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Abstract

Corporate distress models typically only employ the numerical financial variables in the firms’ annual reports. We
develop a model that employs the unstructured textual data in the reports as well, namely the auditors’ reports and
managements’ statements. Our model consists of a convolutional recurrent neural network which, when concatenated
with the numerical financial variables, learns a descriptive representation of the text that is suited for corporate distress
prediction. We find that the unstructured data provides a statistically significant enhancement of the distress prediction
performance, in particular for large firms where accurate predictions are of the utmost importance. Furthermore, we
find that auditors’ reports are more informative than managements’ statements and that a joint model including both
managements’ statements and auditors’ reports displays no enhancement relative to a model including only auditors’
reports. Our model demonstrates a direct improvement over existing state-of-the-art models.

Keywords: corporate default prediction, discrete hazard models, convolutional neural networks, recurrent neural
networks

1. Introduction

Statistical corporate distress prediction is a binary
classification task that was pioneered by Altman (1968)
and Ohlson (1980) among others. They used a lim-
ited number of financial ratios as input and employed
simplistic models such as linear discriminant analysis
and logistic regression for the classification, where the
financial ratios enter the model in a linear combina-
tion. Since then a range of advanced statistical methods
(“machine learning”) have been applied to the problem
such as gradient boosting (e.g. Caruana and Niculescu-
Mizil (2006)) and neural networks (e.g. Atiya (2001);
Tsai and Wu (2008)) including convolutional neural net-
works (Hosaka (2019)). Traditionally, distress models
have only employed the numerical financial variables of
the firms’ annual reports, i.e. structured data. However,
annual reports also contain unstructured data in the form
of text segments (auditors’ reports and managements’
statements), which is potentially a rich source of infor-
mation for distress prediction.

∗Corresponding author
Email addresses: rma@nationalbanken.dk (Rastin Matin),

c.hansen@di.ku.dk, +4542802347 (Casper Hansen),
chrh@di.ku.dk, +4542482347 (Christian Hansen),
pim@nationalbanken.dk (Pia Mølgaard)

Since 2013 Danish regulators have required firms to
provide annual reports in the open data standard for fi-
nancial reporting known as eXtensible Business Report-
ing Language (XBRL) from which these two text seg-
ments can be easily extracted. Motivated by recent ad-
vances within natural language processing, we propose
a deep learning approach for predicting corporate dis-
tresses that incorporates these text segments in addition
to numerical financial variables. Using annual reports
of corporate firms in Denmark from 2013 to 2016, cor-
responding to a total of 278 047 firm years, our tests
reveal that the auditors’ reports, and to a lesser extent
the managements’ statements, increase the prediction
accuracy compared to common state-of-the-art baseline
classifiers that are based solely on structured data. This
demonstrates that the unstructured data contains a sig-
nal that can enhance corporate distress prediction mod-
els. The readily availability of the data makes this study
particularly valuable as current state-of-the-art can be
augmented straightforwardly.

We investigate a model employing auditors’ reports,
a model employing managements’ statement, and a
model employing both auditors’ reports and manage-
ments’ statements. For each of the three models, we
first apply standard preprocessing techniques to the text
followed by pattern extraction and recognition by using
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a convolutional recurrent neural network. The output
from the convolutional recurrent neural network is then
concatenated with numerical financial variables and the
final model is estimated using two fully-connected lay-
ers. Our models further utilize an attention mechanism,
which increases the model interpretability by being able
to highlight words that are important for the final predic-
tion.

We compare performance of these three models
to three competitive distress prediction models based
solely on the structured data: A logistic regression, gra-
dient boosted trees, and a neural network with the same
architecture as the network that employs text. The mod-
els employing text outperform all other models. Specif-
ically, we find that including the auditors’ reports, man-
agements’ statements, and both text segments in the
neural network improves prediction accuracy measured
by AUC by 1.9, 1.1, and 1.8 percentage points, respec-
tively. The performance of the model including audi-
tors’ reports is significantly better than that of the model
including managements’ statements, demonstrating that
the auditors’ reports are more informative. Including
both text segments yields the same results as includ-
ing only auditors’ reports, illustrating that, in our sam-
ple, managements’ statements do not contain informa-
tion useful for distress predictions beyond what is al-
ready contained in the auditors’ reports. Finally, we
run the same analysis on a subsample of large firms
which comprise 95% of the debt in the economy, and
find even stronger model enhancements when including
auditors’ reports. Given that the test is done on Dan-
ish data, and that Denmark is a relatively small econ-
omy, we believe that the gain from our textual analy-
sis should be viewed as a lower bound relative to other
larger economies, where greater amounts of data allow
for improved model training, especially for data hungry
models such as neural networks.

In the following section we review related works. The
data and methods are described in Sections 3 and 4,
respectively, and in Section 5 we demonstrate the ap-
plicability of our method in predicting corporate dis-
tresses. In Section 6 we illustrate heat maps of selected
word blocks, and we draw conclusions and outline fu-
ture work in Section 7.

2. Literature Review

Traditionally, textual analysis in financial research
has consisted of simple semantic analysis based on word
counts (see Loughran and McDonald (2011) and refer-
ences herein). A recent example of this is Buehlmaier
and Whited (2018) who use a naïve Bayes algorithm

to model the probability of firms being financially con-
strained by using the word count in each management’s
statement as input.

A small string of literature most related to our work
is dedicated to textual analysis in corporate distress pre-
diction. Hájek and Olej (2013) categorize annual re-
ports into six different semantic categories based on spe-
cific words found in the text. They then show, using a
variety of models, that sentiment indicators improve the
models’ ability to predict corporate distress. Rönnqvist
and Sarlin (2017) develop a deep learning model to an-
alyze financial news with the aim of identifying finan-
cial institutions in distress, and Cerchiello et al. (2017)
generalize the model to include numerical financial vari-
ables as well.

We add to the work of Hájek and Olej (2013) by ap-
plying a highly data-driven methodology for text pro-
cessing based on deep learning, thereby allowing us
to learn a deeper representation of the text and extract
a stronger signal. Furthermore, we provide insight to
which specific text segments of the annual reports con-
tain information most relevant for distress prediction by
examining auditors’ reports and managements’ state-
ments separately. This data-driven methodology for
textual analysis is close to that of Rönnqvist and Sarlin
(2017) and Cerchiello et al. (2017). However, we learn
the textual representation end-to-end, compared to Cer-
chiello et al. (2017) who first learn a representation of
the text, unrelated to the specific task, and then use it to-
gether with numerical financial variables. Our approach
enables the textual representation to look for signals in
the reports which are important for the task of distress
prediction. Furthermore, we base our analysis on annual
reports which are homogeneous across firms, whereas
news articles tend to focus on specific stories which the
public finds interesting.

More thoroughly studied is the concept of distress
modelling using neural networks and other machine
learning techniques based solely on numerical financial
variables (see e.g. Jones et al. (2017); Sun et al. (2017,
2014); Zięba et al. (2016)). The existing literature tends
to find that tree-based algorithms, i.e. random forest
and gradient boosted trees, outperform neural networks
when only numerical financial variables are included in
the models. Hence, we benchmark our model against
not only a neural network, but also state-of-the-art gra-
dient boosted trees in addition to a more traditional lo-
gistic regression model.
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3. Data

Our data set is based on the data used in Christof-
fersen et al. (2018). It consists of non-consolidated an-
nual reports filed by all Danish non-financial and non-
holding private limited and stock-based firms. This data
is augmented with firm characteristics such as age, sec-
tor, and legal status from the Danish Central Business
Register. In total the data set consists of the 50 numeri-
cal financial variables (44 continuous and 6 categorical)
listed in Table 1. The list follows from application of a
thresholded Lasso and the numerical variables are win-
sorized at 5% and 95% quantiles for enhanced perfor-
mance (Christoffersen et al. (2018)).

We further include the auditors’ reports and man-
agements’ statements found within the very same an-
nual reports. The management’s statement describes
the management’s opinion on the given fiscal year and
its outlook on the firm’s future. The auditor’s report
consists of several paragraphs, where the (presumably)
most important for distress prediction contains the au-
ditor’s opinion of the annual report and summarizes the
financial health of the firm. In this section the auditor
will explicitly state any concerns regarding the contin-
ued operation of the firm or any disagreements with the
management’s statement. We include all available para-
graphs of these two text segments in our model.

We formally seek to model the probability of a given
firm entering into distress, where “distress” refers to “in
bankruptcy”, “bankrupt”, “in compulsory dissolution”,
or “ceased to exist following compulsory dissolution”.
Firms that cease to exist due to other reasons and firms
that enter into distress more than two years after the last
annual report is made public are excluded from our sam-
ple.

Our sample period starts in 2013, which marks the
point in time where statements are available in the
XBRL-format1. The sample ends in 2016, and marks
the last year where we can observe realized distresses.
As of 2006 small and newly established firms in Den-
mark are not required by law to include an auditor’s
report in their annual report.2 As we want to directly
compare the model when employing either or both of
the two text segments, we therefore limit our data set to
statements that contain both a management’s statement
and an auditor’s report. This constraint removes 88 343
firm years from the data set (corresponding to 24.1%)

1Extracted data is delivered to us by Bisnode.
2We refer to the Danish Commerce and Companies Agency for

details.

and our final data set contains 278 047 firm years across
112 974 unique firms and 8 033 distresses.3

The 25%, 50% and 75% percentiles of the manage-
ments’ statements and the auditors’ reports are 37, 54,
and 83 words and 187, 205, and 219 words, respectively.
The greater length of the auditors’ reports may not nec-
essarily imply more relevant information, as auditors’
reports typically contain standardized paragraphs that
describe the responsibilities of the auditor and summa-
rize the accounting practices.

3.1. Text Preprocessing

To preprocess the unstructured data we apply the fol-
lowing five steps to the auditor’s report and manage-
ment’s statement of each annual report:

1. Remove punctuation marks, newlines and tabs and
convert to lowercase.

2. Apply the Porter stemming algorithm (Porter,
2001) with the NLTK library (Bird et al., 2009)
to obtain the word stems and enable words to be
evaluated in their canonical forms.

3. Remove stop words including numbers (i.e. dates
and amounts of money) in order to avoid overfit-
ting the network to a particular format. Numbers
are replaced by a generic number token.

4. Perform named-entity recognition using spaCy
(Honnibal and Montani, 2017) in order to strip the
text of any names and entities that may lead to
overfitting in the training process and reduce gen-
eralizability.

5. During construction of the vocabulary we ignore
words that have less than 25 occurrences across the
entire data set.

Steps 1, 2, and 3 are considered standard procedures
with the purpose of reducing unique tokens in the text
in order to reduce the variability across the reports. The
purpose of steps 4 and 5 is to create a model that gen-
eralizes well by removing all names and entities from
the texts. The aim is to prevent the model from overfit-
ting to certain characteristics such as firm names, au-
ditor names, and locations. The pruning of low fre-
quency words (step 5) is done explicitly as Danish word
embeddings are trained on only a dump of the Danish
Wikipedia, and rare words are therefore not represented
well.

3Our distress definition implies that firms can enter into distress
multiple times. In our sample, 47 of the distresses are such recurrent
events.
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Type Input variable
Continuous Accounts payable∗

Accounts receivable∗

Change in log size
Corporation tax∗

Current assets∗

Deferred tax∗

Depreciation∗

EBIT∗

Equity/invested capital
Equity∗

Expected dividends∗

Financial assets∗

Financial income∗

Financing costs∗

Fixed costs∗

Ind. EW avg. net profit∗

Interest coverage ratio
Inventory∗

Invested capital∗

Land and buildings∗

Liquid assets∗

log(age)
log(size)
Long-term bank debt∗

Long-term debt∗

Long-term mortgage debt∗

Net profit∗

Other operating expenses∗

Other receivables∗

Other short debts∗

Personnel costs∗

Prepayments∗

Provisions∗

Quick ratio
Receivables from related parties∗

Relative debt change
Retained earnings∗

Return on equity (%)
Short-term bank debt∗

Short-term mortgage debt∗

Tangible fixed assets∗

Tax expenses∗

Total receivables∗

Categorical Has prior distress
Is private limited (Danish “Anpartsselskab”)
Large debt change
Negative equity
Region
Sector

Table 1: Numerical financial variables and their type (continuous
or categorical). The table lists the 50 numerical financial variables
included in the models. An asterisk denotes scaling by the firm size,
which is defined as the total debt of the firm when equity is negative
and otherwise total assets. We refer to Christoffersen et al. (2018)
for the definition of each variable and details regarding the variable
selection procedure.

4. Models for Corporate Distress Prediction

In this section we first describe our network archi-
tecture for predicting corporate distresses, which incor-
porates either or both of the two text segments in ad-
dition to numerical financial variables, followed by an
overview of the competitive baseline models used for
comparison in the experimental evaluation.

4.1. Main Model
We first provide an overview of our model in order to

improve the understanding of its individual parts:

Word Representation: We use word embeddings to
map each word of a text segment into a dense vec-
tor in a feature space, where semantically similar
words are close to each other. Using this we split
the given text segment into half-overlapping blocks
of words.

Pattern Extraction: Using the embedded word blocks
we utilize a convolutional neural network (CNN)
to extract patterns from each block and learn a
lower dimensional representation.

Pattern Understanding: The pattern output from the
CNN is fed to a recurrent neural network (RNN),
and the final text representation is calculated as an
attention-weighted sum of the individual RNN out-
puts.

Feature Extensions and Prediction: We concatenate
the attention-weighted sum with the numerical
variables listed in Table 1 and feed it through two
fully-connected layers to arrive at the final corpo-
rate distress probability prediction.

In the following we will explain in detail the individual
parts, and we refer to Figure 1 for a visual description
of the network architecture.

4.1.1. Word Representation
We choose to represent the semantics of each word

through state-of-the-art word embeddings, which is a
mapping from a word to a dense vector representa-
tion, where semantically similar words are close to each
other. We use the word2vec model (Mikolov et al.,
2013), specifically the skip-gram model. The objective
of the skip-gram model is for a word to be able to pre-
dict its surrounding words. For a sequence of words
w1,w2, ...,wn we maximize the log probability p

max
1
n

n

∑
t=1

c

∑
j=−c, j 6=0

log p(wt+ j|wt) (1)
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where c denotes the number of words before and af-
ter the current word to consider, which is fixed to 5
in this paper. Negative sampling is used to compute
log p and the words are sub-sampled proportional to
their inverse frequency. In word2vec semantically sim-
ilar words have a high cosine similarity between them
and allows for vector calculation of words such that e.g.
king−man+woman is very close to queen. We do
not learn the word embedding from scratch, but rather
exploit a model4 pre-trained on a dump from the Danish
Wikipedia, and fine-tune it during network training.

To prepare a given text segment of an annual report
for the CNN in the next step, we create half-overlapping
blocks of words with a step size of k, such that the first
block consists of word w1,w2, ...,wk and the next block
of wk/2,wk/2+1, ...,wk/2+k. If the word embedding maps
to vectors in Rv, then each of these blocks B are a matrix
of size k× v, where v = 300 in our setup. We consider
these embedded word blocks the input to our model,
and the CNN in the next step will extract patterns from
these.

4.1.2. Pattern Extraction
For each block B we apply a single-layer CNN con-

sisting of a convolution and a max-pooling step. The
purpose of the convolution is to extract matching pat-
terns between learned filters and the embedded word
block in order to learn a representation that is able to
infer which patterns are important for the distress pre-
diction task. We learn m filters from a block B, where
each filter generates a new representation x, i.e. we end
up with x(p) representations for p ∈ {1,2, . . . ,m}. The
ith entry in x(p) is given by

x(p)
i =

γ−1

∑
s=0

v−1

∑
j=0

W (p)
s, j Bi+s, j (2)

where γ denotes the number of words considered in the
filter (should be less than k), v denotes the size of the
word embedding, and W is a learned parameter of size
γ × v. The filter is only applied when it is not out of
bounds, resulting in x(p) being a vector of size k−γ +1.

Each x(p) is then max-pooled to provide a smooth sig-
nal. We denote a max-pooled vector x(p) as z(p), where
the ith entry is given by

z(p)
i = maxx(p)

s , s ∈
[
i, i+ τ−1

]
(3)

where τ denotes the pool size. The max-pooling is only
applied when it is not out of bounds, resulting in z(p)

4https://github.com/Kyubyong/wordvectors

having the size k−γ−τ +2. Finally, the results of each
filter are concatenated, yielding a final vector represen-
tation z for each block of size (k− γ− τ +2)×m.

4.1.3. Pattern Understanding
To be able to learn the semantics and sequential

nature of the text as a whole, we use an RNN on
the block representations we derived in the previous
section. Specifically, we employ a Long Short-Term
Memory (LSTM) network (Hochreiter and Schmidhu-
ber, 1997) on the block representations {z1,z2, ...,zT},
where T refers to the number of blocks the text segment
of the annual report is divided into. At a given step t,
an LSTM cell takes three inputs: The tth word block
representation zt , the previous output ht−1, and the pre-
vious cell state ct−1. The cell then computes ht and ct
by doing the following

ft = σ
(
Wf · [ht−1,zt ]+b f

)
(4)

it = σ
(
Wi · [ht−1,zt ]+bi

)
(5)

ut = tanh
(
Wu · [ht−1,zt ]+bu

)
(6)

ot = σ
(
Wo · [ht−1,zt ]+bo

)
(7)

ct = ft � ct−1 + it �ut (8)
ht = ot � tanhct (9)

where σ and tanh are element-wise sigmoid and hyper-
bolic tangent functions, � is element-wise multiplica-
tion, all W and b are learned parameters, and ft , it , ot
are known as the forget, input and output gates of the
LSTM cell.

Instead of using the output at the final step hT , we
use an attention-weighted sum of the step-wise outputs.
Specifically, for each ht we learn a scalar score(ht) that
signifies the importance of that specific ht . The score
is computed using a single layer of size 1 with a linear
activation. We use the softmax-function to normalize
each scalar to derive each attention weight αt

αt =
exp(score(ht))

∑
T
i=1 exp(score(hi))

(10)

We can then derive the final attention-weighted textual
representation by the weighted sum

hfinal =
T

∑
t=1

αtht (11)

The benefit of using attention is to enable the model to
focus its attention on fewer, but more important, parts
of the text to learn a better descriptive representation
(Zhang et al., 2018). Additionally, it enables an im-
proved gradient flow in longer texts, such as the ones
we work with in this paper.

5
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4.1.4. Feature Extension and Prediction
We now have a dense textual representation, hfinal,

which we concatenate with the numerical variables hnum
of Table 1, yielding a vector hconcat with a length equal
to the sum of the number of handcrafted features and
LSTM cell size. This concatenated representation is
passed through two fully-connected layers of size 200
and 50 with a single neuron layer as the last step with
a sigmoid activation. This is to allow the textual repre-
sentation to interact with the numerical variables before
doing the final prediction. The two layers of size 200
and 50 use the rectified linear unit (ReLU) activation
function

hconcat = [hfinal,hnum] (12)

l1 = ReLU
(
W1 ·hfinal +b1) (13)

l2 = ReLU
(
W2 · l1 +b2) (14)

PD = σ
(
W3 · l2 +b3

)
(15)

where PD denotes the predicted distress probability. We
train the network using the Adam optimizer (Kingma
and Ba, 2014) and use the binary cross-entropy as the
loss function. We will detail the parameters of the cross-
validated network configuration in Section 4.2.

It is well known that neural networks are susceptible
to overfitting (Gu et al., 2018). As a way of regularizing
the training process we set aside 10% of the training
set as a validation. The validation set is used for early
stopping, i.e. we terminate the gradient descent when
the network starts to overfit.

4.2. Parameter Tuning in the Main Model

We tune the neural network5 using cross-validation
over the hyperparameter space. For the convolutional
neural network we consider block sizes in the set
{10,15,20}, number of filters in {40,60}, and pool
sizes in {2,4,6}. For the recurrent neural network we
consider LSTM cell sizes in {50,100,150}. Lastly, we
consider learning rates in {10−3,10−4}. We run for
a maximum of 10 epochs which, however, was never
reached due to early stopping and use a batch size of 64
due to memory constraints. We observe that the results6

are robust across this set of parameters to within one
standard error for both text segments. Consequently, we
use typical values in our models. For the convolutional
neural network this means a block size of k = 20 and

5We implemented the neural models in TensorFlow (Abadi et al.,
2016).

6AUC, described in Section 5.1, is used as the performance metric
during parameter-tuning.

m = 40 filters with a pool size of τ = 4. The recurrent
neural network uses an LSTM with a cell size of 100,
and we employ a learning rate of 10−3. We set γ (num-
ber of words to convolve over) to half the block size, i.e.
γ = 10. The results of the grid search are illustrated in
Figure A.1 of the Appendix for both text segments.

4.3. Baseline Models

We implement three baseline models based solely
on the numerical financial variables, against which we
benchmark our main model.

First, we implement a neural network based on the
same architecture as our main model, but where the text-
ual component is not included. That is, the model con-
sists of the two top dense layers in Figure 1. This model
serves as a natural benchmark as it will reveal the im-
pact of the text segments on the prediction accuracy.

Secondly, we implement a model based on gradient
boosted trees, specifically XGBoost (XGB) (Chen and
Guestrin, 2016), which typically performs better than
neural networks for predicting corporate bankruptcies
(Jones et al., 2017; Zięba et al., 2016). It is an ensem-
ble technique which recursively combines multiple rel-
atively simple models, so-called (weak) base learners
which consist of regression trees, to produce a highly
accurate prediction rule.

Finally, we implement a logistic regression (logit)
which is a relatively simple, yet very common, choice
for distress models (see e.g. Beaver et al. (2005); Camp-
bell et al. (2008); Chava and Jarrow (2004); Shumway
(2001)).

5. Experimental Evaluation

5.1. Evaluation Measures

We quantify model performance using two metrics,
AUC and log score. The AUC (Area Under the re-
ceiver operating characteristics Curve) is a commonly
used metric in distress prediction models. It measures
the probability that a model places a higher risk on a
random firm that experiences a distress event in a given
year than a random firm that does not experience a dis-
tress event in a given year. Hence, 0.5 is random guess-
ing and 1 is a perfect result.

AUC is only a ranking measure; a model may rank
the firms well, but perform poorly in terms of the level
of the predicted probabilities. Generally, we are inter-
ested in well-calibrated probabilities in addition to their
ranking. Thus, we look at the log score as well which

6
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wordk
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CNN
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CNN
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CNN
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Dense (50)

Distress
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Figure 1: Network architecture.

takes into account the individual predicted probabilities.
The log score, L , for a given model is defined as

L =− 1
N ∑

i,t
(yit log(p̂it)+(1− yit) log(1− p̂it)) (16)

where p̂it is the model-predicted distress probability of
firm i in year t, yit is a dummy that is equal to 1 if firm
i enters into distress in year t and 0 otherwise, and N
is the sample size. A smaller log score implies a better
model fit.

5.2. Main Results

This section presents the main results of the out-of-
sample tests of our models. We use 10-fold cross-
validation, where the folds are constructed by sampling
firms. Ideally, we would have used an expanding win-
dow of data to estimate the models and forecast the
probability of the firms entering into distress two years
after the estimation window closes, thereby mimicking

the true forecasting situation. However, this forecast-
ing scheme is not viable in the current study due to the
limited number of years in our data set.

The average AUC and log score across folds with
one standard error bands are shown in Figure 2, where
the neural network without text is denoted NN and
the neural networks with text are denoted NNaud + man,
NNaud, and NNman depending on the text segments in-
cluded in the model (aud refers to auditor’s report and
man to the management’s statement). This nomencla-
ture will be used for the remainder of the paper. We
observe that the neural networks with text have higher
AUC and smaller log score than all baseline models.
That is, the models with text are both better at ranking
firms by their riskiness and provide better model fits in
general.

The results of Figure 2 are furthermore summa-
rized in Table 2 alongside p-values from a paired two-
tailed t-test comparing results of each baseline model to

7



NNaud+man NNaud NNman XGB NN Logit
0.81

0.82

0.83

0.84

0.85

〈A
U

C
〉

0.105

0.110

0.115

〈L
〉

Figure 2: Average AUC and log score. The figure shows average
AUC ( left axis) and average log score ( right axis) with one stan-
dard error band for each of the six models. Averages and standard
errors are calculated based on 10 folds, which are constructed by sam-
pling firms.

NNaud + man, NNaud, and NNman, respectively. A statisti-
cally significant improvement is observed in the models
with text relative to any of the baseline models, both
when it comes to AUC and log score. Specifically,
we find that including auditors’ reports, managements’
statements, and both in the neural network increases the
AUC by 1.9, 1.1, and 1.8 percentage points, respec-
tively. That is, both the auditors’ reports and the man-
agements’ statements have significant predictive power
beyond what is captured by the numerical financial vari-
ables themselves.

The AUC and log score of NNaud is significantly
better than that of NNman, i.e. the auditors’ reports
contain more valuable information than the manage-
ments’ statements. There can be several explanations
for that. First, the auditors’ reports are longer, enabling
the neural network to learn a better representation of
the text. Secondly, and more importantly, the man-
agement’s statement about its own business is likely to
be less objective and biased towards a brighter outlook
on the future, whereas the independent auditor’s report
contains the auditor’s unbiased professional opinion.
Interestingly, there is no significant difference between
NNaud and NNaud+man. If anything, there is a small ten-
dency for NNaud to perform better than NNaud+man. This
finding implies that, though there is information in the
managements’ statements which is not captured by the
financial variables, all information in the managements’
statements is captured by the auditors’ reports. Hence,
it might be preferable to focus only on the auditors’ re-
ports and leave out the managements’ statements in fu-
ture work.

Model 〈AUC〉 paud+man paud pman
NNaud+man 0.843 – – –
NNaud 0.844 0.233 – –
NNman 0.836 0.000 0.000 –
XGB 0.830 0.000 0.000 0.003
NN 0.825 0.000 0.000 0.000
Logit 0.814 0.000 0.000 0.000

(a) AUC

Model 〈L 〉 paud+man paud pman
NNaud+man 0.1070 – – –
NNaud 0.1064 0.4263 – –
NNman 0.1078 0.1471 0.0032 –
XGB 0.1085 0.0643 0.0001 0.0372
NN 0.1098 0.0005 0.0000 0.0001
Logit 0.1110 0.0001 0.0000 0.0000

(b) Log score L

Table 2: Average AUC and log score. The table shows (a) average
AUC and (b) average log score, where paud+man, paud, and pman de-
note p-values from a paired two-tailed t-test between the scores of the
current model and the three models including text. Averages and stan-
dard errors are calculated based on 10 folds, which are constructed by
sampling firms.

5.3. Results for Large Firms

We repeat the above test, but only include firms of
a size7 greater than 5 million DKK. These firms cor-
respond to only 35.4% of the sample size, but 95.4%
of the total debt. It is of greater interest to quantify the
performance among these dominating firms as they hold
the majority of the total assets and debt in the economy.
Model estimation is still done on the full sample.

The results are summarized in Table 3, and we ob-
serve that all models yield better AUC and log score
compared to the previous experiment. This is not sur-
prising as large firms likely provide more accurate an-
nual reports which lead to more accurate model pre-
dictions.8 Interestingly, the AUC now increases by 2.6
percentage points when adding auditors’ reports to the
neural network, where the increase was 1.9 percentage
points in the previous experiment. We speculate that this
is due to the auditors’ reports of the larger firms being of
a higher quality and more informative, implying that the
neural network can extract more information from them.

7Cf. Table 1 we define firm size as the total debt of the firm when
equity is negative and otherwise total assets.

8The large drop in log score can also in part be due to a smaller
distress rate among large firms. The change in the composition of the
outcome variable will by construction reduce the log score.
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On the contrary, we do not see an increased enhance-
ment in AUC when it comes to the managements’ state-
ments, and the difference in AUC between XGB and
NNman is now insignificant. This highlights that there is
information to be extracted from the auditors’ reports,
in particular when it comes to large firms, whereas the
managements’ statements are less informative. The loss
of significance is possibly caused by the smaller sample
size, resulting in more extreme values of the individual
folds.

Model 〈AUC〉 paud+man paud pman
NNaud+man 0.877 – – –
NNaud 0.879 0.562 – –
NNman 0.864 0.013 0.004 –
XGB 0.860 0.000 0.000 0.290
NN 0.853 0.000 0.000 0.002
Logit 0.834 0.000 0.000 0.000

(a) AUC

Model 〈L 〉 paud+man paud pman
NNaud+man 0.0611 – – –
NNaud 0.0611 0.9815 – –
NNman 0.0627 0.0551 0.0095 –
XGB 0.0629 0.0085 0.0127 0.6588
NN 0.0640 0.0036 0.0001 0.0046
Logit 0.0657 0.0000 0.0001 0.0002

(b) Log score L

Table 3: Average AUC and log score of large firms. The table
shows (a) average AUC and (b) average log score, where paud+man,
paud, and pman denote p-values from a paired two-tailed t-test between
the scores of the current model and the three models including text.
Averages and standard errors are calculated based on 10 folds, which
are constructed by sampling firms larger than 5 million DKK.

5.4. Robustness: Sampling Across Time

In order to ensure that the observed signal in the text
is not merely a result of a particular fold composition
where we accidentally gauge a proxy for a temporal ef-
fect, we also perform a robustness test where we explic-
itly construct folds based on the publication year of the
annual reports. This gives four folds in total. The results
of this experiment are summarized in Table 4, and the
scores display the same tendency as in Table 2, further
validating the results. The slightly larger p-values can
be attributed the smaller number of folds in this experi-
ment, resulting in a weaker statistical test.

Model 〈AUC〉 paud+man paud pman
NNaud+man 0.843 – – –
NNaud 0.842 0.299 – –
NNman 0.830 0.003 0.014 –
XGB 0.826 0.001 0.006 0.175
NN 0.822 0.001 0.004 0.054
Logit 0.814 0.000 0.001 0.009

(a) AUC

Model 〈L 〉 paud+man paud pman
NNaud+man 0.1090 – – –
NNaud 0.1095 0.4130 – –
NNman 0.1114 0.0312 0.1289 –
XGB 0.1109 0.0128 0.0627 0.3484
NN 0.1122 0.0112 0.0166 0.2098
Logit 0.1127 0.0081 0.0005 0.1892

(b) Log score L

Table 4: Average AUC and log score obtained from sampling
years. The table shows (a) average AUC and (b) average log score,
where paud+man, paud, and pman denote p-values from a paired two-
tailed t-test between the scores of the current model and the three
models including text. Averages and standard errors are calculated
based on 4 folds, which are constructed by sampling publication years.

6. Cases of Blocks with High Attention Weights

The attention weights can be extracted from the in-
dividual word blocks to highlight words and phrases,
which are important for the prediction. In this section
we present examples of individual blocks from five au-
ditors’ reports. The attention-color-strength of individ-
ual words is relative to the largest weight in that par-
ticular block, and stop words are inserted for complete-
ness to make the text more readable. In the five cases
below the attention mechanism successfully highlights
sections that intuitively should affect the distress predic-
tion, e.g. “no realistic options for obtaining funding”
and “significant uncertainty about the firm’s ability to
continue operations”. Generally, these examples show
cases of information that would be very difficult to rep-
resent in traditional features, such as those described in
Table 1. The texts are originally in Danish, and we note
that the translation has required shifting some words,
but to the best of our ability we have aimed at a 1:1
comparison. The original texts are in Appendix B for
reference.

Example 1
henceforth. It is our assessment that there are no
realistic options for obtaining funding and we
therefore make the caveat that the statement has been
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submitted on the basis of continued operations. It is
our opinion that the statement as a consequence of the
significance

Example 2
the mention in the statement’s notes and the
management’s report where the management explains
the significant uncertainty about the firm’s ability to
continue operations as it is still uncertain if the
necessary liquidity can be generated for financing

Example 3
obtaining the liquidity for payment of a significant tax
liability. It is uncertain whether the firm will be able to
obtain this additional liquidity. We are thus not able to
comment on the company’s ability to continue
operations the coming year, why we have reservations.
It should also be noted that there is not

Example 4
has not yet received acknowledgment from the
involved bank, and on that basis we can not reach a
conclusion regarding the firm’s ability to continue
operation. Non-Conclusion Due to

Example 5
on note xxnumberxx external accounts, which shows
that the company’s equity is exhausted. The
company’s continued operation therefore depends on
that the necessary liquidity continues to be provided.
The firm’s
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7. Outlook and Conclusion

We have introduced a network architecture consisting
of both convolutional and recurrent neural networks for
predicting corporate distresses using auditors’ reports
and managements’ statements of annual reports. By
concatenating the neural network model with numeri-
cal financial variables, we found that the model with
auditors’ reports increased the AUC by almost 2 per-
centage points compared to a neural network without
text while the managements’ statements only gave an
enhancement of roughly 1 percentage point. The en-
hancement in model performance is statistically signif-
icant at the 1% level in both cases, demonstrating that

there is useful information to be extracted from text seg-
ments besides what is already contained in the numeri-
cal financial variables. Statistical tests also revealed that
auditors’ reports provide significantly more information
than managements’ statements and that all useful in-
formation contained in the managements’ statements is
contained in the auditors’ reports as well. These find-
ings suggest that further analyses should focus merely
on auditors’ reports. For firms with a size greater than
5 million DKK the auditors’ reports enhanced the AUC
by more than 2.5 percentage points, while it was still
roughly 1 percentage point for managements’ state-
ments, showing that textual analysis of auditors’ reports
is especially useful for large firms from which we ben-
efit the most from accurate distress predictions.

In future work it would be interesting to investigate
individual paragraphs within the auditors’ reports and
managements’ statements to see if certain paragraphs in
combination are more suited for the distress prediction.
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Appendix A. Results of Parameter Tuning in the
Main Model
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Figure A.1: Parameter-tuning of the neural network. The figure
illustrates AUC ( NNaud+man; NNaud; NNman) for different
parameter choices. Error bars denote one standard error.

Appendix B. Cases of Blocks with High Attention
Weights (Original)

Example 1
fremover. Det er vores vurdering, at der ikke er
realistiske muligheder for at fremskaffe finansiering
og vi tager derfor forbehold for, at årsregnskabet er
aflagt under forudsætning af fortsat drift. Det er vores
opfattelse, at årsregnskabet, som følge af
betydeligheden

Example 2
til omtale i årsregnskabets noter og
ledelsesberetningen, hvori ledelsen redegør for
væsentlig usikkerhed om selskabets evne til at
fortsætte driften, da det endnu er usikkert, om den
nødvendige likviditet kan frembringes til finansiering

Example 3
fremskaffelse af likviditeten til betaling af en
væsentlig momsgæld. Det er usikkert hvorvidt
selskabet vil være i stand til at fremskaffe denne
yderligere likviditet. Vi er således ikke i stand til at
udtale os om selskabets evne til at fortsætte driften det
kommende år, hvorfor vi tager forbehold herfor. Det
skal endvidere bemærkes, at der ikke

Example 4
har endnu ikke modtaget tilkendegivelse fra det
involverede pengeinstitut, og på den baggrund kan vi
ikke nå frem til en konklusion vedrørende selskabets
evne til at fortsætte driften. Manglende konklusion På
grund

Example 5
på note xxnumberxx eksternt regnskab, hvoraf det
fremgår, at selskabet egenkapital er tabt. Selskabets
fortsatte drift er derfor afhængig af at der fortsat stilles
den nødvendige likviditet til rådighed. Selskabets
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