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Abstract

Ratings by users on various items such as products and services have become

easily available on the Web. Also available in many cases, in addition to an

overall rating for each item by each user, are multicriteria ratings from different

viewpoints. Our previous study showed that multicriteria rating approaches

performed better than single-criterion ones for both recommendation and rat-

ing aggregation. We have now formulated a Bayesian probabilistic model for

multicriteria evaluation as an alternative to low-rank approximation. We eval-

uated the performance of this model, in which model capacity is controlled by

integrating over all model parameters, and investigated whether it can be made

to work more efficiently by using a Markov chain Monte Carlo method for both

recommendation and rating aggregation. It performed better than low-rank ap-

proximation methods that obtain a maximum a posteriori estimate by fitting

to the data.

Keywords: Recommendation, multi-criteria rating, collaborative filtering,

rating aggregation, Bayesian probabilistic models

Email addresses: morise.hiroki@complex.ist.hokudai.ac.jp (Hiroki Morise),
oyama@ist.hokudai.ac.jp (Satoshi Oyama), kurihara@ist.hokudai.ac.jp (Masahito
Kurihara)

Preprint submitted to Journal of LATEX Templates December 6, 2018



1. Introduction

Ratings by users on various items such as products and services are now eas-

ily available on the Web. However, it is difficult to acquire reliable information

because of information overload—there are usually many ratings for each item

on the Web. Recommendation techniques in particular help consumers avoid5

information overload and find interesting items. One of the most promising

types of recommendation methods is collaborative filtering (CF). Matrix fac-

torization, which uses a matrix of users and items, is used in one of the most

commonly used approaches to CF and has been shown to be better than conven-

tional collaborative filtering for product recommendation (Koren et al. 2009).10

It has thus been attracting much attention.

In many cases, in addition to an overall rating for each item by each user,

multicriteria ratings from different viewpoints are also available. We previously

investigated the effectiveness of existing CF methods for large-scale sparse mul-

ticriteria rating data (Morise et al. 2017). We formulated rating aggregation as15

a CF problem and applied several methods to it. The multicriteria rating ap-

proaches performed better than the single-criterion ones, and the CF methods

using a multicriteria rating predicted aggregated ratings more accurately than

ones using a single-criterion rating. Specifically, among low-rank approximation

methods, the tensor factorization method consistently performed better than20

the matrix factorization methods.

However, low-rank approximation methods tend to overfit the data unless the

regularization parameters are carefully adjusted. We have developed a Bayesian

probabilistic model for multicriteria evaluation that uses a low-rank tensor fac-

torization recommendation model. We evaluated this model, in which model25

capacity is controlled by integrating over all parameters, as an alternative to

low-rank approximation methods and investigated whether it can be made to

work more efficiently by using a Markov chain Monte Carlo method for both

recommendation and rating aggregation.

This paper is organized as follow. Section 2 describes matrix factorization30
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and tensor factorization recommendation methods. In Section 3, we introduce

existing Bayesian probabilistic models for recommendation. In Section 4, we

present our Bayesian probabilistic model that uses multicriteria evaluation data.

In Section 5, we describe our experiment of its accuracy for both recommen-

dation and rating aggregation. In Section 6, we summarize the key points and35

mention future work.

The main contributions of this work are summarized below:

• To the best of our knowledge, our work is the first attempt to apply

Bayesian probabilistic tensor factorization to multicriteria recommenda-

tion. Our model, which we call ”Bayesian probabilistic tensor factorization40

for multicriteria (BPTF-MC),” predicts the overall rating and the rating

from each viewpoint simultaneously. It does this by using multicriteria

latent features as additional factors.

• The BPTF-MC model enables the prediction of ratings for items by each

user and of aggregated ratings from the evaluations of a small number of45

users.

• Experimental results for the Rakuten public datasets show that the BPTF-

MC model achieves better performance than single-criterion models and

low-rank tensor factorization models for both recommendation and rating

aggregation.50

2. Collaborative Filtering by Low-Rank Approximation Methods

In this section, we describe matrix factorization and tensor factorization

recommendation methods that predict an unknown evaluation rating for each

item for each user from the ratings.

2.1. Matrix Factorization55

One of the most commonly used approaches to CF is based on the matrix

factorization model (Koren et al. 2009). This approach characterizes both users
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and items by using latent factors from ratings. The matrix contains the evalu-

ation rating for each item by each user. For example, for I users and J items,

given I×J user-item rating matrix R = [Rij ]I×J , the matrix factorization model60

represents rating matrix R as the product of K-rank factors R ≈ UTV , where

U ∈ RK×I and V ∈ RK×J . K are the number of latent factors for users and

items. In general, K is smaller than I and J .

The latent representations of the users and items are computed by minimiz-

ing the following regularized squared error from observed ratings:65

minU,V
∑

(i,j)∈d

(Rij − UTi Vj)2 + λ(||Ui||2 + ||Vj ||2), (1)

where d is the set of observed user and item pairs of R, and constant λ works

to avoid overfitting the observed evaluation ratings.

The problem of some users giving prejudiced ratings and the problem of

some items being evaluated on the basis of those ratings are avoided by adding

biases.70

The latent representations of the users and items are computed by minimiz-

ing the following regularized squared error from the observed ratings:

minU,V
∑

(i,j)∈d

(Rij − UTi Vj − µ− bi − bj)2 + λ(||Ui||2 + ||Vj ||2 + b2i + b2j ). (2)

The overall average rating is defined by µ; parameters bi and bj represent

the observed variations from the averages for users and items.

2.2. Tensor Factorization75

In matrix factorization, the relationship between two objects is modeled us-

ing a low- rank matrix. However, sometimes there are established relationships

among more than two objects. These relationships can be represented as a

multidimensional array, which is a generalization of matrix factorization (Xiong

et al. 2010). In our experiment, we used the relationships among I users U ,80

J items V , and L criteria M . We used conditional probability (CP) factor-

ization (CP:CANDECOMP/PARAFAC), a tensor factorization method that
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decomposes the tensor into the sum of rank-one tensors:

Rlij =< Ui, Vj ,Ml >=

K∑
k=1

uki ◦ vkj ◦mkl. (3)

χ '
K∑
k=1

uk ◦ vk ◦mk. (4)

Each element xijl of χ can be calculated using85

xijl '
∑K
k=1 uikvjkwlk, where U = (uik) = (uk)Kk=1 ∈ RI×K , V = (vjk) =

(vk)Kk=1 ∈ RJ×K , and M = (Mlk) = (mk)Kk=1 ∈ RL×K .

The latent representations of the users, items, and criteria are computed by

minimizing the following regularized squared error from the observed ratings:

minU,V,M
∑

(i,j,l)∈d

(Rlij− < Ui, Vj ,Ml >)2 + λ(||Ui||2 + ||Vj ||2 + ||Ml||2), (5)

where d is the set of observed user and item pairs of R, and constant λ works90

to avoid overfitting the observed evaluation ratings.

3. Bayesian Probabilistic Models

3.1. Bayesian probabilistic matrix factorization for collaborative filtering

Low-rank approximation methods are effective for CF and can generally per-

form efficiently on large datasets. However, a maximum a posteriori estimate95

(MAP) estimate of the model parameters needs to be found that conforms to the

dataset because, if the regularization parameters are not tuned carefully, these

models tend to overfit the data. Low-rank approximation methods can be gen-

eralized as a probabilistic model. The probabilistic matrix factorization (PMF)

model introduces probabilistic distributions for matrix factorization (Mnih and100

Salakhutdinov 2008).

A Bayesian PMF (BPMF) model (Salakhutdinov and Mnih 2008) was pro-

posed to provide probabilistic modeling in which model capacity is controlled by

integrating over all parameters. Fig. 1 shows a schematic of the BPMF model.
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Figure 1: Schematic of Bayesian probabilistic matrix factorization model

The conditional distribution R = [Rij ]I×J for I users and J items and the latent105

features over U ∈ RK×I and V ∈ RK×J are given by

p(R|U, V, α) =

I∏
i=1

J∏
j=1

[N (Rij |UTi Vj , α−1)]Nij . (6)

p(U |µU ,ΛU ) =

I∏
i=1

N (Ui|µU ,Λ−1U ), (7)

p(V |µV ,ΛV ) =

J∏
j=1

N (Vj |µV ,Λ−1V ), (8)

where N (x|µ, α−1) denotes a Gaussian distribution with mean µ and precision

α, and Nij is a variable that is 1 if user i rated item j and 0 otherwise.110

The prior distributions from which the hyperparameters are obtained must

be selected. For the Gaussian parameters, the conjugate distributions as priors

are placed on the user and item hyperparameters:, ΘU = {µU ,ΛU} and ΘV =

{µV ,ΛV },
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p(ΘU |Θ0) = p(µU |ΛU )p(ΛU )

= N (µU |µ0, (β0ΛU )−1)W(ΛU |W0, ν0), (9)

p(ΘV |Θ0) = p(µV |ΛV )p(ΛV )

= N (µV |µ0, (β0ΛV )−1)W(ΛV |W0, ν0). (10)

Here, W is a Wishart distribution with ν0 and a K ×K scale matrix W0,115

W(Λ|W0, ν0) =
1

G
|Λ|(ν0−K−1)/2exp(−1

2
Tr(W−10 Λ)), (11)

where G is a constant. Hyperpriors are defined by Θ0 =(µ0, ν0,W0).

The distribution of predicted ratings R̂ij for user i and item j is computed

by integrating over the model parameters:

p(R̂ij |R,Θ0) =

∫∫
p(R̂ij |Ui, Vj)p(U, V |R,ΘU ,ΘV )

p(ΘU ,ΘV |Θ0)d{U, V }d{ΘU ,ΘV }. (12)

Accurate estimation of this predictive distribution is difficult because it in-

volves a multidimensional integral. We must thus rely on approximate inference.120

We use a Markov chain Monte Carlo (MCMC) method that is widely used for

sampling. This method draws samples from a given distribution represented as

a Markov chain. Then we approximate the integral with some samples in (12)

using

p(R̂ij |R,Θ0) ≈ 1

C

C∑
c=1

p(R̂ij |U (c)
i , V

(c)
j ), (13)

where C represents the number of samples acquired, and
{
U

(c)
i , V

(c)
j

}
comes125

from the cth sample.
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3.2. Bayesian probabilistic tensor factorization for temporal collaborative filter-

ing

In the same way as described above for the BPMF model, a tensor factoriza-

tion recommendation model can be generalized as a probabilistic model (Xiong130

et al. 2010). It was introduced the time latent features as a additional factors,

and formulated as a tensor factorization based on the time dimension. This

”Bayesian probabilistic tensor factorization (BPTF)” model works effectively

for recommendation with several real-world datasets.

A rating can be denoted as Rtij , where index i, j denotes a user and item135

pair as above, and index t denotes the time slice in which the rating was given.

With the BPMF model, the prior distributions of user latent features, item

latent features, and time latent features are estimated to be Gaussian:

p(R|U, V, T, α) =

I∏
i=1

J∏
j=1

D∏
t=1

[N (Rtij | < Ui, Vj , Tt >,α
−1)]Nijt (14)

T1 = N (µT ,Λ
−1
T ). (15)

Tl =

D∏
t=2

N (Tt−1,Λ
−1
T ). (16)

The prior distributions of the user latent features and item latent features140

are the same as those given by (7) and (8). For the Gaussian parameters,

the conjugate distributions as priors are placed on the user, item and time

hyperparameters ΘU = {µU ,ΛU}, ΘV = {µV ,ΛV }, and ΘT = {µT ,ΛT } , α,

p(α) =W(α|Ŵ0, ν̂0), (17)

p(ΘT |Θ0) = p(µT |ΛT )p(ΛT )

= N (µT |ρ0, (β0ΛT )−1)W(ΛT |W0, ν0). (18)
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The conjugate distributions of the users and items are the same as those

given by (9) and (10). Here, precision α is defined as a tuning parameter. The145

distribution of predicted ratings R̂tij for user i, item j, and time t is given by

p(R̂tij |R,Θ0) =

∫∫
p(R̂tij |Ui, Vj , Tt, α)p(U, V, T, α|R,ΘU ,ΘV ,ΘT )

p(ΘU ,ΘV ,ΘT |Θ0)d{U, V, T, α}d{ΘU ,ΘV ,ΘT }. (19)

The predictive distribution (19) cannot be computed analytically because

it involves a multidimensional integral. Again, using an MCMC method to

estimate the predictive distribution of (19):

p(R̂tij |R,Θ0) ≈ 1

C

C∑
c=1

p(R̂tij |U
(c)
i , V

(c)
j , T

(c)
t , α(c)), (20)

where C denotes the number of samples collected, and
{
U

(c)
i , V

(c)
j , T

(c)
t , α(c)

}
150

comes from the cth sample.

4. Bayesian Probabilistic Tensor Factorization for Multicriteria Eval-

uation Data

As indicated above, BPTF (Xiong et al. 2010) uses a special constraint on

the time dimension. We have now introduced multicriteria latent features as155

additional factors and have formulated a tensor factorization model based on

user, item, and multicriteria dimensions. A schematic of our Bayesian prob-

abilistic tensor factorization for multicriteria (BPTF-MC) model is shown in

Fig. 2. In this model, ratings are calculated using user latent features and item

latent features. The multicriteria rating are modeled by calculating the ratings160

from the user latent features, item latent features, and multicriteria latent fea-

tures. We denote a rating as Rlij , where i and j denote a user and an item as

above, and l denotes the corresponding rating. The ratings are combined into

a three-dimensional tensor, with the three dimensions corresponding to user,

9



item, and criteria slices with sizes I, J , and L, respectively. This extension of165

the BPMF model leads to the assumption that the conditional distribution over

the observed ratings R = [Rlij ]I×J×L and the latent features over U ∈ RK×I ,

V ∈ RK×J , and M ∈ RK×L are Gaussian:

p(R|U, V,M,α) =

I∏
i=1

J∏
j=1

L∏
l=1

[N (Rlij | < Ui, Vj ,Ml >,α
−1)]Nijl (21)

p(M |µM ,ΛM ) =
L∏
l=1

N (Ml|µM ,Λ−1M ). (22)

We use the Gaussian distribution and the Wishart distribution as prior dis-170

tributions with references (Mnih and Salakhutdinov 2008)(Salakhutdinov and

Mnih 2008)(Xiong et al. 2010). These distributions have been used in research

on rating regression and have demonstrated good performance for rating pre-

diction, making them well suited for our purposes. The prior distributions of

user latent features and item latent features are the same as those given by (7)175

and (8). Again, the prior distributions from which the hyperparameters are

obtained must be selected. For the Gaussian parameters, the conjugate dis-

tributions as priors are placed on the user, item, and criteria hyperparameters

ΘU = {µU ,ΛU}, ΘV = {µV ,ΛV }, and ΘM = {µM ,ΛM}:,

p(ΘM |Θ0) = p(µM |ΛM )p(ΛM )

= N (µM |µ0, (β0ΛM )−1)W(ΛM |W0, ν0). (23)

The conjugate distributions of users and items are the same as those given180

by (9) and (10), and the Wishart distribution is the same as that given by (11).

As for the BPMF model, the distribution of predicted rating R̂lij for user i, item

j, and criteria l is computed by integrating over the model parameters:
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Figure 2: Schematic of Bayesian probabilistic tensor factorization for multicriteria model

p(R̂lij |R,Θ0) =

∫∫
p(R̂lij |Ui, Vj ,Ml)p(U, V,M |R,ΘU ,ΘV ,ΘM )

p(ΘU ,ΘV ,ΘM |Θ0)d{U, V,M}d{ΘU ,ΘV ,ΘM}. (24)

This predictive distribution cannot be computed analytically because it in-

volves a multidimensional integral. We therefore again use an MCMC method.185

The predictive distribution of (24) is given by

p(R̂lij |R,Θ0) ≈ 1

C

C∑
c=1

p(R̂lij |U
(c)
i , V

(c)
j ,M

(c)
l ), (25)

where C denotes the number of samples collected, and
{
U

(c)
i , V

(c)
j ,M

(c)
l

}
comes

from the cth sample.

There are quite a few MCMC methods. We used the Gibbs sampling al-

gorithm, which cycles through the latent variables, sampling each one from its190

distribution conditional on the current values of all other variables. Gibbs sam-

pling is suitable for such conditional distributions. We first consider the user
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features. The conditional distribution over the user feature vectors and the user

hyperparameters is Gaussian:

p(U | V,M,R,ΘU ) =

I∏
i=1

p(Ui | V,M,R,ΘU ), (26)

p(Ui | V,M,R,ΘU ) = N (Ui | µ∗i , (Λ∗i )−1), (27)

µ∗i ≡ (Λ∗i )
−1(ΛUµU + α

J∑
j=1

L∑
l=1

I lijR
l
ijQjl), (28)

Λ∗i ≡ ΛU + α

J∑
j=1

L∑
l=1

I lijQjlQ
′

jl, (29)

p(µU ,ΛU | U) = N (µU | µ∗, (β∗0ΛU )−1)W(ΛU |W ∗0 , ν∗0 ), (30)

where195

µ∗0 =
β0µ0 + IÛ

β0 + I
, β∗0 = β0 + I, ν∗0 = ν0 + I,

(W ∗0 )−1 = W−10 + IŜ +
β0I

β0 + I
(µ0 − Û)(µ0 − Û)T ,

Û =
1

I

I∑
i=1

Ui, Ŝ =
1

I

I∑
i=1

UiU
T
i .

Qjl ≡ Vj ·Ml is the element-wise product of Vj and Ml. The conditional

distributions over the item (criteria) feature vectors and the item (criteria) hy-

perparameters have exactly the same form.

p(Vj | U,M,R,ΘV ) = N (Vj | µ∗j , (Λ∗j )−1), (31)

µ∗j ≡ (Λ∗j )
−1(ΛV µV + α

I∑
i=1

L∑
l=1

I lijR
l
ilPil), (32)

Λ∗j ≡ ΛV + α

I∑
i=1

L∑
l=1

I lijPilP
′

il, (33)

p(Ml | U, V,R,ΘM ) = N (Ml | µ∗l , (Λ∗l )−1), (34)

µ∗l ≡ (Λ∗l )
−1(ΛMµM + α

I∑
i=1

J∑
j=1

I lijR
l
ijHij), (35)

Λ∗t ≡ ΛM + α

I∑
i=1

J∑
j=1

I lijHijH
′

ij , (36)
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where Pil ≡ Ui·Ml is the element-wise product of Ui andMl, andHij ≡ Ui·Vj
is the element-wise product of Ui and Vj .200

The Gibbs sampling algorithm is presented in Algorithm 1.

Algorithm 1 Gibbs sampling for BPTF-MC

1: Initialize model parameters
{
U (1), V (1),M (1)

}
.

2: for c = 1 to C do

3: • Sample the hyperparameters (9),(10),(23):

4: Θ
(c)
U ∼ p(Θ

(c)
U | U (c)),

5: Θ
(c)
V ∼ p(Θ

(c)
V | V (c)),

6: Θ
(c)
M ∼ p(Θ

(c)
M |M (c)).

7: for i = 1 to I do

8: • Sample user features in parallel (27):

9: U
(c+1)
i ∼ p(Ui | V (c),M (c),Θ

(c)
U , R).

10: end for

11: for j = 1 to J do

12: • Sample item features in parallel (31):

13: V
(c+1)
j ∼ p(Vj | U (c+1),M (c),Θ

(c)
V , R).

14: end for

15: for l = 1 to L do

16: • Sample criteria features in parallel (34):

17: M
(c+1)
l ∼ p(Ml | U (c+1), V (c+1),Θ

(c)
M , R).

18: end for

19: end for

5. Experiment

5.1. Recommendation

5.1.1. Experimental Settings

We investigated the performance of five collaborative filtering models (three205

single-criterion models and two multicriteria models), including our extended

13



Table 1: Datasets Used for Recommendation Experiment

Dataset No. of Users No. of Items No. of Ratings

Rakuten Travel (Hotels) 881 5,098 16,993

Rakuten GORA (Golf courses) 8,366 1,220 62,115

Bayesian probabilistic tensor factorization for multicriteria model. We used the

Rakuten Travel dataset and the Rakuten GORA dataset for large and sparse

multicriteria evaluation data, which are available online1. The Rakuten Travel

dataset includes hotel data and review comments. Each reviewer provided an210

overall rating for the hotel along with ratings for six criteria (location, room,

meals, bath, service, and equipment). The Rakuten GORA dataset includes golf

course data and review comments. Each reviewer provided an overall rating for

the golf course along with ratings for seven criteria (customer relations, course,

meals, distance, cost-performance, fairways, and equipment). The details of for215

the each datasets are shown in Table 1. The total number of ratings is the

number of ratings times the number of ratings from different viewpoints. The

ratings are on a scale of 1 to 5, with 5 being the best. We randomly extracted

10% of the items in each dataset and assumed that they had not been evaluated.

These ”unevaluated” items were used as test data, and the overall ratings were220

predicted. The inputs for the ratings were the integers 1 to 5, with 5 being

the best, and the output predicted ratings were real numbers from 0 to 5. The

evaluation metric was the root mean square error (RMSE), which is widely used

for rating prediction.

RMSE =

√√√√ 1

N

∑
(i,j)

(Rij − R̂ij)2, (37)

where N is the number of ratings in the test data, Rij is an observed rating,225

and R̂ij is a predicted rating. The five methods evaluated were as follows.

1https://rit.rakuten.co.jp/data release/
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Matrix Factorization

This method characterizes both users and items by using latent factors

from ratings. Ratings are computed from the inner product of user latent

factors and item latent factors.230

Matrix Factorization (Biased)

This method adds biases to matrix factorization.

Bayesian Probabilistic Matrix Factorization (BPMF)

This method provides probabilistic modeling in which model capacity is

controlled by integrating over all parameters.235

Tensor Factorization

This method is similar to matrix factorization except that it characterizes

items, users, and multicriteria by using latent factors from ratings, which

are computed from user latent factors, item latent factors, and multicri-

teria latent factors.240

Bayesian Probabilistic Tensor Factorization for Multicriteria (BPTF-MC)

The proposed method, which uses probabilistic modeling in which model

capacity is controlled by integrating over all parameters.

For Matrix Factorization, Matrix Factorization (Biased), and BPMF, only245

the overall user ratings for items were input, and only the overall user ratings

were predicted as output. The matrix formed by the overall ratings was decom-

posed into latent representations of users and items. The overall user rating for

an item was computed as the product of the latent vectors of the user and item.

For Tensor Factorization and BPTF-MC, the overall ratings and ratings from250

different user viewpoints for items were input, and these ratings were predicted

simultaneously as output. These ratings were combined into a three-dimensional

tensor with the three dimensions corresponding to user, item, and multicriteria.

The user rating for an item by criteria was computed as the product of the user,

item, and criteria latent vectors. To enable comparison of the single-criterion255
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Figure 3: RMSE for hotel recommendation

and multicriteria methods, only the overall user ratings were used as test data.

We compared the accuracy of the ratings predicted by the methods that con-

sider only the overall ratings with that of the ratings predicted by the methods

that consider all the ratings.

5.1.2. Results and Discussion260

Rakuten Travel dataset. We compared the performance of the probabilistic

methods with those of the low-rank approximation methods, focusing on Ma-

trix Factorization, BPMF, Tensor Factorization, and BPTF-MC. The parame-

ters used for the priors were fixed at α = 2, µ0 = 0, ν0 = K, and W0 as the

identity matrix for both user and item and for multicriteria hyperpriors. As265

shown in Fig. 3, for Matrix Factorization and BPMF and for Tensor Factoriza-

tion and BPTF-MC, the probabilistic methods performed much better than the

low-rank approximation methods, which obtain a MAP estimate by fitting to

the data. The proposed method, which uses multicriteria evaluation data, per-

formed better than the matrix factorization methods, which use single-criterion270

evaluation.
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Figure 4: RMSE for golf course recommendation

Rakuten GORA dataset. We compared the performance of the probabilistic

methods with that of the low-rank approximation methods, focusing on Ma-

trix Factorization, BPMF, Tensor Factorization, and BPTF-MC. We used the

same parameters as for the Travel dataset experiment. As shown in Fig. 4, for275

Matrix Factorization and BPMF and for Tensor Factorization and BPTF-MC,

the probabilistic methods performed much better than the low-rank approxima-

tion methods, which, as mentioned above, obtain a MAP estimate by fitting to

the data. Again, we observed that the proposed method, which, as mentioned

above, uses multicriteria evaluation data, performed better than the matrix280

factorization methods, which use single-criterion evaluation.

5.2. Rating Aggregation

The simplest method for aggregating the user ratings of an item is to average

the ratings. However, if the number of users is very small, the aggregated rating

is affected by the ratings of specific users. Moreover, if the reliabilities of the285

ratings are low, the reliability of the aggregated rating is also low. For this

17



reason, many Web sites do not display an aggregated rating if the number of

evaluators is small.

Several studies on reliably aggregating ratings from people in general (”worker”

in the parlance of crowdsourcing) have focused on binary or multi-class label-290

ing. They include ones that considered worker ability (Dawid and Skene 1979),

problem difficulty (Whitehill et al. 2009), and worker confidence (Oyama et al.

2013). Other studies have focused on multilabeling of data wherein a data item

can have multiple labels at the same time (Duan et al. 2014). Several studies

have focused on the results of aggregating rating data (Uebersax and Grove295

1993). The conventional approaches to rating aggregation are based on the

premise that a single rating is acceptable and use a probabilistic model. In

our experiment of the efficiency of CF of multicriteria data, we regarded rat-

ing aggregation as an information recommendation problem and considered the

”average user.”300

5.2.1. Experimental Setup

To evaluate the performance of rating aggregation, we used various CF meth-

ods for rating aggregation. Since the Rakuten datasets do not contain aggre-

gated ratings, we extracted the data for users who had evaluated many items

and the data for items that had been evaluated by many users. The aggregated305

rating for each extracted item was taken as the average of the ratings by the

users who had evaluated the item. Because these items had been evaluated by

many users, we assumed that the aggregated ratings were trustworthy and thus

could be used as a gold standard. Then we added to the dataset an average user

whose ratings were the aggregated ratings. We regarded rating aggregation as310

an item recommendation problem for the average user and evaluated prediction

accuracy by using CF between randomly selected known users and the aver-

age user. We calculated the aggregated ratings from the evaluation of a small

number of users. To measure prediction accuracy, we again used the RMSE.

As we did in the CF experiment, for Matrix Factorization, Matrix Factoriza-315

tion (Biased), and BPMF, only the overall user ratings for items were input,
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and only the overall ratings of the average user were predicted as output. For

Tensor Factorization and BPTF-MC, the overall ratings and ratings from differ-

ent viewpoints were input, and these ratings of the average user were predicted

simultaneously as output. Again, to compare the methods that consider only320

the overall ratings with the ones that consider multicriteria ratings, only the

overall ratings of the average user were used as test data. We compared the

accuracy of the aggregated ratings predicted by the methods that consider only

the overall ratings with that of the aggregated ratings predicted by the methods

that consider multicriteria ratings.325

5.2.2. Results and Discussion

Figures 5 and 6 show the results for two, three, four, and five known users,

i.e., the users who evaluated the items for which the aggregated rating is to

be predicted. The smaller the number of known users, the smaller the amount

of information about the item, which makes it more difficult to predict the330

aggregated rating.

Rakuten Travel dataset. To create aggregated ratings from the Rakuten Travel

dataset, we extracted the data for users who had evaluated 15 or more hotels and

for hotels that had been evaluated by 15 or more users. We thereby obtained

76 aggregated hotel ratings; 80% were used for training data and the remaining335

20% were used for test data.

Then, as we did in the CF experiment, we compared the probabilistic meth-

ods to the low-rank approximation methods using the same parameters. As

shown in Fig. 5, BPMF had better performance than Matrix Factorization.

Moreover, BPTF-MC had better performance than Tensor Factorization, as in340

the CF experiment. Furthermore, BPTF-MC had better (or similar) perfor-

mance than BPMF. It is thus also effective to consider multicriteria evaluation

rather than single-criterion evaluation for probabilistic methods.

Rakuten GORA dataset. To create aggregated ratings from the Rakuten GORA

dataset, we extracted the data for users who had evaluated 30 or more golf345
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Figure 5: RMSE for hotel rating aggregation

courses and for golf courses that had been evaluated by 30 or more users. We

thereby obtained 519 aggregated golf course ratings; 80% were used for training

data and the remaining 20% were used for test data.

Then, as in the Travel dataset experiment, we compared the probabilistic

methods to the low-rank approximation methods using the same parameters.350

As shown in Fig. 6, BPMF had better performance than Matrix Factorization.

Moreover, BPTF-MC had better performance than Tensor Factorization, as

in the CF experiment. Furthermore, BPTF-MC had better (or similar) perfor-

mance than BPMF. So again, it is more effective to consider multicriteria rating

than single-criterion rating for probabilistic methods.355

6. Conclusion

We formulated a Bayesian probabilistic tensor factorization for multicrite-

ria (BPTF-MC) model that uses multicriteria evaluation by placing hyperpriors

over the hyperparameters and using a Markov chain Monte Carlo method to per-

form approximate inference. BPTF-MC can process more detailed information360
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Figure 6: RMSE for golf course rating aggregation

than matrix factorization due to the addition of a set of multicriteria evaluations

and the use of Bayesian inference rather than parameter tuning. BPTF-MC

performed better than low-rank approximation methods, which obtain a MAP

estimate by fitting to the data, for recommendation for rating aggregation using

large and sparse multicriteria evaluation data. Our evaluation showed that con-365

sidering multicriteria rating is more effective than considering single-criterion

rating for probabilistic methods because BPTF-MC can predict ratings more

accurately than BPMF both for recommendation and rating aggregation.

Future work includes using latent Dirichlet allocation (Blei et al. 2003) to

analyze review comments. It also includes investigating the use of other ap-370

proaches such as collaborative topic modeling (Wang and Blei 2011) and neural

collaborative filtering (He et al. 2017), which apply recommendation techniques

to deep neural networks.
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