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Abstract 

Increased life expectancy coupled with declining birth rates leads to an aging population structure. Aging-

caused changes, such as physical or cognitive decline, could affect people’s quality of life, resulting in 

injuries, mental health or the lack of physical activity. Sensor-based human activity recognition (HAR) is one 

of the most promising assistive technologies to support older people’s daily life, which has enabled enormous 

potential in human-centred applications. Recent surveys either focus on the deep learning approaches or one 

specific sensor modality in HAR. This survey aims to provide a comprehensive introduction for newcomers to 

HAR, including the conventional approaches and the deep learning methods. It specifically puts more 

emphasis on wearable sensor-based HAR systems. We first describe the state-of-art sensor modalities. We 

then detail each step of the wearable sensor-based HAR. In the feature learning section, we concentrate both 

hand-crafted features and deep learned features in HAR. We also present the ambient-sensor-based HAR, 

including camera-based systems, and the systems which combine the wearable and ambient sensors. Finally, 

we identify certain challenges in HAR to pose research problems for further improvement in HAR.  

Keywords: Human activity recognition, wearable sensors, ambient sensors, features, classification, healthcare 

 1. Introduction   

Globally, population aged 60 or over is growing faster. The world population report predicts that the life 

expectancy at birth will rise from 71 years in 2010-2015 to 77 years in 2045-2050 (United Nations, 2017). 

Most societies face the problems to ensure that their health systems are ready to adapt to the demographic 

shift. Some measures, such as developing new systems with medical and assistive technologies for providing 

long-term care or creating age-friendly environments, have been exploring to maintain or improve older 

people’s quality of life. These years have been witnessing the development of assistive technologies in 
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promoting independent, active and healthy aging due to the advancement of sensors, wireless communication 

and machine learning techniques (Carmeli, et al., 2016, Kon, et al., 2017, Kuerbis, et al., 2017). Among these 

technologies, sensor-based human activity recognition (HAR) becomes one of the most promising solutions to 

assist older people’s daily life (Wang, et al., 2018, Chernbumroong, et al., 2013, Janidarmian, et al., 2017, 

Lee, et al., 2017, Tunca, et al., 2014). HAR learns activities from a series of observations on the actions of 

subjects and the environmental conditions in real life settings, which has been explored  in human-centred 

applications, such as assisted living (De, et al., 2017), interactive games (Terada & Tanaka, 2010), sport 

activity monitoring (Zhou, et al., 2016), social physical interaction (Augimeri, et al., 2010), factory workers 

monitoring (Huang & Tsai, 2007), etc.  

The early study on HAR can be traced back to the work by Abowd, et al., 1998. Researchers initially focus 

on activity recognition from videos and images, but later when everyday life is considered, they start to 

explore tracking human behaviour by using wearable and ambient sensors (Bulling, et al., 2014, Ke, et al., 

2013, Zolfaghari & Keyvanpour, 2016) as well. The progress made in HAR during the past few decades 

motivates researchers to improve the recognition performance and practicality of HAR under more realistic 

settings in different ways.  HAR process is complex, roughly follows the five steps: 1), selecting and 

deploying appropriate sensors to a human body or the environment to capture the user’s behaviour or the 

change of the environment where the user is performing activities; 2), collecting and pre-processing the data 

from the deployed sensors based on a specific task; 3), extracting useful features from the sensor data for later 

classification; 4), training the classification models with appropriate machine learning algorithms to infer 

activities; 5), testing the learning models to give decisions and performance reports. Each individual step 

above involves plenty of technologies and methods available to use and also has the corresponding research 

questions to tackle (Lara & Labrador, 2013, Cornacchia, et al., 2017, Nweke, et al., 2018). The technologies 

involved in HAR can cover sensing technologies, wireless networks communicating, data pre-processing, 

feature learning, feature dimensionality reduction, classification or regression techniques, etc.    

In terms of the sensors deployed in HAR, the existing HAR systems can be broadly categorized into three 

modalities: the ambient sensor-based HAR (ASHAR), the wearable sensor-based HAR (WSHAR), and the 

hybrid sensory-based HAR (HSHAR). ASHAR systems infer human activities from the sensors that are fixed 

in the environment or attached to some specific objects, such as wall, door, kettle, floor, etc., and the ambient 

sensors can include light sensor, reed switch sensor, Radio Frequency Identification (RFID), passive infrared 
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(PIR), temperature, flow sensor, pressure sensor, etc. (Zhang, et al., 2017, Debes, et al., 2016, Mehr, et al., 

2016, Tunca, et al., 2014). ASHAR sensor modality is less obtrusive because of no on-body sensors deployed, 

whilst usually at the price of poor flexibility and complex sensor deployment in homes. ASHAR works in a 

limited area where the sensors are deployed. Besides, systems using pure normal ambient sensors may fail to 

function in some situations when the user does not contact the objects attached with ambient sensors or does 

not enter the functioning area of a sensor installed in the environment.   

The alternative to ASHAR with fixed sensor deployment is WSHAR, which identifies human activities by 

mining the informative data from wearable sensors using machine learning algorithms. WSHAR can function 

in a relatively large space while the wearer is moving. Currently, smartphone, smartwatch, smart clothes, and 

other specifically-designed devices are the mainstream products embedded wearable technologies in HAR 

(Hassan et al., 2018, Filippoupolitis et al., 2017, Adaskevicius, 2014). Generally, placing more sensors on 

multiple body parts (e.g., head, wrists, waist, legs, feet) can benefit improving the performance and robustness 

of WSHAR (Laudanski, et al., 2015, Gao, et al., 2014, Chernbumroong, et al., 2014). However, multiple 

sensors with complex sensor deployment on body could cause higher costs, practical deployment difficulties, 

and obtrusions for older users especially those who can live independently. Meanwhile, pure WSHAR systems 

also have some limitations that may enable less accurate recognition for certain activities that contain similar 

sensor-derived attributes, such as brushing and eating (Chernbumroong, et al., 2013).  

ASHAR and WSHAR have their own strengths and weaknesses. It has shown that combining different 

sensor modalities can improve the recognition accuracy (Cornacchia, et al., 2017). For example, Logan, et al., 

2007, Stikic, Van Laerhoven, et al., 2008 present the improved activity recognition performance by 

combining the wearable sensors with the infrared sensors. Roy, et al., 2016 use ambient and mobile data in a 

multi-inhabitant environment for daily activities detecting. Their initial results can reach around 70%, which is 

much higher than the results by using the smartphone-based accelerometers alone. It is obvious that the 

combination of sensor modalities can capture rich information of human activities, thereby improving the 

performance of HAR. Nevertheless, HSHAR could increase the cost and complexity of a HAR system 

compared with a single sensor modality. Also, the data fusion and sensing synchronization from different 

sensor modalities are needed in HSHAR. During the three sensor modalities, WSHAR is attracting more 

attention due to its low cost, flexibility in daily use and satisfied performance (Roy, et al., 2016, Diethe, et al., 

2017), and has enabled enormous applications in assisted living, such as gait analysis (Anwary, et al., 2018), 
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rehabilitation (Hermanis, et al., 2016), fall detection (Jung, et al., 2015), sports assessment (Um et al., 2016), 

daily activity analysis (Wang, et al., 2018), etc. This survey then focuses on WSHAR and also looks at 

ASHAR and HSHAR. 

 The state-of-art surveys in HAR are either focusing on the deep learning approaches (Wang, et al., 2017, 

Nweke, et al., 2018 ) or only each single sensor modality (Cornacchia, et al., 2017, Morales & Akopian, 

2017). This survey focuses on the wearable sensor-based HAR and keeps an eye on other sensor modalities. 

Specifically, we detail the techniques involved in each step of wearable sensor-based HAR in terms of sensors, 

activities, data preprocessing, feature learning and classification. Both the hand-crafted features and deep 

learned methods are investigated in feature learning section. The survey can provide strong clues for new 

researchers who might be in a dilemma about system designing or methods choosing in HAR and fills the 

gaps of no comprehensive surveys which include both conventional and deep learning methods in HAR. The 

survey pipeline is shown in Fig.1. 

The remainder of the paper is organised as: Section 2 focuses on the wearable sensor-based HAR. Section 

2 is divided into the subsections, such as sensors, feature learning, classification and so on; in each subsection, 

the descriptions, strengths and limitations of the reviewed approaches are discussed. Section 3 surveys the 

ambient sensor-based HAR including camera-based HAR and the hybrid sensory HAR which combine two or 

three sensor modalities. Section 4 discusses the performance evaluation and applications of HAR in health 

care. Section 5 concludes the survey and poses some research challenges in HAR for the further research.    

 2 Wearable sensor-based HAR (WSHAR) 

2.1 Overview of WSHAR 

The development of wearable devices, such as smart watches, smartphones, wristbands, smart clothes, 

makes it feasible to acquire data from the ubiquitous equipment and provide continuous monitoring of human 

activities (Adaskevicius, 2014, Filippoupolitis, et al., 2017, Hassan, et al., 2018). Data-driven-based WSHAR 

systems share basically a similar procedure, as shown in Fig.2. Flowchart A in Fig.2 presents the process 

using conventional approaches to realize HAR, in which the features are generated manually according to 

expert knowledge (Chernbumroong, et al., 2014, Sani, et al., 2017). First, the raw data from multiple types of 

body-worn sensors (accelerometer, gyroscope, heart rate sensor, etc.) are obtained at a certain sampling rate 

and then transmitted to a processing centre (laptop, tablet, smartphone, etc.) through specific communication  
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Fig.1 Survey pipeline  

(CHAR-Camera-based HAR, ASHAR-Ambient sensor-based HAR, WSHAR-Wearable sensor-based HAR, HSHAR-Hybrid sensory-based HAR, 2.2.1 is subsection 2.2.1) 
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technologies (Bluetooth, Zigbee, Wi-Fi, etc.); the pre-processing stage mainly involves filtering and 

segmenting the raw data; then informative features are extracted in a hand-crafted way (such as mean, 

variance, dominant frequency, entropy and so on); followed by applying the specific feature dimension 

reduction techniques or feature selection algorithms to obtain the optimal and smaller-size feature set for 

further learning and computation burden reducing; finally, the optimal feature set is fed to the classifiers for 

classification models training and testing. Flowchart B in Fig.2 instead gives the typical process of using deep 

leaning methods for HAR, in which the features can be learned automatically from different types of deep 

networks, such as Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Deep Belief 

Network (DBN), Restricted Boltzmann machine (RBM) (Plötz, et al., 2011, Panwar, et al., 2017). The feature 

learning and learning model building in flowchart B are often performed simultaneously with these deep 

networks.  

2.2 Wearable sensors 

2.2.1 Sensor type 

The advances in sensors make it possible and feasible to explore assisted living in health care and 

wellbeing with wearable sensors. Wearable sensors, different from the common-used industrial sensors, are 

designed to meet some specific requirements: high integration density, small size, low power consumption as 

well as high measurement accuracy, etc. The sensors are integrated into a small -size device for being 

conveniently attached to the user’s body parts. Wearable sensors can include inertial sensors, physical health 

sensors, environmental sensors, camera, microphone, etc. Table 1 presents the most popularly used wearable 

sensors in HAR. Among them, motion-based inertial sensors have been well applied in WSHAR, such as 

accelerometer, gyroscope or magnetometer, which are capable of detecting and measuring acceleration, 

angular velocity, magnetic fields, tilt, shock, vibration, rotation, and multiple degrees-of-freedom motion 

(Chernbumroong, et al., 2014, Gjoreski & Gams, 2011a, Hassan, et al., 2018). These observations vary 

sensitively along a wearer’s movement or body postures, thereby delivering rich motion-caused information. 

Kwapisz, et al., 2011 utilize accelerometers to identify five physical activities, i.e., walking, jogging, 

ascending/descending stairs, sitting and standing. Deng, et al., 2014 develop a fast and robust activity 

recognition model based on Reduced Kernel Extreme Learning. Guo, et al., 2016 use an accelerometer, a 

magnetometer, and a gyroscope built in a smartphone for patients’ activity recognition. Inertial sensors still 

suffer from some limitations, e.g. the calibration for effective measurements, battery life limitation due to 

https://en.wikipedia.org/wiki/Magnetic_field_sensors
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Table 1 Wearable sensors used in HAR 

Wearable 

sensors 
Examples Pros Cons 

Inertial sensors 

Accelerometer (Chernbumroong, et al., 2014, Hassan, et al., 2018) 

Gyroscope (Anwary, et al., 2018) 

Magnetometer (Gjoreski & Gams, 2011a) 

Well applied, delivering rich 

motion information, small size, 

easy to use, etc. 

Battery life limitation, 

arbitrary signals companied 

with activities, etc. 

Physical health 

sensors 

Electrocardiogram (ECG) (Zhang & Wu, 2018) 

Skin temperature (Yoon, et al., 2016) 

Heart rate (HR) (Tapia, et al., 2007, Mehrang, et al., 2017) 

Electroencephalograph (EEG) (Nakamura, et al., 2010) 

Electromyogram (EMG) (Georgi, et al., 2015) 

Force/pressor sensor (Lorussi, et al., 2016) 

Delivering rich vital signals 

related to activities, can be used 

for rehabilitation and health 

condition detection, etc.  

Unable to obtain large-scale 

application due to the issues 

of size, precision, price, etc. 

Environmental 

sensors 

Temperature (Chernbumroong, et al., 2014) 

Humidity (Parkka, et al., 2006) 

Light sensor (Bhattacharya & Lane, 2016) 

Barometer, etc. (Wang, et al., 2018) 

 

Delivering context information 

related to activities  

 

Usually used with inertial 

sensors and producing noise 

signals, etc. 

Others 

Camera (Zhan, et al., 2012) 

Microphone (Fontana, et al., 2015) 

GPS, etc. (Reddy, et al., 2010) 

Complementary information with 

other sensors 

Privacy concerns, complex 

algorithms applied, etc. 
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continued logging, or arbitrary signals companied with activity performing. 

Physical health sensors, including heart rate (HR), oxygen saturation (SpO2), blood pressure (BP), 

electrocardiogram (ECG), blood glucose (BG), respiratory rate (RR), etc., are used sometimes with inertial 

sensors to recognize the activities with rehabilitation purpose or capture vital signals for health condition 

evaluation. Chen, et al., 2014 develop a framework to detect epileptic seizures using EEG sensors. 

Chernbumroong, et al., 2014 propose a practical activity recognition system by combining a heart rate sensor 

attached to the chest with another six sensors worn on the wrists. Physical sensors have not been unable to 

obtain large-scale application in WSHAR due to the problems of size, precision, price, etc.  

With respect to environmental sensors, only the temperature sensor, barometer as well as light sensor can 

be often found in HAR. For example, Maurer, et al., 2006 implement a multi-sensor platform embedded with 

a light sensor. They attach the platform on five different positions to explore the best location on body 

achieving highest accuracy. A smartphone-based barometer  is used to help detect a total of 15 activities with 

other sensors inside (Khan, et al., 2014). 

2.2.2 Sensor platform 

In WSHAR, the sensors are typically integrated into one platform carried by users when they perform 

activities. To minimize the obtrusiveness during use, the sensor devices are often seen in the following modes: 

smartphones, smart watches, smart clothes, inertial units, specifically-designed platforms, etc.  

Today’s smartphones are well equipped with a variety of sensors (such as accelerometers and gyroscopes) 

and are ubiquitously carried by people everywhere and every day. Using the data acquired from these sensors 

could enable applications to recognize a wide range of daily activities (Hassan, et al., 2018, Kwon, et al., 

2014, Guo, et al., 2016, Reddy, et al., 2010, Sun, et al., 2010). Also, smartphones are equipped with memory 

and battery, which provides a system for HAR without additional hardware requirements. The main problems 

when using smartphones for HAR involve the constraints of limited sensor types and locations (pockets, belts 

or bags). Meanwhile, the smartphones’ deployment locations on body might not be suitable for everyday use 

when the phone carrier performs daily activities at home. Furthermore, retraining procedures or transforms of 

coordinate are normally needed to achieve HAR due to arbitrary orientations of the way of smartphone 

carrying (Sun, et al., 2010, Morales, et al., 2014).  

Smart watches are designed with integrated sensors that enable a connection to a PC or a phone. The 

typical examples of using smart watches to identify daily activities could be seen in Filippoupolitis, et al., 
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2017,Vepakomma, et al., 2015, Chernbumroong, et al., 2014, Mortazavi, et al., 2014 and so on. A smart 

watch is typically wrist-mounted, with a relatively standard and fixed body location, which is more 

convenient and less obtrusive for the user to wear compared to carrying a smartphone all the time. 

Nevertheless, smartphones and smart watches share a same problem that the sensors inside are fixed and 

might not be the exact ones required for a specific task. In some cases, the data from the commercials might 

not be open-source to acquire.  

Smart clothes can embed more sensors, especially physical sensors, to achieve a diverse function 

compared with smartphones or smart watches, especially for long term monitoring applications (Adaskevicius, 

2014). For instance, smart shirts are designed to monitor precise cardiac, respiratory, sleep and other daily 

activities, which incorporate heart rate and ECG sensors (Hexoshin, 2018). Lorussi, et al., 2016 develop a 

smart textile platform, including sensing shirt, sensing trousers, sensing gloves and sensing shoes for the 

assessment of stroke patients. The platform embeds or knits inertial sensors, textile goniometers, 

piezoresistive sensors, EMG and goniometers.  Zhou, et al., 2016 present their work by using two types of 

textile-based sensors: a fabric pH sensor to collect and analyse sweat and piezoresistive textiles to capture 

body movements. Smart clothes are also designed to track babies’ sleep, breathing, body position (Mimobaby, 

2018). The abovementioned smart clothes are usually needed to wear tightly to ensure the quality contact of 

the sensors with the skin or other body parts, which may affect the com-fort of the wearer for daily use. On 

the other hand, the relative movement between the body parts and the sensors due to the loose wear of smart 

clothes will give rise to motion artefacts.   

An inertial measurement unit (IMU) is a special device that measures and reports a craft's velocity and 

orientation, using a combination of an accelerometer, a gyroscope, a magnetometer and sometimes with a 

barometer. One or some combinations of IMU sensors are often employed to detect human gestures or 

activities in different applications (Georgi, et al., 2015, Montalto, et al., 2015, Bulling, et al., 2014, Su, et al., 

2014).  

Specifically-designed platforms are built for one specific research or common research purposes in HAR, 

in which the sensors required for a specific task are integrated. Burns, et al., 2010 design a flexible sensing 

device with multiple sensors built in. Their device contains the capabilities of kinematic sensing, 

physiological sensing, ambient sensing and external hardware integration. Uddin, et al., 2015 present a 

framework with a wrist-worn-9-axis-sensors device. They verify the feasibility of the device based on two 
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activities: hands washing and drinking. Cook, et al., 2015 design an open-source, wearable, eight-channel bio-

potential data collection platform integrated with an ECG and an accelerometer sensor, which can be used to 

record health related information. Specifically developed sensor devices can meet the sensor requirements for 

a specific task, whilst it may mean an extra cost in hardware and research period. The popular sensor 

platforms used in WSHAR are summarized in Table 2. 

2.2.3 Sensor placement 

Sensor placement refers to the body locations where the sensors are placed and how the sensors are 

attached to those locations, which is a research-worthy problem in WSHAR. Sensor placement may vary 

along different applications. For example, a foot-mounted accelerometer can well reflect the foot or leg 

involved motion, thereby for gait, step, distance or energy consumption detection (Anwary, et al., 2018, 

Chamroukhi, et al., 2013, Moncada-Torres, et al., 2014, Vepakomma, et al., 2015). The wrist-worn sensors 

can help recognise normal activities, such as ironing, brushing teeth and cooking (Mannini & Sabatini, 2010, 

Chernbumroong, et al., 2013). The thigh-located sensors are sensitive to the leg-involved activities, like 

jogging, riding, walking, running, etc.(Wu, et al., 2012, Moncada-Torres, et al., 2014, Ronao & Cho, 2015). 

Most potential body locations are explored to place sensor(s): hand (Kundu, et al., 2017), arm (Bulling, et al., 

2014), wrist  (Pavey, et al., 2017), chest (Gao, et al., 2014), pocket (KwonKwon, et al., 2014), head (He & 

Bai, 2014), feet (Anwary, et al., 2018), shank (Bahrepour, et al., 2011), thigh (Banos, et al., 2013), trunk 

(Bahrepour, et al., 2011), vest (Bourke, et al., 2008), waist (Barreto, et al., 2014), ankle (Suto, et al., 2017), 

belt (Capela, et al., 2015), pelvic (Ravi, et al., 2005), hip (Banos, et al., 2013), leg (Wang, et al., 2013), 

abdomen (Zheng, et al., 2013), back (He & Bai, 2014), knee (Atallah, et al., 2010), ear (Pansiot, et al., 2007), 

neck (Fontana, et al., 2015), etc.  

In terms of the sensor placement, we categorize WSHAR into four cases: the first is placing one single 

sensor on one single body part (One to One). One to One sensor placement aims to build a basic wearable 

framework for HAR. In this case, the sensor’s location may vary with tasks, from the head to the feet, but 

fixes on one body part. Suto, et al., 2017 investigate the efficiency of the popular machine learning strategies 

based on a right-ankle-mounted accelerometer, and their results suggest that one sensor is not enough for 

appropriate daily activity recognition due to the similar data generated from one sensor for different activities.
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Table 2 Sensor platforms in WSHAR 

Platform Case studies Strengths Weaknesses Picture 

Smartphones 

Sun et al., 2010 

Guo et al., 2016 

Hassan, et al., 2018 

Ubiquitous, equipped with a 

variety of sensors, battery and 

memory 

Limited placing locations on body, 

arbitrary orientations in pockets, etc. 

 

Smart 

watches 

Vepakomma, et al., 2015 

Chernbumroong, et al., 2014  

Uslu, et al., 2013 

Integrated sensors, a relatively 

standard and fixed body location 

Limited sensor types for different 

applications 

 

 

Smart 

clothes 

Adaskevicius, 2014 

Hexoshin, 2018 

Lorussi, et al., 2016 

More sensors embedded, long 

term monitoring, the relative 

movement between the body parts 

and the sensors, etc. 

Usually needed to wear tightly to ensure 

the quality contact of the sensors with 

the skin or other body parts 

 
 

Inertial 

measurement 

unit (IMU) 

Georgi et al., 2015 

Su, et al., 2014 

Anwary, et al., 2017 

A fixed combination of sensors, 

small, low power, can also 

provide the attitude angles of the 

device, etc.  

Time-consuming alignment and 

calibration, etc. 
 

 

Specifically- 

designed 

devices 

Wang, et al., 2018 

Uddin, et al., 2015 

Cook, et al., 2015 

The sensors exactly required for a 

specific task or a common 

research purpose in HAR 

An extra cost in hardware and research 

period 
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The second case attaches one single type of sensor on multiple body parts to gain complementary information 

from different body parts (One to Multi). One to One sensor placement might deliver limited information for 

HAR, researchers then place the accelerometers to multiple body parts with the aim of capturing richer 

information or evaluating the contributions of different sensor positions to recognition performance. Sztyler, 

et al., 2017 develop a position-aware HAR system by placing seven accelerometers in different body 

positions. The third case places a sensor device with two or more type of sensors built-in on only one body 

part (Multi to One), with the aim of capturing diverse-source information from different sensors compared to 

One to One case. Vepakomma, et al., 2015 propose a novel framework for human activity recognition. They 

use a wrist-worn device with multiple sensors inside, including accelerometer, gyroscope, barometric pressure, 

humidity, etc.  These multi-modal sensor data from the wrist-worn sensors provide rich information for 

recognizing complex in-home activities. The fourth case places multiple devices, each embedded with two or 

more types of sensors, on multiple body parts (Multi to Multi) to take the advantages of the first three cases 

above, which is expected to be the most comprehensive structure to achieve higher performance in WSHAR. 

Chernbumroong, et al., 2014 propose a practical home-based HAR which use multiple types of sensors on 

multiple body positions. They exploit seven sensors (i.e. the altimeter, accelerometer, heart rate monitor, 

barometer, gyroscope, light and the temperature sensor) towards activity classification.   

WSHAR systems deploy a wide variety of sensors on different body parts targeting specific aims and 

applications. Generally, One to One is the basic deployment and more suitable for the basic recognition tasks, 

such as step counting or sleep quality monitoring. Placing more sensors on multiple body parts is intuitively 

beneficial for improving the performance and robustness, whereas this can also result in increased complexity 

in deployment and computation cost. Also, the sensors spread over a human body hinder the wearer doing 

everyday activities, this may cause the user rejecting to wear them. Consequently, exploring the way to 

implement WSHAR with less obtrusiveness, affordable cost as well as higher accuracy becomes more 

significant.  

2.3 Activities of daily living  

HAR is an extensive research field of machine learning. Most studies focus on indoor activities of daily 

life (ADL) in assisted living applications, such as walking, running, exercise, lying, cooking, stairs using, falls, 

gaits, and so on (Anwary, et al., 2017, Hannink, et al., 2017, Jung, et al., 2015). These activities can reveal 

people’s daily context and safety conditions. The recognition of ADL is helpful to understand, maintain and 
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assist the daily life of the observed. For example, long-term sedentary activities may imply one person is 

suffering certain cognition problems or having early dementia symptoms; more sleep at daytime or less at 

night may reflect insomnia or other medical and psychiatric problems; frequent use of the toilet or frequent 

drinking are probably associated with diabetes or kidney diseases. And changes in routines prompt us that 

certain disorder may be happening compared with the normal patterns; on the other hand, regular eating, 

regular exercise and other well-organized daily activities can reveal the subject is leading a healthy lifestyle. 

Also, older people living alone have a high risk of possible falls, which is a main concern for both themselves 

and their families. These conditions above all can be detected by HAR systems and the corresponding 

decisions can be provided to assist older people living independently. Table 3 presents some case studies 

based on their defined activities in the application of safety and assisted living in HAR. 

Table 3 Case studies in terms of activity types in wearable sensor-based HAR 

Application Activity types Reference 

ADL Brushing, Exercise, feeding, ironing, reading, 

sleeping, wiping, etc. 

Wang, et al., 2018 

ADL and Falls  Walking, sitting, falls. Rasheed, et al., 2015  

Gait analysis Gait  Hannink, et al., 2017 

ADL and heart failure Standing, walking, ascending/descending 

stairs, heart failure, etc. 

Zheng, et al., 2014 

Physiatric rehabilitation Joint dynamics, posture, head position Hermanis, et al., 2016 

Assessment of stroke patients Handshake, shoulder touch, etc. Yu, et al., 2016 

Stroke patient treatment Hand grips Lorussi, et al., 2016 

Fall detection Walking, sit down, stand up, stepping 

up/down, running, falling 

Jung, et al., 2015 

Exercise motion detection Hammer-curl with dumbbell, push-ups, etc. Um, et al., 2016 

ADL and location  Location, sitting, standing, walking Lee & Mase, 2002 

Gesture during eating Bite, drink, utensiling, etc. Ramos-Garcia & Hoover, 

2013 

Lower limb motions  Gait circle, foot trajectory Anwary, et al., 2018 

 

Real world data is the first material and crucial for the recognition tasks after determining sensor types and 

sensor deployment. Whilst, data acquisition can be a tedious and cumbersome work, researchers may face a 

series of problems when collecting real world data, such as the obtrusiveness, the ease of using sensors, the 

time arrangement, the experiment environment, the cost for participants, the annotation, etc. The real-world 

data for a specific task should involve as more as possible target population with diverse age, gender, weight, 
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height and health conditions. Whilst, due to the time cost and the subjects’ will, the number of recruited 

volunteers for data collection are usually highly limited, for example,  1 in Alvarez-Alvarez, et al., 2013, 12 in 

Bhattacharya & Lane, 2016, 30 in Fontana, et al., 2015, 45 in Hajihashemi & Popescu, 2013, apart from some 

benchmark datasets with larger population. As for the older participants, the number of participants is smaller 

(Bergmann, et al., 2012, Chernbumroong, et al., 2013, Wang, et al., 2018). 

The protocol of data collection also affects the recognition performance, and the factors can involve the 

number of activities, the number of participants, performing activities in a natural way or a constrained way, a 

controlled environment or a real-home setting, etc. Some studies collect their data based on the predefined 

activities under controlled environment. E.g., the volunteers in Laudanski, et al., 2015 perform a same activity 

in the approximate frequency and intensity, thereby achieving high performance due to the high intra-class 

similarity under the protocol. While the data collection in Banos, Galvez, et al., 2014 is conducted in more 

natural settings. With respect to data annotation, most studies supervise the data collection process, label the 

data by observers or record the process with a camera to avoid mislabelling (Deng, et al., 2014). To provide a 

more natural environment for participants and minimize the burden of annotation, Adaskevicius, 2014 utilize 

a semi-automatic approach for data collection.  

Researchers collect the data for their specific research purposes. They also can use the public datasets 

available for HAR to evaluate their proposed methods or compare their methods with other studies on the 

same datasets. The commonly used datasets are, 1:) PAMAP2 (Reiss & Stricker, 2012) which comprises daily 

activities (sitting, watching TV, jogging, etc.) collected from 9 elderly subjects with three inertial sensors and 

heart rate placed on ankle, chest, and dominant arm; 2): mHealth (Banos, et al., 2014), which covers 12 daily 

activities for health monitoring using three inertial sensors and electrocardiogram sensor; 3): WISDM 

(Kwapisz, et al., 2011), which is a dataset collected from 29 users with single accelerometer embedded in a 

mobile phone, including sitting, jogging, standing, working, etc.  

2.4 Raw data pre-processing 

The preprocessing of the collected data in Fig.2 can include filtering (noise elimination), nominalization, 

and segmentation, etc. This section only talks about data filtering and segmentation.  

2.4.1 Filtering 

In HAR, filtering is applied to the raw sensor signals to remove some unwanted components from a signal, 

since raw sensor data might be contaminated by electronic noise or other artefacts. Filtering is normally 
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performed before the time series are split into time windows for feature extraction. Kalantarian, et al., 2015 

and Nam & Park, 2013 use the low-pass filter to smooth or remove the outliers. Machado, et al., 2015 apply a 

second-order Butterworth High-Pass filter with cut-off frequency of 0.25 Hz to isolate the body acceleration 

component. Hu, et al., 2014 exploit the median filter for data pre-processing. N-point moving-average filters 

are adopted by Adaskevicius, 2014. Hassan, et al., 2018 apply the median and low-pass Butterworth filter to 

remove the noise from the acceleration signal. On the other hand, filtering is not always applied since some 

researchers state that filtering may cause the loss of relevant information (Atallah, et al., 2007, Ordóñez, et al., 

2013, Fontana, et al., 2015). 

2.4.2 Window Segmentation 

The time series data from wearable sensors are in the order of seconds or minutes which is a relatively 

long period of time compared with the sensors’ sampling rate (mostly varying from 20Hz to 100Hz). For 

facilitating the later learning, time series are often segmented into certain time windows. The sliding window 

is one of the most popular segmentation approaches due to its implementation simplicity. Sliding windows 

partition the time series into fixed-size windows.  

Different window sizes are employed in WSHAR, which are found to vary from 0.08s (Berchtold, et al., 

2010), 0.1s (Murao & Terada, 2014), 0.2s (Zhang & Sawchuk, 2012), 0.5s (Chavarriaga, et al., 2013), 1s 

(Bulling, et al., 2014), 1.6s (Suto, et al., 2016), 2s (Laudanski, et al., 2015), 2.56s (Hassan, et al., 2018), 3.88s 

(Chernbumroong, et al., 2014), 4s (Wang, et al., 2013, 5s (Machado, et al., 2015), 6.7s (Bao & Intille, 2004), 

8.53s (Guo, et al., 2012), 9s (Kalantarian, et al., 2015), 10s (Catal, et al., 2015), 12.8s (Wang, et al., 2018) to 

30s (Liu, et al., 2012) and even higher. Usually, a window covers a few seconds long time interval. A small-

size window allows for a faster feature extraction in later steps but may not cover enough circles of one 

activity. A large-size window can cover more circles of one activity and contain the information from more 

than one activity, this may delay recognition. Some researchers determine the window size with empirical 

values or referring to other similar studies, others try a range of lengths on their data to find the optimal size. 

Finding the optimal window size is an application-dependent task.  Hu et al. 2014 conclude that the length of 

the window should satisfy two conditions: first, at least one cycle of the activities is statistically included in 

one window and it has been proved that a window of several seconds can sufficiently capture circles of 

activities such as walking, running, using stairs etc.; second, the size should better be set to the nth power of 2 

thereby being easily employed in the Fast Fourier Transform (FFT) algorithm in one window. Therefore, a 
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number of studies which use frequency-domain features set the samples in one window as the nth power of 2 

in each segment (Guo, et al., 2012, Bayat, et al., 2014, Wang, et al., 2018).  

We need to take the sampling rate of sensors into account with respect to the number of samples in one 

window, since the sample number is determined by both the window size and the sampling rate. A wide range 

of sampling rates are explored in WSHAR, varying from 1hz (Zhang, et al., 2014), 5hz (Alshurafa, et al., 

2014), 6hz (Gjoreski & Gams, 2011a), 10hz (Nam & Park, 2013), 20hz (Wang, et al., 2018, Suto, et al., 2016), 

33hz (Chernbumroong, et al., 2014), 50hz (Biswas, et al., 2015, Hassan, et al., 2018), 64Hz (Hammerla, et al., 

2016), 100hz (Sani, et al., 2017), 120hz (Laudanski, et al., 2015), 126hz (Gupta & Dallas, 2014), 135hz 

(Dalton & ÓLaighin, 2013), 200hz (Yao, et al., 2017), 256hz (Chen, et al., 2014), and up to 800hz (Montalto, 

et al., 2015). Generally, higher sampling rates can catch more signal details but coupled with higher energy 

requirements and higher noise impact; lower sampling rates save considerable energy, but might omit certain 

relevant information, thus lower accuracy. Gao, et al., 2014 find based on their experimental results that the 

wearable systems adopting multiple sensors are less sensitive to the sampling rate than those only using a 

single sensor. Although the high sampling rate may help increase the recognition accuracy, it also leads to a 

several fold increase in computing load. Therefore, they suggest 20 Hz to be the appropriate sampling rate for 

the wearable system using multiple sensors.  

The number of the samples in one window versus the window size based on the reviewed works is plotted 

in Fig.3, with several less commonly-used numbers being excluded (Machado, et al., 2015). And we can see 

two obvious trends from Fig.3: one is that most sample numbers in one window fall into between 32 (Suto, et 

al., 2016) and 256 (Hu, et al., 2014); the other is that sample numbers of the nth power of 2 are often applied, 

such as 64 (Murao & Terada, 2014), and 128 (Ronao & Cho, 2016). The sampling rate as well as the trade-off 

between recognition efficiency and performance should be considered when manually determining the 

window size.  

When applying window segmentations, the overlap between two consecutive windows is usually adopted 

to reduce information loss at the edges of the window. The most commonly used overlap rate is 50% 

(Laudanski, et al., 2015, Kwon, et al., 2014, Davis, et al., 2016). There are some other studies without 

performing overlap between windows (Davis, et al., 2016, Banos, et al., 2012). 
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Fig.3 Sample number in each window versus window size  

2.5 Features for classification  

Features are the inputs for most machine learning classifiers. In general, there are two ways to extract 

features from raw sensor data, one is handcrafting features based on domain knowledge (Vepakomma, et al., 

2015) and the other is automatically learning features by deep networks (Ronao & Cho, 2016). Hand-crafted 

features are the measures computed from each window segmentation in time domain or frequency domain, 

which are designed to capture the useful representation of the data for distinguishing different activities in 

HAR, such as mean, median and principal frequency (Hassan, et al., 2018, Suto, et al., 2016). Hand-crafted 

features have achieved great success in HAR applications (Li, et al., 2009, Hassan, et al., 2018). The key 

advantage of using hand-crafted features is that the features are computationally lightweight to implement 

especially in ubiquitous devices (Morales & Akopian, 2017). These years, deep learning approaches have 

been applying in HAR to automatically learn features for HAR(Hammerla, et al., 2015, Sani, et al., 2017). 

The strengths of the deep learned features by the deep networks are that the learning can be very deep, and the 

learning process does not rely on domain knowledge.       

2.5.1 Hand-crafted features  

In the raw data space, the specific value at a specific time instant of a sample (such as the reading of 30℃ 

from a temperature sensor) does not carry sufficient information to describe an activity that the reading 
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originates from. Furthermore, when we compare two activities in terms of two given time windows, it is 

nearly impossible that two time series (i.e. segmented windows) contain identical signals even the two 

windows represent a same activity performed by a same person. Accordingly, quantitative and informative 

variables can be calculated based on each window from raw sensor data, these are hand-crafted features. 

Consequently, hand-crafted features are elaborately designed for comparing and differentiating different 

activities. A wide range of hand-crafted features have been explored to improve HAR performance (Wu, et al., 

2012, Attal, et al., 2015, Wang, et al., 2016, Sani, et al., 2017, Wang, et al., 2018). We categorize the hand-

crafted features as the following types, i.e. time-domain features, frequency-domain features and other hybrid 

features.  

Time-domain features are those features obtained directly from a window of sensor data and are typically 

statistical measures. They have been intensively investigated in different applications and proved to be 

effective and useful for HAR. These features are based on a comprehensive and intuitive understanding about 

how a specific activity or posture will produce a set of discriminative features from measured sensor signals. 

For instance, static and dynamic activities should produce different signal strengths. Take the acceleration 

signal as an example, the signal magnitude area (SMA) calculated by the acceleration magnitude summed 

over three axes within each window has been found especially effective to distinguish static activities from 

dynamic activities, such as sitting and walking. Machado, et al., 2015 and Hassan, et al., 2018 use SMA and 

other features to improve the recognition accuracy of dynamic activities. Studies also show that Standard 

deviation (Std) is helpful to achieve consistently high accuracy to differentiate activities such as walking, 

standing, and stairs using (Laudanski, et al., 2015). Some other well-applied time-domain features are median 

(Murao & Terada, 2014), variance (Mortazavi, et al., 2014), skewness (Zhang & Sawchuk, 2011, Hassan, et 

al., 2018), zero crossing rate (Suto, et al., 2016), Autoregressive coefficient (AR) (Hassan, et al., 2018), peak-

to-peak (Machado, et al., 2015, Zheng, et al., 2013) and so on. 

Frequency-domain features are the features which are represented to describe the periodicity of signals. 

To produce frequency-domain features, a window of the sensor data should first be applied a transformation 

function, such as Fast Fourier Transform (FFT), Discrete Wavelet Transform (DWT), or Discrete Cosine 

Transform (DCT).  The output of FFT giving is a set of basis coefficients which represent the amplitudes of 

the frequency components of the signal and the distribution of the signal energy. Examples of frequency-

domain features based on FFT include spectral energy (Hassan, et al., 2018), entropy (Hassan, et al., 2018), 
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dominant frequency (Wang, et al., 2018, Suto, et al., 2016). These FFT-derived features are reported to be 

beneficial to improve the recognition performance in the above-mentioned applications. Ayachi, et al., 2016 

demonstrate the high efficiency of DWT in their detecting and segmenting tasks for older people’s daily 

living activities based on multiple body worn inertial sensors.  Alickovic, et al., 2018 propose another 

automated seizure detection and prediction model based on EEG measurements. They employ wavelet packet 

decomposition (WPD), DWT and empirical mode decomposition (EMD) as feature extractors, and the WPD 

outperform other two methods. He & Jin, 2009 develop a human activity system based on DCT-extracted 

features from acceleration data, their experimental results achieve the accuracy of 97.51%. Desai, et al., 2015 

also apply DCT for feature extraction on their proposed automated cardiac arrhythmia detection framework.  

Most time-domain and frequency-domain features are generated from an individual channel (axis) of a 

sensor; such as mean and dominant frequency. On the contrary, the hybrid features are usually extracted 

from multiple sensory channels of a sensor or multiple sensors. By doing this, hybrid features implement 

sensor fusion through feature extraction. Take the inertial sensors as examples, there are several studies 

explore using hybrid features for HAR, e.g., the attitude angles of the wearable device, such as tilt, rotation, 

yaw and so on. These features are calculated by combining the values from multiple channels of an inertial 

sensor or multiple inertial sensors instead of a single inertial sensor, such as an accelerometer, a gyroscope or 

a magnetometer. Karantonis, et al., 2006 and Suto, et al., 2016 use the feature of tilt angle (Φ) to determine 

the postural orientation of the user in their studies. Other hybrid features, such as pitch and roll, can refer to 

the work by Kundu, et al., 2017.  

The extraction of hand-crafted features depends on domain knowledge. However, hand-crafted features 

are easy to understand and implement. We conclude the key hand-crafted features successfully exploited in 

different HAR applications in Table 4, which can give strong clues for HAR tasks.  

Shapelets are an important new approach for solving time series classification problems. A shapelet is a 

small subsequence extracted from the time series, which can be maximally representative of a class. Shapelet-

based classification uses the similarities between a shapelet and a series as features for a classier. Shapelets 

are used in many tasks such as interpretable features extracting (Xing, et al., 2011), gesture recognition 

(Hartmann & Link, 2010), and gait recognition (Sivakumar & Shajina, 2012). Since any subsequence in a 

time series can be a shapelet candidate, one of the challenges in this field is how to efficiently discover the 

shapelets and evaluate their prediction quality. Liu, et al., 2015 explore the shapelet-based approaches for 
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recognizing complex human daily activity and sport activity. They use the shapelets candidates to represent 

atomic activities, such as Sit, Stand and Jump, then the sequential and concurrent activities are learned from 

the shapelets candidates, like Relax, Cleanup, Coffee or Jump-shot. Cetin, et al., 2015 present a novel 

technique to speed up shapelets discovery without decreasing accuracy, they use a skipping technique to 

prune the additional candidates and a voting-based method to improve accuracy. Zakaria, et al., 2016 present 

their clustering-based method on learning the shapelets from unlabelled time series. The method is tested on 

the diverse domains and demonstrated as highly competitive in terms of the accuracy and the discovery speed 

compared with the existing methods. Grabocka, et al., 2016 utilize a distance-based online pruning technique 

to avoid measuring the significance of those similar shapelets candidates. Additionally, a supervised shapelet 

filtering method is employed to select the shapelets that can boost classification accuracy.   

Even the speedup methods, such as clustering, pruning and dimensionality reduction, are employed, the 

shapelet discovery remains computationally expensively. Hou, et al., 2016 present a sparse and blocky 

solution by combining fused lasso regularizer and the generalized eigenvector method to transform the 

shapelet discovery task as a numerical optimization problem. The experimental results demonstrate their 

proposed method is orders of magnitudes faster than the state-of-the-art shapelet-based methods, with the 

comparable accuracies. However, the method is still time-consuming when dealing with the large datasets or 

long-time series. Also, the proposed shapelet-based methods are only compared with the other existing 

shapelet-based methods and no works are seen comparing their methods with other time series classification, 

feature extraction or feature selection methods. 

2.5.2 Automatically extracted features (deep learned features) 

The second feature representation technique in current HAR applications is using deep learning techniques. 

Deep learning can automatically learn features from raw sensor data with less human effort, which optimizes 

parameters layer-by-layer following the principle that the decoded output should be equal to the input (Wang, 

et al., 2017). The automatically extracted features from deep networks are also called deep features or deep 

learned features. Deep features are developed and applied in recognition tasks to improve performance 

(Hammerla, et al., 2016, Hannink, et al., 2017). For example, Ronao & Cho, 2016 use a deep
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Table 4 Typical hand-crafted features used in HAR 

Item Feature title Description Formula (if possible) 
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Mean (Margarito, et al., 2016) The average value of the signal over the window 𝜇 =
1

T
∑ 𝑠𝑖

𝑇

𝑖=1
 

Root Mean Square (Rms) (Sani, et al., 

2017) 

The quadratic mean value of the signal over the 

window √
1

𝑇
∑ 𝑠𝑖

2
𝑇

𝑖=1
 

Peak-to-peak amplitude (Ptp) (Machado, 

et al., 2015) 

The difference between the maximum and the 

minimum value over a window 

max{𝑠1, 𝑠2,…𝑠𝑇} − min{𝑠1, 𝑠2,…𝑠𝑇} 

Zero crossing rate (Czr) (Machado, et al., 

2015) 

Rates of time signal crossing the zero value, 

normalized by the window length 

 

Mean crossing rate (Cmr) (Banos, Galvez, 

et al., 2014) 

Rates of time signal crossing the mean value, 

normalized by the window length 

 

Signal magnitude area (SMA) (Hassan, et 

al., 2018) 

The acceleration magnitude summed over three 

axes within each window normalized by the 

window length 

1

𝑇
(∑ |𝑎𝑥(𝑡)| +

𝑇

𝑖=1
∑ |𝑎𝑦(𝑡)|

𝑇

𝑖=1

+∑ |𝑎𝑧(𝑡)|
𝑇

𝑖=1
) 

Average of peak frequency (Apf) 

(Janidarmian et al., 2017) 

The average number of signal peak appearances in 

each window 

 

Log-energy (Sani, et al., 2017) Log of energy 
∑ log⁡(𝑠𝑖

2)
𝑇

𝑖=1
 

Movement Intensity (MI) 

(Chernbumroong, et al., 2014) 

Mean of the total acceleration vector over the 

window 

1

𝑇
∑ √𝑎𝑥𝑖

2 + 𝑎𝑦𝑖
2 + 𝑎𝑧𝑖

2
𝑇

𝑖=1
 

Variance of MI (VI) (Zhang & Sawchuk, 

2011) 

The variance of Movement Intensity over the 

window 
𝐴𝐼 =

1

𝑇
(∑ 𝑀𝐼(𝑖) − 𝐴𝐼)2

𝑇

𝑖=1
) 

Averaged derivatives (Ader) (Zhang & 

Sawchuk, 2011) 

The mean value of the first order derivatives of the 

signal over the window 

1

T
∑

𝑠𝑖−𝑠𝑖−1
2

𝑇

𝑖=2
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Crest factor (Cftor) (Y. Wang, et al., 

2016) 

The ratio of peak values to the effective value over 

the window 

0.5(𝑆𝑚𝑎𝑥 − S𝑚𝑖𝑛)

𝑅𝑀𝑆
 

 

 

 

 

 

 

 

 

Time-

domain 

features 

 

 

 

 

 

 

 

 

 

 

Percentiles (King, et al., 2017) 10th,25th,50th,75th,90th 
 

Interquartile range (Interq) ( King, et al., 

2017) 

Difference between the 75th and 25th percentile  

Autocorrelation (Autoc) (Machado, et al., 

2015) 

 

The correlation between values of the process at 

different times 

∑ (𝑠𝑖 − 𝜇⁡)(𝑠𝑖+1 − 𝜇⁡)𝑇−1
𝑖=1

∑ (𝑠𝑖 − 𝜇⁡)2𝑇
𝑖=1

 

Pairwise correlation (Corrcoef) 

(Janidarmian, et al., 2017) 

The ratio of the covariance and the product of the 

standard deviations between each pair of axes 𝑐𝑜𝑟𝑟𝑋𝑌 =
∑ (𝑋𝑖 − 𝑋)(𝑌𝑖 − 𝑌)𝑇
𝑖=1 )

√∑ (𝑋𝑖 − 𝑋)𝑇
𝑖=1 ⁡√∑ (𝑌𝑖 − 𝑌)𝑇

𝑖=1

 

Standard deviation (Std) (Laudanski, et 

al., 2015) 

Measure of the spreads of the signal over the 

window 𝜎 = √
1

𝑇
∑ (𝑠𝑖 − 𝜇⁡)

𝑇

𝑖=1

2

 

Coefficient of variation (Cν) (Janidarmian, 

et al., 2017) 

The ratio of the standard deviation to the mean  𝜎

𝜇
 

Kurtosis (Sztyler, et al., 2017) The degree of peakedness of the signal probability 

distribution 

1

𝑇
∑ (𝑠𝑖−𝜇)

4𝑇
𝑖=1

(
1

𝑇
∑ (𝑠𝑖−𝜇)

2)𝑇
𝑖=1

3 − 3⁡ 

Skewness (Zhang & Sawchuk, 2011) The degree of asymmetry of the sensor signal 

probability distribution 

1
𝑇
∑ (𝑠𝑖 − 𝜇)3𝑇
𝑖=1

(
1
𝑇
∑ (𝑠𝑖 − 𝜇)2)𝑇
𝑖=1

3
2

 

Max (Hassan, et al., 2018) The largest value in a set of data  max{𝑠1, 𝑠2,…𝑠𝑇} 

Min (Chernbumroong, et al., 2013) The smallest value in a set of data  min{𝑠1, 𝑠2,…𝑠𝑇} 

Median (Murao & Terada, 2014) The middle number in a group of ordering numbers median (𝑠𝑖) 

Mode (Chernbumroong, et al., 2014) The number that appears the most often within a set 

of numbers 

mode (𝑠𝑖) 

Variance (Mortazavi, et al., 2014) The average of the squared differences from the 

Mean 

1

T
∑ (𝑠𝑖

𝑇

𝑖=1
− 𝜇)2 

Autoregressive coefficient(AR) (Hassan, 

et al., 2018) 

Coefficients of an IIR filter, αi X(n)=∑ 𝛼𝑖𝑠(𝑛 − 𝑝)𝑃
𝑖=1 + 𝑒(𝑛) 
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Median absolute deviation(MAD) (Suto, 

et al., 2016) 

The median of the absolute deviations from the 

data's median 

𝑀𝑒𝑑𝑖𝑎𝑛𝑖  (|𝑠𝑖 −𝑚𝑒𝑑𝑖𝑎𝑛𝑗(𝑠𝑗)|) 

 

 

 

 

 

 

 

Frequen

cy-

domain 

features 

Dominant frequency (Domifq) (Suto, et 

al., 2016) 

The frequency corresponding to the maximum of 

the squared discrete FFT component magnitude of 

the signal from each sensor axis 

 

Spectral energy (SpecEgy) (Hassan, et al., 

2018) 

The sum of the squared discrete FFT component 

magnitude of the signal from each sensor axis, 

normalized by the window length 

∑ |𝑥𝑖|
2|𝜔|

𝑖=1

|𝜔|
 

Spectral entropy (SpecEnt) (Hassan, et al., 

2018) 

Measure of the distribution of frequency 

components, normalized by the window size 
∑ [𝑃(𝑖) ∙ lg⁡(𝑃(𝑖))]

𝑇/2

𝑖=1
 

The spectral centroid frequency (SCF) 

(Sani, et al., 2017) 

The estimate of the “centre of mass “of the 

spectrum  

 

Other 

hybrid 

features 

 

Eigenvalues of dominant directions (EVA) 

(Zhang & Sawchuk, 2011) 

The relative motion magnitude along the vertical 

direction and the heading direction respectively 

 

Averaged velocity along heading direction 

(AVH) Zhang & Sawchuk, 2011) 

Firstly, calculating the averaged velocities along y 

and z axes over the window, and then Computing 

the Euclidean norm of those two velocities 

 

Pitch, yaw, roll features (Gjoreski & 

Gams, 2011a, Kundu, et al., 2017) 

The features extracted from the attitude values of an 

Inertial Measurement Unit  
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(Hammerla, et al., 2016, Hannink, et al., 2017). For example, Ronao & Cho, 2016 use a deep convolutional 

neural network (CNN) for human activity recognition. The network they propose automatically extracts 

useful features from the raw data. They also investigate the effect of the performance of the extracted features 

from different layers on the increasing number feature maps. The authors state their proposed network 

provides a way to automatically extract robust features without the requirements of pre-processing and time-

consuming on feature hand-crafting. Zeng, et al., 2014 propose a CNN-based feature extraction. Their 

experimental results indicate the extracted local dependency and scale invariant characteristics from the 

acceleration time series outperforms the state-of -the-art approaches. 

Panwar, et al., 2017 design a CNN-based framework for the recognition of three fundamental movements 

of the human forearm performed in daily life. Their framework learns features from the wrist-worn 

acceleration data. Their experimental results present the better performance of the proposed framework 

compared with other existing conventional methods. However, the authors do not give the details about what 

specific hand-crafted features they use for the conventional methods. Sani, et al., 2017 also report that the 

deep features perform better compared to hand-crafted features. They compare the deep features with the 

hand-crafted features from time domain, frequency domain, FFT and Discrete Cosine Transform (DCT) 

separately. DCT performs best on the thigh data and deep features outperform DCT slightly on the wrist data. 

Whilst, their experimental results do not answer a key question that whether the deep features they used can 

beat the combination of all the hand-crafted feature sets they use instead of beating them separately. 

 Some other studies explore combining hand-crafted features and deep features for HAR. Plötz, et al., 

2011 propose a RBM-based feature learning approach to discover universal features for activity recognition. 

Their experimental results based on four publicly available AR datasets indicate that combining the deep 

learning features with the hand-crafted features outperform other classical approaches. The results in Kashif, 

et al., 2016 have shown that adding hand-crafted features to the raw data can help improve the detection 

accuracy of deep convolutional neural networks for tumour cells in histology images. Meanwhile, there are 

some other studies giving certain interesting findings in similar fields, e.g., the experimental results in Khan & 

Yong, 2016 indicate that the hand-crafted features outperform the deep learned features in medical images. 

Song, et al., 2016 use both video and wearable sensor data to tackle the egocentric activity recognition 

problem. They propose multi-stream CNN and Long short-term memory (LSTM) deep architectures to learn 

features from video and sensor data respectively. Experimental results indicate their proposed methods do not  
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perform better than the hand-crafted features used in their work. They explained that this is due to that the 

amount of training data for their deep networks is small. Collectively, feature representation or extraction is a 

crucial step in HAR process. The problem of feature learning could depend on a task at hand. We produce 

Table 5 which summaries the advantages and disadvantages of hand-crafted features and deep learned 

features based on the abovementioned studies. 

 

 

2.6 Feature dimensionality reduction and feature selection 

 More features carry richer information, which is beneficial for improving classification performance. 

Feature dimension, especially for the hand-crafted features, extracted from the time, frequency or hybrid 

domains, becomes very high in most HAR tasks. The initial set of features can be redundant or too large to be 

manipulated, this could cause higher computation cost, low learning efficiency and overfitting on unseen data. 

Appropriate feature dimensionality reduction and feature selection can be applied in this regard to facilitate 

more accurate and faster learning, improving generalization and interpretability.  

2.6.1 Feature dimensionality reduction 

Feature dimensionality reduction is one of the two methods to address the above described issues, which 

reconstructs features to replace the original features by producing linear or nonlinear combinations of the 

input in an unsupervised way, such as Prominent Component Analysis (PCA) (He & Jin, 2009), Kennel PAC 

(kPCA) (Hassan, et al., 2018), Autoencoder (Wang, 2016), Sparse filtering (Ngiam, et al., 2011) and so on.  

PCA is one of the well-known dimensionality reduction methods. The basic idea behind PCA is to find the 

optimal projection that linearly transforms the original features into a new feature space in the variance sense 

(Yang, et al., 2012). The variables, which are ranked according to their variance (from largest to lowest) in the 

Table 5 Comparison of hand-crafted features and deep learned features 

Feature type Advantages Disadvantages 

Hand-crafted 

Features   

Easy to understand the physical meanings of the features; 

Extraction is efficient and easy to deploy; 

Work well for many AR problems. 

Domain knowledge needed; 

Sensor-type specific; 

Need further feature selection. 

Deep features 

No domain knowledge needed; 

Automatically learning features from raw data; 

Features are more robust and generalized.   

Lots of computing resources; 

Parameters are difficult to adjust; 

The learned features are less interpretable. 



27 
 

new feature space, are called principal components. The principal components that contribute to very high 

variance are preserved. kPCA finds the optimal nonlinear transformation of data, which maps the input 

features into a higher-dimensional feature space through a kernel function (e.g., radial basis function (RBF) 

kernel); followed by a typical PCA (Wu, et al., 2007). PCA family are good at seeking the best representative 

data projection, however, it may not work well since PCA does not consider any difference in classes. Unlike 

PCA, Linear Discriminant Analysis (LDA) projects the original features into a new space of lower dimension 

by maximizing the between-class separability while minimizing their within-class variability (Uray, et al., 

2007). The nonlinear extension of LDA is Kernel LDA (kLDA) which performs LDA in the feature pace 

mapped by a nonlinear kernel function (Schölkopf, et al., 1998).  Hassan, et al., 2018 propose a smartphone 

inertial sensor-based system for human activity recognition. The hand-crafted features, including mean, 

median, coefficients, etc., are further processed by kPCA and LDA for dimension reduction. The comparison 

studies show the superiority of their proposed approach.  

An autoencoder network can learn a lower-dimensional representation of input data by minimizing the 

mean squared error between the input and the output (ideally, the input and the output are equal) (Maaten, et 

al., 2009). An autoencoder consists of two parts, namely encoder and decoder. The encoder aims to compress 

the original input data into a low-dimensional representation, the decoder tries to reconstruct the original input 

data based on the low-dimension representation generated by the encoder. As a result, the autoencoder is 

widely used to reduce the data dimension. These years, the autoencoder and its extensions demonstrate a 

promising ability to learn meaningful features from data for activity recognition (Chen, et al., 2017, Gu, et al., 

2015, Chikhaoui & Gouineau, 2017). Sparse filtering is an unsupervised feature learning algorithm designed 

to learn features which are sparsely activated without having the need to model the data’s distribution (Ngiam, 

et al., 2011). For each sample in feature space, only a small subset of features is activated to achieve 

population sparsity; each feature is only activated on a small subset of the samples to reach lifetime sparsity; 

and features are roughly activated equally often to attain high dispersal. Hahn, et al., 2015 present a neural 

network framework by combining sparse filtering model and locally competitive algorithms to demonstrate 

their network’s ability to classify human actions from video. Raja, et al., 2015 propose a feature extraction 

method based on deep sparse filtering to obtain robust features for unconstrained iris images. Other 

dimensionality reduction methods in HAR can be found from Álvarez-Meza, et al., 2017, Peng, et al., 2017, 

and Biagetti, et al., 2017.   
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2.6.2 Feature selection (FS) 

FS techniques, different to normal dimensionality reduction techniques (such as PCA), select a subset 

from a feature set without altering the original representation of the features (Guyon & Elisseeff, 2003). Thus, 

the selected features preserve the original semantics of the original features. An efficient feature selection can 

eliminate redundant features, simplify the model construction, provide the advantage of interpretability and 

enhance generation performance. A wide variety of feature selection methodologies have been proposed and 

applied in HAR. These methods can be classified into three groups based on their relationship with the 

inductive learning method for model construction, i.e., filter, wrapper and embedded.  

The filter methods, as the name suggests, are those FS algorithms which filter out irrelevant features by 

evaluating the relevance of a feature to the output using certain criteria, such as correlation, distance, 

information, consistency, similarity and statistical measures (Gheid & Challal, 2016, Dessì & Pes, 2015). A 

filter algorithm first ranks the original features based on its criteria, then selects the features with higher 

rankings. Filter methods are independent of any classifiers, thereby being more efficient. The typical 

examples of filter methods are Relief (Gupta & Dallas, 2014), Correlation-based Feature Selection (CFS) 

(Hemalatha & Vaidehi, 2013), Mutual information (MI)-based feature selection methods (Cang & Yu, 2012), 

Canonical Correlation Analysis (CCA) (Kaya, et al., 2014), etc. MI-based feature selection methods are a big 

family in filter methods, the algorithms in this family exploit the filter criteria based on MI which carries 

correlation between features. MI and its extensions include mRMR (Peng, et al., 2005), Joint Mutual 

Information (JMI) (Bennasar, et al., 2015), Conditional Mutual Information Maximum (CMIM) (Gao, et al., 

2016), Double Input Symmetrical Relevance (DISR) (Meyer & Bontempi, 2006) and so on. Whilst, MI-based 

feature selection (FS) methods share a common problem, i.e. in some ways it ignores the complementarity 

within a feature set or between features and the label, since MI considers the correlation in pairs. Unlike MI, 

CCA measures the linear relationship between two multidimensional by maximizing the correlation 

coefficients between them. CCA can be used as a feature selector. CCA and its extended FS algorithms 

include LSCCA (Kursun, et al., 2011), DCCA (Andrew, et al., 2013), MCR-CCA (Kaya, et al., 2014), etc. 

The wrapper methods select a subset of features with the most discriminating properties by using certain 

classifiers to evaluate the quality of a candidate feature, like SVM (Bolón-Canedo, et al., 2013) and neural 

networks (NNs) (Kabir, et al., 2010).  Given a predefined classifier, a typical wrapper goes through the 

following process: first it searches a subset of features; second, it evaluates the selected feature set by the 

https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwj7kKiW-s_LAhWESRoKHUu0BfoQFggiMAA&url=http%3A%2F%2Fwww.cs.waikato.ac.nz%2F%7Emhall%2Fthesis.pdf&usg=AFQjCNGOVUHl54Dn2-CuV4sDhEFBa_jjRQ&sig2=K8h3puPMzZUadCX-pC0k6A
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performance of the predefined classifier; finally, the process repeats until when the estimated accuracy of 

adding any feature is less than the estimated accuracy of the feature set already selected. The wrapper 

methods consider the features dependency and the interaction with a chaffier, thereby tending to offer a better 

result. Whilst, the wrapper methods are very computationally expensive since performance assessments with 

a classifier are generally done using a cross-validation (Wang, et al., 2005). Thus, the wrapper methods are 

rarely used.  

The embedded methods tend to take advantage of the merits of filter and wrapper methods by integrating 

feature selection into model learning (Li, et al., 2017). This can be implemented by regularization techniques 

which introduce additional constraints (feature coefficients) into the optimization (minimizing fitting errors) 

simultaneously. The most widely used embedded methods are Lasso (Li, et al., 2017) and Ridge regression 

(Liu, et al., 2015). LASSO, i.e.,⁡ℓ1-norm regularization, has the property for feature selection, which can force 

a number of feature coefficients to become smaller or exactly zero. And the features with large feature 

weights can be selected.  Li, et al., 2017 introduce group Lasso into their proposed distributed feature 

selection method to reduce the high dimensionality of data in the genetic study of Alzheimer’s disease. 

Similarly, Ridge performs  l2-norm regularization for feature selection (Huang, et al., 2015).  

Other feature selection methods, such as sparse representation, can refer to the works in Subrahmanya & 

Shin, 2010, Liu & Zhang, 2016 and Chu, et al., 2013. There is no rigorous boundary between feature 

dimensionality reduction and feature selection, research continues to support the claim that there is not a “best 

method” for all tasks (Gui, et al., 2017). The choice of the best feature set is usually with the aid of feature 

selection techniques or empirical evaluation of different combinations of features (Sani, et al., 2017).  

2.7 Classification algorithms  

Classification process must be done in order to recognize human activities. The role of classification is to 

interpret the input features and give a prediction of the observations (the activity) (Alpaydin, 2014). In terms 

of classification algorithms used for HAR, current techniques can be categorized into two types: conventional 

classification algorithms and deep learning algorithms. The conventional classification algorithms attempt to 

build a complete description of the input with a probabilistic model such as a Bayesian network or model the 

mapping from inputs (features) to outputs (activity labels) such as SVM (Chen, et al., 2012). The features 

used by conventional classification algorithms can be the hand-crafted and deep learned features.  Deep 

learning algorithms are the representation-learning methods with multiple layers of representation starting 
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from the raw data (LeCun, et al., 2015). Thereby, the features can be learned automatically through the 

network simultaneously with the process of modelling. The features used by deep learning algorithms can 

also be hand-crafted features.  

2.7.1 Conventional classification algorithms 

Following flowchart A shown in Fig.2, the features derived from raw sensor data are then fed to different 

classification algorithms for models constructing to classify data (e.g., the activities under consideration for 

HAR). The conventional classification algorithms in Fig.2 are generally categorized into two types: 

supervised and unsupervised. Supervised algorithms deal with labelled data and unsupervised algorithms 

draw inferences from datasets consisting of unlabelled input data. Supervised algorithms use training datasets 

to build models and test datasets to validate the models. Supervised classification is a very productive field 

and a large number of efficient and well-known algorithms come under this category. Some well-performed 

and well-known supervised algorithms are like Support Vector Machines (SVMs) (Mehrang, et al., 2017), 

Artificial Neural Network (ANN) (Khan, et al., 2014), Naïve Bayes (NB) (Mortazavi, et al., 2014), Decision 

trees (DT) (Mortazavi, et al., 2014), k-Nearest Neighbours (kNN) (Adaskevicius, 2014), Multiplayer 

Perceptron (MLP) (Bayat, et al., 2014), Random forest (RF) (Pavey, et al., 2017), etc. Atallah, et al., 2011 

present a framework investigating on the sensor placement and the corresponding relevance for activity 

recognition. The authors use kNN with different values of k to assess the effect of outlier points and a 

Bayesian classifier to model the data. Janidarmian, et al., 2017 conduct a comprehensive comparison among 

293 different classifiers, including DT, SVM, kNN, NB, etc., to find the best predictive model for diverse 

human activities. They first create the most complete dataset focusing on acceleration data and do an 

extensive feature extraction on data. PCA is then used for feature dimensionality reduction. The averaged 

accuracy achieves 96.44 ± 1.62% with k-fold cross validation and 79.92% ± 9.68% with subject-independent 

cross-validation. Experiment results demonstrate that kNN and its ensemble methods show stale results over 

different situations, followed by ANN and SVM. The authors conclude that the determination of parameters 

values in each classifier can have a significant impact on the classifier’s performance. They also state that 

certain factors, such as sensor position on body, clothing, body shape and accidental misplacements, hinder 

building a solid model for different activities. Mehrang, et al., 2017 investigate activity monitoring using a 

single wrist-worn device that is equipped with an optical heart rate sensor and a triaxial accelerometer. The 

authors apply RF and SVM to classify a variety of home-specific activities (sitting, standing, household, and 
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stationary cycling) performed by 20 male participants. Results of leave-one-subject-out cross-validation show 

89.2% and 85.6% average accuracies from RF and SVM, respectively.  

In unsupervised learning, all the sensor data are passed to the algorithm which automatically identifies 

certain number of states or data clusters, each of which may correspond to a particular activity. The most 

common unsupervised learning method is cluster analysis, which is used for exploratory data analysis to find 

hidden patterns or grouping of data. The clusters are modelled using a measure of similarity which is defined 

upon metrics such as Euclidean or probabilistic distance. Typical unsupervised learning algorithms include k-

Means (Kwon, et al., 2014), Gaussian mixture models (GMM) (Kwon, et al., 2014), Hidden Markov models 

(HMM) (Uslu, et al., 2013). Mannini & Sabatini, 2011 propose a cHMM-based sequential classifier for 

physical activity recognition, which is indicated to outperform the GMM classier they use for the same data 

(99.1% vs. 92.2%).  Kwon, et al., 2014 present an unsupervised learning using smartphone sensor to 

overcome the needs of generating training dataset and a number of activities extending in previous studies. 

Experimental results demonstrate the hierarchical clustering attains above 90% accuracy when k is unknown. 

Their proposed approach provides a new way of automatically selecting an appropriate value of k without the 

generating training datasets by hand. 

Some other studies combine different classification algorithms to cope with the limitations of them. 

Chernbumroong, et al., 2015 explore combining MLP, RBF and SVM classifiers and use GA to find the 

optimal combination between classifiers. Reiss, et al., 2015 propose a confidence-based boosting algorithm. 

Experimental results indicate their proposed method significantly outperforms other boosting algorithms on 

most of the benchmark datasets they used and especially for larger and complex classification tasks. 

 2.7.2 Deep learning algorithms 

The majority of the abovementioned classification algorithms rely on hand-crafted features as input 

(Flowchart A in Fig.2). Recent years have witnessed an area of machine learning techniques for HAR, e.g., 

deep learning-based networks, including CNN (Panwar, et al., 2017), RNN (Hammerla, et al., 2016), DBN 

(Hassan, et al., 2018), RBM (Plötz, et al., 2011), etc. Deep network can both learn deep features from raw 

sensor data and perform classification simultaneously (Wang, et al., 2017), as shown in Flowchart B in Fig.2. 

Many studies have showed the superior performance of deep learning in HAR. Lane & Georgiev, 2015 

investigate the question of whether deep learning techniques can address the accuracy, robustness and 

efficiency on mobile sensing. The authors apply DNN, DT and GMM on activity, emotion and speaker 
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recognition sensing tasks. Experiment setup considers the aspects of feasibility, scalability, cloud partitioning 

and so on, and their results provide some critical needs of the widespread adoption of sensing. Panwar, et al., 

2017 present a CCN-based generalized model for the recognition of three fundamental movements collected 

from a single wrist worn accelerometer sensor. The comparison study among their presented method and 

SVM, K-means, LDA demonstrate the former outperforms with an average recognition rate of 99.8%. Also, 

their CNN-based method can handle both the feature engineering and classifying. But the authors do not give 

the clue whether they use delicate hand-crafted features on the latter classifiers or only pick some hand-

crafted features at random. Um, et al., 2017 propose a 7- layer CNN structure for augmentation of wearable 

data for Parkinson’s disease monitoring. Ignatov, 2018 present a CNN-based deep network for online human 

activity recognition, their experimental results show the CNN augmented with statistical features produce 

significantly-improved performance. They also demonstrate their proposed shallow architecture can be 

executed on mobile phones in real time. Ravi, et al., 2016 also present an efficient implementation on mobile 

phones and the network they used is a shallow CNN structure. Suto, et al., 2017 mention in their other study 

that a simple ANN can perform better than complex CNNs in HAR, since they believe CNN can conduct 

feature extraction itself whereas the CNN may not substitute the feature extraction stage in conventional 

techniques. Collectively, how to effectively combine hand-crafted features, automatically learned features, 

conventional classification algorithms and deep learning algorithms are still worth investigation. Based on the 

discussions above, we summarise the characteristics of conventional and deep learning classification 

algorithms shown in Table 6. 

Table 6 Comparison of conventional and deep learning classification algorithms 

 Conventional  Deep learning 

Features Hand-crafted  

Dependent on domain knowledge 

Automatically learned  

Independent on domain knowledge 

Feature selection Needed  
No need 

Data pre-processing for deep networks are 

challenging 

Model building  
Model structure of a specific 

classifier is relatively fixed 

No universal deep networks for the tasks at 

hand 

Parameters setting 

and time cost 
Parameters are easy to determine, 

comparatively takes much less time 

to train 

A high number of hyper parameters are 

needed to tune, that training them takes 

longer 
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 3 Other two sensor modalities  

3.1 Ambient sensor-based HAR (ASHAR) 

Wearable sensor-based systems discussed in Section 2 have achieved wide applications in HAR due to the 

ease of deployment and use, low-cost and satisfied performance (Lara & Labrador, 2013, Cornacchia, et al., 

2017). However, WSHAR can only provide the recognition of specific activities without giving the ambient 

context. Typical ambient sensors can instead provide rich contextual information relating to human daily 

activities, and ambient sensor-based HAR (ASHAR) systems have also been widely used in HAR (Wilson & 

Atkeson, 2005, Tunca et al., 2014, Luo, et al., 2017). This paper pays more attention to WSHAR, therefore, 

the survey on other sensor modalities in this section is more compact compared to WSHAR. ASHAR systems 

identify human activities from the environment which is augmented with a variety of sensors, such as a door 

with a switch sensor, a kettle with object tags, a fridge with contact sensors, a floor with pressure sensors, a 

room mounted with motion sensors, etc., these sensors provide the user’s contextual information where they 

perform activities (Debes, et al., 2016, Mehr, et al., 2016, Tunca, et al., 2014). A wide range of ambient 

sensors are available and have been exploring for HAR, including cameras, light sensor, reed switch sensor, 

RFID, PIR, temperature, flow sensor, pressure sensor, etc. We summarise the most widely used ambient 

sensors in Table 7. These sensors have enabled of monitoring of the daily life with somewhat general tasks.  

3.1.1 Typical ambient sensor-based HAR    

Typical ASHAR systems here refer to the ASHAR systems without using cameras as sensors, which 

detect users’ activities by detecting if the user contacts the object attached with ambient sensors or by 

identifying whether the user enters the viewing range of one specific ambient sensor. For example, Tunca, et 

al., 2014 develop an Ambient Assisted Living (AAL) system to infer the users’ health and wellbeing status. A 

high number of sensors, including contact sensors, IR (infrared) receivers, sonar sensors, etc., are deployed in 

real environment settings. Kushwah, et al., 2015 present a multi-ambient-senor framework for indoor activity 

recognition. Their work focuses on dealing with the difficulty of identifying the events that occur in the same 

context where same set of sensors are activated during the occurrence. The authors use two smart home 

datasets in their experiments; one house is equipped with 14 digital sensors, such as toilet flush sensors, doors, 

refrigerator and cupboards location sensors, with five different activities collected, including Drink, Dinner, 
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Breakfast and so on; the other house is equipped with 21 sensors, with 15 activities recorded including 

Toileting, Showering, Drink, Brush teeth and so on.   

Luo, et al., 2017 propose a framework to solve the problem of the simultaneous tracking and activity 

recognition (STAR). They deploy the ceiling-mounted PIR sensor array in a room. The captured information, 

including location, speed and duration is fed to the proposed two-layer RF (Random Forest) algorithm for 

activity recognition. The experimental results are encouraging with the recognition accuracy of above 92% for 

five daily activities, i.e. walking, lying, sitting, standing and transitional activities. Yasmin van Kasteren, et al., 

2017 explore a routine-based approach for the interpretation of smart home sensor data, they only exploit PIR 

sensors and power use sensors located in the participants’ bathroom, lounge, bedroom and kitchen. They 

successfully record 180 days of sensor data coupled with the corresponding interview data from five 

participants’ instrumented homes. The findings from the longitudinal data demonstrate the potential of using 

the routines and the variation in routine to make a real-time monitoring, reliable alerts and the satisfaction of 

the persons being monitored.  PIR sensors are also used for gait assessment in Kaye, et al., 2012, the authors 

use a line of ceiling-attached passive infrared motion sensors for gait speed estimation and walking speed 

assessment from the pattern and time intervals of sensor firings. Castro, et al., 2017 present a system based on 

the Internet of Things (IoT) to HAR by monitoring vital signs remotely. The system is successfully 

implemented with a 95.83% success ratio for four pre-established categories (lie, sit, walk and jog).  

From the ASHAR studies given above, we can see that HAR systems deployed with typical ambient 

sensors are less obtrusive because the users do not need to wear any sensors. Whilst, these systems normally 

deploy a high number of ambient sensors at fixed locations in the environment, this will cause poor flexibility 

and complex sensor deployment. Also, ASHAR works in a limited area, which usually are less capable of 

identifying delicate actions (Debes, et al., 2016, Mehr, et al., 2016, Tunca, et al., 2014).     

3.1.2 Camera-based HAR (CHAR)    

The CHAR is an active field in computer vision. There are a variety of studies on activity recognition by 

cameras, in which visual information acquired from the cameras mounted in fixed locations inside building is 

utilized to match with the features extracted from action labels for activity recognition (Jalal et al., 2014, Jalal 

et al., 2017). This paper sees CHAR as ASHAR, since most CHAR systems deploy the cameras in the 

environment.  For example, Bian, et al., 2015 propose a robust fall detection approach by analysing the key 

joints tracked from a single depth camera.  Khan & Sohn, 2011 use one single camera to recognize six 
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different abnormal activities (headache, chest pain, forward fall, faint, backward fall and vomit). Binary 

silhouettes instead of depth silhouettes are extracted to minimize the privacy at the price of failing to 

distinguish different body parts. Jalal, et al., 2017 present a depth video-based novel method using robust 

multi-features and embedded Hidden Markov Models (HMMs), with the aim of providing a health care 

monitoring system to support independently living for older people. The multi-features are extracted from 

human depth silhouettes and joint body parts information. Experimental results demonstrate the significant 

recognition performance and potential applications for older and sick people.  

Due to the advances in 3D depth cameras, Kinect sensors (typically including infrared camera, infrared 

projector and microphone array) are deployed to detect the person’s full-body motion, facial recognition, 

voice recognition and so on. Mohamed, et al., 2012 develop a wireless sensor-based smart home, they explore 

Kinect sensors monitoring an older person or disabled person. Stone & Skubic, 2015 propose a two-step 

approach to detect falls for older people living at home by utilizing the Microsoft Kinect sensors. Phillips, et 

al., 2017 use Kinect sensors not only for gait change prediction but also the occurrence of future falls. They 

also process the Kinect depth images as silhouettes to protect privacy and embed the Kinect sensor on a small 

shelf above the front door to maximize the camera’s view of activity. Kinect sensor systems hold promise for 

unobtrusively monitoring while maintaining privacy and eliminating the burden of additional monitoring 

procedures. Deploying a Kinect sensor set in each room at home for daily activity recognition is also less 

affordable.   

Collectively, the significant advantage of camera-based monitoring systems is the contactless observation. 

And the rich information from images and videos is capable to detect verified activities (Mabrouk & 

Zagrouba, 2017). Whilst, sophisticated algorithms are normally needed to cope with arbitrary views of the 

pictures captured from cameras or complex contexts. This will cause huge time consumption. Meanwhile, it is 

difficult and less feasible to install cameras in all the places where older people are active. The recognition 

accuracy of such systems decreases because of variable lighting and other disturbances (Wang, et al., 2017). 

Also, the privacy concerns cannot be ignored, although the researchers have been trying to minimize the 

privacy by using the mini-dome and integrated cameras or exploring silhouettes instead of real pictures for 

activity recognition. CHAR systems are therefore more suitable for emergency, public safety surveillance, or 

scheduled meetings, instead of home-based daily monitoring 



36 
 

3.2 Hybrid sensory-based HAR (ASHAR) 

A HAR system normally uses a single sensor modality, i.e. wearable or ambient alone. Each sensor 

modality has its own strengths and limitations (as discussed in Section 2 and Section 3.1) and single sensor 

modalities sometimes cannot well cope with complex situations in practice. This lays the foundation for 

exploring hybrid sensory HAR systems. Different sensor modalities offer diverse information and varied 

performances for specific tasks. For example, cameras deliver precise and direct information while coupled 

with privacy issues or working in a constrained space defined by the camera position and settings; ambient 

sensors (such as the temperature or light sensor) can provide important contextual information, whilst this can 

only give limited information for activity detection; door switches and other binary sensors are inexpensive 

and easy to install, but the captured ambient information is simple and limited to detect high-level activities; 

the accelerometer, the gyroscope, and other wearable sensors are miniature-sized and can be flexibly worn on 

body to capture sufficient motion-related information, however, they cannot provide the contextual 

information and suffer the problem of arbitrary data caused by activities. Consequently, it is inappropriate to 

say which sensor modality is the best in an oversimplified way since different systems carry varied strengths 

and technologies targeting different applications unless we limit the task in a very specific range. Meanwhile, 

it is obvious that the combination of different sensor modalities can capture rich information of human 

activities. The following sections look into certain studies which combine different sensor modalities for 

HAR.   

3.2.1 CHAR/Audio plus WSHAR 

Pansiot, et al., 2007 present a sensor-fusion-based framework, in which an ear-worn accelerometer  and a 

vision sensor installed in the environment are combined to improve classification accuracy. Hayashi, et al., 

2015 investigate the combination of environmental sound and acceleration data using DNN for HAR. 

Experimental results demonstrate the effectiveness of their proposed method with an accuracy rate of 91.7% 

for nine different daily activities. Liu, et al., 2014a propose a hybrid sensor modality framework based on the 

probabilistic HMM classification for hand gesture recognition. Their framework fuses the data from an 

inertial sensor and a Kinect depth sensor. Their experimental results show that the accuracy can reach 93% 

after the data fusion while the performances of using the inertial sensor and the vision depth sensor 

individually are only 88% and 84%, respectively.  
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3.2.2 ASHAR plus WSHAR 

Stikic, et al., 2008 investigate the feasibility of integrating RFID into wearable accelerometers on the wrist 

when detecting users’ daily activities. Their experimental results present significantly improved recognition 

accuracy after sensor fusion. They utilize the number of activations from infrared sensors plus features 

extracted from the acceleration data as the input of the classifiers when combining the two-source data. Take 

active learning with 12.5% labelled data as examples in the study, the corresponding results are 60.6% ± 2.3%, 

42.3% ± 2.1% and 64.2 ± 1.9%, respectively, for acceleration, infra-red data and the combined data. Roy, et 

al., 2016 propose a hybrid approach to detect complex daily activities for multiple-inhabitant smart context by 

using wearable and ambient sensors, i.e., phone-carried inertial sensors and location measurement sensors. 

Experimental results on two separate smart home datasets demonstrate that their proposed method achieves 

the accuracy of 70%, which is improved by 30% compared to pure smartphone-based solutions. Wang, et al., 

2018 propose a hybrid sensory-based HAR system, which provides a more comprehensive and accurate 

activity monitoring for older people by combining the wrist-worn sensors and ambient-mounted PIR sensors.   

3.2.3 CHAR plus ASHAR plus WSHAR 

Diethe, et al., 2017 introduce using Bayesian models to tackle the challenges of fusion of heterogeneous 

sensor modalities. The multiple-sensor-modality data, including environmental data from PIR sensors, 

accelerometer data and video data, are  collected in the HealthCare in Residential Environment SPHERE 

house (Diethe, et al., 2014). The authors summarize that their proposed approach can identify the modalities 

for each particular activity and the features relevant to the activity simultaneously. Also, the results show how 

the approach fuses and separates the tasks of activity recognition and location prediction. Nakamura, et al., 

2010 present a collective framework which can monitor a user’s location and vitals (heart rate or blood 

pressure) by synchronizing wearable and ambient sensors.  

3.2.4 Data fusion between different sensor modalities  

Data fusion from different sensor modalities in hybrid sensory systems are found in different ways. For 

example, Liu, et al., 2014a fuse the data from inertial sensors and vision depth for gesture recognition by 

feeding the fused data to HMM classifier after synchronization. This is data-level fusion. In the work of 

Pansiot, et al., 2007, the data independently obtained from the ear-worn accelerometer and the wall mount 
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camera are pre-processed as features before they are fed to a Bayesian classifier, this is feature-level fusion. 

Similarly, Stikic, et al., 2008 use the number of activations of infrared sensors plus features extracted from the 

acceleration data as the input of the classifiers when combining the two-source data. In Liu, et al., 2014b, data 

from differing modality sensors are fed to a multi-HMM classification framework for hand gesture 

recognition. Each classifier generates its own likelihood probability and the maximum of which is considered 

to be the recognized gesture. This is decision-level fusion. How to fuse the data from multi-sensor modalities 

also depends on the task purpose of a hybrid system and it is worth investigating at different levels with 

diversified approaches. Following above discussion, we summarise the three sensor modalities in Table 8.  

 4 Performance evaluation and application of HAR 

4.1 Performance evaluation and criteria 

Evaluation of recognition performance of a HAR system is also crucial. Two typical approaches are normally 

found applied in HAR applications through literature review, i.e. k-fold-cross validation (Shinmura, 2014) 

and leave-one-subject-out (Vehtari, et al., 2017). The k-fold cross validation is a procedure used to estimate 

the performance of the model on unknown data (James, et al., 2013). The procedure 1): shuffles the dataset 

available randomly, 2): then splits the dataset into k folds of approximately equal size; 3): for each unique 

fold, take the fold as a hold out as the test data set; take one fold from the k-1 folds as the validation data set 

and the remaining k-2 folds as the training data set; 4:) fit the model on the training set and evaluate it on the 

valuation set; 5:) test the model with the highest evaluation score and discard the other models; and the test 

conducts k times. The results of a k-fold cross-validation run are often summarized with the mean of the k 

times’ test (Kuhn & Johnson, 2013). In practice, the k value must be chosen, for example, k is set as 2 in Hu, 

et al., 2014, 3 in Chavarriaga, et al., 2013, 5 in Hemalatha & Vaidehi, 2013, 8 in Kreil, et al., 2014, and 10 in 

Nam & Park, 2013. The value for k is common to fix to 5 or 10, since these values have been shown 

empirically yielding a model performance estimate with low bias and a modest variance (James, et al., 2013, 

Biswas, et al., 2014, Ignatov, 2018).  When k equals the number of subjects, the k-fold cross-validation is 

exactly the leave-one-subject-out cross-validation (Liu, et al., 2012), which means the models are trained on 

the data for all subjects except one in one round, and the data from the left-out subject is used for testing. This 

process is repeated for each subject and the averaged result across all the subjects is the final result (Biswas, 

et al., 2014, Gupta & Dallas, 2014). 
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Table 8 Summary of sensor modalities in HAR systems 

Sensor 

modality Description Sensor examples Case study  Advantages  Disadvantages 

WSHAR  

Recognizing human 

activities by mining the 

informative data from 

wearable sensors 

Accelerometer, gyroscope, heart 

rate, etc., built in a smartphone, 

band, watch, garment or other 

devices 

Laudanski, et al., 2015 

Sztyler, et al., 2017 
Miniature-sized, low-cost, 

flexibly worn on body, capture 

motion-related information 

Cannot provide the contextual 

information, suffer the problem of 

arbitrary data caused by activities 

ASHAR 

Inferring human activities 

from the sensors that are 

normally fixed in the 

environment  

Surveillance camera 
Phillips, et al., 2017 

Jalal et al., 2017 

Camera can give precise and 

direct information 

Privacy issues, expensive, working in 

a constrained space 

PIR, RFID, contact sensor, 

temperature sensor, humidity 

sensor etc. 

Luo, et al., 2017 

Tunca et al., 2014 

Mehr et al., 2016 

provide important contextual 

information, less obtrusive 

Limited information and working 

space, complex sensor deployment 

HSHAR 
Combining WSHAR and 

ASHAR for HAR 

Combination of vision and 

accelerometers, fusion of PIR 

sensors and accelerometers, etc. 

Hayashi, et al., 2015 

Diethe, et al., 2017 

Nakamura, et al., 2010 

Capture rich information and use 

the strengths of different sensor 

modalities 

Complex system structure and high 

cost, data fusion and synchronization   
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Classification accuracy is the most commonly adopted performance criterion in HAR, meanwhile, there 

exist other measures providing different views to understand a classification model especially for unbalanced 

data (Patil & Sherekar, 2013). And these criteria can be calculated from a confusion matrix. Confusion 

matrix, also known as an error matrix, is a specific matrix that allows visualization of the performance of a 

classification (James, et al., 2013). Each row in a confusion matrix represents the instances in an actual class 

while each column of the matrix represents the instances in a predicted class. The element Mij in a Mn×n 

matrix is the number of instances from class i that is recognized as class j actually. Mii represents the number 

of instances from class i that is actually classified as class i. Therefore, some particular values or 

performance indexes can be calculated easily from the confusion matrix including TP (true positives), TN 

(true negatives), FP (false positives), FN (false negatives), accuracy, precision, F-score and so on (Nweke, et 

al., 2018). Table 9 shows a basic two-class confusion matrix.    

The accuracy is widely used as a statistical measure of how well a classification test correctly identifies a 

condition (Kwon, et al., 2014). It is the proportion of true results (both true positives and true negatives) 

 

 

 

 

among the total number of cases examined, which is defined as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁⁡⁡
 

The precision, on the other hand, is defined as the proportion of the true positives against all the positive 

results (both true positives and false positives), which is also used as the metrics in many applications 

(Murao & Terada, 2014).  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

The recall, also called true positive rate, is the ratio of correctly classified positive instances to the total 

number of positive instances. In simple terms, high precision means that a classifier returns substantially 

more relevant results than irrelevant, while high recall means that a classifier returns most of the relevant 

results (Murao & Terada, 2014). 

        𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

Table 9 Confusion matrix 

Actual  

class 

Classified as 

c1 c2 

c1 TP FN 

c2 FP TN 
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F-measure, also called F-score, is a more comprehensive measure (Gjoreski and Gams 2011) compared to 

the aforementioned three ones, which combines the precision with the recall to compute the score and can be 

interpreted as a weighted average of the precision and recall, where an F score reaches its best value at 1 and 

worst score at 0. 

𝑭 −𝒎𝒆𝒂𝒔𝒖𝒓𝒆 =
𝟐 ∗ 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 ∗ 𝑹𝒆𝒄𝒂𝒍𝒍

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 + 𝑹𝒆𝒄𝒂𝒍𝒍
 

Other performance indexes, including receiver Operating Characteristic Curve, i.e. ROC curve, and Area 

Under Curve, i.e. AUC, can also be seen in associated studies. A ROC represents a relation between Recall 

and false positive rate (specificity). AUC refers to the area under the ROC curve. Both ROC and AUC are 

insensitive to imbalanced classes. The studies use AUC and/or ROC for their performance assessment can 

refer to Chavarriaga, et al., 2013, Cheng, et al., 2010, and Catal, et al., 2015.   

4.2 Applications of HAR in Health care 

The recognition of human activity is not always the final goal. It is usually adopted as a paramount step 

for a wide range of applications, such as fitness systems, e-health care, interactive games, sport performance 

surveillance, social physical interaction, factory workers monitoring (Kon, et al., 2017). The applications of 

HAR in assisted living mainly involve medical purposes and security concerns, the former focuses on 

monitoring patients with dementia, diabetes, obesity, arthritis or rehabilitation as an assistance diagnosis or 

treatment, and the latter highlights dealing with sports, entertainment, ADL, abnormal activities or safety.  

Certain typical WSHAR applications are as follows: Rodriguez-Martin, et al., 2013 utilize a waist-

attached accelerometer to identify the posture and posture transitions on healthy and Parkinson’s Disease 

(PD) volunteers. Shibuya, et al., 2015 use a gait analysis sensor set (including an accelerometer and two 

gyroscopes) for real-time fall detection. The sensor set is separately placed on the participant’s upper end of 

the pelvis and the T4 area on the back. Hammerla, et al., 2015 propose an assessment system, which can 

predict the disease state in PD patients by deploying a tri-axial accelerometer on each wrist of the 

participants. Khan, et al., 2017 use passive Wi-Fi sensing for respiration-related activity monitoring by 

detecting breath rate, with the potential application of stress levels and psychological states assessment. 

Pourbabaee, et al., 2017 focus on monitoring the patients with paroxysmal atrial fibrillation based on ECG 

time-series data from patient screening. Sathyanarayana, et al., 2016 investigate the prediction of sleep 
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quality by using deep learning methods based on a wrist-worn actigraphy, with the aim of exploring and 

improving eHealth solutions.  

We summarise other popular applications in ASHAR, WSHAR and HSHAR systems in Table 10 in 

terms of sensor modality, sensor type, sensor placement, features extracted, classification algorithms, 

performance, etc.    

 5 Open research problems and conclusion 

5.1 Research problems  

Research on HAR using different sensor modalities has made a significant progress in continuous 

monitoring, performance improvement, computation cost reduction, practicability enhancement and many 

other domains (Chernbumroong, et al., 2014, Jalal et al., 2017, Diethe, et al., 2017). Due to the progress 

achieved in HAR- based assistive technologies, people’s quality of life is being enhanced, especially those 

who may be physically or cognitively challenged. Nevertheless, concerns about HAR systems, including 

accuracy, robustness, user compliance, cost, intrusiveness, privacy and so on, make HAR still share many 

challenges.  

• Determination of the sensor modality for a specific task 

Ambient sensor-based systems are less obtrusive, whereas usually at the price of poor sensor flexibility 

and high cost (Tunca et al., 2014). The main concerns of using cameras at home for HAR are a high 

computation burden and privacy invasion (Jalal et al., 2017). As a promising way to realize HAR, wearable 

sensor-based HAR is low-cost, more flexible, and more practical for daily use (Cornacchia, et al., 2017). 

Whereas, the complex sensor deployment on body for achieving higher performance may impede the user 

performing normal activities, increase the cost and cause the feeling of being uncomfortable, bulky and 

obtrusive. Some existing studies explore combining two or three of sensor modalities for HAR with the aim 

of using each modality’s advantages and avoid their limitations (Roy, et al., 2016). We should consider the 

fact that a proportion of older people who have limited knowledge of information technology can have less 

comfort with complex assistive technologies. Designing, implementing and optimizing a HAR system to 

satisfy the needs of older people who seek to live as independently as they can in the comfort of their home 

is a research problem to tackle. 
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Table 10 Review of existing works in HAR based on sensor modality  

Sensor 

modality 
Sensor placement Sensor type Sampling rate 

(Hz) 
Window size  Feature Activities (#) # Subject (age) Classifier Performance Target & Ref. 

ASHAR 

Ceiling PIR arrays 15 1s Hand-

crafted 

Walking, lying, sitting, 

standing, transitional (5) 
3 (23 to 37) RF Accuracy:92% Location & ADL [1] 

In room Camera NAa NAa Hand-

crafted 

Faint, backward fall, chest 

pain, headache, etc. (6) 
6 HMM Accuracy:95.8% Abnormal activities [2] 

 

WSHAR 

One to 

One 

Waist Acc.1 40 3.2s Hand-

crafted 

Walking, bending, lying, 

etc. (11) 

31 healthy people, 

8 patients 

SVM-based Sensitivity: 97% (healthy) 

Sensitivity: 98% (patients) 

ADL & PD patients [3] 

Wrist Acc. 50 1.28s Deep 

features 

Lift cup to mouth, 

perform pouring, etc. (3) 
4 (20 to 40) CNN, K-means, LDA, 

SVM 
Accuracy:99.8% (CNN) Arm movements [4] 

Lower 

back 
Acc. 20 6.4s /12.8 s Hand-

crafted 

Walking, running, and 

cycling, etc. (20) 
20 (29 ±6) DT Accuracy:93% Indoor & outdoor 

activities [5] 

Multi to 

One 

Wrist 

Acc., Gyro.2, Tem.3, 

GPS, Humi.4, 

Pressure 

100 (Acc., 

Gyro) 

5 (Pressure) 

1 (others) 

2s Hand-

crafted 

Indoor to outdoor, lying 

on bed, Walking just, etc. 

(22) 

2 DNN Accuracy:90% ADL [6]  

Wrist Acc., Gyro. 50 2.56s Deep & 

hand-

crafted 

Standing, sitting, laying 

down, walking, etc. (6) 

30 (19 to 48) CNN, NB, J48, SVM, 

ANN 

Accuracy:95.75% ADL [7] 

One to 

Multi 

Lower 

limbs, 

ankle 

EMG 1024 1.5s 
Hand-

crafted 

Trip falls, stand-to-squat, 

stand-to-sit, walking, etc. 

(8) 

3 (24 to 26) 
FDA5, FMMNN6, GK-

FDA7, FCM8, GK-

SVM9 

Accuracy:97.35% (GK-SVM8) 

Sensitivity:98.70% (GK-FDA) ADL and falls [8] 

Wrist, 

thigh Acc. 100 NAb 
Deep & 

hand-

crafted 

Walking, jogging, sitting, 

etc. (6) 
34 (18 to 54) 

SVM, CNN, CNN-

SVM, CNN-kNN 

F1 score:0.85 (CNN-SVM, 

wrist) 

F1 score:0.967 (SVM, thigh) 

ADL [9] 

Multi to  

Multi 

Chest, 

thigh, 

ankle 

Acc., Gyro., Mag.10 6 1s 
Hand-

crafted 

Lying down, sitting, etc. 

(8) 
11 RF, SVM, J4812 Accuracy:96.6% ADL [10] 

Wrists, 

chest 

Acc., Gyro., Tem., 

light, Baro.11, HR13, 

altimeter,  

33 (Acc., Gyro) 

1 (others) 3.88 s 
Hand-

crafted 

Brushing teeth, feeding, 

wiping etc. (13) 
12 (73±4.41) SVM, MLP, RBF Accuracy:97% ADL [11] 

HSHAR 

Wrist, rooms PIR, Acc., Gyro., 

Mag. 

20 12.8s Hand-

crafted 

Wash, Mop, Lie, Stand, 

Falls, Watch, Walk (17) 
21 (60-75) SVM, RF Accuracy:98.56% (RF)  ADL [12] 

Room, pant pockets PIR, Acc., Gyro. 80 5s Hand-

crafted 

6: micro-activities  

6: macro-activities 
10 HMM Accuracy: ~70 % Smart environments [13] 

Ref: Reference  a NA: Not Applicable b NA: Not available 1 Acc.: Accelerometer 2 Gyro.: Gyroscope 3 Tem.: Temperature 4 Humi.: Humidity 5 FDA: Fisher Linear Discriminant Analysis 6 FMMNN: Fuzzy Min-Max Neural Network 7 GK-FDA: Gaussian Kernel Fisher Linear Discriminant Analysis 8 FCM: 

Fuzzy C-means algorithms   9 GK-SVM: Gaussian Kernel Support Vector Machine 10 Mag.: magnetometer 11 Baro.: Barometer 12J48: the implementation of decision tree algorithm in WEKA (:a suite of machine learning software written at the University of Waikato) 13 HR: Heart rate 

[1] Luo, et al., 2017  [2] Khan & Sohn, 2011 [3] Rodriguez-Martin, et al., 2013 [4] Panwar, et al., 2017 [5] Bonomi, et al., 2009 [6] Vepakomma, et al., 2015  [7] Ronao & Cho, 2016 [8] Xi, et al., 2017 [9] Sani, et al., 2017 [10] Gjoreski & Gams, 2011a [11] Chernbumroong, et al., 2014 [12]Wang, et al., 

2018 [13] Roy, et al., 2016 
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• Challenges of wrist-worn sensors 

It is less feasible to wear sensors on multiple body parts for daily use in WSHAR outside of a laboratory 

setting. On the contrary, a wrist-worn watch-like device with embedded sensors is more convenient and less 

obtrusive for daily wearing. Also, the wrist is a promising position to produce high accuracy as most activities 

are associated with wrist movements (Mannini, et al., 2013, Chernbumroong, et al., 2014, Biswas, et al., 2015, 

Mortazavi, et al., 2015). Whilst, one of the most significant challenges for wrist worn sensors is the sensor 

signals (especially acceleration) suffer high within-class variance due to the similar attributes regarding wrist 

movements (Chernbumroong, et al., 2013, Mortazavi, et al., 2015), which will lower recognition accuracy 

caused by some easily misclassified activities, such as brushing teeth and eating (feeding), wiping and ironing 

(Chernbumroong, et al., 2013). This imposes a challenge to activity monitoring using wrist-worn sensors. One 

way to overcome this challenge can be adding additional sensors to provide more sufficient information, the 

second can rely on feature learning from limited sensors, and another option can consider merging other sensor 

modality to relieve the requirements for wrist-worn sensors.   

• Less fully using sensors (feature extraction) 

It is common in WSHAR to use from one to seven and even more types of sensors for a specific task. 

Researchers prefer to acquire more diverse information through adding sensor types or sensor placing positions 

on body to improve performance (Gjoreski & Gams, 2011a, Cleland, et al., 2013, Sztyler, et al., 2017). These 

sensors are less fully used in some cases. For instance, a large number of studies exploit inertial sensors, i.e. 

accelerometer, gyroscope and magnetometer, but most of them only extract features from an individual sensor 

or multiple channels of a sensor, e.g., the mean of the acceleration readings along the x-axis, or the correlation 

between the x-axis and y-axis of the acceleration readings (Chernbumroong, et al., 2014, Gjoreski & Gams, 

2011a, Mortazavi, et al., 2014). The studies above all employ limited feature sets from the sensors they choose. 

Only a handful of studies try few roll, yaw or pitch-related features (Gjoreski & Gams, 2011b, Montalto, et al., 

2015) derived from multiple inertial sensors as features for activity recognition, as shown in Table 4.  

• Data fusion from multiple sensor modalities  

Data fusion of information from multiple (usually two) sensor modalities can be done in three different ways: 

a) data -level, b) feature-level and c) decision-level, as discussed in Section 3. Data-level fusion occurs at the 

data level where incoming raw data from different sensor modalities s are combined (Liu, et al., 2014a). 

Feature-level fusion involves carrying out data fusion after features are extracted from individual sensor 
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modalities (Pansiot, et al., 2007). Decision-level fusion involves fusing the decisions made by individual 

classifiers from the corresponding sensor modalities (Liu, et al., 2014b). More effective and practical fusion 

mechanisms between ambient and wearable sensor modalities still need to be investigated.  

• Hand-crafted features deep learned features, or both 

Hand-crafted features have been successfully applying in HAR applications (Li, et al., 2009, Wang, et al., 

2016, Hassan, et al., 2018). These years, deep learning approaches have been showing their superiority in 

automatically feature learning for HAR (Hammerla, et al., 2015, Sani, et al., 2017). The key advantages and 

disadvantages of hand-crafted features and deep learned features are briefly summarized in Table 5. Studies by 

Panwar, et al., 2017 and Sani, et al., 2017 report deep learned features which perform better than hand-crafted 

features in their tasks. Plötz, et al., 2011 and Kashif, et al., 2016 present that combining hand-crafted features to 

the deep learned features from raw data can help improve the detection accuracy of deep neural networks. 

Meanwhile, Khan & Yong, 2016 and Song, et al., 2016 indicate that the hand-crafted features outperform the 

deep learned features in their studies. Therefore, how to effectively use features for a HAR task is still 

challenging. To the best of our knowledge, very few researchers have investigated the performance of using 

deep networks learning deep features from hand-crafted features.   

5.2 Conclusion 

Sensor-based HAR systems have been achieving continuous progress.  Each sensor modality has its own 

strengths and weaknesses. Camera-based HAR deliver direct and precise information about HAR under 

monitored, whilst companied with privacy concerns for daily use and constrained function space caused by 

camera settings and installation position. Ambient senor-based HAR offer ambient context, but which usually 

provide limited information about human activity. Wearable sensor-based HAR is more flexible for long-term 

use and can provide rich motion information, however, which often suffer the problems, like arbitrary signal 

caused by the sensors worn on body parts. The hybrid sensory HAR which combines ambient and wearable 

sensor modalities can provide richer or complementary information from different sensors. Nevertheless, 

combination of different sensor modalities can also involve the problems, such as increasing the complexity of 

the system and costs, effective data fusion between different sensor modalities. The discussion above is also 

summarised in Table 8.   

This paper presents a survey on the wearable sensor modality centred HAR in health care, including the 

sensors used in HAR, the sensor placement on different body parts, the most common seen sensor platforms in 
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HAR, activities defined in this field, data segmentation, feature learning, classification, etc. Extracting effective 

features for identifying activities is a critical and challenging task. For the feature learning, we survey both the 

commonly used hand-crafted features and deep learned features using deep networks. Hand-crafted features are 

interpretable and have achieved great success in HAR. Nevertheless, there are no universal procedures for 

selecting appropriate features from hand-crafted features for a given human activity recognition system. Deep 

learned features are obtained, however, from raw data without any domain knowledge and can be used for 

classification simultaneously. Deep learning techniques have been developed and successful applied in 

recognition tasks. The pros and cons of hand-crafted and deep learned features in HAR are presented in Table 5. 

Meanwhile, there are some other studies giving certain interesting findings, e.g., the hand-crafted features 

outperform the deep learned features in the medical image field, or the combination of hand-crafted features 

with raw data produces better detection results than the results of raw intensities with a similar kind of CNN 

architecture. Consequently, the feature learning could depend on a task at hand. The survey also summaries the 

typical applications of HAR in healthcare and proposes some research challenges for further improvement.   
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