrained ourselves to that domain since we have per-
sonnel contacts with many researchers performing liter-
ature reviews in that domain. This constraint had many
advantages, including our ability to access more test data.
Note that there is nothing in principle from applying our
methods to other domains.

Another important caveat is that we say that we are “re-
ducing the effort of literature reviews”, we mean “reduce
the effort of the initial skim of the papers”. Formally, in
the terminology of Kitchenham’s systematic literature re-
view (SLR) (Kitchenham, 2004) framework, this “initial
skim” is the primary study selection phase of a literature
review. We focus on this phase of the literature review
process for two reasons:
• Prior work by Carver and others (Carver et al., 2013;

Hassler et al., 2014, 2016) showed that primary study
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selection is one of the slowest parts of the entire litera-
ture review process, as shown in Figure 1.

• There are well-established tools to handle much of the
rest of the SLR process. From example, Marshall
et al. (2015) describe tools to assist in searching for
papers then extracting papers from multiple databases
and assessing their “quality” (i.e. their relevance to
the query). But a large missing piece in the current
toolchain for SLRs are supports for selecting a small
number of relevant papers from within the larger set of
papers found by searching the databases.

Another important caveat is that we are careful to say that
our methods can find many relevant papers, rather than
all relevant papers. Our goal is to offer engineering prin-
ciples for literature reviews, and engineering is the disci-
pline that delivers acceptable products in reasonable time.
Hence, like many other researchers in this area, our suc-
cess criteria is “work saved oversampling at 95% recall”
(WSS@95) (Cohen, 2011). If researchers hope to find all
relevant papers, then they should (a) ignore the methods
of this paper and (b) allocate a very long time to their lit-
erature reviews.

2. Background

2.1. Literature Reviews in Different Domains

Selecting which technical papers to read is a task that
is relevant and useful for many domains. For example:
• In legal reasoning, attorneys are paid to review mil-

lions of documents trying to find evidence to some case.
Tools to support this process are referred to as elec-
tronic discovery (Grossman and Cormack, 2013; Cor-
mack and Grossman, 2014, 2015, 2016b).

• In evidence-based medicine, researchers review medi-
cal publications to gather evidence for support of a cer-
tain medical practice or phenomenon. The selection of
related medical publications among thousands of can-
didates returned by some search string is called cita-
tion screening. Text mining methods are also applied
to reduce the review effort in citation screening (Miwa
et al., 2014; Wallace et al., 2010b,a, 2011, 2013a, 2012,
2013b).

• In software engineering, Kitchenham et al. recom-
mend systematic literature reviews (SLRs) to be stan-
dard procedure in research (Kitchenham et al., 2004;

Keele, 2007). In systematic literature reviews, the pro-
cess of selecting relevant papers is referred to as pri-
mary study selection when SE researchers review titles,
abstracts, sometimes full texts of candidate research pa-
pers to find the ones that are relevant to their research
questions (Kitchenham, 2004; Keele, 2007).

For the most part, SLRs in SE are a mostly manual process
(evidence: none of the researchers surveyed in Fig 1 used
any automatic tools to reduce the search space for their
reading). Manual SLRs can be too slow to complete or
repeat. Hence, the rest of this paper explores methods to
reduce the effort associated with literature reviews.

2.2. Automatic Tool Support

Formally, the problem explored in this paper can be ex-
pressed using the nomenclature of Table 2:
• Starting with L = ∅ papers;
• Prioritize which papers to be reviewed so as to...
• Maximize |LR| (the number of relevant papers discov-

ered)...
• While minimizing |L| (the number of papers reviewed).
Tools that address this problem can be divided as follows:

Search-query based that involves query expan-
sion/rewriting based on user feedback (Umemoto et al.,
2016). This is the process performed by any user as they
run one query and reflect on the relevancy/irrelevancy of
the papers returned by (e.g.) a Google Scholar query.
In this search-query based approach, users struggle to
rewrite their query in order find fewer non-relevant pa-
pers. While a simple method to manually rewrite search
queries, its performance in selecting relevant papers is
outperformed by the abstract-based methods described
below (Goeuriot et al., 2017; Kanoulas et al., 2017).

Reference based methods such as “snowballing” ex-
ploit citation links between research papers. Starting with
papers known to be relevant, “forward” and “backward”
snowballing chases new relevant papers through papers
cite the known relevant ones and references of known
relevant ones, respectively (Jalali and Wohlin, 2012; Fe-
lizardo et al., 2016; Wohlin, 2014). While a straightfor-
ward method, reference-based methods suffer from two
disadvantages—a) the cost for extracting references and
forming a citation link graph ( full papers have to be
investigated before they go into the snowballing proce-
dure (Wohlin, 2014)); b) precision and recall vary a lot
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Table 2: Problem description

E: the set of all candidate papers
(returned from search).

R ⊂ E: set of ground truth relevant papers.
I = E \R: set of ground truth non-relevant papers
L ⊂ E: set of labeled/reviewed papers,

each review reveals whether a paper
is included or not.

¬L = E \ L: set of unlabeled/unreviewed papers.
LR = L ∩R: identified relevant (included) papers.
LI = L ∩ I: identified non-relevant (excluded) papers.

across different studies (Wohlin reported in one of his
studies as precision to be 6.8% (Wohlin, 2014) while in
another study as precision to be 15/64 = 23.4% (Jalali
and Wohlin, 2012)).

Abstract based methods use text from a paper’s abstract
to train text classification models, then apply those models
to support the selection of other relevant papers. Since it
is easy to implement and performs reliably well, abstract-
based methods are widely used in many domains (Yu
et al., 2018; Miwa et al., 2014; Wallace et al., 2010b; Cor-
mack and Grossman, 2014).

2.3. Abstract-based Methods

In this paper, we focus on abstract-based methods
since:
• They are easy to implement—the only extra cost is

some negligible training time, compared to search
query based methods which require human judgments
on keywords selection and reference based methods
which cost time and effort in extracting reference in-
formation.

• Several studies show that the performance of
abstract-based methods is better than other ap-
proaches (Kanoulas et al., 2017; Roegiest et al.,
2015).

Note that abstract-based methods do not restrict the re-
viewers from making decisions based on full-text when
it is hard to tell whether one paper should be included
or not based on abstract. However, only abstracts are
used for training and prediction, which makes data collec-
tion much easier. Abstract-based methods utilize different
types of machine learning algorithms :

1. Supervised learning: which trains on labeled papers
(that humans have already labeled as relevant/non-
relevant) before classifying the remaining unlabeled
papers automatically (Cohen et al., 2006; Adeva et al.,
2014). One problem with supervised learning methods
is that they need a sufficiently large labeled training set
to operate and it is extremely inefficient to collect such
labeled data via random sampling. For this reason, su-
pervised learners are often combined with active learn-
ing (see below) to reduce the cost of data collection.

2. Unsupervised learning: techniques like visual text
mining (VTM) can be applied to facilitate the hu-
man labeling process (Malheiros et al., 2007; Felizardo
et al., 2010). In practice the cost reductions associated
with (say) visual text mining is not as significant as
that of active learning methods due to not utilizing any
labeling information (Roegiest et al., 2015; Kanoulas
et al., 2017).

3. Semi-supervised learning: are similar to supervised
learning but utilizes unlabeled data to guide the train-
ing process. Different from active learning, it does not
actively query new labels from unlabeled data. Instead,
it tries to make use of the unlabeled data to improve the
training result of a supervised learning (Chapelle et al.,
2017). Semi-supervised methods have been proved to
be more effective than supervised learning methods but
still suffers from the same problem (the need for rela-
tively large labeled training sets–Liu et al. (2016) re-
ported a less than 95% recall with 30% data labeled).

4. Active learning: In this approach, human reviewers
read a few papers and classify each one as relevant or
non-relevant. Machine learners then use this feedback
to learn their models incrementally. These models are
then used to sort the stream of papers such that humans
read the most informative ones first.

2.4. FASTREAD
Our prior work in this area leads to the FASTREAD

abstract-based active learner (Yu et al., 2018) shown in
Algorithm 1. FASTREAD employed the following active
learning strategies:
• Input tens of thousands of papers selected by (e.g.)

a query to Google Scholar using techniques such as
query expansion (Umemoto et al., 2016).

• In the initial random reasoning phase (shown in line 9
of Algorithm 1),
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Algorithm 1: Psuedo Code for FASTREAD (Yu et al.,
2018)

Input : E, set of all candidate papers
R, set of ground truth relevant papers

Output : LR, set of included papers

1 L← ∅;
2 LR ← ∅;
3 ¬L← E;

// Keep reviewing until stopping rule satisfied
4 while |LR| < 0.95|R| do

// Start training or not
5 if |LR| ≥ 1 then
6 CL← Train(L);

// Query next
7 x← Query(CL,¬L,LR);
8 else

// Random Sampling
9 x← Random(¬L);

// Simulate review
10 LR, L← Include(x,R, LR, L);
11 ¬L← E \ L;

12 return LR;

13 Function Train(L)
// Train linear SVM with Weighting

14 CL← SVM(L, kernel = linear, class weight =
balanced);

15 if LR ≥ 30 then
// Aggressive undersampling

16 LI ← L \ LR;
17 tmp← LI [argsort(CL.decision function(LI))[:

|LR|]];
18 CL← SVM(LR ∪ tmp, kernel = linear);

19 return CL;

20 Function Query(CL,¬L,LR)
21 if LR < 10 then

// Uncertainty Sampling
22 x← argsort(abs(CL.decision function(¬L)))[0];
23 else

// Certainty Sampling
24 x← argsort(CL.decision function(¬L))[−1];
25 return x;

26 Function Include(x,R, LR, L)
27 L← L ∪ x;
28 if x ∈ R then
29 LR ← LR ∪ x;

30 return LR, L;

– Allow humans to skim through the papers manually
until they have found |LR| ≥ 1 relevant paper (along
with |LI | non-relevant ones). Typically, dozens of
papers need to be examined to find the first relevant
paper.

• After finding the first relevant paper, transit to the re-
flective reasoning phase (shown in line 6 to 7 of Algo-

rithm 1):
– Train an SVM model on the L examples. When
|LR| ≥ 30, balance the data via aggressive under-
sampling; i.e., reject all the non-relevant examples
except the |LR| non-relevant examples furthest to the
decision plane and on the non-relevant side.

– Use this model to decide what paper humans should
read next. Specifically, find the paper with the high-
est uncertainty (uncertainty sampling) when |LR| <
30 (shown in line 25 of Algorithm 1) and find the pa-
per with highest probability to be relevant (certainty
sampling) when |LR| ≥ 30 (shown in line 27 of Al-
gorithm 1).

– Iterate the reflective reasoning phase until more than
95% of the relevant papers have been found (|LR| ≥
0.95|R|).

FASTREAD was designed after testing and comparing 32
different active learners generated from three prior state
of the art methods from the medical and legal literature—
Wallace’10 (Wallace et al., 2010b), Miwa’14 (Miwa et al.,
2014), and Cormack’14 (Cormack and Grossman, 2014).
• When compared to manual reading methods (linear re-

view), FASTREAD dramatically reduces the effort as-
sociated with studies like those in Table 1. With the
help of FASTREAD, an order of magnitude fewer pa-
pers are required to be reviewed to find 95% of the rel-
evant ones.

• When compared to current state of the art auto-
matic methods—Wallace’10 (Wallace et al., 2010b),
Miwa’14 (Miwa et al., 2014), and Cormack’14 (Cor-
mack and Grossman, 2014), FASTREAD reviews up
to 50% fewer papers while finding the same number of
relevant papers.

• When compared to all the 32 methods used to design
FASTREAD, it performed remarkably better (see Fig-
ure 2).

2.5. Limitations with FASTREAD

While successful in some aspects, FASTREAD suffers
from three significant limitations.

Firstly, FASTREAD utilizes no domain knowledge and
knows nothing about its retrieval target before human ora-
cles are provided. Hence, the order of the papers explored
in the initial reasoning phase is pure guesswork. This can
lead to highly undesirable results, as shown in Figure 3:

7



Figure 2: Median results (over 30 runs) of 32 active learning algorithms
and manual review (linear review) across the four datasets of Table 1.
WSS@95 (higher the better) represents the effort (the number of papers
need to be reviewed) saved when finding 95% of the relevant papers.

• In that figure, the y-axis shows what percentage of the
relevant papers were found (the data here comes from
the Hall dataset in Table 1).

• The lines on this figure show the median (green) and
worst-case (red) results in 30 runs, we varied, at ran-
dom, the papers used during initial reasoning.

• The dotted and solid lines show the performance of
FASTREAD and FAST2 respectively.

Observe from the curves in Figure 3:
• The solid curves denote FASTREAD’s performance,

and the distance between FASTREAD’s median and
worst case is a factor of three. This means the ran-
dom selections made during the initial phase can have
runaway effects; i.e., an undesirable effect of greatly
increasing the effort associated with literature reviews.

• On the other hand, as shown by the dashed curves of
Figure 3, FAST2 has little variance and does not suffer
from that runaway effects. As shown later in this paper,
FAST2 achieves this via requesting minimal amounts
of domain knowledge.

Secondly, using FASTREAD reviewers do not know when
to stop reviewing. FASTREAD has no estimator that users
can query to ask “is it worth reading any more papers?”.
Without such knowledge of how many relevant papers
that are left to be found, researchers might either:
• Stop too early, thus missing many relevant papers;
• Or stop too late, causing unnecessary effort even when

there are no more relevant papers to find.
The dashed lines in Figure 3 show how FAST2 stops near
0.95 recall without knowing the actual number of relevant
papers to be found (|R|). Section 4 provides details about
how FAST2 achieves this.

Thirdly, FASTREAD assumes reviewers are infallible;

Figure 3: The performance of active learners can be extremely variable,
depending on the initial choice of examples. This figure shows results
from FASTREAD and FAST2 across 30 random selections of initial pa-
pers. Note that in the worst case, it takes FASTREAD three times as
long to find relevant papers (compared to the median case). Note also
that the FAST2 method proposed in this paper is far less susceptible to
the adverse effects of poor initial example selection.

i.e., when labeling papers as relevant or non-relevant, they
never make mistakes. This seems a very optimistic as-
sumption. In practice, human errors are inevitable so any
intelligent reading assistant should have some mechanism
for handling those errors. Figure 4 simulates a litera-
ture review on Hall dataset with a fallible human reviewer
whose precision and recall are both 70% (i.e., when ask-
ing the reviewer to label all papers, 70% recall, and 70%
precision can be achieved). This is a reasonable assump-
tion according to Cormack and Grossman (2017). Solid
lines show the performance without any error correction
while dashed lines show the improved results (with in-
creasing true positives and decreasing false negatives and
false positives) with error correction method in FAST2.
Details of the error correction method in FAST2 will be
provided in Section 5.

3. How to Start

The rest of this paper explores ways to resolve the lim-
itations of FASTREAD. In this first section, we drop the
assumption of no domain knowledge to answer the fol-
lowing research question:

RQ1: How to start? How to better utilize external
domain knowledge to boost the review process and avoid
the runaway effects illustrated in Figure 3?

3.1. Related Work

Applying domain knowledge to guide the initial selec-
tion of training data, instead of random sampling, can

8



Figure 4: Simulation results for a user who can achieve 70% precision
and 70% recall when reviewing all papers in Hall dataset. Blue curves
show true positives (the number of correctly retrieved relevant papers);
red curves show false negatives (the number of relevant papers but la-
beled as non-relevant); green curves show false positives (the number
of non-relevant papers but labeled as relevant). Solid lines indicate the
performance without error correction while dashed lines show improved
performance with the error correction algorithm called Disagree.

avoid efforts being wasted on non-relevant examples and
prevents runaway results. However, no matter what form
of domain knowledge applied, a common issue will be
raised when random sampling is replaced; i.e., how to
collect unbiased non-relevant examples. Without random
sampling, the training data collected by domain knowl-
edge guided review, uncertainty sampling, or certainty
sampling are all biased and lead to a deteriorated perfor-
mance when used for training.

Our solution to this problem is based on presump-
tive non-relevant examples (shortened as PRESUME in
the rest of this paper) proposed in the legal literature by
Cormack and Grossman (2015). Each time before train-
ing, PRESUME samples randomly from the unlabeled ex-
amples and presumes the sampled examples to be non-
relevant in training. The rationale behind this technique
is that given the low prevalence of relevant examples, it is
likely that most of the presumed ones are non-relevant.

With the help of PRESUME, Cormack and Grossman
(2015) investigated two different ways to utilize different
forms of domain knowledge for a better collection of ini-
tial training data:

• Auto-BM25: keyword search and rank the unla-
beled examples with their corresponding BM25 scores,
which is calculated based on tf-idf (Robertson et al.,
2009). Then label the example with highest BM25
score as relevant and start training. Given a search
query Q = {q1, q2, . . . , qn}, the BM25 score is cal-

culated as

BM25(i, Q)

=

|Q|∑
j=1

IDF (qj)
f(qj , i)

f(qj , i) + k1(1− b+ b li
avgdl )

(1)

where f(qj , i) is term qj’s term frequency in document
i, li is the length of document i, and avgdl is the aver-
age document length in the collection C. k1 and b are
free variables, here, we choose K1 = 1.5, b = 0.75.
IDF (qj) is the inverse document frequency weight of
term qj and it is computed as:

IDF (qj) = log
|E| − n(qj) + 0.5

n(qj) + 0.5

where n(qj) is the number of documents containing
term qj .

• Auto-Syn: a synthetic document is created, with do-
main knowledge from the reviewer, to act as the first
relevant example and train the classifier directly.

3.2. Method

While the above methods from Cormack and Grossman
(2015) were shown to be useful in their test domain, they
have certain limitations. Both methods rely on domain
knowledge from reviewers to generate one seed relevant
example and then use it to initiate the active learning pro-
cess. One problem with such techniques is that the quality
of the seed example, which is decided by the reviewers’
expertise, can affect the performance of the active learner.
More efforts are required to find new relevant examples if
the seed example is not representative enough.

To address this concern, in our work we modified Auto-
BM25 and created a new method called Rank-BM25:
• Just as with Auto-BM25, Rank-BM25 starts with

querying a set of keywords and rank the unlabeled ex-
amples based on their BM25 scores.

• Rank-BM25 then asks a reviewer to review N = 10
examples with descending order of their BM25 scores.

• If |LR| ≥ 1 relevant examples found, start active learn-
ing; otherwise Rank-BM25 tries a different keyword
set.
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3.3. Experiments
In this subsection, we design experiments to answer

RQ1 by comparing different ways of utilizing external
domain knowledge using the methods described above.

3.3.1. Datasets
Previously, we have created three datasets by reverse-

engineering existing SLRs (Yu et al., 2018). The three
datasets are named after the authors of their original pub-
lication source—Wahono dataset from Wahono (2015),
Hall dataset from Hall et al. (2012), and Radjenović
dataset from Radjenović et al. (2013). Apart from the
three created datasets, one dataset (Kitchenham) is pro-
vided directly by the author of Kitchenham and Brereton
(2013). Statistics of the four datasets are shown in Table 1.
In this paper, we use the same four datasets to evaluate
different techniques. All the above datasets are available
online (Yu and Menzies, 2017).

It is appropriate to ask why we used these four datasets
and not four others? The answer is that, in the domain of
automated support for reading the SE literature, there is
very little data available for experimentation. We had to
build three of the data sets from the last paragraph—a pro-
cess that took weeks of work. Only after extensively ad-
vertising our technique did we receive offers of other data
from other researchers (and that lead to the four datasets
contributed by Kitchenham).

3.3.2. Performance Metrics
In order to compare with FASTREAD, the same per-

formance metrics are applied here:
• X95 = min{|L| | |LR| ≥ 0.95|R|}.
• WSS@95 = 0.95− X95/|P |.
X95 stands for the number of papers need to be reviewed
in order to get 0.95 recall, while WSS@95 represents
the work saved, comparing to random sampling, when
reaching 0.95 recall. The reason behind 0.95 recall is
that a) 1.00 recall can never be guaranteed by any text
mining method unless all the candidate papers are re-
viewed; b) 0.95 recall is usually considered acceptable
in evidence-based medicine (Cohen, 2011; Cohen et al.,
2006; O’Mara-Eves et al., 2015) despite the fact that
there might still be relevant papers missing (Shemilt et al.,
2016).

As recommended by Mittas & Angelis in their 2013
IEEE TSE paper (Mittas and Angelis, 2013), Scott-Knott

analysis was applied to cluster and rank the performance
(X95) of each treatment. It clusters treatments with lit-
tle difference in performance together and ranks each
cluster with the median performances (Scott and Knott,
1974). As suggested in the authors’ prior work (Yu et al.,
2018), nonparametric hypothesis tests are applied to han-
dle the non-normal distribution. Specifically, Scott-Knott
decided two methods are not of little difference if both
bootstrapping (Efron, 1982), and an effect size test (Cliff,
1993) agreed that the difference is statistically significant
(99% confidence) and not a negligible effect (Cliff’s Delta
≥ 0.147).

3.3.3. Treatments
As for RQ1: “How to start?” four different treatments

are tested, including the random sampling tactic from
FASTREAD (Yu et al., 2018) as a baseline, Auto-BM25
and Auto-Syn from Cormack and Grossman (2015), and
Rank-BM25 created in this paper. To compare perfor-
mance and variance of different treatments, each one is
tested on all four datasets with 30 random seeds. For each
treatment, the corresponding domain knowledge imported
is as following:
• Rank-BM25: “Topic” column in Table 1 as the search

query Q.
• Auto-BM25: “Topic” column in Table 1 as the search

query Q.
• Auto-Syn: “Original Title” column in Table 1 as the

synthetic document.
• FASTREAD: random sampling until the first relevant

paper is found, same as FASTREAD.
Note that for all treatments, PRESUME is required to
keep the training data unbiased.

3.4. Results

Table 3 shows the results of different starting tactics on
four SE SLR datasets. Medians and IQRs (75-25th per-
centile, smaller IQR means less variances) are shown in
this table. On each dataset, different treatments are com-
pared by their X95 and WSS@95 scores (X95 smaller
the better, WSS@95 larger the better). Scott-Knott anal-
ysis is applied to rank different treatments in “Rank” col-
umn. Treatments ranked the same by Scott-Knott analysis
are considered to have similar performance while treat-
ments ranked differently are significantly different in per-
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Table 3: Testing tactics for “how to start”

X95 WSS@95
Dataset Rank Treatment median IQR median IQR

Wahono

1 Rank-BM25 630 48 0.86 0.01
2 FASTREAD 685 225 0.85 0.03
2 Auto-Syn 705 60 0.85 0.01
3 Auto-BM25 785 78 0.84 0.01

Hall

1 Rank-BM25 290 10 0.92 0.00
2 Auto-Syn 320 30 0.91 0.00
3 Auto-BM25 345 30 0.91 0.00
3 FASTREAD 345 125 0.91 0.01

Radjenović

1 Auto-Syn 515 122 0.86 0.02
2 Rank-BM25 615 85 0.85 0.01
3 FASTREAD 700 208 0.83 0.03
4 Auto-BM25 800 135 0.82 0.02

Kitchenham

1 Auto-BM25 510 30 0.65 0.02
1 Auto-Syn 520 40 0.64 0.02
1 Rank-BM25 525 60 0.64 0.03
2 FASTREAD 630 130 0.58 0.07

Each experiment is repeated 30 times. Only medians and IQR (75-25th percentile, smaller IQR means less vari-
ances) are shown in this table. On each dataset, different starting tactics are compared by their X95 and WSS@95
scores (X95 smaller the better, WSS@95 larger the better). Scott-Knott analysis is applied to rank different treat-
ments in “Rank” column. Treatments ranked the same by Scott-Knott analysis are considered to have similar
performance while treatments ranked differently are significantly different in performance.

formance. With the results in Table 3, we reach the fol-
lowing conclusions.

Rank-BM25 is recommended as the overall best tac-
tic. It is the only tactic which consistently performs better
than the baseline tactic FASTREAD (top rank in 3 out of
4 datasets, second rank in the other dataset). While this
tactic requires two or three keywords to initiate, they can
be easily found in the original search string.

Auto-BM25 is considered as a depreciated version of
Rank-BM25 since it never ranks better than Rank-BM25
(worse in three and similarly in one dataset).

Auto-Syn is not recommended. It requires human ex-
perts to synthesize example relevant text, which is a diffi-
cult task. The quality of the synthesized example may af-
fect the performance a lot, thus leads to unstable results (it
performs the best in two datasets but also performs worse,
though not significantly, than the baseline in one dataset).

FASTREAD is not recommended since domain knowl-
edge as trivial as two or three keywords can save 10-20%

more review efforts and reduce the IQRs greatly (e.g.,
IQRs of Rank-BM25 are 30− 50% of those of Random).
This indicates better robustness of the active learner and
runaway results (where some readings take far longer than
others due to random selection of initial papers) are far
less likely when applying domain knowledge to start the
review.

Hence we say:

Overall, we suggest Rank-BM25 as the most ef-
fective starting tactic for initiating active learn-
ing. By applying such tactic, the review effort
can be reduced by 10-20% by FASTREAD while
preventing the runaway effects.

Answer to RQ1 “How to Start?”

The updated algorithm with Rank-BM25 is shown in
Algorithm 2. BM25 score is calculated as (1). Rows
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Algorithm 2: Psuedo Code for Rank-BM25 on
FAST2

Input : E, set of all candidate papers
R, set of ground truth relevant papers
Q, search query for BM25

Output : LR, set of included papers

1 L← ∅;
2 LR ← ∅;
3 ¬L← E;

4 while |LR| < 0.95|R| do
5 if |LR| ≥ 1 then

// Presumptive non-relevant examples

6 Lpre ← Presume(L,¬L) ;

7 CL← Train(L ∪ Lpre) ;

8 x← Query(CL,¬L,LR);
9 else

// BM25 ranking with keywords Q

10 x← argsort(BM25(¬L,Q))[0] ;

11 LR, L← Include(x,R, LR, L);
12 ¬L← E \ L;

13 return LR;

14 Function Presume(L,¬L)
// Randomly sample |L| points from ¬L

15 return Random(¬L, |L|);

colored in yellow are the differences from Algorithm 1.
Functions already described in Algorithm 1 are omitted.

4. When to Stop

This section drops the assumption of reviewer knows
when to stop reviewing on top of Algorithm 2 and answers
the following research question:

RQ2: When to stop? Without knowing the actual
number of relevant papers in the candidate set, how to
decide when to stop reviewing so that 1) most relevant
papers have been retrieved, 2) not too much review effort
is wasted.

4.1. Related Work
When to stop is a critical problem while applying ac-

tive learning on literature reviews. If the reading stops
too early, it may end up with missing too many relevant
papers. On the other hand, if the reading stops too late, re-
view effort might be wasted since no new relevant papers
can be found.

Before this study, other work (Wallace et al., 2010b;
Miwa et al., 2014) usually focus on generating the best

reading curve and do not discuss the stopping rule. That
said, our reading of the literature is that there exists three
candidate state of the art stopping rules for selecting rele-
vant papers in software engineering, electronic discovery,
and evidence-based medicine respectively:
• Ros’17: stop review after 50 non-relevant papers are

found in succession (Ros et al., 2017).
• Cormack’16: the knee method (Cormack and Gross-

man, 2016a). This method detects the inflection point
i of current recall curve, and compare the slopes be-
fore and after i. If slope<i/slope>i is greater than a
specific threshold ρ, the review should be stopped. For
details about this knee method, please refer to Cormack
and Grossman (2016a).

• Wallace’13: Apply an estimator to estimate the number
of relevant papers |R| and let the users decide when to
stop by showing them how close they are to the esti-
mated number (Wallace et al., 2013a).

We note that the Ros’17 and Cormack’16 methods are
less flexible than the Wallace’13 method since they do
not allow the user to choose what recall they want. Also
note that another recently proposed stopping strategy by
Di Nunzio (2018) requires the review to follow the order
of BM25, therefore is not compared in this papers.

4.2. Method
According to Cohen (2011), we want the reading to

stop at 95% recall. To achieve this, we must first know the
total number of relevant papers |R|. Since this is unknow-
able in practice, the “when to stop” problem can be solved
by building a good class probability estimator which can
tell the reviewer a) what is the probability of being rele-
vant for each unlabeled paper; b) how many relevant pa-
pers have not been found yet.

The challenges for building such a class probability es-
timator include the class imbalance of training data (Wal-
lace and Dahabreh, 2012) and the bias incurred by sam-
pling with active learning. Specifically, given that active
learning provides a better chance to retrieve relevant pa-
pers in an early stage, the prevalence of relevant papers in
the reviewed set PL = |LR|/|L| is much larger than that
in the candidate set P = |R|/|E| (Wallace et al., 2013a).

Wallace’13 solved the above challenges by sampling∝
probabilities—sample unlabeled examples with a proba-
bility of active learner’s prediction. However, sampling
∝ probabilities is less efficient than the query strategy
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of FASTREAD (details will be presented in Section 4.4).
Therefore we design a new estimator SEMI which utilizes
the same query strategy of FASTREAD and fits a semi-
supervised logistic regressor utilizing not only the labeled
data but also the unlabeled data.

SEMI utilizes a recursive TemporaryLabel technique.
Each time the SVM model is retrained, SEMI assigns
temporary labels to unlabeled data points and builds a
logistic regression model on the temporary labeled data.
It then uses the obtained regression model to predict on
the unlabeled data and updates the temporary labels. This
process is iterated until convergence. Algorithm 3 shows
how SEMI works in detail where the LogisticRegression
function is implemented with scikit-learn, and its regular-
ization strengthC is calculated asC = |RE |/(|L|−|LR|)
to mitigate the imbalance in SVM classifier.

4.3. Experiments

In this subsection, we design experiments to answer
RQ2 by 1) comparing the estimator of SEMI with Wal-
lace’13, 2) comparing the performance of applying SEMI
as stopping rule with Ros’17 and Cormack’16 stopping
rules.

Firstly, SEMI was compared with the Wallace’13 esti-
mators for the task of estimating the prevalence of rele-
vant examples (|R|/|E|). Results from uniform random
sampling 4 is also provided as a baseline.

We then used the SEMI estimator as an early stopping
rule for literature reviews. Reviews were simulated on our
four full datasets and stopped when |LR| ≥ Trec|RE |.
Trec represents the desired final recall of the review and
Trec = 0.90 for SEMI (90), Trec = 0.95 for SEMI (95).
Note that RE was calculated each time the learner was
retrained. Performances of this new stopping rule were
analyzed by comparing with :
• Ros’17: i.e., stopping when 50 non-relevant papers

found in succession;
• Cormack’16: The knee method with ρ = 6.
Note that besides ρ = 6, Cormack and Grossman (2016a)
have suggested an alternative ρ = 156−min(|LR|, 150),

4Uniform random sampling samples from unlabeled data randomly
and queries the labels, it then estimates |R| as |RE | = |E|× |LR|/|L|.
It was observed to estimate more accurately than the Wallace’13 estima-
tor according to Wallace et al. (2013a).

especially for the cases of a relatively small dataset. How-
ever when we tested it, Cormack’16 stopping rule barely
worked with ρ = 156 − min(|LR|, 150) and almost all
candidate papers were reviewed. Therefore we choose
ρ = 6 for the Cormack’16 method.

4.4. Results

Before applying SEMI as a stopping rule, the accuracy
of its estimation is first tested against that of the prior state
of the art estimator—the Wallace’13 estimator. Figure 5
shows the performances of different estimators. The first
column in Figure 5 demonstrates the effectiveness of dif-
ferent query strategies. Suggested by these results, SEMI
(in blue) outperforms Wallace’13 (in green) and uniform
random sampling (in red) since it achieves same recall
with much fewer papers reviewed.

The second column of Figure 5 demonstrates the effec-
tiveness of different estimators. The SEMI estimator (in
blue) is not only more accurate than the Wallace’13 esti-
mator (in green) but also the estimation from uniform ran-
dom sampling (in red). SEMI is a better estimator than the
state of the art Wallace’13 estimator since both its query
strategy and its estimation are better. Moreover, in all our
case studies, after reviewing 150 documents, the SEMI
estimator becomes remarkably accurate. This means that,
very early in a literature review, researchers can adjust
their review plans according to the number of remaining
papers.

Then we apply SEMI as the stopping rule and compare
it against other state of the art stopping rules. Based on the
results shown in Table 4, we observe that Ros’17 usually
stops too early and results in a low recall; Cormack’16
results in a large range of recalls which the user has no
control of. On the other hand, we suggest SEMI as the
best stopping rule since (1) it has the advantage of letting
user to choose the target recall (Trec) and (2) based on the
results, it stops very close to the desired recall stably (with
lower IQRs).

To summarize this section:
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ć
K

itc
he

nh
am

Figure 5: Results for prevalence estimation (|RE |/|E|) with each row on one different dataset. Estimation from uniform random sampling works as
a baseline (see the red line). SEMI (in blue) finds relevant papers much faster than uniform random sampling (in red) or Wallace’13 (in green). The
second column demonstrates the effectiveness of different estimators where one estimator is more accurate than another if its estimation is closer to
the true prevalence (in gray) with fewer papers reviewed. SEMI estimator (in blue) estimates more accurately than both the Wallace estimator (in
green) and the estimation from uniform random sampling (in red).

With our proposed estimator SEMI, we suggest
the review to stop when |LR| ≥ Trec|RE |. We
have shown in our results that the proposed stop-
ping rule can stop the review close to the target
recall.

Answer to RQ2 “When to stop?”

The updated algorithm with SEMI as stopping rule is
shown in Algorithm 3. Rows colored in yellow are the dif-
ferences from Algorithm 2. Functions already described
in Algorithm 2 and 3 are omitted.

5. How to correct

This section drops the assumption of Reviewer never
make mistakes on top of Algorithm 3 and explores this
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Algorithm 3: Psuedo Code for SEMI on FAST2

Input : E, set of all candidate papers
R, set of ground truth relevant papers
Q, search query for BM25
Trec, target recall (default=0.95)

Output : LR, set of included papers

1 L← ∅;
2 LR ← ∅;
3 ¬L← E;

4 |RE | ← ∞ ;

5 while |LR| < Trec|RE | do
6 if |LR| ≥ 1 then
7 Lpre ← Presume(L,¬L);
8 CL← Train(L ∪ Lpre);

// Estimate #relevant papers

9 RE , Y ← SEMI(CL,E,L, LR) ;

10 x← Query(CL,¬L,LR);
11 else
12 x← argsort(BM25(¬L,Q))[0];

13 LR, L← Include(x,R, LR, L);
14 ¬L← E \ L;

15 return LR;

16 Function SEMI (CL,E,L, LR)
17 |RE |last ← 0;
18 ¬L← E \ L;

19 foreach x ∈ E do
20 D(x)← CL.decision function(x);
21 if x ∈ |LR| then
22 Y (x)← 1;

23 else
24 Y (x)← 0;

25 |RE | ←
∑

x∈E
Y (x);

26 while |RE | 6= |RE |last do
// Fit and transform Logistic Regression

27 LReg ← LogisticRegression(D,Y );

28 Y ← TemporaryLabel(LReg,¬L, Y );

29 |RE |last ← |RE |;
// Estimation based on temporary labels

30 |RE | ←
∑

x∈E
Y (x);

31 return |RE |, Y ;

32 Function TemporaryLabel (LReg,¬L, Y )
33 count← 0;
34 target← 1;
35 can← ∅;

// Sort ¬L by descending order of LReg(x)
36 ¬L← SortBy(¬L,LReg);

37 foreach x ∈ ¬L do
38 count← count + LReg(x);
39 can← can ∪ {x};
40 if count ≥ target then
41 Y (can[0])← 1;
42 target← target + 1;
43 can← ∅;

44 return Y ;

Table 4: Comparison of different stopping rules

Dataset Stopping rule Final Recall
|LR|/|R|

#papers
reviewed |L|

Wahono

SEMI (90) 94(0) 750(48)
SEMI (95) 95(0) 1180(67)
Ros’17 76(8) 370(108)
Cormack’16 94(11) 770(288)

Hall

SEMI (90) 95(2) 315(20)
SEMI (95) 98(0) 500(30)
Ros’17 97(0) 385(48)
Cormack’16 97(1) 390(38)

Radjenović

SEMI (90) 92(0) 540(58)
SEMI (95) 94(0) 760(37)
Ros’17 83(4) 320(75)
Cormack’16 88(6) 420(100)

Kitchenham

SEMI (90) 89(2) 400(20)
SEMI (95) 91(2) 510(20)
Ros’17 89(0) 420(50)
Cormack’16 96(2) 660(85)

Each experiment is repeated for 30 times. Results are shown
as median(IQR) in percentage. As for recall, the higher the
better; as for #papers reviewed, the fewer the better.

question:
RQ3: How to correct? Human makes mistakes, and

those mistakes can be amplified by misleading the ma-
chine learning model to train on the wrongly labeled pa-
pers. How to correct human error in time and accurately
is a huge challenge.

5.1. Related Work

The observation of human errors in literature review
is prevalent, e.g., Wohlin et al. (2013) documented that
reviewers will not find same papers even with thorough
reviews, and Cormack and Grossman (2017) concluded
that a human reviewer could achieve on the order of 70%
recall and 70% precision. The human error becomes an
even more severe problem when active learning is applied
to assist the review since the active learning model would
be misled by the mislabeled training examples (Voorhees,
2000). Therefore correcting these human errors becomes
a crucial task for this work.

Via our literature review, we found two state of the art
error correction methods that can be applied to solve this
problem:
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• Kuhrmann’17: One simple way to correct human er-
rors is by majority vote. As Kuhrmann et al. (2017) de-
scribed in 2017, simplest form of majority vote requires
every paper to be reviewed by two different reviewers,
and when the two reviewers do not label it consistently,
a third reviewer is asked to make the final decision. The
advantage of this method is that the human errors are
corrected immediately and will not mislead the active
learning model. However, this method requires at least
three different reviewers and will at least double the re-
view effort.

• Cormack’17: This error correction method (Cormack
and Grossman, 2017) is built upon the Cormack’16
knee stopping rule (Cormack and Grossman, 2016a).
After the review stops, papers labeled as “relevant” but
reviewed after the inflection point (x > i) and pa-
pers labeled as “non-relevant” but reviewed before the
inflection point (x < i) are sent to reviewers for a
recheck. Comparing to Kuhrmann’17, this method re-
quires much less extra review effort on rechecking, but
can only correct human errors after the review, which
leads to bias in the active learning model.

5.2. Method

Taking into consideration the advantages and disadvan-
tages of the existing error correction methods, we utilize
the class probability estimation from SEMI to build a new
error correction method called Disagree which now and
then (whenever 50 new papers are labeled) rechecks some
of the labeled papers. To improve the efficiency of the er-
ror correction, only those papers with labels that the cur-
rent active learner disagrees most on are rechecked. Since
human error rate on mislabeling relevant as non-relevant
is much higher than vice versa (thus creating say 70%
precision and 70% recall on highly imbalance dataset),
rechecking effort is focused more on papers labeled as
non-relevant.

In this way, Disagree can 1) correct human errors in
time; and 2) avoid wasting too much effort on recheck-
ing correctly labeled papers. Algorithm 4 shows how
Disagree works in detail where the IncludeError function
simulates a human reviewer with a precision of Prec and
recall of Rec.

Algorithm 4: Psuedo Code for Disagree on FAST2

Input : E, set of all candidate papers
R, set of ground truth relevant papers
Q, search query for BM25
Trec, target recall (default=0.95)

Output : LR, set of included papers

1 L← ∅;
2 LR ← ∅;
3 ¬L← E;
4 |RE | ← ∞;

5 Fixed← ∅ ;

6 while |LR| < Trec|RE | do
7 if |LR| ≥ 1 then
8 Lpre ← Presume(L,¬L);
9 CL← Train(L ∪ Lpre);

10 RE , Y ← SEMI(CL,E,L, LR);
11 if |L| mod 50 == 0 then

/* Check labeled papers which human and
machine disagree most */

12 LR, L← Disagree(CL,L, LR) ;

13 x← Query(CL,¬L,LR);
14 else
15 x← argsort(BM25(¬L,Q))[0];

// Simulate review with human errors

16 LR, L← IncludeError(x,R, LR, L) ;

17 ¬L← E \ L;

18 return LR;

19 Function IncludeError(x,R, LR, L)
// Simulate human errors with precision and

recall
20 Prec = 0.70;
21 Rec = 0.70;
22 if x ∈ L then
23 Fixed← Fixed ∪ x;
24 else
25 L← L ∪ x;

26 if
(
x ∈ R and random() < Rec

)
or
(
x /∈ R and

random() <
|R|

|E|−|R| (
Rec
Prec − Prec)

)
then

27 LR ← LR ∪ x;
28 else
29 LR ← LR \ x;

30 return LR, L;

31 Function Disagree(CL,L, LR, F ixed)
// Remove fixed items from checklist

32 CheckI ← L \ LR \ Fixed;
33 CheckR ← LR \ Fixed;
34 Threshold← 1.6/(1 + CL.class weight);

/* Rank papers by the level of human-machine
disagreements */

35 Rdis ← argsort(CL.predict proba(CheckR) <
Threshold;

36 Idis ← argsort(CL.predict proba(CheckI) >
Threshold;

// Ask human to relabel
37 foreach x ∈ Rdis ∪ Idis do
38 LR, L← IncludeError(x,R, LR, L);

39 return LR, L;
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5.3. Experiments

In this subsection, we design experiments to answer
RQ3 by comparing Disagree with:
• None: i.e. no error correction (so just Algorithm 3 with

human errors);
• Kuhrmann’17: majority vote with three reviewers of

same error rate; and
• Cormack’17: knee method with ρ = 6.
Our simulations are conducted on the four SE literature
review datasets of Table 1 with increasing human error
rate injected (from 100% recall and 100% precision to
70% recall and 70% precision).

Because of the introduction of human errors, LR 6=
L ∩ R anymore. We use tp = |R ∩ LR| to represent
the true positive, and ct to represent the actual review ef-
fort (ct ← ct + 1 each time a new/labeled paper is re-
viewed/rechecked). Performance of each method is as-
sessed by the following metrics:
• Recall: tp/|R| measures the percentage of relevant pa-

pers being included in the final inclusion list. The
Higher, the better.

• Precision: tp/|LR| measures that in the set of papers
labeled as relevant by human reviewers, how many of
them are relevant. The higher, the better.

• Effort: ct measures the actual number of papers being
reviewed by human reviewers (including rechecking).
The lower, the better.

5.4. Results

Table 5 shows the median results for 30 repeated simu-
lations. While we collected results for human reviewer
recall, precision ∈ {100%, 90%, 80%, 70%}, the trend
across all the results was apparent. Hence, for the sake of
brevity, we just discuss the 100% and 70% results. Full re-
sults are available at https://tiny.cc/error fast2. Note that:
• For precision and recall, better tactics have less deteri-

oration as errors increase; i.e. higher b/a and d/c values
are better.

• For effort (which measures the number of papers re-
viewed/rechecked), better tactics demand fewer papers
are read; i.e. lower f/e values are better.

• The cells in gray show median changes over the four
data sets for all the error correction tactics.
Of the results in Table 5, the None tactic (which does

not feature any error correction) is the worst. While it

paints good precision, as errors are added to the labeling
process, recall decreases to 69% and 53% more efforts
need to be spent on reviewing.

Kuhrmann’17 is the go-to treatment if 100% precision
is required. The downside is that it usually requires most
effort to achieve the 100% precision and its recall is sec-
ond worst among all four treatments. In general, we do
not suggest Kuhrmann’17 since recall is most important.

Cormack’17 is the least stable treatment among the
four. On Wahono, Hall, Radjenović datasets, it uses
the least effort but achieves very poor recall; while on
Kitchenham dataset, it achieves highest recall but also
costs most effort.

Turning now to the Disagree results, we see that this
tactic maintains high recall (92% of their original values
in average) with acceptable precision (91% of their orig-
inal values in average) at the cost of modest increases in
effort (115% of their original values in average). Com-
paring to the optimistic case, Disagree retains high recall
when human error increases with the cost of around 100%
extra effort.

If reviewers frequently pause and recheck old
conclusions whose labels contradict the current
conclusion of the learner, the performance dete-
rioration associated with human error can be alle-
viated without much overhead rechecking effort.

Answer to RQ3 “How to Correct?”

The updated algorithm with Disagree to correct human
misclassifications is shown in Algorithm 4. Rows colored
in yellow are the differences from Algorithm 3. Functions
already described in Algorithm 3 are omitted.

6. Discussion

6.1. FAST2

Combining the results above from Section 3 to Sec-
tion 5, we propose our new reading tool FAST2 which
is built on top of FASTREAD (Yu et al., 2018) and its
framework is shown in Figure 6 with the following fea-
tures:
• Initial Sampling with BM25 ranking keyword search.
• Recall Estimation by SEMI estimator.
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Table 5: Comparison of different error correction methods.

Recall b/a Precision d/c Effort f/e
a=100% b=70% c= 100% d=70% e=100% f=70%

None

Wahono 95(0) 69(8) 73(8) 100(0) 90(4) 90(4) 1,180(67) 1,640(335) 139(34)
Hall 98(0) 70(4) 71(4) 100(0) 95(3) 95(3) 500(30) 1,480(465) 296(100)
Radjenović 94(0) 66(6) 70(7) 100(0) 90(3) 90(3) 760(37) 1,405(467) 185(66)
Kitchenham 91(2) 69(4) 76(7) 100(0) 86(6) 86(6) 510(20) 660(140) 129(31)

73 90 187

Kuhrmann’17

Wahono 95(0) 75(7) 79(7) 100(0) 100(0) 100(0) 2,380(140) 3,193(471) 134(26)
Hall 98(0) 77(5) 79(5) 100(0) 100(0) 100(0) 980(75) 1,603(525) 164(61)
Radjenović 94(0) 76(8) 81(9) 100(0) 100(0) 100(0) 1,520(80) 2,223(788) 146(57)
Kitchenham 91(0) 73(4) 80(5) 100(0) 100(0) 100(0) 1,020(20) 1,208(175) 118(20)

80 100 140

Cormack’17

Wahono 94(7) 65(12) 69(20) 100(0) 99(4) 99(4) 999(238) 712(360) 71(60)
Hall 97(1) 84(4) 87(5) 100(0) 99(2) 99(2) 552(58) 660(137) 120(35)
Radjenović 86(4) 75(10) 87(16) 100(0) 98(3) 98(3) 544(114) 713(275) 131(74)
Kitchenham 96(4) 87(14) 90(19) 100(0) 85(11) 85(11) 1041(168) 1910(1004) 183(113)

83 95 126

Disagree

Wahono 95(0) 88(3) 93(3) 100(0) 90(5) 90(5) 2,051(63) 2,531(406) 123(23)
Hall 98(0) 90(3) 92(3) 100(0) 98(3) 98(3) 755(51) 897(206) 119(34)
Radjenović 94(0) 88(6) 94(6) 100(0) 91(3) 91(3) 1,390(89) 1,577(336) 113(31)
Kitchenham 91(2) 81(7) 89(10) 100(0) 85(7) 85(7) 940(30) 975(144) 104(19)

92 91 115

Columns a, c, e report results from the optimistic case i.e., when relevancy is assessed 100% correctly. Columns b, d, f report
results from the more realistic case where human oracles have 70% recall and 70% precision. Each experiment is repeated
for 30 times. Results are shown in this table as median(IQR) in percentage. Cormack’17 uses knee stopping rule with ρ = 6
while others use SEMI stopping rule with target recall Trec = 0.95. The column recall stands for tp/|R|, precision stands
for tp/|LR|, and effort ct is the number of papers being reviewed (rechecking a paper also increase the effort by 1). Cells
in gray show the average of that treatment across the four datasets, for recall and precision, higher is better, while for effort,
lower is better.

• Error Prediction by Disagree.
When applied to other domains, same framework should
be followed while detailed techniques can be changed
or adapted. The new FAST2 tool is available on Zen-
odo (Yu and Menzies, 2017) and is continuously updated
on Github 5.

6.2. Threats to Validity

There are several validity threats to the design of this
study (Feldt and Magazinius, 2010). Any conclusions

5https://github.com/fastread/src

made from this work must be considered with the follow-
ing issues in mind:

Conclusion validity focuses on the significance of the
treatment. It applies to our analysis of which treatment
works best for “how to start”. Although the suggested
treatment (Rank-BM25, SEMI, Disagree) performs con-
sistently better than FASTREAD, it is not always the best
treatment on every dataset.

Internal validity focuses on how sure we can be that
the treatment caused the outcome. This applies to our
analysis of which treatment works best for “how to start”
since the domain knowledge applied is decided by the au-
thors and different domain knowledge might lead to dif-
ferent outcomes.
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Figure 6: The FAST2 framework.

Construct validity focuses on the relation between the
theory behind the experiment and the observation. In
this work, we evaluate different treatments with a tar-
get of reaching 0.95 recall. Although it is right now the
widely accepted target for active learning based literature
reviews (Cohen, 2011; O’Mara-Eves et al., 2015), either
increasing or decreasing the required final recall may re-
sult in a different ranking of treatments.

External validity concerns how well the conclusion
can be applied outside. All the conclusions in this study
are drawn from the experiments running on four soft-
ware engineering systematic literature review datasets
generated from Hall et al. (2012); Wahono (2015); Rad-
jenović et al. (2013); Kitchenham and Brereton (2013).
Therefore, such conclusions may not be applicable to
datasets of different scenarios, e.g., citation screening
from evidence-based medicine or TAR from e-discovery.
Such bias threatens any classification experiment. The
best any researcher can do is to document that bias then
makes available to the general research community all the
materials used in a study (with the hope that other re-
searchers will explore similar work on different datasets).
To this end, we have published all our code and data on
Zenodo (Yu and Menzies, 2017). Also, there are param-
eters decided as engineering judgment which may not be
the best choice. Tuning/tweaking such parameters might
lead to different conclusions. Finally, this concern also
applies to the results of “when to stop” and “How to cor-

rect” since the task of selecting relevant papers is multi-
objective, and we choose SEMI and Disagree as for the
best methods in favor of their trade-off between recall and
review effort. In other circumstances, a user may prefer
other methods in favor of their own goals.

7. Conclusions

Unless other people can find our research, we will risk
our work being unacknowledged, uncited, and forgotten.
One significant barrier to finding related research is the
effort of selecting papers to read. A systematically sched-
uled review usually requires researchers to review thou-
sands of papers to find the dozens of papers relevant to
their research and this usually costs weeks to months of
work. Previously, we have built a state of the art read-
ing support tools to reduce that effort by applying active
learning methods (Yu et al., 2018).

Although our reading tool FASTREAD achieved a
good reduction on review efforts, it was not ready for
practical use because of its three unrealistic assumptions:
1) no external domain knowledge, 2) reviewer knows
when to stop reviewing, and 3) reviewer never make mis-
takes. Accordingly, in this paper, we extend our previous
work by dropping and addressing the above three assump-
tions with different techniques either found from existing
works or created by ourselves.

Our results suggested that 1) with a little domain
knowledge (two or three keywords or data from previ-
ous reviews), we can further reduce the review effort by
10% to 20% with much better robustness. 2) By training a
logistic regression model with semi-supervised learning,
we can estimate the number of relevant papers accurately
(better than the state of the art estimator Wallace’13 (Wal-
lace et al., 2013a)) in an early stage, thus providing a re-
liable stopping rule (which is better than state of the art
stopping rules in literature). 3) By asking the reviewer
to recheck those papers whose labels the active learner
disagrees most on, human errors can be successfully cor-
rected without much extra review cost (proved to be a bet-
ter error correction method than the state of the art ones
in literature).

Based on these results, we build our new tool FAST2

as represented in Algorithm 4. It uses keywords search
and BM25 ranking for finding the first relevant example,
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trains the SEMI estimator, rechecks labeled papers now
and then, and stops review when |LR| ≥ Trec|RE |.

Considering the problems raised in Section 6.2, our fu-
ture works will focus on the following aspects:
• Our conclusions are drawn from only four SE literature

review datasets, which may incur sampling bias. In fu-
ture work, we will validate the results on more datasets
including those from medical and legal domains.

• Currently the target for active learning based review
is to achieve 95% recall. It is an open and interest-
ing problem whether there exists an efficient way to re-
trieve the rest 5% relevant papers.

• The magic parameters are selected based on expert
suggestions. Tuning is challenging for this active learn-
ing schema since the available labeled data are limited
and can only be obtained at cost. How to design a feasi-
ble tuning schema with the limited resource and how to
avoid overfitting can be difficult problems but solving
such problems provides great value to the domain.
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