

 

 i

Jonathan Gabriel Martin Janke

Benchmark of Different Classification Algorithms
on High-Level Image Features from
Convolutional Layers

Dissertation presented as partial requirement for
obtaining the

Master’s degree in Advanced Analytics

ANALYSIS OF THE PROFICIENCY OF  
FULLY-CONNECTED NEURAL NETWORKS IN THE
PROCESS OF CLASSIFYING DIGITAL IMAGES

 

 i

Title: Analysis of the Proficiency of Fully-Connected Neural Networks in the Process of Classifying Digital Images
Subtitle: Benchmark of Different Classification Algorithms on High-Level Image Features from Convolutional Layers

Jonathan
Janke

2018

NOVA Information Management School

 i

Instituto Superior de Estatística e Gestão de Informação  
Universidade Nova de Lisboa

ANALYSIS OF THE PROFICIENCY OF  
FULLY-CONNECTED NEURAL NETWORKS IN THE  

PROCESS OF CLASSIFYING DIGITAL IMAGES

by

Jonathan Gabriel Martin Janke

Dissertation presented as partial requirement for obtaining the

Master’s degree in Advanced Analytics

Advisor: Mauro Castelli

 November 2018

 ii

Analysis of the Proficiency of Fully-Connected Neural Networks in the Pro-
cess of Classifying Digital Images

Copyright © Jonathan Gabriel Martin Janke, NOVA Information Management School,
NOVA University Lisbon.
The NOVA Information Management School and the NOVA University Lisbon have
the right, perpetual and without geographical boundaries, to file and publish this
dissertation through printed copies reproduced on paper or on digital form, or by any
other means known or that may be invented, and to disseminate through scientific
repositories and admit its copying and distribution for non-commercial, educational
or research purposes, as long as credit is given to the author and editor.

This document was created using the (pdf)LATEX processor, based in the “novathesis” template[1], developed at the Dep. Informática of FCT-NOVA [2].
[1] https://github.com/joaomlourenco/novathesis [2] http://www.di.fct.unl.pt

https://github.com/joaomlourenco/novathesis
http://www.di.fct.unl.pt

Acknowledgements

I appreciate the various discussions I had with di↵erent people from my faculty from
the ideation phase to the execution and the interpretation of the final results. I would
like to thank everybody that took their time to listen to my ideas, help me fine-tune
the thesis and shape it to what it is now. Furthermore, I am grateful for everybody
that read my thesis and provided me with feedback. This also goes for the people that
helped me write an abstract in Portuguese.

I also want to thank my supervisor Mauro Castelli for giving me the necessary support
and feedback during the thesis. I am thankful for the freedom I had when choosing
the topic that I want to do research on and the timeline to realise the thesis.

Further appreciation goes to Thaís Góes for the support and all the help during the
thesis. Thanks to everybody else who accompanied me on my journey. It feels good to
have people around you that support you and that you can rely on.

Lastly, I would like to thankmy family, in particular my parents, Stephanie andMartin
Janke. Thank you for the trust that you have put into me andmy personal development
and the liberty that you have given me during my studies. I appreciate all the support
I have received during my Bachelor’s and Master’s degree that enabled me to fully
focus on those.

v

Abstract

Over the course of research on Convolutional Neural Network (CNN) architectures,
little modifications have been done to the fully-connected layers at the end of the net-
works. In image classification, these neural network layers are responsible for creating
the final classification results based on the output of the last layer of high-level image
filters. Before the breakthrough of CNNs, these image filters were handcrafted, and
any classification algorithm was applied to their output. Because neural networks
use gradients to learn their weights subject to the classification error, fully-connected
neural networks are a natural choice for CNNs. But the question arises: Are fully-
connected layers in a CNN superior to other classification algorithms? After the net-
work is trained, the approach is to benchmark di↵erent classification algorithms on
CNNs by removing the existing fully-connected classifier. Thus, the flattened output
from the last convolutional layer is used as the input for multiple benchmark classi-
fication algorithms. To ensure the generalisability of the findings, numerous CNNs
are trained on CIFAR-10, CIFAR-100 and a subset of ILSVRC-2012 with 100 classes.
The experimental results reveal that multiple classification algorithms are capable of
outperforming fully-connected neural networks in di↵erent situations, namely Logis-
tic Regression, Support Vector Machines, eXtreme Gradient Boosting, Random Forests
and K-Nearest Neighbours. Furthermore, the superiority of individual classification
algorithms depends on the underlying CNN structure and the nature of the classifi-
cation problem. For classification problems with multiple classes or for CNNs that
produce many high-level image features, other classification algorithms are likely to
perform better than fully-connected neural networks. It follows that it is advisable to
benchmark multiple classification algorithms on high-level image features produced
from the CNN layers to improve performance or model size.

Keywords: Convolutional Neural Networks, CNN, Neural Networks, Computer Vi-
sion, Image Classification, Image Features, CIFAR-10, CIFAR-100, ILSVRC-2012

vii

Resumo

Desde a criação da arquitetura da Rede Neural Convolucional (CNN), poucas modifi-
cações foram feitas nas camadas totalmente conectadas (fully-connected) no final das
redes. Na classificação de imagens, estas mesmas camadas são responsáveis por criar
os resultados finais da classificação, com base no output da última camada de filtros
de imagem de alto nível (high-level image filters). Antes do avanço das CNNs, estes
filtros de imagem eram feitos à mão e qualquer algoritmo de classificação era apli-
cado ao seu output. Como as redes neuronais aprendem os seus pesos gradualmente
com gradientes sujeitos a um erro, as redes neuronais totalmente conectadas são uma
escolha natural para as CNNs. No entanto, a superioridade das camadas totalmente
conectadas numa CNN em relação a outros algoritmos de classificação é contestada.
Depois da rede neural ser treinada, a abordagem passa por comparar diferentes algorit-
mos de classificação em CNNs, removendo o atual classificador totalmente conectado.
Deste modo, o output achatado (flattened output) da última camada convolucional é
usado como input para vários algoritmos de benchmarking. Para assegurar a genera-
lização dos resultados, várias CNNs são treinadas no CIFAR-10, no CIFAR-100 e num
subconjunto do ILSVRC-2012. Os resultados experimentais revelam que múltiplos
algoritmos são capazes de superar redes neuronais totalmente conectadas, nomeada-
mente Regressão Logística, Support Vector Machines, XG Boosting, Random Forests e
K-Nearest Neighbours. Além disso, a superioridade de cada algoritmo depende da es-
trutura subjacente da CNN e da natureza do problema de classificação. Para problemas
com várias classes de output ou para CNNs que produzem muitos recursos de imagem
de alto nível, outros algoritmos de classificação provavelmente terão um desempenho
melhor do que redes neuronais totalmente conectadas. Segue-se que é aconselhável
comparar vários algoritmos em recursos de imagem de alto nível produzidos a partir
das camadas da CNN, para melhorar o desempenho ou o tamanho do modelo.

Palavras-chave: Rede Neural Convolucional, Rede Neural, Visão Computacional

ix

Contents

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Background Information . 1
1.2 Structure of the Thesis . 3
1.3 Purpose of the Thesis . 3

2 Artificial Neural Networks for Computer Vision 5
2.1 How are Digital Images Represented 6
2.2 Challenges in Computer Vision . 6
2.3 Convolutional Neural Networks . 7

2.3.1 Convolutional Layers . 9
2.3.2 Depthwise Separable Convolutions 13
2.3.3 Pooling Layers . 15
2.3.4 Fully-Connected Layers . 15
2.3.5 Dropout Layer . 16
2.3.6 Batch Normalisation Layers . 17
2.3.7 Inception Modules . 18
2.3.8 Residual Blocks . 22
2.3.9 Capsules . 23
2.3.10 Transfer Learning . 27

3 Classification in Supervised Environments 29
3.1 Decision Trees . 30
3.2 Ensemble Methods . 33

3.2.1 Random Forest Classifier . 35
3.2.2 Adaptive Boost Classifier . 36
3.2.3 Gradient Boosting Classifier . 36
3.2.4 eXtreme Gradient Boosting Classifier 39

3.3 Logistic Regression . 41
3.4 Support Vector Machines . 42

xi

CONTENTS

3.5 K-Nearest Neighbours . 45
3.6 Multi-Layer Perceptrons . 46
3.7 Classification Evaluation Methods . 47

3.7.1 Accuracy . 48
3.7.2 Top-n Accuracy . 49
3.7.3 Confusion Matrices . 49
3.7.4 Precision, Recall and Fn Measure 50
3.7.5 ROC AUC Score . 52
3.7.6 Model Speed . 53

4 Experimental Setup 55
4.1 Work References . 56
4.2 Scientific Procedure . 56
4.3 Dataset Benchmarks . 59

4.3.1 CIFAR-10 . 59
4.3.2 CIFAR-100 . 61
4.3.3 ImageNet Large Scale Visual Recognition Challenge 2012 . . . 62

4.4 Model Architecture Benchmarks . 63
4.4.1 ILSVRC-2012 Architecture Benchmarks 65
4.4.2 CIFAR Architecture Benchmarks 66

4.5 Image Preprocessing . 68
4.6 Classification Algorithms Used . 74
4.7 Selection of Evaluation Metrics . 77
4.8 Software Architecture of the Final Solution 78

5 Experimental Evaluation 79
5.1 Output from Convolutional Neural Network Structures 80

5.1.1 CIFAR-10 Intermediate Observations 80
5.1.2 CIFAR-100 Intermediate Observations 82
5.1.3 ILSVRC-2012 Subset Intermediate Observations 84

5.2 MLP Architecture Comparison on Intermediate Datasets 85
5.3 Comparing Di↵erent Classification Algorithms on Image Features . . 90

5.3.1 CIFAR-10 Results . 91
5.3.2 CIFAR-100 Results . 95
5.3.3 ILSVRC-2012 Results . 99

5.4 Interpretation of Results . 103
5.5 Conclusion of Results . 106

6 Conclusion and Outlook 109
6.1 Conclusion . 109
6.2 Outlook . 112

xii

CONTENTS

Bibliography 115

A Appendix 125
A.1 Convolutional Neural Networks . 125

A.1.1 Exemplification of Computer Vision challenges 125
A.1.2 Reformulation and simplification of Inception Module Formula 128
A.1.3 Visualisation of general architecture of CNN 128

A.2 Experimental datasets . 129
A.2.1 Normalised images from CIFAR-10 129
A.2.2 Image classes from CIFAR-100 130
A.2.3 Normalised images from CIFAR-100 136
A.2.4 100 classes used from ILSVRC-2012 142

A.3 Classification results . 148
A.3.1 CIFAR-10 . 148
A.3.2 CIFAR-100 . 156
A.3.3 Subset of ILSVRC-2012 . 173

xiii

List of Figures

11 Summary of Di↵erent Computer Vision Tasks from [91] 2

21 LeNet-5 Architecture from LeCun et al. (1998) 8
22 Application of convolutional layer with n image filters of size kw ⇥ kh ⇥ 3

with stride s = 1 on input data with size widthw ⇥ height h and an input
depth of 3 [99] . 9

23 Visualisation of application of a linear k ⇥ k ⇥ 1 image filter on receptive
field in input [99] . 11

24 Simple Inception Module, modified from Szegedy et al. (2014) [95] 18
25 Advanced Inception Module designed to reduce the overall complexity,

modified from Szegedy et al. (2014) [95] 20
26 Two example residual block architectures, modified fromHe et al. (2015) [31] 22
27 A convolutional neural network does not e↵ectively capture the spatial

relationship among concepts but simply detects the existance of certain
elements . 23

28 Exemplified vector creation from convolutional layers 25
29 Example of a MECE solution in a multi-label classification task from [10] 26

31 General Classification Procedure from [98]: p. 146 29
32 Illustration of a Decision Tree creation process using Hunt’s algorithm

from [98], p. 154 . 31
33 Explanation of SVM . 42
34 Explanation of SVM . 45
35 Examples of ambiguous images from [5] and [14] 50
36 Example of a binary confusion matrix . 51
37 Example of a ROC curve . 52

41 Visualisation of Intermediate Data Creation 57
42 Visualisation of Intermediate Data Classification 58
43 Samples from CIFAR-10 (from left to right, top to bottom): airplane, auto-

mobile, bird, cat, deer, dog, frog, horse, ship, truck 60
44 10 classes from CIFAR-100, like apples, aquarium fish, baby, bed, snake,

beetle, bicycle, bottles . 62

xv

List of Figures

45 10 sample classes from ILSVRC-2012 . 64
46 Visualisation of First Neural Network Architecture (CNN-1) 69
47 Visualisation of Second Neural Network Architecture (CNN-2) 70
48 Visualisation of SimpleNet Architecture 71
49 Visualisation of VGG-19 Architecture . 72
410 Raw example Picture of Class Car . 73
411 Normalised Example Picture of Class Car 74
412 MLP-1 Visualisation for CIFAR-10 . 76
413 MLP-2 Visualisation for CIFAR-10 . 77
414 MLP-3 Visualisation for CIFAR-10 . 77

51 Learning Curve of MLP-0 on CNN-1 Intermediate Data for 10 Iterations
with Learning Rate 0.0001 . 86

52 Learning Curve of MLP-0 on CNN-1 Intermediate Data for 50 Iterations
with Learning Rate 0.0001 . 86

53 Learning Curve of MLP-0 on CNN-1 Intermediate Data for 50 Iterations
with Learning Rate 0.001 . 86

A1 Example of deformation . 125
A2 Example of occlusion . 126
A3 Example of viewpoint variation . 126
A4 Example of scale variation . 127
A5 Example of background clutter . 127
A6 Example of intra class variation . 128
A7 Visualisation of general architecture of CNN 129
A8 Normalised images from CIFAR-10 . 130
A9 Sample images from CIFAR-100 . 131
A10 Sample images from CIFAR-100 . 132
A11 Sample images from CIFAR-100 . 133
A12 Sample images from CIFAR-100 . 134
A13 Sample images from CIFAR-100 . 135
A14 Normalised images from CIFAR-100 . 137
A15 Normalised images from CIFAR-100 . 138
A16 Normalised images from CIFAR-100 . 139
A17 Normalised images from CIFAR-100 . 140
A18 Normalised images from CIFAR-100 . 141
A19 Sample images from ILSVRC-2012 . 143
A20 Sample images from ILSVRC-2012 . 144
A21 Sample images from ILSVRC-2012 . 145
A22 Sample images from ILSVRC-2012 . 146
A23 Sample images from ILSVRC-2012 . 147

xvi

List of Figures

A24 CNN1 Accuracy Graph on CIFAR-10 . 148
A25 CNN1 Loss Graph on CIFAR-10 . 148
A26 CNN2 Accuracy Graph on CIFAR-10 . 148
A27 CNN2 Loss Graph on CIFAR-10 . 149
A28 SimpleNet Accuracy Graph on CIFAR-10 149
A29 SimpleNet Loss Graph on CIFAR-10 . 149
A30 CNN1 Accuracy Graph on CIFAR-100 . 156
A31 CNN1 Loss Graph on CIFAR-100 . 156
A32 CNN2 Accuracy Graph on CIFAR-100 . 156
A33 CNN2 Loss Graph on CIFAR-100 . 157
A34 SimpleNet Accuracy Graph on CIFAR-100 157
A35 SimpleNet Loss Graph on CIFAR-100 . 157
A36 Accuracy Curve of MLP 0 on CNN1 for 10 epochs with a learning rate of

0.0001 . 158
A37 Loss Curve of MLP 0 on CNN1 for 10 epochs with a learning rate of 0.0001 158
A38 Accuracy Curve of MLP 0 on CNN1 for 20 epochs with a learning rate of

0.0001 . 158
A39 Loss Curve of MLP 0 on CNN1 for 20 epochs with a learning rate of 0.0001 159
A40 Accuracy Curve of MLP 0 on CNN1 for 50 epochs with a learning rate of

0.0001 . 159
A41 Loss Curve of MLP 0 on CNN1 for 50 epochs with a learning rate of 0.0001 159
A42 Accuracy Curve of MLP 0 on CNN1 for 10 epochs with a learning rate of

0.001 . 160
A43 Loss Curve of MLP 0 on CNN1 for 10 epochs with a learning rate of 0.001 160
A44 Accuracy Curve of MLP 0 on CNN1 for 20 epochs with a learning rate of

0.001 . 160
A45 Loss Curve of MLP 0 on CNN1 for 20 epochs with a learning rate of 0.001 161
A46 Accuracy Curve of MLP 0 on CNN1 for 50 epochs with a learning rate of

0.001 . 161
A47 Loss Curve of MLP 0 on CNN1 for 50 epochs with a learning rate of 0.001 161
A48 Accuracy Curve of MLP 1 on CNN1 for 10 epochs with a learning rate of

0.0001 . 162
A49 Loss Curve of MLP 1 on CNN1 for 10 epochs with a learning rate of 0.0001 162
A50 Accuracy Curve of MLP 1 on CNN1 for 20 epochs with a learning rate of

0.0001 . 162
A51 Loss Curve of MLP 1 on CNN1 for 20 epochs with a learning rate of 0.0001 163
A52 Accuracy Curve of MLP 1 on CNN1 for 50 epochs with a learning rate of

0.0001 . 163
A53 Loss Curve of MLP 1 on CNN1 for 50 epochs with a learning rate of 0.0001 163
A54 Accuracy Curve of MLP 1 on CNN1 for 50 epochs with a learning rate of

0.001 . 164

xvii

List of Figures

A55 Loss Curve of MLP 1 on CNN1 for 50 epochs with a learning rate of 0.001 164
A56 Accuracy Curve of MLP 2 on CNN1 for 10 epochs with a learning rate of

0.0001 . 164
A57 Loss Curve of MLP 2 on CNN1 for 10 epochs with a learning rate of 0.0001 165
A58 Accuracy Curve of MLP 2 on CNN1 for 20 epochs with a learning rate of

0.0001 . 165
A59 Loss Curve of MLP 2 on CNN1 for 20 epochs with a learning rate of 0.0001 165
A60 Accuracy Curve of MLP 2 on CNN1 for 50 epochs with a learning rate of

0.0001 . 166
A61 Loss Curve of MLP 2 on CNN1 for 50 epochs with a learning rate of 0.0001 166
A62 Accuracy Curve of MLP 2 on CNN1 for 50 epochs with a learning rate of

0.001 . 166
A63 Loss Curve of MLP 2 on CNN1 for 50 epochs with a learning rate of 0.001 167

xviii

List of Tables

41 CIFAR-10 Benchmarks . 61
42 CIFAR-100 Benchmarks . 61
43 ILSVRC 2012 Benchmarks . 64

51 CIFAR-10 Intermediate Dataset Results, trained on MacBook Pro 80
52 CIFAR-100 intermediate dataset results 82
53 ILSVRC-2012 Intermediate Dataset Results for 100 Classes 84
54 CIFAR-100 MLP Classification Results on CNN-1 Intermediate Data . . . 87
55 CIFAR-100 MLP Classification Results on CNN-2 Intermediate Data . . . 87
56 CIFAR-100 MLP Classification Results on SimpleNet Intermediate Data . 88
57 CIFAR-100 MLP Classification Results on VGG-19 Intermediate Data . . 88
58 CIFAR-10 Final Classification Results on CNN-1 Intermediate Data . . . 91
59 CIFAR-10 Final Classification Results on CNN-2 Intermediate Data . . . 91
510 CIFAR-10 Final Classification Results on SimpleNet Intermediate Data . 92
511 CIFAR-10 Final Classification Results on VGG-19 Intermediate Data . . . 92
512 CIFAR-100 Final Classification Results on CNN-1 Intermediate Data . . . 95
513 CIFAR-100 Final Classification Results on CNN-2 Intermediate Data . . . 95
514 CIFAR-100 Final Classification Results on SimpleNet Intermediate Data . 96
515 CIFAR-100 Final Classification Results on VGG-19 Intermediate Data . . 96
516 ILSVRC-2012 Final Classification Results on Inception V3 Intermediate

Data . 100
517 ILSVRC-2012 Final Classification Results on Xception Intermediate Data 100
518 ILSVRC-2012 Final Classification Results on Inception ResNet V2 Interme-

diate Data . 100

A1 CIFAR-10 final classification results on CNN-1 intermediate data 150
A2 CIFAR-10 final classification results on CNN-2 intermediate data 150
A3 CIFAR-10 final classification results on SimpleNet intermediate data . . . 150
A4 CIFAR-10 final classification results on VGG-19 intermediate data 151
A5 Pairwise p-values of performance on validation set with performance on

test and validation set displayed on the diagonal for MLP-1, MLP-2, MLP-3
on CNN-1 intermediate data from CIFAR-10 with di↵erent learning rates
(LR) . 152

xix

List of Tables

A6 Pairwise p-values of performance on validation set with performance on
test and validation set displayed on the diagonal for MLP-1, MLP-2, MLP-3
on CNN-2 intermediate data from CIFAR-10 with di↵erent learning rates
(LR) . 152

A7 Pairwise p-values of performance on validation set with performance on
test and validation set displayed on the diagonal for MLP-1, MLP-2, MLP-
3 on SimpleNet intermediate data from CIFAR-10 with di↵erent learning
rates (LR) . 153

A8 Pairwise p-values of performance on validation set with performance on
test and validation set displayed on the diagonal for MLP-1, MLP-2, MLP-3
on VGG-19 intermediate data from CIFAR-10 with di↵erent learning rates
(LR) . 153

A9 Pairwise p-values of performance on validation set with performance on
test and validation set displayed on the diagonal for di↵erent classification
algorithms on CNN-1 intermediate data from CIFAR-10 154

A10 Pairwise p-values of performance on validation set with performance on
test and validation set displayed on the diagonal for di↵erent classification
algorithms on CNN-2 intermediate data from CIFAR-10 154

A11 Pairwise p-values of performance on validation set with performance on
test and validation set displayed on the diagonal for di↵erent classification
algorithms on SimpleNet intermediate data from CIFAR-10 154

A12 Pairwise p-values of performance on validation set with performance on
test and validation set displayed on the diagonal for di↵erent classification
algorithms on VGG-19 intermediate data from CIFAR-10 155

A13 CIFAR-100 final classification results on CNN-1 intermediate data 167

A14 CIFAR-100 final classification results on CNN-2 intermediate data 167

A15 CIFAR-100 final classification results on SimpleNet intermediate data . . 168

A16 CIFAR-100 final classification results on VGG-19 intermediate data . . . 168

A17 Pairwise p-values of performance on validation set with performance on
test and validation set displayed on the diagonal for MLP-1, MLP-2, MLP-3
on CNN-1 intermediate data from CIFAR-100 with di↵erent learning rates
(LR) . 169

A18 Pairwise p-values of performance on validation set with performance on
test and validation set displayed on the diagonal for MLP-1, MLP-2, MLP-3
on CNN-2 intermediate data from CIFAR-100 with di↵erent learning rates
(LR) . 169

A19 Pairwise p-values of performance on validation set with performance on
test and validation set displayed on the diagonal for MLP-1, MLP-2, MLP-3
on SimpleNet intermediate data from CIFAR-100 with di↵erent learning
rates (LR) . 170

xx

List of Tables

A20 Pairwise p-values of performance on validation set with performance on
test and validation set displayed on the diagonal for MLP-1, MLP-2, MLP-3
on VGG-19 from CIFAR-100 intermediate data with di↵erent learning rates
(LR) . 170

A21 Pairwise p-values of performance on validation set with performance on
test and validation set displayed on the diagonal for di↵erent classification
algorithms on CNN-1 intermediate data from CIFAR-100 171

A22 Pairwise p-values of performance on validation set with performance on
test and validation set displayed on the diagonal for di↵erent classification
algorithms on CNN-2 intermediate data from CIFAR-100 171

A23 Pairwise p-values of performance on validation set with performance on
test and validation set displayed on the diagonal for di↵erent classification
algorithms on SimpleNet intermediate data from CIFAR-100 172

A24 Pairwise p-values of performance on validation set with performance on
test and validation set displayed on the diagonal for di↵erent classification
algorithms on VGG-19 intermediate data from CIFAR-100 172

A25 ILSVRC-2012 final classification results on Inception ResNet V2 interme-
diate data . 173

A26 ILSVRC-2012 final classification results on Inception V3 intermediate data 173
A27 ILSVRC-2012 final classification results on Xception intermediate data . 173
A28 Pairwise p-values of performance on validation set with performance on

test and validation set displayed on the diagonal for di↵erent classification
algorithms on Inception ResNet V2 intermediate data from ILSVRC-2012
with 100 classes . 175

A29 Pairwise p-values of performance on validation set with performance on
test and validation set displayed on the diagonal for di↵erent classification
algorithms on Inception V3 intermediate data from ILSVRC-2012 with 100
classes . 175

A30 Pairwise p-values of performance on validation set with performance on
test and validation set displayed on the diagonal for di↵erent classification
algorithms on Xception intermediate data from ILSVRC-2012 with 100
classes . 175

xxi

List of Algorithms

1 Routing Algorithm from [79] . 26
2 Splitting Attribute Selection . 32
3 ID3 algorithm from [61], p. 18 . 32
4 General Boosting Procedure . 35
5 AdaBoost algorithm from [101], p. 801 f. 37
6 Gradient Boosting algorithm from [20], p. 5 38

xxiii

Glossary

HDF5 Hierarchical Data Format 5 (HDF5) is a data storage format. It is
supported by many programming languages and freely usable.

JFT-300M JFT-300M is a dataset of more than 375 million images with noisy
labels. It was developed by Google. The dataset is not publicly acce-
sible.

LeNet-5 LeNet-5 is one of the first ever designed convolutional neural net-
work. It was created by LeCun et al. in 1998 to automate the process
of handwriting detection of digits in checks.

MNIST database The Modified National Institute of Standards and Technology
(MNIST) database is a database of handwritten digits. It found its
way into multiple research and practical applications, mainly in the
field of computer vision.

Python Pickle Python Pickle is a Python-specific data format that is used to serialise
data. It can be used to serialise any kind of Python object. Pickle is a
binary serialisation format and, therefore, only readable bymachines.

WordNet WordNet is a hierarchical lexical database that structures words into
synsets. A synset is a set of synonyms for a given concept. WordNet
is designed for the English language.

xxv

Acronyms

ADB Adaptive Boosting (AdaBoost) Classifier.
ANN Artificial Neural Network.
AUC Area under the curve.

CART Classification and Regression Trees.
CNN Convolutional Neural Network.

DT Decision Tree.

ELU Exponential Linear Unit.

FN False Negatives.
FP False Positives.
FPR False Positives Rate.

GAN Generative Adversarial Networks.
GBC Gradient Boosting Classifier.
GRU Gated Recurrent Unit.

ID3 Iterative Dichotomiser 3.
ILSVRC-YYYY ImageNet Large Scale Visual Recognition Competition YYYY.

KNN K-Nearest Neighbours.

LR Logistic Regression.
LSTM Long Short Term Memory Networks.

MECE Mutually Exclusive Collectively Exhaustive.
MLP Multi Layer Perceptron.

xxvii

ACRONYMS

OCR Optical Character Recognition.

ReLU Rectified Linear Unit.
ResNet Residual Network.
RFE Random Forests Classifier/Estimator.
RGB Red Green Blue.
RNN Recurrent Neural Networks.
ROC Receiver Operating Characteristic.

SVM Support Vector Machine.

TN True Negatives.
TP True Positives.
TPR True Positives Rate.

Xception eXtreme Inception.
XGB eXtreme Gradient Boosting (XGBoost) Classifier.

xxviii

C
h
a
p
t
e
r

1
Introduction

1.1 Background Information

Computer vision is a sub-field of artificial intelligence and computer science that
enables computers to develop a visual perception of real-world entities. Computer
vision is about the automatic extraction, analysis, and understanding of information
from imagery data. The field of computer vision can be divided into multiple sub-areas
that each focus on specific information of the image data, summarised in figure 11:

1. Classification: Image classification is about the assignment of a label from a
predefined fixed set of categories to an input image. It can be seen as the core of
most computer vision tasks because all of the subsequently introduced sub-fields
rely on image classification.

2. Localisation: Object localisation enhances the scope of image classification to
adding information about the position of the identified object. Thus, additionally
to identifying the object in question, the algorithm needs to find the object in
the picture and determine its position. This is often done with bounding boxes,
where the object is surrounded by a rectangular box indicating its position in the
image. Object localisation consists of a classification and a regression problem.

3. Detection: Object detection enlarges the scope of object localisation in the sense
that multiple objects from di↵erent classes can be identified and localised in an
image. Given a fixed set of categories and an input image, the task of an object
detection algorithm is to return the position and the type of every identified
occurrence of one of the classes. Object Detection itself does not only consist

1

CHAPTER 1. INTRODUCTION

Figure 11: Summary of Di↵erent Computer Vision Tasks from [91]

of a regression a classification problem because the number of outputs of the
algorithm is variable and not known beforehand.1

4. Semantic Segmentation: Semantic segmentation is a special case of image clas-
sification, where each pixel of an image is assigned to a specific category from a
predefined set of categories. If an image contains multiple instances of the same
base class, they are associated with the same category in semantic segmentation
because the algorithm does not distinguish between instances of the same class.

5. Instance Segmentation: Instance segmentation is a special case of semantic seg-
mentation where multiple instances of the same class are classified into di↵erent
categories. Given a picture of two dogs in front of a random background and
the input classes ”dog” and ”background”, the previously described semantic
segmentation would classify each pixel of the dogs as category ”dog” and each
pixel from the background as ”background”. Instance segmentation, on the
other hand, would classify the two objects from the class dog as two di↵erent
categories.

The concepts introduced in this thesis are applied to the task of image classification,
but they can be integrated into the classification part of the other computer vision
sub-areas.

Computer vision has gained traction since the breakthrough of artificial neural net-
works (ANN), which was fostered by the increases in available computational power
and training data. But it was only in 2012 when a research team consisting of Alex
Krizhevsky, Ilya Sutskever and Geo↵rey Hinton from the University of Toronto con-
structed AlexNet [51] for the ImageNet Large Scale Visual Recognition Challenge

1more about object detection and how to resolve the problem of object detection can be read
in [72], [71], [70] and [22]

2

1.2. STRUCTURE OF THE THESIS

(ILSVRC) in 20122, that a convolutional neural network (CNN) architecture outper-
formed traditional approaches in the classification and localisation tasks. This initiated
the hype in deep learning for computer vision in the subsequent years [75] [53]3. After
that, CNN architectures were improved in many ways, found their way into multiple
fields of research and were successfully applied in the industry. Nonetheless, the same
Geo↵rey Hinton that helped CNNs to their success is one of their greatest critics. He
came up with the idea of capsule networks with a team of researchers from Google
Brain [27], which take a di↵erent approach and give promising results, especially for
the case of little training data and strong variations within training and test data [79].
Although these networks are conceptually fundamentally di↵erent to CNNs, they still
make use of convolutional layers and fully-connected layers4.

1.2 Structure of the Thesis

Although a general introduction to multi-layer perceptrons (MLPs) is given in sec-
tion 3.6, the thesis assumes a general knowledge of important concepts related to
ANNs, including the concepts of batch learning, gradient descent, activation functions
and the notions of overfitting and generalisation. Further reading on these topics
can be done in [26], [32]. Chapter 2 explains convolutional neural networks, the
most relevant innovations, and state-of-the-art architectures. Chapter 3 introduces
di↵erent classification algorithms that are commonly used in machine learning. Fur-
thermore, di↵erent evaluation methods for model performance on classification tasks
are presented. Afterwards, chapter 4 outlines the experimental setup of the thesis
used to test the research question proposed above, including the datasets, the network
architectures, the chosen classification algorithms, the software architecture to test
the research question and the evaluation metrics applied. Lastly, chapter 5 provides
an evaluation of the experimental results. Along with presenting the intermediate
datasets created from the high-level image features, the chapter describes the final
results, makes a comparison and a final evaluation.

1.3 Purpose of the Thesis

Image Recognition is arguably one of the most active parts of research within machine
learning. Before the dominance of neural networks in computer vision research, "in
the traditional model of pattern recognition, a hand-designed feature extractor gathers
relevant information from the input and eliminates irrelevant variabilities. A trainable
classifier then categorises the resulting feature vectors into classes."([105], p.5) In
this traditional model, any classification algorithm is used to distinguish the classes

2referred to as ILSVRC-2012
3they used the team name ”SuperVision”
4given the loss function is enhanced with decoder neural network regularisation, see section 2.3.9

3

CHAPTER 1. INTRODUCTION

based on the hand-designed image features. The emergence of convolutional neural
networks in computer vision meant a shift from hand-designed feature extractors to
automatically generated feature extractors trained with backpropagation.

As chapter 2 shows, there have been many developments of CNN architectures re-
cently that substantially change the model architectures. But chapter 2 also shows that
all of these advances have been made in the earlier layers of the neural network, mean-
ing everything up to the fully-connected layers. Little research has been devoted to
the proficiency of the fully-connected layers. Fully-connected multi-layer perceptrons
(MLP) seem to be the design choice for all network architectures with little research or
modifications done to these layers. But as the no-free-lunch theorem from chapter 3
shows, no classifier can be said to be superior to all other classifiers. Therefore, follow-
ing the idea of the traditional model of pattern recognition where any classification
algorithm was used, the evolved research question for this thesis is:

Research Question ”Can classification model performance in computer vision be im-
proved by using di↵erent classification algorithms on high-level image features?”

Both convolutional and fully-connected layers of a neural network learn their weights
during training with the weights being backpropagated from the output through the
fully-connected-layers back to the convolutional layers. Due to this nature of the
learning process, multi-layer perceptrons are a natural choice for convolutional neural
networks. Convolutional neural network features can only be learned through a back-
propagated error that usually comes from a multi-layer perceptron or directly from
the output. Therefore, the focus of this thesis is not directly on replacing the fully-
connected layers in the learning process, but rather enhancing the learning process to
a two-step procedure:

1. Regular CNNTraining Process: Train a given CNN architecture, including fully-
connected layers to make convolutional layers learn image features from image
inputs

2. Enhancement of the Training Process: Replace the fully-connected layers with a
di↵erent classification algorithm and train the algorithm based on the high-level
image features produced from the convolutional layers in the first step

This research question is tested in multiple settings on multiple datasets to investigate
further under which conditions certain classification algorithms potentially perform
better. The datasets benchmarked in this thesis are CIFAR-10, CIFAR-100 and a subset
of ILSVRC-2012.

4

C
h
a
p
t
e
r

2
Artificial Neural Networks for Computer

Vision

In the late 19th century, the Spanish neuroscientist Santiago Ramon y Cajal discov-
ered that the human nervous system consists of many independent nerve cells that
are connected through nerve synapses that transfer nerve impulses between the cells.
His works contributed significantly to the understanding of the human brain and the
human thought process, which is the foundation for human intelligence. Neurosci-
entists and computer scientists, such as McCulloch and Pitts (1943) [62], Rosenblatt
(1958) [73], Paul Werbos (1974) [104], Rumelhart, Hinton, Williams (1986) [74] and
others, used this idea of how the human brain works to develop, train and improve
artificial neural networks. Following a period of disrepute, data became more easily
accessible through the internet and computational means increased following Moore’s
Law1, ANNs gained popularity again and found their way into the industry. The break-
through of ANNs led to an increase in research in the area and the development of
advanced network architectures for specific domains, such as recurrent neural net-
works (RNNs) and their variations long short-term memory networks (LSTM) [37]
and gated recurrent unit networks (GRU) [13], generative adversarial neural networks
(GAN) [25] and others.

Although the visual perception of objects is an easy task for most human beings, it was
traditionally not a task that computers were particularly good at. The 1980s brought
some theoretical advances on custom tailored problem domains, but they were not
widely applicable in practice. In the early 20th century, the idea of developing features

1as inspired by Gordon Moore’s paper [65]

5

CHAPTER 2. ARTIFICIAL NEURAL NETWORKS FOR COMPUTER VISION

that are invariant to changes emerged. The idea is to identify critical features (building
blocks) of an object and match these features to similar objects rather than pattern
matching the entire object. This idea of leveraging object features along with the
increasing popularity of ANNs gave rise to the breakthrough of convolutional neural
networks.

2.1 How are Digital Images Represented

Before the introduction of convolutional neural networks, a common understanding
of digital images is necessary.

An image is a two-dimensional function f (x,y) that describes the color f at the spatial
coordinates (x,y). A digital image is one where x, y, and f are finite, meaning the
spatial coordinates are covered by a predefined number of elements, called pixels. The
computational representation of a digital image is a three-dimensional array with the
dimensions width w, height h and depth d: I 2 Rw⇥h⇥d . Whereas width w and height
h determine the shape of the pixel grid of an image, the depth determines the colour
of a given pixel and is described by an array of length d. Common representations
of images are grey-scale (d = 1) and RGB (d = 3). The depth is also referred to as the
number of channels ([99], p. 3) but the author of this thesis chose to use the notion of
depth to describe input and output channels.

Features of an image are any patterns of pixels that have unique shapes. Low-level
features are simple shapes, e.g., lines and edges of di↵erent intensities. Higher-level
features are combinations of multiple layers of lower-level features. Higher-level level
features are more complex patterns and a combination of multiple lower-level features,
e.g., a nose made up of multiple lower-level edges. The detection of features within an
image is done with image filters. Each filter is responsible for detecting the existence
of one feature. For more, see section 2.3.1.

2.2 Challenges in Computer Vision

Perturbation of imagery data can occur in any of the three dimensions. An object in
question can be shifted, scaled or distorted in the grid and change its colour values
while still belonging to the same category of images. Further variations regard the
object itself and within its context, such as

• Deformation: The real-world object can take on di↵erent shapes and poses and
be deformed in many ways.

6

2.3. CONVOLUTIONAL NEURAL NETWORKS

• Occlusion: The real-world object could be occluded, e.g., the real world entity
hides behind another object with just a part of it visible in the image.

• Viewpoint Variation: The image data can capture a real-world entity from dif-
ferent perspectives.

• Scale Variation: Apart from the scale variation within an image representation,
real-world entities can also vary in size while still belonging to the same category.

• Background Clutter: The object and its background are composed of similar
colours or structures and thus make it hard to di↵erentiate between them.

• Intra-class Variation: Chosen classes usually represent concept from the real
world. These concepts can be rather broad with many intra-class variations. For
example, the concept of a dog can be represented by di↵erent breeds while still
belonging to the class dog.

For a visual understanding of these challenges, see Appendix A.1.1.

An ideal computer vision algorithm is robust to all these intra-category variations
within the images, while perceiving inter-category di↵erences.

2.3 Convolutional Neural Networks

The neurobiologists David Hubel and Torsten Wiesel analysed the visual processing
mechanisms in mammals in 1959, using cats as a reference to understand the human
visual system. They attached electrodes to the back of the brains of cats to examine
which visual stimuli makes the neurons in the primary visual cortex of a cat brain
respond. They found out in their research that visual processing begins with simple,
low-level structures of the world, such as edges and their orientations, which are then
aggregated to more complex, high-level concepts in the visual processing pathway.
Transferring this idea of the visual system to humans, one can conclude that the hu-
man brain builds up the perception of an object by aggregating multiple low-level
image features and successively combining these building blocks to a larger high-level
representation.

Convolutional neural networks adapt this principle from nature in that they aim
to automatically detect high- and low-level features within the network during the
training process. CNNs combine the architectural ideas of local receptive fields from
section 2.3.1, shared weights (weight replication) from section 2.3.1, and spatial sub-
sampling from section 2.3.3. ([105], p.6)

7

CHAPTER 2. ARTIFICIAL NEURAL NETWORKS FOR COMPUTER VISION

The ability of multi-layer networks trained with gradient descent to learn complex, high-

dimensional, non-linear mappings from large collections of examples makes them

obvious candidates for image recognition tasks. LeCun et al. (1998) ([105], p.5)

Not only does this notion of learning more accurately imitate the human brain because
CNNs automatically detect 2-dimensional local structures within images without prior
manual definition. CNN structures are also computationally more e�cient in compar-
ison to their fully-connected counterparts because the convolutional network layers
require fewer weights. Thus, the model has to learn fewer parameters during the
training process.

The first published CNN, LeNet-5, was developed by LeCun et al. (1998) and was
applied in alphanumeric character recognition to read ”several million checks per day”
([105], p.1) automatically in 1998.

Figure 21: LeNet-5 Architecture from LeCun et al. (1998)

After their introduction, CNNs remained at the sidelines of research until AlexNet
won the ILSVRC-2012 challenge in the classification and localisation task by a great
margin compared to the other approaches. ILSVRC is the most famous computer
vision challenge based on the ImageNet database, as introduced in section 4.3.3. For
the classification task, AlexNet reached a top-5 error of 15.32 %, whereas the next best
model architecture reached 26.17 %. AlexNet [51] is an 8-layer neural network that
strongly resembles LeNet-5 from figure 21 in its architecture. After this success, CNNs
became state-of-the-art in computer vision withmore andmore innovative additions to
the networks outperforming earlier models. The next decisive changes to the network
architecture were introduced in ILSVRC-2014, with GoogLeNet from Szegedy et al.
(2014) and VGG from Simonyan and Zisserman (2015) reaching a top-5 error of 6.67 %
and 7.32 % respectively ([95], p. 9) [54]. The main contribution of VGG was to use
relatively small convolutional filters combined with deeper neural networks (16-19
layers) [86]. GoogLeNet is a 22-layer network without fully-connected layers at its
end. Its main contribution to subsequent model architectures is the inception module
(see section 2.3.7). Apart from computational limitations, a roadblock to even deeper

8

2.3. CONVOLUTIONAL NEURAL NETWORKS

neural network architectures was the fact that deeper networks empirically produced
worse results on training and test data [31]. They should, in theory, be at least as good
as their shallower counterparts. The ResNet-152 architecture from He et al. (2015)
won the ILSVRC-2015 challenge with a top-5 error of 3.57 %. With a depth of 152
layers, it is the first model to beat human performance. The solution to training deeper
networks are residual blocks (see section 2.3.8), giving the name to ResNet. [31] [54]

The following subsections will explain the introduced concepts in more detail. The
following sections show the key areas of research and improvements to CNNs from
the past few years.

2.3.1 Convolutional Layers

A convolutional layer creates an n-dimensional output representation (depth n) of
given input data (e.g., digital image data, see section 2.1), where each dimension is
created with respect to one image filter. A convolutional layer consists of at least one,
though usually multiple, di↵erent image filters ([105], p. 6), thus n 2N1.

Figure 22 visualises the concept of one convolutional layer. The convolutional layer
consists of n filters. These n filters are applied on the input image. In this case, the
input image consists of three feature maps, as would be the case for an RGB image.
Through the application of these n filters, an output image with n feature maps is
created. This output image will then be the input for the next convolutional layer.

Figure 22: Application of convolutional layer with n image filters of size kw ⇥ kh ⇥ 3
with stride s = 1 on input data with size widthw ⇥ height h and an input depth of 3 [99]

9

CHAPTER 2. ARTIFICIAL NEURAL NETWORKS FOR COMPUTER VISION

The following subsections introduce the concept of image filters, how they can be
learned and common model choices.

Image Filters

The following chapter introduces the concept of image filters for two-dimensional im-
ages. These two-dimensional images can still have three-dimensional representations
in digital formats, e.g., if the color is represented in RGB format. Nonetheless, the
concepts introduced can easily be enhanced to inputs with more spatial dimensions.
This thesis only handles two-dimensional images.

An image filter (also called filter kernel) is a tensor F 2 Rkw⇥kh⇥Id , where kw, kh 2
N1 determine the filter’s width and height respectively, and Id corresponds to the
depth of the input image to the convolutional layer. The output image I 0 is produced
through a convolution of the input image I 2 Rw⇥h⇥d with the image filter. Basically,
the Hadamard product is applied to the image filter and a local input field, called
receptive field, of size kw ⇥ kh ⇥ Id with center (x,y). Each entry, e.g., pixel, in the grid
of the output image I 0(x,y) is thus calculated as a sum of these point-wise multiplied
tensors. ([99], p. 3)

The formula for a given output entry can be found in equation 2.1 ([99], p. 3).

I 0(x,y) = b +

kw
2X

ix=1� kw
2

kh
2X

iy=1� kh
2

IdX

ic=1

I(x + ix,y + iy , ic) ·F(ix, iy , ic)

for x 2 {1, · · · , Iw} and y 2 {1, · · · , Ih}, where b 2 R denotes the bias

(2.1)

Due to the aggregation from the summing operations, the depth of the output from a
single image filter is always 1.

Figure 23 visualises this procedure.

10

2.3. CONVOLUTIONAL NEURAL NETWORKS

Figure 23: Visualisation of application of a linear k ⇥ k ⇥ 1 image filter on receptive
field in input [99]

Formula 2.1 states the calculation of the output pixel at I 0(x,y) for a given receptive
field with center I(x,y). This operation is applied for all pixels x 2 {1, · · · , Iw}, y 2
{1, · · · , Ih} and for all n image filters to create the full output image I 2 Rw0⇥h0⇥d 0 . In this
case, the image filter operation can be thought of as sliding over the input image from
the top left to the bottom right corner, shifting the center of the receptive field by 1 unit
and performing the convolutional operation to produce the output data. Every output
position can be regarded as a score of how well the given receptive field responded
to the image filter. The higher the score of the output position, the more likely it
is, that the receptive field in the input data was representing a structure formalised
by the image filter. In the end, the output data will have a score at each position,
indicating the likelihood that the image filter representing a given feature is present
at that position in the input data. This also makes CNNs more robust to distortions
and shifts of the object within an input image, because a distortion or shift would
eventually lead to a distorted or shifted value in the output image. It follows that the
feature would still be detected while its exact position is irrelevant.

But the question remains of how a receptive field greater than 1 can be produced at
the image boundaries. In other words: What is the receptive field when the centre lies
at the border of the image, and the receptive field would thus partially fall out of the
boundaries of the input data? The two most common approaches to border handling
are ([28], p. 3):

• Eliminate the border-dependent pixels by cropping the output image to perform
convolution on the inner pixels only where possible or

11

CHAPTER 2. ARTIFICIAL NEURAL NETWORKS FOR COMPUTER VISION

• Pad the input image to account for the missing input pixels.

The first approach implies a diminishing output size of kw � 1 and kh � 1 for the width
and height respectively of the convolutional layer. The second approach requires a
padding technique. Common techniques are ”replicate”, ”reflect”, ”wrap” and ”con-
stant” (e.g., zero-padding) (for more, see [28]).

As described above, performing this convolution leads to an overlap between the re-
ceptive fields of contiguous input positions. One hyper-parameter of the convolutional
layer is the stride s 2N1. The stride determines by how many contiguous input posi-
tions the receptive field should be moved when creating the image output. The case
described above uses a stride of 1, meaning no input position is skipped. If the stride is
chosen to be bigger than 1, the e↵ective output image gets reduced in size. Apart from
the stride, the output image size is only determined by the border handling procedure
for uneven filter sizes. Usually, the stride and border handling are chosen such as to
preserve the image size. The filter width and height are commonly set to be uneven.

Each image filter performs kw ⇥ kh ⇥ Id multiplications at each position of the input.
Hence, over the full image, each filter performs I 0w · I 0h · kw · kh · Id multiplications. For
kn image filters, each convolutional layer then performs the following number of mul-
tiplications2:

kn · I 0w · I 0h · kw · kh · Id (2.2)

Convolutional Layer Training

During training, the convolutional layers learn to construct the image filters. The
weights of the image filters are the parameters of the learning process that are adapted
to the training data ([99], p. 5). Convolutional layers leverage the concept of shared
weights for the learning process, introduced byWaibel et al. (1989). Since the identical
image filter is repetitively applied over the positions in the input image, this is like
connecting a given position from the image filter to each input position with the same
weight. The sizes of the receptive fields determines the number of necessary weights.
Hence, kw · kh +1 (bias) parameters need to be learned per image filter.

Because of the concept of shared weights, every convolutional layer can be formulated
as an MLP, with the drawbacks of then having more parameters to train. Nonetheless,
this shows that a convolutional layer can be trained using gradient descent [60]. But
for the case of shared weights as in CNNs, the training algorithm is changed to account

2Assuming that the initial image dimensions are preserved, e.g., a stride of 1 and padding for border
handling, this simplifies to kn · Iw · Ih · kw · kh · Id

12

2.3. CONVOLUTIONAL NEURAL NETWORKS

for ”the average of all corresponding [...] weight changes” ([100], p. 331) with respect
to the training data.

Convolutional Layer Hyper-Parameters

The hyper-parameters to tune are ([99], p.5)

• the number of image filters n 2N1

• the image filter width and height kw,kh 2N1

• the activation function � after the convolution

• the stride s 2N1

• the border handling function

Typical choices for n are values of an exponential function to the base 2 (numbers from
the binary series), e.g., n 2 {25,26,27}, up to 211. The kernel width kw and height kh are
usually chosen to be equal and uneven. thus kw = kh = k 2 {1,3,5,7,11}. The activation
function is usually a rectified linear unit (ReLU) activation or other derived versions,
such as ELU. The stride is usually set to s = 1 ([99], p. 5) and border handling is usually
done through constant padding with 0s.

As outlined before, the inventors of VGG, Simonyan and Zisserman (2015), discovered
that shallower but deeper networks are advantageous compared to their flatter but
wider counterparts. The intuition behind using smaller filters combined with deeper
networks is that the deeper networks can have the same e↵ective receptive field as the
wider network, but also increase the non-linearity and reduce the model parameters.
The winners of ILSVRC-2013, Zeiler and Fergus, use 96 di↵erent 7⇥ 7 convolutional
filters in the first hidden layer of their network ([111]: p. 6). Assuming a stride of 13,
using three layers of 3⇥3 convolutional filters has the same e↵ective receptive field as
a 7⇥ 7 filter. Apart from the increased non-linearity through a deeper network, this
separation reduces the model parameters in the convolutional layers. In this example,
the parameters per channel reduce from 72 for one layer with a receptive field of 7⇥ 7
to 3 · 32 for three layers with receptive fields of 3⇥ 3. [86]

2.3.2 Depthwise Separable Convolutions

Convolutional layers are computationally expensive because they perform many mul-
tiplications, as shown in equation 2.2. This number of multiplications can be a bottle-
neck when training large convolutional neural networks.

3this assumption is for simplification; Zeiler and Fergus actually use a stride of 2 in their network

13

CHAPTER 2. ARTIFICIAL NEURAL NETWORKS FOR COMPUTER VISION

Depthwise separable convolution, as introduced by Chollet (2016) [12], breaks down
the procedure of applying image filters from section 2.3.1 into two steps:

1. Depthwise Convolution: While regular convolution applies the image filter F on
all channels in the input depth Id , depth-wise convolution applies Id image filters
with a depth of 1: kw ⇥ kh ⇥ 1. These image filters of depth 1 are applied on all
input channels, thus Id times. The resulting cubicle is of output size I 0w ⇥ I 0h ⇥ Id4.
This produces I 0w · I 0h · kw · kh · Id multiplications.

2. Pointwise Convolution: The input to the pointwise convolution is the output
from the depth-wise convolution and thus of size I 0w ⇥ I 0h ⇥ Id . On this input, 1⇥1
convolutions are performed with a filter depth of Id according to the number of
input layers. These 1⇥ 1 convolutions inevitably preserve the image width and
height. According to the number of desired output filters, these 1⇥1 convolutions
are performed kn times. Therefore the output image I 0 will be of size I 0w ⇥ I 0h ⇥ kn.
In total, that leads to Id · I 0w · I 0h · kn multiplications per convolutional layer.

The total number of multiplications thus amounts to the following number of calcula-
tions:

I 0w · I 0h · kw · kh · Id + Id · I 0w · I 0h · kn = I 0w · I 0h · Id · (kw · kh + kn) (2.3)

The ratio between the original convolution from equation 2.2 and the depth-wise
separable convolutions from equation 2.3 for the identical target image dimensions I 0

is then
I 0w · I 0h · Id · (kw · kh + kn)
kn · I 0w · I 0h · kw · kh · Id

=
kw · kh + kn
kw · kh · kn

=
1

kw · kh
+

1
kn

(2.4)

This ratio is smaller than or equal to 1 for all cases where kn � 2^ kw · kh � 2 and thus
depth-wise convolutions are usually more e�cient than regular convolutional layers.

The ratio for the number of parameters between the regular convolution and the depth-
wise separable convolution is equal to the ratio of the multiplications in equation 2.4.
Thus, this is also usually reduced.

Apart from the eXtreme Inception (Xception) neural network architecture from Chol-
let (2016)[12], the idea of depth-wise separable convolutions is used in many other
model architectures, such as MobileNet [39], a neural network designed to run on

4assuming that initial dimensions are preserved during the convolution, the output size is Iw ⇥ Ih ⇥ Id

14

2.3. CONVOLUTIONAL NEURAL NETWORKS

the limited hardware capabilities of end-user smartphones, in a proposed neural ma-
chine translation architecture [45] and a multi-purpose model designed by Kaiser et al.
(2017), used for translation, image classification, speech recognition and parsing [46].

2.3.3 Pooling Layers

Pooling Layers

• make networks robust to translational variance,

• make networks robust to minor local changes and

• reduce the size of the data.

A pooling operation makes a summary of a receptive field pw ⇥ ph, pw,ph 2N1, of the
input data. It is responsible for the routing of information through the network by
deciding which information to pass on to the next layer. Equivalently to the image
filter in convolutional layers, the pooling operation is performed over the positions of
the input image with a predefined stride s 2 N1. Usually, the stride is chosen to be
larger than 1, such that the pooling layer reduces the size of the input data by a factor of
s2. The pooling window defined by pw and ph can be any subset of the input image. If
pw and ph are equal, the pooling window preserves the ratio between width and height
from the input image. Thus, they are typically chosen to be equal and between 2 and
5, depending on the input image size and other factors (see also [51], [86], [95], [31]).

As the pooling operation only summarises the input data, which is usually passed
through an activation function before, it is not common to apply an activation function
after this layer. If padding is applied at the borders, Max-Pooling uses �1 values at
the overlapping areas such that these entries cannot possibly be the maximum values
for the max pooling operation.

Typical pooling functions areMax-Pooling, Average/Mean-Pooling, L2-Pooling, Stochastic-
Pooling, Spatial Pyramid Pooling andGeneralising Pooling Functions (formore, see [110],
[7], [8], [57]).

The pooling function is often criticised due to its inevitable information loss. By
sub-sampling the data and making it invariant to small perturbations, it loses the
precise spatial relation between higher-level features (see also section 2.3.9).

15

CHAPTER 2. ARTIFICIAL NEURAL NETWORKS FOR COMPUTER VISION

2.3.4 Fully-Connected Layers

Fully-connected layers are layers with neurons that have full connections to all out-
puts from the previous layer. While the convolutional and pooling layers perform the
detection and extraction of features from an image, the fully-connected layer(s) of a
convolutional neural network create the final output of the network. Fully-connected
layers of a convolutional neural network ”are required to learn non-linear combina-
tions of learned features” ([3], p. 2) from the previous layers. Fully-connected layers
are simply a multi-layer perceptron classifier, as introduced in 3.6.

As described in sections 2.3.1 and 2.3.3, the output from the previous layer is a tensor
I 2 Rw⇥h⇥n. Since fully-connected layers have no notion of the location of the input,
they work with 1-dimensional input data. Therefore, the data is flattened to be a 1-
dimensional feature vector. As introduced in section 2.3.1, convolutional layers are
simply a specific case of regular fully-connected layers. Thus, what is referred to as
fully-connected layers in neural networks are technically 1⇥ 1-dimensional convolu-
tions with a full connection table, meaning there are no shared weights.

The numeric restrictions of the output depend on the problem domain. The output
is either continuous for regression problems or a likelihood score for a classification
problem with each output value indicating the probability for a given class. The
likelihood is usually expressed between 0 and 1, e.g., through the application of a
softmax function. The number of output neurons for the final fully-connected layer
(output layer) is equivalent to the number of desired output classes. For a classification
problem with n classes, the output is usually of length n and bounded between 0 and
1, such that every output neuron reflects the probability of a given class. Alternatively,
each output neuron can reflect a binary value that encodes the classification. For this
case, log2n output neurons are necessary.

2.3.5 Dropout Layer

Dropout is used to foster generalisation of the learning process and prevent overfit-
ting. Hinton et al. [34] introduced the idea of dropout to neural networks. Dropout
means randomly deactivating certain neurons with a probability p during each run of
the learning process. Neurons are deactivated by setting their output to 0. Dropout
forces the network to more robustly learn features with multiple neuron combina-
tions without the ability to ground certain assumptions on specific neurons (for more
see [89]).

A dropout layer is simply a tensor D 2 Rw⇥h⇥d of the shape of the input data that
contains a 0 or a 1 for every position, depending on whether the neuron is activated (1)
or not (0). Thus, dropout is calculated as the Hadamard product between this dropout

16

2.3. CONVOLUTIONAL NEURAL NETWORKS

tensor and the input data: D � in. Every element di in D is independently sampled
from a Bernoulli distribution with probability p. Since dropout reduces the number
of outputs created from the network, the final output is multiplied with 1

1�p when
dropout is applied to account for the missing neurons.

The dropout probability p is a hyper-parameter of the layer, typically set to 0.5. Fur-
thermore, layers closer to the output tend to have higher dropout probabilities than
layers closer to the input.

Dropout is only done during the training phase and not at inference time.

2.3.6 Batch Normalisation Layers

Batch normalisation is a means for more e�cient deep network training by reducing
internal covariate shift. Internal covariate shift refers to the phenomenon that the out-
puts of the nodes of di↵erent layers of a neural network follow di↵erent distributions
([85], p. 228). Internal covariate shift is mainly caused by layers closer to the output
learning better with respect to the error than layers closer to the input.

Batch normalisation enables a more stable gradient propagation in a neural network,
especially for deep neural networks. It can also lead to speed improvements in the
learning process ([15], p.1), the possibility to use ”higher learning rates without the
risk of divergence and other ill side e↵ects” ([80], p.59). It further reduces the risks
associated with saturating nonlinearities (e.g., softmax) ([43], p.2) and can improve
parameter initialisation ([43], p.1).

The method from Io↵e and Szegedy (2015) performs a point-wise normalisation over
the mini-batches with input x = (X(1), · · · ,X(d)). The formula is as follows:

x̂(k) =
x(k) � x̄(k)

q
s0
⇣
x(k)

⌘2
+ "

(2.5)

with sample mean x̄(k) = 1
m
Pm

i=1 x
(k)
i and sample variance s0

⇣
x(k)

⌘2
= 1

m
Pm

i=1

⇣
x(k)i � x̄(k)

⌘

and mini-batch sample size m 2N1 and constant " > 0 2 R.

This is an adjusted calculation of z-score normalisation over the mini batch by sub-
tracting the sample mean and dividing by an adjusted sample standard deviation. The
standard deviation is adjusted by adding a small constant " to account for the case of
no variance in the data (division by zero).

Additional parameters for feature scaling and shifting are introducedwhich are learned

17

CHAPTER 2. ARTIFICIAL NEURAL NETWORKS FOR COMPUTER VISION

in the training process.

y(k) = � (k) · x̂(k) + �(k) (2.6)

These parameters allow for the model to adjust the normalisation that was done be-
fore. For example, they enable the normalisation layer to become an identity layer
by reverting the standardisation by the sample variance for � and sample mean for �,
thus simply passing the input data through.

Adjusted forms of normalisation exist (formore, see [102]), though batch normalisation
is the most common one.

2.3.7 Inception Modules

An inception module5, introduced by Szegedy et al. (2014) [95] follows the idea
of a network within a network, initially introduced by [58]. An inception block is
a summary of multiple contained layers. The idea is to design a good local network
topology that can then be combined to a larger network. These sub-network operations
are performed in parallel and concatenated depth-wise at the end. Each sub-network
consists of convolutional layers or pooling layers.

As in the case for GoogLeNet, the inception module contains convolutional layers with
receptive field sizes of 1 ⇥ 1, 3 ⇥ 3, and 5 ⇥ 5 and a 3 ⇥ 3 max pooling operation, see
figure 24.

Figure 24: Simple Inception Module, modified from Szegedy et al. (2014) [95]

5also called inception module, concatenation block, aggregation block

18

2.3. CONVOLUTIONAL NEURAL NETWORKS

The abovedescribed model architecture adds multiple convolutional layers to the net-
work and thus requires additional parameters to be learned.

In the following, the input image to the inception module is denoted as I inp, with the
dimensions I inpw , I inph and I

inp
d . The input to a given image filter k is denoted as Ik and

is equal to I inp when k is performed directly on the input. The set of initial nodes
in the inception block are referred to as inception nodes Kinc. The set of added 1⇥ 1
convolutions are referred to as reduction nodes Kred . The set of all convolutional layers
is represented by K \K1, with kw � 2 and kh � 2. The set of 1⇥ 1 convolutions, where
kw = kh = 1, is referred to as K1. All complexity reduction convolutional nets that
occur after a pooling layer are referred to as Kaf ter_pool . Furthermore, a stride of 1 and
padding at the borders for both convolutional and pooling layers are assumed in this
subsection to preserve the image dimension and facilitate the computation. The idea of
an inception module works independently of the stride and border handling function
chosen as long as the dimensions are identical for the depth-wise concatenation.

Given the setup introduced above, each convolutional layer k in the set of all convolu-
tional layers Kinc performs I inpw ·I inph ·I

inp
d ·kw ·kh ·kn operations. For the computationally

complex inception module from figure 24, the number of computations is shown in
equation 2.7.

Operationscomplex = I
inp
w · I inph ·

X

k2Kinc

I
inp
d · kn · kw · kh (2.7)

For the network structure in figure 24, this means I inpw · I inph · I inpd · (kn1 + 9kn2 + 25kn3)
convolutional operations. It can be easily seen how this number gets large quickly and
hinders network performance. This problem is amplified by the fact that the layers
are concatenated depth-wise. The final depth is I 0d = I

inp
d + kn1 + kn2 + kn3. Since the

pooling layer only preserves the depth of the input image I inpd , concatenation with the
convolutional layers can only increase the depth of the output image I 0. This e↵ect
increases network size and complexity, especially over multiple inception modules.

The abovedescribed problems can be solved with 1⇥ 1 convolutions, which serve ”as
dimension reduction modules to remove computational bottlenecks” ([95], p. 2). A
1⇥1 convolution preserves the spatial dimensions of an image but can reduce its depth,
if kn < Ikd . The 1⇥1 convolution is applied before the original set of convolutions, except
if it is a 1⇥1 convolution itself, thus only on Kinc\K1. It is also applied after the pooling
layer, to reduce the depth of the output, see figure 25.

19

CHAPTER 2. ARTIFICIAL NEURAL NETWORKS FOR COMPUTER VISION

Figure 25: Advanced Inception Module designed to reduce the overall complexity,
modified from Szegedy et al. (2014) [95]

The first advantage of this network structure is that the depth of the concatenation
node is not necessarily larger than the input depth to the inception module because
the pooling from the output layer can be down-sampled to length n. Thus the final
depth is:

I 0d =
X

k2Kinc

kn +
X

k2Kaf ter_pool

kn (2.8)

Despite additional complexity of
P

k2Kred I
inp
w · I inph · I inpd · kn multiplications caused by

the additional convolutional layers, the goal is to reduce the overall complexity by
reducing the depth parameter in the subsequent layers from I

inp
d to kn in the formula

above.

The total number of operations is thus

Operationsreduced = I
inp
w · I inph ·

0
BBBB@

X

k2Kred

I
inp
d · kn +

X

k2Kinc

I kd · kn · kw · kh
1
CCCCA (2.9)

Operationscomplex should be bigger than Operationsreduced . In the following, it is as-
sumed that this condition holds and a simplified formula is derived to verify the

20

2.3. CONVOLUTIONAL NEURAL NETWORKS

correct choice of parameters with regards to the width kw, height kh and depth kn of
all convolutional layers within the inception module k 2 K .

Operationscomplex > Operationsreduced (2.10)

I
inp
w · I inph ·

X

k2Kinc

I
inp
d ·kn ·kw ·kh > I

inp
w · I inph ·

0
BBBB@

X

k2Kred

I
inp
d ·kn+

X

k2Kinc

I kd ·kn ·kw ·kh
1
CCCCA (2.11),

X

k2Kinc

I
inp
d · kn · kw · kh >

X

k2Kred

I
inp
d · kn +

X

k2Kinc

I kd · kn · kw · kh (2.12),

X

k2Kinc

kn · kw · kh >
X

k2Kred

kn +
X

k2Kinc

I kd

I
inp
d

· kn · kw · kh (2.13),

X

k2Kinc

kn · kw · kh �
X

k2Kinc

I kd

I
inp
d

· kn · kw · kh >
X

k2Kred

kn (2.14),

For every k 2 Kinc, kn is the depth of the input to the inception module if k is a 1⇥ 1
convolution (Ikd = I

inp
d). Else, kn is the depth of the output from the dimensionality

reduction layer. Thus the term can be simplified as follows, where k 2 K \K1 is the set
of all layers that are not 1⇥ 1 convolutions:

X

k2K\K1

0
BBBB@1�

Ikd

I
inp
d

1
CCCCA · kn · kw · kh >

X

k2Kred

kn (2.15),

The formulation in (2.15), thus gives an easy-to-use formula to control for the depth of
the additional convolutional layers kn8k 2 Kred to reduce the overall complexity.

The equation needs to hold for the reduced size convolutional neural net having less
operations than the original one. It is tailored for the general case that for every
convolutional layer that has a window greater than 1, kw,kh � 2, a convolutional 1⇥ 1
layer of depth n is inserted. It assumes that all dimensionality reductions are done
with 1⇥ 1 convolutions as is the usual case. Nonetheless, the restriction of using 1⇥ 1
convolution is not mandatory. The general inception idea would also work with other
window sizes as long as the depth is reduced, although larger window sizes lead to
more computations than 1⇥ 1 convolutions.

21

CHAPTER 2. ARTIFICIAL NEURAL NETWORKS FOR COMPUTER VISION

2.3.8 Residual Blocks

Residual blocks, as introduced by He et al. (2015), lay the groundwork for the tri-
umph of very deep neural networks. They enable a transition from a 22-layer neu-
ral network as used in GoogLeNet to a 152-layer network as used in ResNet-152 at
ILSVRC-2015 [55]. For a more profound analysis of the advantages of residual network
connections, see [29].

The key idea to residual blocks is the usage of residual connections that skip layers and
pass on the values which are added to the output after the skipped layers. The intuition
behind that is that instead of having the network learn the full transformation of the
data, the skipped blocks now only need to learn the delta of how to adjust the previous
output values. In the original paper, the authors skipped two layers with the residual
connections, but this is a design choice, see figure 26.

In mathematical terms, instead of learning the output H(x) of a given input x direct,
the network learns H(x) as a function H(x) = F(x) +x. Thus, the network only needs to
fit the residual F(x) =H(x)�x, which is smaller and easier to learn than the whole rep-
resentation of H(x). This change facilitates the gradient flow between layers and thus
enables learning in deep networks. A similar concept is used in LSTM networks [36]
and other variations of recurrent neural networks [50] [108] [68] [103].

Figure 26: Two example residual block architectures, modified from He et al.
(2015) [31]

22

2.3. CONVOLUTIONAL NEURAL NETWORKS

Because the learned residual is added to the original output values, the data needs to
be of the same shape.

The idea and the insights from residual blocks also led to the idea of densely connected
convolutional networks, where the concept of residual connections is abstracted to
every layer being densely connected to all other layers. For more on densely connected
convolutional networks, see the original paper [41].

2.3.9 Capsules

Conventional convolutional neural networks have di�culties in generalising to novel
viewpoints di↵erent from the data they have been trained on. This implies that convo-
lutional neural network either lose their predictive power in unrestrained, real-world
environments or they need to be trained on large amounts of data. This limitation
adds exponential complexity to the training of neural networks to make them robust
to these challenges [33]. Furthermore, Su et al. (2018) showed that the output of
deep neural networks for image recognition can be easily altered through adversarial
attacks, even by only adding small perturbations to the input image (e.g., one-pixel
modification) that would not be recognised by humans [93]. Apart from that, convo-
lutional neural networks cannot develop a notion of the relation between di↵erent
concepts within an object. Although CNNs are quite good at detecting features, aggre-
gating them and making a prediction based on their presence or absence, they are not
able to infer whether these features have the correct spatial relationship. For instance,
a CNN will identify a face in an image, even if the mouth, the eyes and the nose are
misplaced, see figure 27.

Figure 27: A convolutional neural network does not e↵ectively capture the spatial
relationship among concepts but simply detects the existance of certain elements

23

CHAPTER 2. ARTIFICIAL NEURAL NETWORKS FOR COMPUTER VISION

Based on the idea of fixation points that help the human vision identify shapes and
objects, Sabour et al. (2017) propose a new network architecture that enables a dif-
ferent representation of the underlying object features: Capsules [79]. Although their
proposed model change still uses the fundamental concepts of convolutional neural
networks, convolutional layers, it is usually abstracted and referred to as capsule net-
works, defining a new category of networks for computer vision. Although capsule
networks are still at its beginning, they are estimated to have a significant impact
on the future of neural networks, especially for computer vision, because ”there are
fundamental representational reasons for believing it is a better approach” ([79], p.9).

The idea of capsule networks is similar to that of factor analysis - an image is built
hierarchically from existing features with each feature having an associated probability
(weight) determining its importance to the underlying concept. To exemplify this, a
face could be built up by the latent features ”eye”, ”nose” and ”beard”. While the
features ”eye” and ”nose” are expected to have a strong contribution towards the
concept of a face, especially when they are arranged in a certain relationship to each
other, a beard or the absence of such is not always such a strong indicator of a face.

The basis for that is that an entity (e.g., a feature) in an image is represented by a
capsule. A capsule can be seen as a layer within a layer because a capsule is a vector
of neurons of length n. Each capsule can be seen as a part of the description of the
picture, encoding specific properties, as each neuron within a capsule encodes a feature
of the entity, e.g., its width, pose, thickness, scale or locally specific properties. The
probability that a given entity is encoded by a capsule is represented by the length of
the capsule vector. The longer the vector, the more likely the presence of the encoded
entity. The creation of capsule networks can be split into two sub-steps

1. Creation of Primary Capsules: Capsule networks start with one or more con-
volutional layers that create a tensor consisting of feature maps as described in
section 2.3.1. These feature maps can then be reshaped to get multiple vectors -
the capsules. The reshaping is arbitrary, as long as all the information is retained.
For instance, if the output depth n of the convolutional layer is 16, this could
be reshaped to 2 vectors of length 8 or 4 vectors of length 4, etc. Furthermore,
since the vectors’ length encode the likelihood of a given feature, the vectors are
squashed to be of a length not bigger than 1. These created capsules are called
the primary capsules. This process is exemplified in figure 28, where two pri-
mary capsules of length 4 are created at each input position from a convolutional
layer of depth 8.

24

2.3. CONVOLUTIONAL NEURAL NETWORKS

Figure 28: Exemplified vector creation from convolutional layers

2. Dynamic Routing to Higher-Level Capsules: Dynamic Routing between cap-
sules determines the parse tree - which lower-level capsules are related to which
higher-level capsules. In other words, routing determines which concepts are
related to each other within an image. To do so, every capsule ui of a given layer
tries to predict the output of all the capsules from the next layer. This procedure
is applied in every layer from input to output.

For every capsule ui in layer Ci and every capsule uj in layer Ci+1, the prediction
is made as ûj,i = Wi,j · ui , where W is a weight matrix that is adapted to the
training data. If there exists strong agreement among the predicted capsules
ûj,i from multiple capsules, these capsules weights will be strong. Hence these
lower level capsules’ outputs contribute strongly to the higher-level capsules,
whereas the output of the capsules that made di↵erent predictions only weakly
influence that particular higher-level capsule. This process is called routing by
agreement. Agreement is achieved through a clustering-like approach, where
the contribution of each prediction vector ûj,i is determined by the similarity
of that prediction vector to the (weighted) mean vector of all predictions. The
distance metric used by Sabour et al. (2017) for similarity is the scalar product
of the vectors, although other metrics could be used. The detailed procedure for
routing between two layers l and l +1 from Sabour et al. (2017) can be found in
Algorithm 1.

Another positive side e↵ect of this routing process is that it can deal with am-
biguity within a picture. As Sabour et al. (2017) show with the example of
the overlaying MNIST example, a capsule network makes predictions that are
mutually exclusive and collectively exhaustive (MECE). Thus, it chooses the clas-
sification that is most likely taking into consideration all other objects and their
classification.

25

CHAPTER 2. ARTIFICIAL NEURAL NETWORKS FOR COMPUTER VISION

Algorithm 1 Routing Algorithm from [79]

1: procedure ROUTING(ûj,i , r, l)
2: for every capsule i in layer l and capsule j in layer (l +1): bij 0
3: for r iterations do
4: for all capsule i in layer l do
5: ci sof tmax(bi)
6: end for
7: for all capsule j in layer (l +1) do
8: sj

P
i cij ûj |i

9: end for
10: for all capsule j in layer (l +1) do

11: vj squash(sj) . squash(sj) =
ksjk2

1+ksjk2
sj
ksjk2

12: end for
13: for all capsule i in layer l and capsule j in layer (l +1) do
14: bij bij + ûj |ivj
15: end for
16: end for
17: return vj
18: end procedure

Figure 29: Example of a MECE solution in a multi-label classification task from [10]

The last layer of a capsule network consists of a layer of capsules, where each capsule
represents one target class and encodes the probability of the given class represented
by its length.

Sabour et al. (2017) train the capsule network with `2 loss between the length of
the capsules from the last layer and the actual objects in a picture. Despite that, a
di↵erent loss function could be chosen. A di↵erent loss function called margin loss
is used to detect multiple objects within an image, such as for the overlaying MNIST
case. Further loss adaption can be done by adding a regularisation parameter that
is determined by a decoder network. This decoder network attempts to recreate the
original image from the last layer capsule representation by using fully-connected

26

2.3. CONVOLUTIONAL NEURAL NETWORKS

layers. The di↵erence between the decoded picture and the actual picture can then be
used as a regularisation parameter for the loss function. The output from the decoder
is usually scaled down by a parameter ↵ (e.g., 0.00005) to reduce its influence. For
more on the loss functions proposed, see the original paper [79].

2.3.10 Transfer Learning

The idea of transfer of practice, introduced by Edward Thorndike and Robert Wood-
worth (1901) (see also [76], [77] and [78]), is an idea from the field of psychology that
applied knowledge can be transferred from one context to another context. The more
related the contexts are, the easier the transfer learning task.

Analogously in machine learning, transfer learning is the idea of using pre-trained
artificial neural network models and retraining them on di↵erent but related datasets.
The general notion is that training speed can be increased because many features will
have already been learned and the neural network only needs to adapt to the new task.
Its fundamentals rely on the psychological concept of transfer of practice [19].

The research area of transfer learning in computer science evolved in the late 19th

century with the works of Lorien Pratt (1995) [69] and others. Traditionally, models
have been designed and tuned to fit specific purposes without direct applicability
to other use cases. Nonetheless, transfer learning became widely applied in neural
network training, especially after the publication of competition-winning models and
their pre-trained weights, like Inception, ResNet and others that could be retrained on
other image recognition tasks. Through transfer learning, these large neural networks
can be fine-tuned with less computational means, since fewer iterations are required.
Some transfer learning tasks are even possible on commodity hardware.

Transfer learning can be formally defined as: ”Given a source domain DS and learning
task TS , a target domain DT and learning task TT , transfer learning aims to help
improve the learning of the target predictive function fT (·) in DT using the knowledge
in DS and TS , where DS ,DT , or TS , TT .” ([66], p. 3)

The superiority of transfer learning over traditional learning, e.g., random initialisa-
tions, are [52]

• Initial performance on target task without training

• Time to have the model learn a representation of a problem

• Earlier convergence towards final model performance

27

CHAPTER 2. ARTIFICIAL NEURAL NETWORKS FOR COMPUTER VISION

Nonetheless, learning tasks TS and TT need to be related to produce a positive learning
impact, else there is a risk of inverting the e↵ect and producing a negative learning
impact [52].

In computer vision, it was observed that convolutional neural networks learn similar
patterns in their first layers independently of the problem at hand. The first layer
filters of neural networks usually resemble Gabor filters or colour blobs [107]. This
implies that these models develop a general notion of di↵erentiating between the
classes through the creation of these image patterns independently from the actual
pictures. These first layer filters are thus considered general. This observation leads
to the conclusion that a CNN does not need to be separately trained on creating these
filters in the convolutional layers but could already be initialised with these. The closer
to the output, the layers lose generality and become more specific [107].

Modern ANN packages, like Keras, o↵er various model architectures with pre-trained
weights. This simplifies the programmer’s work of loadingmodels into the right format
for di↵erent ANN packages. The concept of multi-task learning, creating a single ML
algorithm for multiple tasks, is di↵erent to transfer learning, although the ideas share
some common concepts.

Transfer learning can be applied in many di↵erent forms, e.g., inductive transfer,
bayesian transfer, hierarchical transfer or others (for more, see [52]). Transfer learning
can be particularly powerful if the target domain has few training examples and thus
would be di�cult to train from scratch. [42]

28

C
h
a
p
t
e
r

3
Classification in Supervised

Environments

”There is no single classifier superior over the rest” ([87], p. 74). As the no-free-
lunch theorem proves, the superiority of an algorithm depends on the context of
its usage. While a specific algorithm may work well for a given problem, it is not
guaranteed to work well on a di↵erent problem. Therefore, it is the machine learning
practitioner’s job to try out di↵erent algorithms, architectures, and hyper-parameters
before choosing the most appropriate algorithm for any given problem.

Figure 31: General Classification Procedure from [98]: p. 146

Classification is the “task of learning a target function F̂(x) that maps each attribute
set x to one of the predefined class labels y”([98], p. 146). F̂(x) is an approximation
of the actual underlying target function F(x). A classification model can represent the
target function. The input data consists of records of tuples of the shape (xi ,yi). Each
set of n attributes is denoted as xi , where xi 2 X ⇢ Rn. The target attribute (class label)
is denoted as yi 2 Y = {�1,+1}l

{(x1, y1), . . . , (xl ,yl)} ✓ X ⇥Y, i = 1,2, · · · , l (3.1)

A learning algorithm is applied to learn the mapping function F̂(x) from the input
samples X to the target y and generalise the mapping function to unseen examples,

29

CHAPTER 3. CLASSIFICATION IN SUPERVISED ENVIRONMENTS

minimising the expected value of a predefined loss function L(F(x), F̂(x)) or L(y, F̂(x)).
The applied loss function is a hyper-parameter of the machine learning model.

In the following chapter, several machine learning algorithms are introduced. The
chapter starts by introducing Decision Trees in section 3.1. After that, several ensem-
ble model techniques are presented in section 3.2. Section 3.3 introduces the logistic
regression algorithm, followed by introductions of support vector machines in sec-
tion 3.4, K-nearest neighbours in section 3.5 and multi-layer perceptron in section 3.6.
The final section 3.7outlines evaluation methods to compare the performance of mul-
tiple machine learning models.

Although all of them can be used for real-valued targets as well, this chapter illustrates
their application on categorical predictions.

3.1 Decision Trees

Decision Trees (DTs) are one of the most popular data mining techniques. Decision
Trees are computational trees that can classify information through an application of
a chain of rules with the principle of divide and conquer. A DT consists of nodes that
are connected through edges. Every internal node makes a decision that determines
which of the connected nodes to pass the information flow to based on an attribute
of the input data. By doing so, a series of rules can be applied until a leaf node is
reached. A leaf node is a node that does not have any outgoing edges into other
nodes and is thus an endpoint of the graph. A leaf node represents a state or decision
of the Decision Tree, e.g., a categorical prediction. Oftentimes, Decision Trees are
binary trees that only have two outgoing edges, but there is no theoretical limitation
to the number of outgoing edges at each node. The tree structure is determined in
a learning process, where the tree is presented with training data to learn on, and
its internal structure is built. Various algorithms have been developed, with Ross
Quinlan laying the groundwork with the Iterative Dichotomiser 3 (ID3) algorithm and
later the C4.5 algorithm, that are both based on Hunt’s algorithm. Another learning
strategy based on Hunt’s algorithm is Classification and Regression Trees (CART),
introduced by Breiman (1984). Figure 32 shows how an exemplary Decision Tree is
built in four steps by subsequently adding splitting points (decision nodes) to the tree.
Algorithm 3 describes the steps to create a Decision Tree following the ID3 algorithm.
This algorithm is recursively applied until some stopping criterion is reached. This
can be related to the size of the tree, or in its simplest form, until all training examples
can be correctly classified.

Hunt’s algorithm is a top-down, greedy algorithm because it makes a decision at every
node that is based on the highest information gain. Information Gain is a metric that

30

3.1. DECISION TREES

Figure 32: Illustration of a Decision Tree creation process using Hunt’s algorithm
from [98], p. 154

measures how much information has been gained through a given choice at a given
node. It is defined as the influence of the knowledge of a feature at a given node. The
influence is determined through a measure of disorder, such as Gini or Entropy. These
measures are higher the more unordered the data is.

Algorithm 2 describes the steps to select the attribute A with the highest information
gain ratio. The introduced attribute selection Algorithm 2 will illustratively look at the
more common case of using Entropy, but the usage of Gini1 is analogous. Firstly, the
expected information needed Inf o(D) to classify a tuple in D optimally is calculated
using the probability pc that a tuple in D belongs to class c. The probability pc is
calculated as |Dc |

|D| , where Dc is the set of entries of a given class c. In the second step,
the expected information required to classify a tuple from D based partitioning by
attribute A is calculated in Inf oA(D), where Da8a 2 values(A) are the entries in D

where the attribute A has a specific value a. Afterwards, the information gain Gain(A)
on splitting at attribute A can be determined as a di↵erence of the previous two steps.
Information Gain can already be a good measure to determine the best split. But
information gain only seeks purity among the features. Nonetheless, if a given feature
has very many entries, the probability of this feature being a good predictor for the

1Gini(D) = 1�Pm
i=1 p

2
1

31

CHAPTER 3. CLASSIFICATION IN SUPERVISED ENVIRONMENTS

final class is higher due to its nature of holding many possible splits. This is prone
to overfitting. To avoid this problem, the fourth and fifth steps introduce a gain ratio
measure. This problem only occurs for non-binary Decision Trees with a flexible
number of outgoing edges. For binary Decision Trees, information gain is su�cient to
determine the best split attribute.

Algorithm 2 Splitting Attribute Selection

1: procedure split_attribute_selection(D)
2: Inf o(D) = Entropy(D) =

P
c2C pc log2(pc) =

P
c2C

|Dc |
|D| log2

⇣ |Dc |
|D|

⌘

3: for each attribute A do
4: Inf oA(D) =

P
a2values(A)

|Da |
|D| · Inf o(Da)

5: Gain(A) = Inf o(D)� Inf oA(D)
6: SplitInf oA(D) = �Pa2values(A)

|Da |
|D| · log(

|Da |
|D|)

7: GainRatio(A) = Gain(A)
SplitInf oA(D)

8: end for
9: return Attribute A with highest GainRatio(A) or highest Gain(A)

10: end procedure

Algorithm 3 ID3 algorithm from [61], p. 18

1: procedure Iterative Dichotomiser 3(D,A)
2: Create a new tree T with a single root node
3: if no more split(s) OR other stopping criterion reached then
4: Mark T as a leaf with the most common value of c a label
5: else
6: Find a 2 A maximising split_attribute_selection(D)
7: Label T with f
8: for each value vj of a do
9: Set Subtreej = ID3(Da=vj ,A� {a})

10: Connect node T to Subtreej with edge labeled vj
11: end for
12: end if
13: return Decision Tree T
14: end procedure

A significant advantage of Decision Trees is that they have understandable knowledge
structures that are easily traceable. Furthermore, the computational cost at runtime is
not very high. The construction process is also relatively fast in comparison to other
classification methods [84]. Decision Trees can handle both categorical and real values.
On the other hand, Decision Trees are unstable on small training sets. This caveat can
be solved with ensemble methods (see section 3.2). Nonetheless, Hunt’s algorithm is a
greedy algorithm and thus likely to get stuck in local optima[87]. Finding a globally
optimal Decision Tree is currently computationally infeasible for most problems be-
cause there are oftentimes very many combinations between the attributes. Although
DTs are a widely used machine learning method, other machine learning models, e.g.,
kernel methods and ensemble techniques oftentimes outperform DTs in practice [59].

32

3.2. ENSEMBLE METHODS

To handle the complexity and avoid overfitting, several strategies have been developed:

• Pre-pruning (Early Stopping Rule): A measure is put in place that indicates over-
fitting during training and therefore stops the training, e.g., “gain in impurity
measure or improvement in the estimated generalisation error” ([98], p. 184).

• Post-pruning: The initial tree is grown to its maximum size (until all training
utterances are classified correctly) and the fully-grown tree is then trimmed in a
bottom-up fashion by

1. Replacing a subtree with a leaf node determined from the majority class of
the records

2. Replacing a subtree with the most frequently used branch of the subtree

Post-pruning usually leads to better results than pre-pruning, because the decisions
are based on the full tree. This comes at the cost of computational e�ciency.

One particularly popular variant of Decision Trees in the context of ensemble learning
from section 3.2 is Decision Tree stumps. Decision Tree stumps are Decision Trees
with only one decision node. They are rather simple trees that draw linear decision
boundaries based on one feature. A dataset with n observations in d dimensions can
potentially hold n · d Decision Tree stumps, although only the pareto-optimal ones are
usually relevant.

3.2 Ensemble Methods

Ensemble methods combine various models and generate an output prediction from a
combination of the models’ outputs. Usually, an ensemble model combines multiple
weak learners. Various ways of combining the individual models’ outputs exist. One
can generally di↵erentiate between Bagging and Boosting.

Bagging

In bagging, multiple classifiers are created in parallel and combined into the final out-
put. Usually, each classifier is built on a bootstrapped version of the original dataset.
Bootstrapping in this context means that the features (columns) are randomly subsam-
pled. Thus, each classifier does not learn on all features but only on a subsample of all
features. For bagging, one common method is majority vote: Every model makes a pre-
diction, and the most often predicted class is chosen. Another conventional approach
is averaging the likelihood score over all predictions and selecting the class label with
the highest likelihood:

33

CHAPTER 3. CLASSIFICATION IN SUPERVISED ENVIRONMENTS

F̂ 0(x)i = �(xi) =
PK

k=1 fk(xi)
K

,fk 2 F̂, (3.2)

where F̂ is the set of all Decision Trees in the ensemble.

Since the number of estimators k is a fixed number, the division is not necessary, and
the formula can be changed to be the sum of the predictions. Thus, it would be an
additive maximum vote that behaves equivalently to the average voter.

Boosting

For boosting, multiple classifiers are created sequentially. Each sequentially created
classifier is generated depending on the result of the prior classifier. The classifiers
are not trained on a randomly bootstrapped dataset but a weighted dataset depend-
ing on the previous model prediction. Boosting is usually done with Decision Trees,
especially Decision Tree stumps, as ”weak learner” or ”base learner”. Nonetheless, it
can generally be done with any classification algorithm that outperforms a random
guess. Schwenk & Bengio (2000) demonstrate this on the example of boosting multiple
neural networks using AdaBoost, see section 3.2.2 [81].

The general idea of boosting is to reduce the classifier’s error subsequently by itera-
tively adding models. In doing so, the algorithm focuses on the parts of the training
data that have been misclassified before by giving more importance to those. In anal-
ogy, this can be seen as a voting process of weighted experts in certain areas. Multiple
expertise classifiers’ predictions are combined and weighted to produce the final pre-
diction.

The algorithm works by fitting new models to the residuals (errors) of the previous
models, assuming that this is the part that the algorithm needs to focus on to improve
the overall prediction. This focus is done by introducing a weight wt(xi) that deter-
mines the impact of the entry xi at time step t on the classification algorithm. Correctly
classified instances get fewer weights in the next generation, while misclassified exam-
ples get higher weights in the next training iteration. This enables the algorithm to
focus its e↵orts on the specifics of the dataset that are hard to learn. This sequential
model fitting on the residual per weak learner is done until a predefined stopping
criterion2 is reached.

The overall idea of boosting can be simplified as shown in Algorithm 4, where ✏

describes the remainder (error) that was not captured by the weak classifier F̂m.

2e.g., number of iterations, remaining error, model size, model generalisation ability, model score

34

3.2. ENSEMBLE METHODS

Algorithm 4 General Boosting Procedure

1: procedure boost_learners(X,y)
2: Approximate y with weak learner F̂(X)
3: ✏ L(y, F̂(X))
4: if Stopping criterion not reached then
5: Boost importance of misclassified samples in X based on ✏
6: F̂(X) F̂(X)+boost_learners(X,y)
7: end if
8: return F̂(x)
9: end procedure

The combination of multiple models’ predictions can become complex, especially for
larger models. This constraint can be resolved by combining the ensemble model’s
classifiers in a single classifier [35].

In the following subsections, common tree learning ensemble methods are introduced.

3.2.1 Random Forest Classifier

Developed by Leo Breiman (2001) [9], Random Forests Estimators (RFE) are a ”group
of un-pruned classification or regression trees made from the random selection of sam-
ples of the training data” ([4], p. 274). Random Forests are one of the mostly used Bag-
ging techniques in ensemble learning. Multiple base regression trees rn(x,✓m,Wt),m �
1 are combined to form an aggregated estimate. The symbol ✓ denotes an i.i.d. ran-
domising variable ([9], p.2; [6]).

During induction, the features are selected at random. The final prediction is made
through a majority vote (prediction through aggregation). The process for a random
forest classifier is as follows:

1. Random Column Sub-sampling: Sample n items randomly from all columns N
(with replacement).

2. Select m ⌧ M features at each node and choose the best split via information
gain, e.g., using Gini or Entropy.

3. Grow each tree as large as possible without pruning it.

The aggregated regression estimate is then: r̄n(X,Wt) = E✓[rn(X,✓,Wt)] where E✓ de-
notes the expectation with respect to the random parameter ✓, conditional on the
input data X and the data weights Wt ([6], p. 1064).

35

CHAPTER 3. CLASSIFICATION IN SUPERVISED ENVIRONMENTS

This procedure makes Random Forests robust to noise in the data and enables it to
generalise better. Oftentimes, Random Forests outperform DTs in practice, especially
for large training datasets. They are also often used for datasets with many input
variables since each tree only selects a sample of input variables to make a prediction
on. They often perform comparably to AdaBoost [9] from section 3.2.2, but the process
can be less complex than training boosting approaches. Contrary to the intuition,
adding trees to a random forest model does not lead to overfitting, since the result is a
majority vote between all trees. On the other hand, adding trees oftentimes improves
generalisation because it leads to a more democratic decision process that is less reliant
on potentially overfitted trees.

Random Forests also enable weighting of feature importance.

3.2.2 Adaptive Boost Classifier

Adaptive Boosting (AdaBoost, later also referred to as ADB) is a tree boosting algorithm
developed by Yoav Freund and Robert Shapire (1995). Analogously to random forests,
the idea is to create a strong classifier from a combination of weak classifiers. Multiple
weak classifiers are used as features for a linear regression model that then makes the
final classification:

F̂(xi) = ↵1h1(xi) +↵2h2(xi) + · · ·+↵lhl(xi) (3.3)

where l 2N denotes the number of weak learners and ↵k is equivalent to the weights
of each weak classifier. The weights ↵k are learned in cycles over the data. The exact
AdaBoost algorithm can be found in Algorithm 5.

Adaptive Boosting can also be used for feature selection, see [101], p. 802 ↵.

3.2.3 Gradient Boosting Classifier

Gradient Boosting (GBC), introduced by Friedman (1999) [20], is an enhancement of
the AdaBoost algorithm that allows for more general loss functions and presents a new
way of handling the residuals ✏.

From a mathematical perspective, each weak learner indexed t = 1,2,3, . . . ,T makes a
prediction Ft(x) of t on the input data x as described in equation 3.5 with the weak
learner at from equation 3.4.

(�t , at) = argmin

�,a

NX

i=1

L(yi , F̂t�1(xi) + �h(xi ;a)) (3.4)

F̂t(x) = F̂t�1(x) + pth(x;at) (3.5)

36

3.2. ENSEMBLE METHODS

Algorithm 5 AdaBoost algorithm from [101], p. 801 f.

1: procedure Adaptive Boosting(X,Y ,T)
2: Initialise W 1

kXk
3: Initialise F̂(x) with an initial weak learner
4: for t 2 T do
5: Train weak learner using distribution W (t)
6: Get weak hypothesis ht(x) : X! {�1,+1} with error ✏t = L(ht(x), y)

7: ↵t 1
2 ln

0
BBBB@
1�✏t
✏t

1
CCCCA

8: for i 2N do
9: if ht(xi) == yi then

10: Wt+1(xi) Wt(xi)
Zt
· e�↵t . Zt is a norm. factor, see formula 3.11

11: else
12: Wt+1(xi) Wt(xi)

Zt
· e↵t . Zt is a norm. factor, see formula 3.11

13: end if
14: end for
15: F̂(x) F̂(x) +↵tht(x)
16: end for
17: return F̂(x)
18: end procedure

The loss function L(y, F̂(x)) is usually chosen to be either exponential or the negative bi-
nomial log-likelihood, although there is no theoretical limitation. The target y 2 {�1,1}
is binary, but the algorithm can be enhanced to multi-class problems (see also [20]).
The weak learner h(x;at) can be of any classification algorithm. Equation 3.6 shows
the overall formula for gradient boosting, where T weak learners h(x;at) are combined
with individual coe�cients pt .

F̂(x) =
TX

t=1

pth(x;at) + ✏ (3.6)

The formula 3.6 cannot be optimised with traditional optimisation methods in the
Euclidean space. Therefore, an approximation with respect to minimising the loss has
to be made. The steepest-descent step for decreasing the loss function is the negative
gradient with respect to F̂(xi), as in 3.7.

� gt(xi) = �
�L(yi , F̂(xi))

�F̂(xi)

�
(3.7)

The weak learner most correlated with �gt(xi) is chosen to get a good, generalisable
estimate. It is the most suitable approximation as it is the weak learner that is most
parallel to the steepest-descent function. Equation 3.8 is used to find most suitable

37

CHAPTER 3. CLASSIFICATION IN SUPERVISED ENVIRONMENTS

weak classifier.

at = argmin

a,�

NX

i=1

"
gt(xi) + �h(xi ;a)

#2
(3.8)

The chosen steepest descent approximation is h(x;at) instead of the unconstraint nega-
tive gradient �gt(x) for minimising the loss function.

Thus, the final model approximation can be found in equation 3.9 with the coe�cient
pt from equation 3.10.

F̂t(x) = F̂t�1(x) + pth(x;at) (3.9)

pt = argmin
p

NX

i=1

L(yi , F̂t�1(xi) + ph(xi ;at)) (3.10)

To summarise this procedure, the original function minimisation problem from for-
mula 3.6 is approximated by a least-squares function minimisation as in formula 3.8.
Instead of least-squares, another fitting criterion can be applied.

Algorithm 6 reproduces the algorithmic steps to perform gradient boosting, for the
common case of an exponential loss function.

Algorithm 6 Gradient Boosting algorithm from [20], p. 5

1: procedure Gradient Boosting(x,y,T)
2: Initialise W 1

kXk
3: Initialise the classifier with a weak classifier F̂0 = argminf

PN
i=1L(yi , f (x))

4: ✏0 = L(y, F̂0)
5: for t = 1 to T do
6: for i = 1 to N do
7: ỹi = �


�L(yi ,F̂t�1(xi))

�F̂t�1(xi)

�

8: end for
9: Get candidate classifiers H(W,X,Y) from input X, target Y and weights W

10: at = argmina,�
PN

i=1[ỹi � �h(xi ,a)]2 for all h(xi ,a) 2H
11: pt = argminp

PN
i=1L(yi , F̂t�1(xi) + ph(xi ,at))

12: for i = 1 to N do
13: Get the new weights Wt+1(xi) =

Wt(xi)
Zt

e�pth(xi ,at)y(xi) . Zt from 3.11
14: end for
15: F̂t(x) = F̂t�1(x) + pth(x,at)
16: end for
17: return F̂(x)
18: end procedure

The regularisation parameter Z at iteration t is merely the sum of all the weight values,
as described in equation 3.11. In this formula, the set of correctly classified examples is
denoted as Y (X)\ F̂t(X), whereas the misclassified samples are in the set Y (X) \ F̂t(X).

38

3.2. ENSEMBLE METHODS

Zt =
X

x2Y (X)\F̂t(X)

wt(x)
r

1� ✏t
✏t

+
X

x2Y (X)\F̂t(X)

wt(x))
r

✏t
1� ✏t

=
X

x2X
wt(x)

s
✓1� ✏t

✏t

◆Y (x)·F̂t(x)
= 2 ·

p
✏t · (1� ✏t)

(3.11)

For an exponential loss function, pt is bound by 1
2 ln

1�✏t
✏t

. Although the error itself
does not necessarily constantly go down from iteration to iteration, it is constraint by
an exponentially decaying function and thus eventually approaches 0 for t!1.

Simplifying the formula for wt from Algorithm 6, it follows equation 3.12 for the
correct classifications and equation 3.13 for the incorrect ones.

wt+1(x) =
wt(x)
Zt
·
r

1� ✏t
✏t

=
wt(x)

2 ·
p
✏t · (1� ✏t)

·
r

1� ✏t
✏t

=
wt(x)
2
· 1
✏t

(3.12)

wt+1(x) =
wt(x)
Zt
·
r

✏t
1� ✏t

=
wt(x)

2 ·
p
✏t · (1� ✏t)

·
r

✏t
1� ✏t

=
wt(x)
2
· 1
1� ✏t

(3.13)

Formulas 3.12 and 3.13 can be combined to 3.14, where Y (x) is the correct value and
F̂t(x) is the estimation of the correct value of the target of x in iteration t. Since both
Y (x) and F̂t(x) 2 {�1,+1}, it follows for their product: Y (x) · F̂t(x) 2 {�1,+1}.

wt+1(x) =
wt(x)
2
· 1
Y (x)F̂t(x)�1
�2 +Y (x)F̂t(x) · ✏t

=
wt(x)

�Y (x)F̂t(x)(1� ✏t) + 1
(3.14)

The gradient boosting algorithm can also be applied to multi-class problems. For more
on this, see [20].

Gradient Tree Boosting is a very applicable technique that provides promising results
in practice. ”Tree boosting has been shown to give state-of-the-art results on many
standard classification benchmarks” ([11], p. 1).

In practical observations, Gradient Boosting does not seem to overfit, although this
has not been theoretically explained.

3.2.4 eXtreme Gradient Boosting Classifier

Gradient Boosting performed onDecision Trees only is calledGradient Boosted Trees [59].

39

CHAPTER 3. CLASSIFICATION IN SUPERVISED ENVIRONMENTS

eXtreme Gradient Boosting, XGBoost (later also abbreviated with XGB), introduced by
Chen & Guestrin (2016), is a specialisation of Gradient Boosted Trees that introduces
new concepts to enable faster convergence, fewer parameters andmore robustness [11].
Due to these advantages, its impact on machine learning competitions is striking: Of
the 29 published Kaggle winning teams in 2015, about 59 % incorporated XGBoost
into their solution. This number is higher than the one of neural networks (38 %).
Other competitions showed similar figures [11]. Apart from its theoretical advantages,
the XGBoost package is particularly successful because of its speed and executability
on commodity devices. It is a scalable machine learning system for tree boosting,
available as an open source software package.

Generally spoken, XGBoost enhances Gradient Boosting with four components:

1. Approximate branch splitting

2. Regularisation

3. Shrinkage

4. Column Subsampling

Firstly, an approximate algorithm for finding the optimal split point for each tree in
the Gradient Boosted Trees makes the algorithm faster3, run better in parallel and
run on larger datasets without RAM limitations. In the greedy, traditional approach,
the entire search space of potential splitting points is searched and the best splitting
point chosen. This is especially computationally expensive for continuous input values.
Therefore, a more e�cient, distributed algorithm to approximate a global optimum
is developed. This approach creates a set of candidate splitting points according to a
specified criterion (see chapter 3.3 in [11]) at percentiles of the feature distribution.
Continuous features are then binned into buckets that are split by the set of candidate
splitting points. Lastly, the best splitting point is chosen through aggregated statistics.

Secondly, XGBoost enhances the loss function of a regular Gradient Boosting model
with a regularisation parameter that penalises model complexity to incentivise simpler,
less sophisticated models. In a tree-based model, the goal of the classifier is to find
the best splitting criterion for the right tree and the left tree of a given node. In detail,
this is about which attribute and value to define as a splitting criterion. Chen et al.
introduce a function to use for evaluating every possible split that takes a regularisa-
tion of the model’s complexity into consideration [11]. Apart from the regularisation
proposed in their paper, di↵erent regularisation techniques could be used.

3assuming a su�ciently large dataset that applying the statistical calculations takes up less time than
exhaustively searching all possibilities

40

3.3. LOGISTIC REGRESSION

Third of all, the Gradient Boosting algorithm is enhanced with a shrinkage parameter
that reduces the influence of each added tree, similar to the concept of a learning rate
in gradient descent optimisation. This shrinkage parameter scales the added weights
by a learning rate n, thus reducing the influence of added trees and enabling future
trees to contribute to the model output [21]. The idea behind that is to create a more
robust final classifier that is less dependent on individual trees.

Lastly, column subsampling, as usually done in bagging, is applied. This enables a
predictor at iteration t to focus on learning from certain features in a dataset.

3.3 Logistic Regression

Linear regression models predict a value as a linear combination of its attributes with
some previously determined coe�cients:

F̂(x) =
X

a2A
�a · xa (3.15)

where ŷ(x) is an approximation of y(x) and xa for a 2 A is the attribute a of dataset entry
x. The coe�cient associated with a given attribute a, including a constant attribute of
xa = 1, is denoted by �a. The coe�cients � are learned through Ordinary Least Squares
(OLS) estimation, which minimises the total error from the predictions subject to
the training data. These linear regression models make predictions between �1 and
+1. This is suitable for real-valued predictions, but for classifications, the goal is to
make categorical predictions. Thus, the real output values of the predictor should
be squashed between 0 and 1. A logistic regression (LR) model, introduced around
1970 [67], does that through the application of a non-linear transformation: logits [67].
The logistic regression model is stated as

P(x) = F̂(x) =
e
P

a2A �a·xa

1+ e
P

a2A �a·xa
(3.16)

which can be rewritten as follows, where the logit is the natural log of an odds ratio:

X

a2A
�a · xa = ln

P(X)
1�P(x) = ln(odds) = logit(Y) (3.17)

While it is possible to directly interpret the influence of � on the prediction in the
linear case, in logistic regression models, � can only be interpreted as the direction
between X and the logit of Y without any linear assumptions possible. This makes it
harder to explain the feature importance using logistic regression. Due to the convex
nature of the logistic cost function, logistic regressions have the advantage of reaching
a global maximum with regards to the cost function.

41

CHAPTER 3. CLASSIFICATION IN SUPERVISED ENVIRONMENTS

As stated above, a logistic regression predicts a real value bounded between 0 and 1.
Therefore, one logistic regression model can only make a binary classification predic-
tion4. Nonetheless, through the application of multiple logistic regression models, the
prediction can be enhanced to multiclass.

3.4 Support Vector Machines

Support Vector Machines (SVM) is a non-probabilistic binary classifier that separates
a dataset into two classes. Its general idea was developed by Vladimir Vapnik in the
early 1960s but only published in the 1990s after performing well on optical character
recognition (OCR). An SVM establishes a so-called boundary line between the classes
that distinguishes which class a given entry is associated with. The boundary between
the classes is determined to have the largest possible distance to both classes while
separating the classes and therefore creates the highest amount of disambiguity (see
figure 33). The boundary between two classes does not have to be linear. A procedure
called kernel-transformation is applied to make predictions on non-linear datasets.
It transforms the data and maps it to a higher-dimensional space such that a linear
classifier can divide the data. The optimisation space of SVMs is convex. Therefore, it
inevitably converges towards a global optimum.

Figure 33: Explanation of SVM

Figure 33 visualises an SVM classifier of linearly separable data points. A vector ~w

is defined to be perpendicular to the boundary line. Another vector ~u is randomly
picked pointing in any direction. A decision rule can be established depending on ~w

and any random vector ~u as ~w ⇥ ~u � c, where c is a constant. This can be rewritten to

4for multiclass: see [17], ch. 5

42

3.4. SUPPORT VECTOR MACHINES

formulate the decision rule as in equation 3.18. In this chapter, ⇥ denotes the cross
product between vectors.

~w⇥ ~u + b � 0, b = �c (3.18)

The latter transformation is defined as the decision rule for whether an entry belongs
to a given class or not. Many solutions fulfil the two conditions above. Therefore, the
problem needs to be more constraint to solve it.

For the training process, it is defined thus that:

1. For all positive input samples x+: ~w⇥ ~x+ + b � 1

2. For all negative input samples x�: ~w⇥ ~x� + b  1

It follows that yi(~xi ⇥ ~wi + b) � 1 and therefore yi(~xi ⇥ ~wi + b)� 1 � 0, where yi 2 {�1,1}.
For the elements on the boundary line, it can then be said that

yi(~xi ⇥ ~wi + b)� 1 = 0 (3.19)

The street is referred to as the area between the positive and the negative boundary
line. The width of the street is defined to be as large as possible while still separating
all points. This goes for the simple case introduced in figure 33 but it can be enhanced
to account for noisy datasets as visualised in figure 34. Using two points ~x+ and ~x�
that lie on the boundary line and the vector ~w, the width of the boundary zone can be
defined as:

width = (~x+ � ~x�)⇥
~w
k~wk (3.20)

Combining 3.19 and 3.20 leads to

width = (1� b � (�1� b)) · 1
k~wk =

2
k~wk (3.21)

This expression needs to be maximised to make the boundary between the two classes
as large as possible. Maximising this expression is the same as minimising k~wk, which
is equal to minimising5

width =
1
2
k~wk2 (3.22)

Equation 3.22 is constraint by equation 3.19. Applying Lagrangian Lwith ↵ being
the Lagrange multiplier, we can derive

L=
1
2
k~wk2 �

lX

i=1

↵i


yi(~w⇥ ~xi + b)� 1

�
(3.23)

5The factor 1
2 is just a scalar and the squaring operation is strictly increasing for the case that k~wk � 0

which it is by the definition of the length of a vector.

43

CHAPTER 3. CLASSIFICATION IN SUPERVISED ENVIRONMENTS

The derivative with respect to vector ~w is determined to find extrema of L. The
derivative can be found in equation 3.24.

�L
�~w

= ~w�
lX

i=1

↵i · yi · ~xi != 0 (3.24)

The derivative with respect to b is defined in equation 3.25.

�L
�b

= �
lX

i=1

↵i · yi != 0 (3.25)

From equation 3.24, one can derive the value of ~w that maximises L

~w =
lX

i=1

↵i · yi · ~xi (3.26)

Formula 3.23 can then be resolved in its dual form as

↵⇤ = argmax
↵

1
2
·

lX

j=1

lX

k=1

↵j ·↵k · yj · yk · ~xj ⇥ ~xk �
lX

i=1

↵i (3.27)

From equation 3.18, an entry is classified positive if
Pl

i=1↵i · yi · ~xi · ~u + b � 0

As indicated above, this formula works well for linearly separable examples. If a prob-

lem is not linearly separable it has to be transformed by a kernel K
⌧
xi ,xj

�
to project it

in a di↵erent space where the problem is linearly separable. The most common kernels
are

• Linear kernel: K
⌧
xi ,xj

�
= (~xi ⇥ ~xj)n

• Radial Basis kernel: K
⌧
xi ,xj

�
= e

��kxi�xj k2

2�2 , where � > 0 2 R

Another common issue in real-world datasets is that data points are not perfectly
separable, simply because they contain some random deviations (noise) that are not
captured by any of the existing features, as indicated in figure 34. In the binary case,
these are negative examples that fall into an area expected to be positive or vice versa.
Transforming these examples with kernels to classify them would lead to overfitting
the model. Therefore, the slack variable ⇠ and the parameter c are introduced to make
the model robust to deviations.

These additions lead to a modified formula 3.22:

width =
1
2
k~wk2 + c

lX

i=1

⇠i (3.28)

44

3.5. K-NEAREST NEIGHBOURS

Figure 34: Explanation of SVM

subject to

yi

K
⌧
~w, ~xi

�
+ b

!
� 1� ⇠i (3.29)

And then the problem from 3.27 enhances to

↵⇤ = argmax
↵

1
2

lX

j=1

lX

k=1

↵j↵kyjykK
⌧
xj ,xk

�
+

lX

i=1

↵i (3.30)

The RBF kernel is also referred to as Gaussian kernel. A well-tuned RBF kernel cannot
be worse than a linear kernel since the linear kernel is a degenerate version of an RBF
kernel [47]. On the other hand, linear kernels are usually faster to train [18].

3.5 K-Nearest Neighbours

K-Nearest Neighbours (KNN) algorithm is an algorithm that is used in many areas of
machine learning, such as classification and regression but also reinforcement learning
for example.

A Voronoi tessellation divides the input data space into several regions depending
on which is the nearest data point in that particular region. At the boundaries of
these regions, at least two di↵erent training examples are equidistant. Therefore, the
decision boundary between to classes follows the Voronoi cell borders between their
points closest to the border and can be of any shape.

45

CHAPTER 3. CLASSIFICATION IN SUPERVISED ENVIRONMENTS

For input data (x1, y1), . . . , (xn,yn) with xi 2 Rd ,yi 2 {0, . . . , c}, KNN algorithm makes
use of Voronoi tessellations by assigning a new input xnew to the class that most of
its k nearest neighbours belong to. KNN is a non-parametric algorithm, meaning it
does not make an assumption on the input data distribution. Its classifiers have little
constraints on the decision boundary and are therefore prone to overfitting. This
e↵ect can be regularised with the parameter k as this gives the model more robustness.
Apart from k, another hyper-parameter of KNN is the distance metric to be used, e.g.,
Euclidean distance.

The KNN algorithm does not require an extensive training phase since the association
to a given class is decided at runtime. Nonetheless, some computational optimisations
can be done since only the boundary areas between classes are relevant. The size of
the final KNNmodel depends on the separability of the dataset, depending on the size
of the border of the Voronoi cells.

3.6 Multi-Layer Perceptrons

A Multi-Layer Perceptron (MLP) is the most common type of feed-forward artificial
neural network that evolved from the idea of the perceptron. The perceptron was
invented by Frank Rosenblatt. An MLP consists of multiple layers: an input layer, an
output layer and at least one intermediate layer that are stacked on top of each other
and control the information flow from input to output. In this thesis, a network is
also referred to as MLP if it only consists of an input and an output layer without
intermediate layers. Each layer consists of one or multiple nodes that are referred to
as neurons in analogy to the human brain. In an MLP, each neuron is connected to
all neurons of the previous layer and all neurons of the subsequent layer, therefore
referred to as fully-connected. Each connection is unidirectional from the layer closer
to the input towards the subsequent layer closer to the output. Each connection holds
a weight value, indicating the strength of the connection between two nodes. Each
node receives inputs from the nodes in the previous layer, depending on the strength
of the weight, performs an activation on the sum of these inputs and distributes its
output to its subsequent layer. This creates a directed information flow graph from the
input layer through the intermediate layers to the output layer, where the final output
is made. Each input to the network from the input layer corresponds to one feature
in the dataset. Each output of the algorithm corresponds to one classification to be
made. For the case of categorical predictions, the number of output classes can either
be equal to the total number of classes to predict, thus each output neuron represents
a class and outputs a likelihood value for that class. Alternatively, each neuron can
make a binary prediction of {-1,1}, representing two classes. Thus n classes can be
presented through log2(n) (rounded up) output neurons as in a binary representation.

46

3.7. CLASSIFICATION EVALUATION METHODS

The learning procedure of an MLP uses the backpropagation algorithm to learn the
weights between the nodes through training examples that are presented to it. Starting
randomly, the model learns to reduce the error between its output predictions and
the actual outputs by modifying its weights. The error is passed back from the neural
network output to the input layer using the chain rule. Every weight connection then
updates the respective weight for the subsequent iteration.

The output of an MLP can be continuous for real value predictions or categorical for
classifications. A single MLP is also able to combine categorical predictions with
continuous predictions, as in the case of predicting a class (categorical) and a position
(continuous) of an object in an image (object localisation).

For more a mathematical description of MLPs and further deep learning concepts, see
Higham et al. (2018) [32] and other authors [26].

3.7 Classification Evaluation Methods

The quality of any given algorithm for a specific problem is manifold and not deter-
ministic. Many evaluation metrics for di↵erent algorithms exist. Nonetheless, there
is no single best evaluation metric, and it often depends on the problem at hand to
choose which metric to use.

Generally spoken, evaluation metrics are based on an evaluation of misclassified en-
tries over correctly classified entries, but they di↵er in the way they evaluate each.
Some general concepts are:

• True Positives (TPc): Number of entries predicted to be of a given class c that
actually belong to that given class c

• True Negatives (TNc): Number of entries predicted not to be of a given class c
that actually do not belong to that given class c

• False Positives (FPc): Number of entries predicted to be of a given class c that
actually do not belong to that given class c

• False Negatives (FNc): Number of entries predicted not to be of a given class c
that actually belong to that given class c

3.7.1 Accuracy

Accuracy is arguably one of the most intuitive classification metrics. It is made up of
the relation between all correctly classified items over all items. Thus, it is a relative

47

CHAPTER 3. CLASSIFICATION IN SUPERVISED ENVIRONMENTS

value between 0 and 1. The accuracy can be calculated for a single class:

Accuracyc =
correct predictions of class c
total predictions of class c

=
TPc +TNc

TPc +TNc +FPc +FNc
(3.31)

Or over all classes from the dataset:

Accuracy =
correct predictions
total predictions

=
P

c2classes TPc +TNcP
c2classes TPc +TNc +FPc +FNc

(3.32)

The inversion of accuracy is called error rate. Whereas accuracy predicts the relative
amount of correctly predicted labels, error rate calculates the relative amount of falsely
predicted labels.

Error Rate =
wrong predictions
total predictions

=
FP +FN

FP +TP +FN +TN
(3.33)

Thus either a high accuracy or a low error rate is desirable.

Accuracy is a good measurement if the goal is to find the exact class and penalise
everything that was falsely predicted. It is sometimes criticised because it does not
weigh errors between classes. For example, if an image of a cat were predicted as a
dog, the accuracy would be 0, although predicting the cat as a dog might still be better
than predicting it as being a truck. So there can be a notion of closeness between labels
that accuracy is not able to capture. Moreover, a given entry’s correct label may be
ambiguous, e.g., if there are multiple objects in a picture that could change the label
of the image, see figure 35.

Additionally, accuracy is a measure that can be applied for supervised learning prob-
lems with balanced datasets. Nonetheless, it usually gives biased results for imbal-
anced datasets and should not be used for such problems. Given an imbalanced dataset
with 99 % of the samples belonging to class A and 1 % belonging to class B, as it is
oftentimes the case in fraud detection cases. A predictor that always predicts class A
would have an accuracy of 99 %. Nonetheless, this classifier does not fulfil the purpose
of predicting class B. Therefore, accuracy is not appropriate as an evaluation metric
here.

3.7.2 Top-n Accuracy

The top-n accuracy allows a model to have n chances of making the correct prediction.
The model makes n predictions, and if the correct label is within these n labels, the
model predicted it correctly. Doing this gives the model more robustness to the prob-
lem of closely missing the target with one prediction as described in chapter 3.7.1 as
it is more likely to have the right label within n predictions if the other predictions

48

3.7. CLASSIFICATION EVALUATION METHODS

Figure 35: Examples of ambiguous images from [5] and [14]

are closer to the real label ([75], p. 15). To illustrate this with the same example from
section 3.7.1: The predictor of the cat could have predicted dog as the most likely label,
but a top-2 accuracy could have predicted the labels (dog, cat), where the correct label
is within the set of predictions. The other exemplified predictor could have predicted
(truck, elephant), which clearly misses the target. Another advantage of the top-n ac-
curacy is that it is more robust to ambiguities or errors within the correct labels of an
image. For example, training images in ILSVRC-2012 are human-annotated, and they
can have a bias or even errors. An example of potentially ambiguous pictures can be
found in figure 35. This is the case when there are multiple objects in a picture, e.g., a
dog and a cup. An annotator could have focused on, detected and labeled a particular
part of an image, say a ”dog”, while another annotator or a predictive algorithm would
have labelled a ”cup” in the picture. If both classes appear in the image, a good image
classification algorithm is likely to put both labels within the top-n-labels and thus
reduces the impact of subjectivity.

A suitable choice of the hyper-parameter n depends on the number of targets. The
most commonly used top-n accuracy is top-5 accuracy, but this choice depends on the
total number of classes and the ambiguity between the classes. The above-introduced

49

CHAPTER 3. CLASSIFICATION IN SUPERVISED ENVIRONMENTS

measure of accuracy from section 3.7.1, is merely the special case of top-1 accuracy.
The opposite of top-n accuracy is the top-n error. The top-n error was used in the Im-
ageNet competition, with top-n accuracy = 1� top-n error. Benchmarks on ImageNet
data usually report top-5 errors ([75], p.5).

3.7.3 Confusion Matrices

A confusion matrix is used for categorical predictions. It shows the confusion a pre-
dictor has among predicting samples into given classes. For every pair of classes (A,B),
the confusion matrix shows the number of examples predicted to be in A that are
actually labelled as B for all A,B 2 CLASSES . Visually spoken, the x-axis denotes the
predicted class, and the y-axis denotes the actual class, see figure 36.

This way, a matrix is created that shows howmany examples were mislabelled between
which classes. The diagonal of the matrix has the pair (A,B) with A = B and thus shows
the number of correct predictions.

Figure 36 shows an example confusion matrix for a binary classification problem.
While the green cells represent correctly classified samples, the red cells represent
misclassified examples. From the table, one can quickly identify the primary cause of
confusion and include this knowledge into the next step’s model creation. In this ex-
ample, most confusion is among cases that are classified to be positive but are actually
negative (False Positives).

Figure 36: Example of a binary confusion matrix

A confusion matrix is useful to improve a model’s prediction because the modeller
learns which part of the prediction still requires better training. It can be helpful as a
qualitative evaluation measure, but it is not objectively quantifiable.

50

3.7. CLASSIFICATION EVALUATION METHODS

3.7.4 Precision, Recall and Fn Measure

Precision and Recall are quantitative metrics for binary classification tasks. They
enable a modeller to focus on a specific property of a system. They can be used in
combination to evaluate the overall quality of a model or individually to emphasise
specific characteristics.

Precision =
TP

TP +FP
(3.34)

Recall =
TP

TP +FN
(3.35)

The recall is also called sensitivity or True-Positive-Rate (TPR) as it measures the
relative amount of correctly predicted positive examples. The False-Positive-Rate
(FPR), also called fallout or probability of false alarm, is the opposite of the TPR,
measuring the relative amount of falsely positive predicted examples over all negative
examples in the sample:

FPR =
FP

FP +TN
(3.36)

The lower the FPR, the better, while the TPR behaves contrarily.

Precision and recall are both measures that can individually give information about
the quality of a binary classifier. But there is no general rule which measure to focus
on. Therefore, the Fn measure was developed. The Fn measure is a combination of
precision and recall that is meant to make model evaluation more objective. It is
calculated as follows:

Fn = (1+n2) · Precision ·Recall
(n2 ·Precision) +Recall

=
(1+n2) ·TP

(1 +n2) ·TP +n2 ·FN +FP
(3.37)

The most common cases of the Fn measure are F1 and F2.

F1 =
2 ·Precision ·Recall
Precision+Recall

(3.38)

Di↵erent to top-n accuracy measure, precision and recall have been developed for
binary predictions. Their application on multi-class problems is limited. The only
possibility of applying precision and recall to multi-class problems is by making them
binary. This way, a precision and recall value can be calculated for every class in the
form of one label versus all other labels. This can be used for evaluating a single class’
performance but is not expandable to all classes. Due to this, the Fn measure is also
limited to binary classifications.

3.7.5 ROC AUC Score

The Receiver Operating Characteristic (ROC) curve is a graphical visualisation of the
True-Positive-Rate against the False-Positive-Rate. These two measures are calculated

51

CHAPTER 3. CLASSIFICATION IN SUPERVISED ENVIRONMENTS

at various threshold settings to form a curve that starts at (0,0) and ends at (1,1). Vari-
ous TPR and FPR values are calculated as a function of a classifier’s parameters, and
the results form a curve that can be plotted on the ROC grid. A perfect classification
would be at (0,1)6. Everything below the diagonal line of TPR = FPR is considered a
”bad” classifier while everything above the diagonal outperforms a random estimation.
Nonetheless, every ”bad” classifier can be inverted to be above the diagonal line by
always choosing the opposite.

Figure 37: Example of a ROC curve

The ROC area under the curve (ROC AUC) score measures the area under the ROC
curve. The larger this measure, the better a classifier performs because ROC AUC
measures how much better the TPR rate is in comparison to the FPR. As precision
and recall from section 3.7.4, the ROC AUC score has been developed for binary clas-
sification problems. Although there are approaches to convert this to multi-class
problems [47], this ends up being pairwise ROC AUC scores of a binary form of one
class versus all other classes.

3.7.6 Model Speed

If speed were not an issue in scientific research, any exhaustive search algorithmwould
outperform every other algorithm eventually. Therefore, every algorithm comes with
a tradeo↵ between its e↵ectiveness and e�ciency, where the e�ciency is related to
speed and memory limitations. A theoretical new approach is valuable in itself, but it
is only practically applicable if it is designed within the constraints of computational
means.

6assuming the general case of FPR on the x axis

52

C
h
a
p
t
e
r

4
Experimental Setup

The following chapter covers the experimental setup chosen for this thesis. The exper-
imental setup was developed to test the research question.

Research Question ”Can classification model performance in computer vision be im-
proved by using di↵erent classification algorithms on high-level image features?”

Along displaying previous work in this area, this chapter outlines the procedure to
test the research question in section 4.2 and introduces the choices of benchmark
datasets in section 4.3, applied convolutional neural network model architectures
in section 4.4 and the selected classification algorithms and evaluation metrics in
sections 4.6 and 4.7. The computation was mainly done on commodity hardware1

and remote computational cloud resources2, which limits the size of the datasets,
the benchmark algorithms and the hyper-parameters used for the comparison to a
reasonable degree. Nonetheless, the algorithms and ideas developed are scalable and
applicable on larger datasets subject to computational means.

The approach of this thesis assumes that time is not a constraint in the training process,
but it focuses on improving the accuracy of the final model. The process introduced in
sections 1.3 and 4.2 incorporates the normal process of training a convolutional neural
network and thus will inevitably be longer than just the normal process of training

1Windows 10, Intel Core i7-4510U CPU @ 2.00 GHz 2.60 GHz, 8.00 GB RAM, GPU not used; Mac-
Book Pro 2017, Intel Core i7 @ 2.80 GHz, 16 GB RAM, GPU not used

2Google Colaboratory (https://colab.research.google.com/): up to 12 GB GPU, subject to availability
and usage, mostly unstable

53

CHAPTER 4. EXPERIMENTAL SETUP

a CNN. Therefore, the proposed modification from this thesis comes at the cost of
potentially longer training time. It was not further investigated whether the training
time of the modified training process could be improved. Apart from the training time,
the final models can be stored more e�ciently if the chosen classification algorithm
takes up less space than the fully-connected neural networks. Ho↵er et al. (2018)
demonstrated that the majority of a CNN’s complexity lies within the fully-connected
layers [94]. Thus, replacing these layers with a more e�cient classifier could make
these networks less complex at runtime. Other than many developments in computer
vision, this modification does not have a biological origin. Nonetheless, this idea goes
back to the origins of computer visions when classification of high-level image filters
was not limited to neural networks.

4.1 Work References

The field of image recognition is an actively researched field. Ever since the break-
through of AlexNet in 2012 [51], most of its advances have been focussed on neural
network architectures, especially around convolutional neural networks, as described
in section 2.3. Some authors removed the fully-connected layers, e.g., GoogLeNet [95].
This is also called a fully-convolutional network. Further research has been done by
Ho↵er et al. (2018), showing that the computationally expensive last fully-connected
layer can be set to constant values to reduce model complexity with little or no perfor-
mance loss [38]. To illustrate their example, the researchers show that about 60 % of
the 36 million model parameters of a ResNet-50 model from He et al. (2016) reside in
the last fully-connected layer for the JFT-300M dataset3 ([38], p.8).

Another interesting approach to reduce the complexity of the model architectures has
been developed by Hasanpour et al. (2016) [30], where the authors show that they can
perform on par to very large and deep neural networks with much fewer parameters
and smaller model sizes. They achieve these results by applying a set of defined
design principles. They prove their networks to perform similarly to state-of-the-
art4 CNN architectures on various well-known datasets, e.g., MNIST [64], CIFAR-10
(section 4.3.1), CIFAR-100 (section 4.3.2) and ILSVRC-2012 (section 4.3.3).

4.2 Scientific Procedure

From a technical perspective, the procedure is similar to the two-step procedure from
section 1.3. The first part of the algorithm is a script that generates intermediate output
features. These output features are produced on several image datasets as described

3JFT-300M is an internal dataset from Google with over 18k di↵erent classes in 300 million images,
see also [94]

4as of August 2016

54

4.2. SCIENTIFIC PROCEDURE

in section 4.3: CIFAR-10, CIFAR-100, ILSVRC-2012. Preprocessing is applied to the
images, as described in section 4.5. The high-level output features are generated
by training di↵erent neural network architectures, as described in section 4.4. The
trained CNNs are then cut such that the fully-connected layers are removed, and only
the flattened output from the convolutional layers remains. A high-level image feature
in this context describes the output from the image filters from the last convolutional
layer. The intermediate dataset is then generated as the flattened output of the trained
convolutional layers along with the correct classification of the input image. The
networks were created with the intention to produce good image filters, but the hyper-
parameters were only fine-tuned to a reasonable degree, as this is not the focus of
this thesis. Although a high initial benchmark score in the first step is desirable to
assure that the produced image filters are useful to the neural network, the overall
performance in the first step is not too relevant because every classification algorithm
in the second step gets the same input from the first step. Therefore, it is still a fair
competition between the models’ performances in the second step. A visualisation of
the first step as derived from figure A7 can be found in figure 41.

Figure 41: Visualisation of Intermediate Data Creation

55

CHAPTER 4. EXPERIMENTAL SETUP

The second script trains di↵erent classification algorithms on the intermediate datasets
to test if they can behave better than the original convolutional neural network, as
described in section 4.6. The performance of conventional MLP architectures is bench-
marked through the inclusion of multiple MLP architectures in the second step. Fur-
thermore, the performance of the initially trained CNNs is disclosed for reference
(where available). A further benchmark of the original convolutional network is de-
termined by including MLP architectures as part of the classification algorithms. The
goodness of each classification algorithm is evaluated along several classification met-
rics, as introduced in section 3.7 and selected in section 4.7. A visualisation of the
second step as derived from the example in figure A7 can be found in figure 42.

Figure 42: Visualisation of Intermediate Data Classification

To get statistically significant, convincing results, several measures are put into place.
The approach is tested on di↵erent datasets, as introduced in section 4.3. This will
evaluate whether there are patterns or specific characteristics in the datasets that make
certain algorithms perform better than others. These datasets have di↵erent sizes and
di↵erent numbers of classes. Furthermore, the conventional MLPs’ performance is
compared to multiple other algorithms. All algorithms’ hyper-parameters are explored
through a grid search with previously chosen options as outlined in section 4.6. The

56

4.3. DATASET BENCHMARKS

training set is split from the test set, with a 5:1 split for CIFAR-10 and CIFAR-1005

and a 3:1 split for ILSVRC-2012 (75 % training, 25 % test). This is done even before
training the original CNN in the first step. The whole CNN then learns on the data
from the training set. The intermediate data for both the training and the test set is
produced from that trained CNN model.

In step 2, when training the di↵erent classification algorithms on the intermediate data,
the hyper-parameters are chosen from, and the final model is trained on the training
split. Hereby, the training data is cross-validated with k-fold cross-validation, with
a value of k = 10, thus 10 % validation data per cross-validation run. The validation
data in this second step is, therefore, part of the training data from the first step. The
results of the cross-validations are saved and the p-values for statistical significance are
determined. The final algorithms’ performances are validated on the initially split test
data that the algorithm was never trained on. This procedure enables comparability
and statistical significance of the results. For the pre-trainedmodels, the author cannot
verify whether the external models were already trained on the test data. For ILSVRC-
2012, the data was taken from the validation set which is usually not used for training.
For CIFAR-10 and CIFAR-100, there is a high chance that the network was partially
trained on the test data. This implication should not make a di↵erence to determine
the classifiers’ performance in the second step because all algorithms in the second
step are trained on the same input data.

Although this idea is not transfer learning in its standard application, as introduced in
section 2.3.10. But the availability of pre-trained models for transfer learning enables
the reuse to enhance the learning process. Thus, this is more of a learning enhancement
than a transfer learning approach because the dataset to train on is the same6.

4.3 Dataset Benchmarks

Subject to the limitations of computational resources, the author chose three well-
known datasets to benchmark the research question of this thesis.

4.3.1 CIFAR-10

CIFAR-10 is a dataset of 60000 32⇥ 32 pixel colour images that belong to 10 classes,
therefore I inp = 32 ⇥ 32 ⇥ 3. The dataset is balanced. Hence, every class holds 6000
images. The dataset is already pre-split into 50000 training images and 10000 test
images.

5as per default options of the dataset
6technically, the dataset to further train the classifier is a subset of the original dataset, as described

in section 4.3

57

CHAPTER 4. EXPERIMENTAL SETUP

Figure 43: Samples from CIFAR-10 (from left to right, top to bottom): airplane, auto-
mobile, bird, cat, deer, dog, frog, horse, ship, truck

An overview of the classes with sample images that are contained in the CIFAR-10
dataset can be found in figure 43. A list of the normalised versions of these photos
that were used for training can be found in Appendix A.2.3. The classes are mutually
exclusive. The sample images in figure 43 show that the classification task can even
be challenging for a human observer. Due to the low resolution of 32⇥ 32 pixels, the
objects in the images are di�cult to identify.

The CIFAR-10 dataset has a size of 163 MB when loaded into Python7.

A list of successful CIFAR-10 architectures can be found in table 41.

7This number varies slightly in other programming environments

58

4.3. DATASET BENCHMARKS

Model Source Param Accuracy

SimpleNet Hasanpour et al. (2018) [30] 5.48M 95.32 %
SD-110L Huang et al. (2016) [40] 1.7M 94.77 %
VGG-19 (local benchmark) Simonyan et al. (2014) [86] 15M 93.59 %
WRN Zagaruyko & Komodakis (2016) [109] 600K 93.15 %
ALLCNN Springenberg et al. (2014) [88] 1.3M 92.75 %
DSN Lee et al. (2015) [56] 1M 92.03 %
FitNet Romero et al. (2014) [90] 1M 91.61 %
ResNet-32 (depth of 32) He et al. (2015) [31] (tested by [30]) 475K 91.60 %
NiN Lin et al. (2013) [58] 1M 91.19 %
dasNet Stollenga et al. (2014) [92] 6M 90.78 %
Maxout (k=2) Goodfellow et al. (2013) [24] 6M 90.62 %
SimpleNet (local benchmark) Hasanpour et al. (2018) [30] 5.48M 88.52 %

Table 41: CIFAR-10 Benchmarks

Model Source Param Accuracy

SD-110L Huang et al. (2016) [40] 1.7m 75.42 %
SimpleNet Hasanpour et al. (2018) [30] 5.48M 73.42 %
VGG-19 (local benchmark) Simonyan et al. (2014) [86] 15M 70.48 %
WRN Zagaruyko & Komodakis (2016) [109] 600K 69.11 %
ResNet-32 (depth of 32) He et al. (2015) [31] (tested by [30]) 475K 67.37 %
ALLCNN Springenberg et al. (2014) [88] 1.3M 66.29 %
dasNet Stollenga et al. (2014) [92] 6M 66.22 %
Maxout (k=2) Goodfellow et al. (2013) [24] 6M 65.46 %
DSN Lee et al. (2015) [56] 1M 65.43 %
FitNet Romero et al. (2014) [90] 1M 64.96 %
NiN Lin et al. (2013) [58] 1M 64.32 %
SimpleNet (local benchmark) Hasanpour et al. (2018) [30] 5.48M 60.99 %

Table 42: CIFAR-100 Benchmarks

4.3.2 CIFAR-100

The CIFAR-100 dataset consists of 60000 images divided into 100 classes of 600 images
each. The 100 classes are further group into 20 superclasses. The images are colored
and 32⇥ 32 pixels in size, therefore I inp = 32⇥ 32⇥ 3. The default train-test-split is in
a relation of 5:1, meaning 50000 training and 10000 test images. The image classes
are mutually exclusive. A sample of images from 10 classes can be found in figure 44.
An exhaustive list of all 100 image classes, as well as their normalised version, can be
found in Appendices A.2.2 and A.2.3 respectively. CIFAR-100 takes up a total of 161
MB space in Python8.

A list of successful CIFAR-100 architectures can be found in table 42.

8This number varies slightly in other programming environments

59

CHAPTER 4. EXPERIMENTAL SETUP

Figure 44: 10 classes from CIFAR-100, like apples, aquarium fish, baby, bed, snake,
beetle, bicycle, bottles

4.3.3 ImageNet Large Scale Visual Recognition Challenge 2012

One of the most famous benchmarks for computer vision tasks is the immense Ima-
geNet database that is built on the hierarchical WordNet [63] structure and aims to
provide ”an average of 500-1,000 clean and full resolution images” ([16], p. 1) per
synset9, with currently over 14,000,000 images in almost 22,000 synsets indexed ([16],
p.1; [75]). The evolution of most famous model architectures and adjustments were
revealed at the yearly ImageNet competition that measures model performance on
various tasks, such as the detection of 1,000 categories ([75], p.15). The error mea-
sure used for the classification task in the competition is top-5 error, as described in
section 3.7.2. A benchmark with an expert human annotator reached a top-5 error of
5.1 % on 1,500 test images.

9a synset is a set of synonyms on WordNet

60

4.4. MODEL ARCHITECTURE BENCHMARKS

The ImageNet Large Scale Visual Recognition Challenge (ILSVRC-2012) dataset is the
ImageNet dataset used for the 2012 ImageNet competition. It consists of 1.2 million
images from 1000 categories with another 150000 images used for testing and valida-
tion. The dataset is very large, exceeding the limitations of most commodity hardware,
especially when running algorithms on them that perform additional computations.
Therefore, the author chose to subsample the dataset. From ILSVRC-2012, the author
used the validation dataset with a size of 6.6 GB. From this validation data, the number
of classes was reduced from 1000 classes to 100 classes to run the benchmark on, thus
reducing the dataset size to 660 MB10. In chapter 5, this subset from the ILSVRC-2012
validation dataset is usually referred to as ILSVRC-2012 data for simplicity. Figure 45
shows 10 randomly chosen sample classes out of the 100 selected classes for this bench-
mark. From these sample images, the complexity of the classification task can be seen.
The dataset contains all computer vision challenges from section 2.2. As an example,
di↵erent breeds of the class concept belong to di↵erent classes. Thus, the model needs
to learn unique properties from each breed. In fact, the pictures used to exemplify the
computer vision challenges in Appendix A.1.1 all stem from the ILSVRC-2012 dataset
used in this thesis.

The history of successful ILSVRC benchmarks was introduced in section 2.3. Nonethe-
less, this list is not comparable to the results created in this thesis because these bench-
marks were made with 1000 target classes and with much more training data to learn
on. A comparison of successful architectures on ILSVRC-2012 with 1000 classes can
be found in table 43. One can see that the development of these architectures is chrono-
logical from the worst performing model AlexNet from 2012 to the best performing
model Inception ResNet V2 in 2016. In this span of four years, the top-5 accuracy was
improved from 79.8 % in AlexNet to 95.1 % in Inception ResNet V2, beating human
performance. Another observation is that deeper models generally perform better than
shallower ones. Merely comparing the ResNet architectures benchmarked (Resnet-50,
ResNet-101, ResNet-152), the top-5 accuracy is higher the deeper the model.

4.4 Model Architecture Benchmarks

Di↵erent convolutional neural network architectures are used for the individual datasets.
While the same network architectures can be applied on CIFAR-10 and CIFAR-100,
many architectures that were designed for ILSVRC-2012 are not suitable for the much
smaller images in CIFAR-10 and CIFAR-100. Through the procedure of the pooling op-
eration from section 2.3.3, the images are downsampled in the network. If not enough
pixels exist in the input layer, larger networks that use many pooling operations would
downsample the image more than possible. Therefore, these network architectures

10This choice was also made after various memory errors causing the system to get stuck or fail

61

CHAPTER 4. EXPERIMENTAL SETUP

Figure 45: 10 sample classes from ILSVRC-2012

Model Source Top-5 accuracy

Inception ResNet V2 Szegedy et al. (2016) [97] 95.1 %
Xception Chollet(2016) [12] 94.5 %
Inception V3 Szegedy et al. (2015) [96] 94.4 %
ResNet-152 He et al. (2015) [31] 92.9 %
ResNet-101 He et al. (2015) [31] 92.6 %
ResNet-50 He et al. (2015) [31] 92.0 %
VGG-16 Simonyan et al. (2014) [86] 89.9 %
GoogLeNet Szegedy et al. (2014) [95] 89.1 %
Network in Network Lin et al. (2013) [58] 81.2 %
Ca↵eNet Jia et al. (2014) [44] 79.9 %
AlexNet Krizhevsky et al. (2012) [51] 79.8 %

Table 43: ILSVRC 2012 Benchmarks

62

4.4. MODEL ARCHITECTURE BENCHMARKS

would need to be modified in order to apply them to the CIFAR datasets. One example
of such can be found in tables 41 and 42, where a ResNet model with a reduced depth
of 32 is used. Thus, images need to be of a minimum size for some networks to work
on them.

4.4.1 ILSVRC-2012 Architecture Benchmarks

For the ILSVRC-2012 dataset, preexisting models designed for the ImageNet dataset
are leveraged to create the intermediate data. Firstly, these networks are already pre-
trained and thus do not require computational e↵orts of further training. Moreover,
these models have been developed explicitly as benchmarks for the ImageNet dataset
and should, therefore, perform well on these datasets. Three models are chosen be-
cause they achieve state-of-the-art results on the ImageNet dataset, all work best with
an identical image input size of 299 ⇥ 299 ⇥ 3, require the same preprocessing steps,
and are available with pre-trained weights in software suites11. The following models
are used:

• Inception V3: InceptionV3 is based on a paper from Szegedy, et al. from
2016 [96]. It is based on the idea of inception modules from section 2.3.7 but
is more of a combination of multiple ideas from researchers over the past few
years. ”The model itself is made up of symmetric and asymmetric building
blocks, including convolutions, average pooling, max pooling, concats, dropouts,
and fully-connected layers. Batchnorm is used extensively throughout the model
and applied to activation inputs. Loss is computed via Softmax.” [2] InceptionV3
manages to reach an accuracy of 78.8 % and a top-5 accuracy of 94.4 % on the
ILSVRC-2012 validation set (without blacklisted examples)12. Inception V3 re-
quires a minimum input size of 139⇥ 139⇥ 3 pixels.

• Xception: The eXtreme Inception (Xception) network is also based on the overall
architecture of the inception network, but the inception modules are enhanced
with depthwise separable convolutions, as described in section 2.3.2. Xception
reaches an accuracy of 79.0 % and a top-5 accuracy of 94.5 % on the ImageNet
dataset. The minimum input size for the Xception network is 71⇥ 71⇥ 3 pixels.

• Inception ResNet V2: Inception ResNet is a combination of inception modules
from section 2.3.7 with loophole connections from ResNet models as described
in section 2.3.8. This modification mainly decreases training time but proved
to lead to slight improvements in classification accuracy13. InceptionResNet

11e.g., see [48] for model architectures in Keras
12see [96] for more details
13see [97] for more details

63

CHAPTER 4. EXPERIMENTAL SETUP

reaches an accuracy of 80.1 % and a top-5 accuracy of 95.1 % on the ILSVRC-
2012 validation set (without blacklisted examples)14. The minimal input size for
Inception ResNet V2 is 139⇥ 139⇥ 3 pixels. For simplicity, Inception ResNet V2
is also simply referred to as Inception ResNet in this thesis.

4.4.2 CIFAR Architecture Benchmarks

For the CIFAR-10 and CIFAR-100 datasets, identical model architectures are used,
because the two datasets have the same input shape of 32⇥ 32⇥ 3. Only the last fully-
connected output layer di↵ers since CIFAR-10 expects 10 output neurons and CIFAR-
100 has 100 output classes. All customMLPs are designedwith constant padding at the
borders. For padding, the overlapping entries are filled with 0s for the convolutional
layers and with �1 for the Max-pooling layers.

The following MLP architectures were chosen for both CIFAR-10 and CIFAR-100:

• CNN-1: The first CNN can be found in figure 46. Its architecture is a 10-layer
convolutional neural network15 with a final fully-connected output layer. The
network has 6 convolutional layers which all use convolutional windows of kw =
kh = 3 and a horizontal and vertical stride of 1. The first two convolutional
layers have depths of 128, the following two convolutional layers have depths
of 256 and the last two convolutional layers have depths of 512. After each
convolutional layer, an exponential linear unit (ELU) activation is applied. After
the activation of every second convolutional layer, a pooling layer with a pooling
window of 2⇥2 using Max-Pooling is applied. The horizontal and vertical strides
are also 2, such that the image width and height are approximately halved16

after each pooling operation. The pooling operations do not use padding at the
borders17. After every pooling operation, a dropout layer is added. As proposed
in section 2.3.5, the dropout probability increases from 0.1 after the first pooling
layer to 0.25 after the second one and 0.5 after the third pooling layer. After
this, the output is flattened, and two dense layers follow. The first dense layer
has 1024 neurons and is followed by an ELU activation and a dropout layer with
probability 0.5. The second dense layer (output layer) makes the mapping to
the number of output classes, 10 or 100. This final output is squashed between
0 and 1 through the application of a softmax function. This network produces
2048 high-level intermediate features.

14see [97] for more details
15only counting hidden convolutional, dense and pooling layers
16approximately halved depending on whether the width and height are even or uneven numbers
17since the input images for both CIFAR datasets have 32 pixels in both dimensions, they can be

perfectly divided by 2 for 5 times. Since the width and height stay even during these division, border
handling is not necessary.

64

4.4. MODEL ARCHITECTURE BENCHMARKS

• CNN-2: The second convolutional neural network (CNN-2) can be found in fig-
ure 47. It is constructed to be smaller than the first network and only has 7
hidden layers. It follows the same design principle as the CNN-1 of creating two
convolutional layers followed by oneMax-Pooling layer. The activation functions
after the convolutional layers are changed to rectified linear units (ReLU). This
construct is only used twice instead of three times as in the first convolutional
neural network. This means only four convolutional and two pooling layers are
used in total. The parameters for the pooling layers are left the same. The depth
of the convolutional layers is reduced to 32 for the first block (first two convolu-
tional layers) and 64 for the latter block (last two convolutional layers). Dropout
after these blocks is kept constant at 0.25. The flattened output is then passed
to a dense layer with 512 neurons, followed by a ReLU activation and a dropout
layer with probability 0.5. The output layer is identical in structure to the one
of CNN-1, making the squashed prediction of 10 or 100 classes with a fully-
connected layer. This network structure produces 2304 high-level intermediate
features as input to the fully-connected layers.

• SimpleNet: SimpleNet is visualised in figure 48. It has 18 hidden layers of which
13 are convolutional layers, and five are Max-Pooling layers. The output layer
making the final prediction is a regular fully-connected layer. The convolutional
layers use 3⇥3 convolutional windows for the first ten and the 13th layers, while
the layers 11 and 12 use 1 ⇥ 1 convolutions. The depth of the convolutional
layers increases from 64 in the first layer to 128 for the layers 2 till 6, 256 for
the layers 7 to 9, 512 for layer 10 and 2048 for the 11th convolutional layer.
The convolutional layers 12 and 13 have a depth of kd = 256. All convolutional
layers have horizontal and vertical strides of 1 and apply padding at the borders
such that the image dimensions are not altered after the convolutional operation.
Batch normalisation and ReLU activation are applied after the convolutional
layers 1 to 6 and 8 to 10. In layer 7, batch normalisation and the activation
function are only applied after the pooling operation. Convolutional layers 11
to 13 only use a ReLU activation after the convolutional layer, without batch
normalisation. Dropout is consistently applied after either batch normalisation,
the activation or max pooling (where applicable) for the convolutional layers
1 to 8 as well as 10 and 11 with a probability of 20 %. In the 9th layer, the
dropout function was applied before the pooling operation. The five max pooling
operations were applied after the convolutional layers 4, 7, 9, 12, 13. The pooling
operations all use pooling windows of 2⇥2 with horizontal and vertical strides
of 2 and no padding at the borders. All convolutional layers are initialised with
the Glorot normal initialiser [23]. SimpleNet produces 256 high-level image
features.

• VGG-19:VGG-Net won the localisation task on ImageNet in 2014 and got second

65

CHAPTER 4. EXPERIMENTAL SETUP

in the classification task after GoogLeNet. The general idea is to build deeper
networks with smaller convolutional filters that essentially cover the same recep-
tive fields but enable more transformations and non-linearities, as explained in
section 2.3.1. The VGG network of this thesis is a version adapted to the CIFAR
datasets with 19 hidden layers (VGG-19). The network is visualised in figure 49.
Of the 19 hidden layers, 13 layers are convolutional, 5 layers are Max-Pooling
layers, and there is one dense layer at the end before the fully-connected output
layer. As previously mentioned, the convolutional layers all use 3⇥3 image filters
with padding at the borders and with horizontal and vertical strides of 1 such
that the image dimensions are maintained. As the network gets deeper, the depth
of the convolutional layers increases as well. The first two convolutional layers
have a depth of 64, the proceeding two layers have a depth of 128, the subsequent
three layers have a depth of 256, and the following 6 convolutional layers have
a depth of 512. The final dense hidden layer also has 512 neurons. After each
convolutional layer, a ReLU activation function is applied. The same goes for the
final hidden fully-connected layer. After the activation, batch normalisation is
applied. The five Max-Pooling layers are layers 3, 6, 10, 14 and 18. They all use
a pooling window of size 2⇥2 with horizontal and vertical strides of 2. Over the
whole network, dropout is only applied in some layers. Nonetheless, the princi-
pal of increasing dropout probabilities is adhered to. Throughout the network,
dropout is applied after the layers 1, 4, 7, 8, 11, 12, 15, 16, 18 and 19. Layer 1 has
a dropout probability of 0.3 and layers 18 and 19 have a dropout probability of
0.5. The layers between layers 2 and 18 use a dropout probability of 0.4. VGG-19
produces 512 high-level image features as input to the subsequent classifier.

4.5 Image Preprocessing

Image preprocessing describes any transformation that is done to an input image
before passing it to a classifier. Apart from changing the dimensions, this includes
the colours, illumination or the orientation. Furthermore, filters can be applied to the
image, shapes or edges may be modified and much more [106]. Image Preprocessing
is principally used to facilitate overcoming the computer vision challenges introduced
in section 2.2.

For ILSVRC-2012, the images were compressed to an image size of 299 ⇥ 299 pixels,
thus I inp = 299⇥ 299⇥ 3, with the depth representing the RGB colour channels.

Regarding the architectures used to benchmark the ILSVRC-2012 model, the models
each have an identical preprocessing procedure, where the pixel values are scaled
down to be between �1 and 1:

66

4.5. IMAGE PREPROCESSING

Figure 46: Visualisation of First Neural Network Architecture (CNN-1)

67

CHAPTER 4. EXPERIMENTAL SETUP

Figure 47: Visualisation of Second Neural Network Architecture (CNN-2)

68

4.5. IMAGE PREPROCESSING

Figure 48: Visualisation of SimpleNet Architecture

69

CHAPTER 4. EXPERIMENTAL SETUP

Figure 49: Visualisation of VGG-19 Architecture

70

4.5. IMAGE PREPROCESSING

1. Divide all pixels by 255: Scaling the pixels between 0 and 1

2. Subtract 0.5 from every pixel value: Moving the range to -0.5 to 0.5

3. Multiply every pixel by 2: Modifying the range to be between -1 and 1

For CIFAR-10 and CIFAR-100, the images are normalised using z-scaling. For CIFAR-
10, the mean is 120.707 with a standard deviation of 64.15, while for CIFAR-100, the
average is 121.936 with a standard deviation of 68.389. The standardised images can
be found in Appendices A.2.1 and A.2.3. To exemplify this procedure, an example
from the original class car can be found in figure 410, and its normalised version can
be seen in figure 411.

Further image preprocessing techniques could be applied but are not used, mainly due
to computational restrictions. It is common to enhance the input data with modified
versions, e.g., add a rotated version of the input image, to make the learned features
more robust. Another technique is to add images whose pixels were partially modified
(pixel attacks) to let the algorithm be robust to these attacks. Apart from these modifi-
cations, excessive image preprocessing using filters or changing shapes or edges is not
typical for CNNs.

Figure 410: Raw example Picture of Class Car

71

CHAPTER 4. EXPERIMENTAL SETUP

Figure 411: Normalised Example Picture of Class Car

4.6 Classification Algorithms Used

After creating the intermediate dataset, several classification algorithms, introduced
in chapter 3, are applied to the intermediate dataset. The following classification
algorithms are used with the specified parameters exhaustively tested in a grid search:

• Support Vector Machine (SVM): 12 di↵erent SVM configurations are tested in
the grid search. The first four SVMs use a linear kernel with c values of 1, 10,
100 and 1000. The other eight SVM configurations use RBF as the kernel with
C18 values of 1,10,100 and 1000 and gamma (�)19 values of 1⇥10�3 and 1⇥10�4.

• Logistic Regression (LR): 12 LR configurations are tested. For the loss function,
each model either uses a `1 or `2 loss as the penalty of the model, while the value
for c is set in the range of 1⇥ 10�3,1⇥ 10�2, . . . ,1⇥ 102.

• K-Nearest Neighbours (KNN): 6 KNN configurations are tested. KNN can get
computationally very expensive, especially for large values of k. The benchmark
was done with k 2 1,5,10 and the leaf size either being 1 or 5 as well. All config-
urations use Euclidean distance as the distance metric.

• Random Forests Estimator (RFE): 6 di↵erent RFE configurations are tested.
The number of estimators is set to either 10, 100 or 1000 combined with Gini or
Entropy diversion measure. The estimators are decision trees.

18c is the parameter associated to the slack variables from ⇠
19� is the free parameter of the RBF kernel function

72

4.6. CLASSIFICATION ALGORITHMS USED

• AdaBoost Classifier (ADB): AdaBoost is benchmarked on 9 configurations.
Models with either 10, 100 or 1000 estimators are combined with learning rates
of 1.0, 0.5, or 0.1. The estimators are decision trees.

• Gradient BoostingClassifier (GBC): Gradient Boosting’s benchmark parameter
combinations total to 6 models. The models have 10 or 100 estimators with
learning rates of 0.05, 0.1 or 0.5. The estimators are decision trees.

• XGBoosting Classifier (XGB): XGBoosting is benchmarked on 16 configura-
tions. The number of estimators is also either 10 or 100. The learning rate is set
to be 0.1 or 0.01. The estimators are decision trees. The maximum depth of each
weak tree learner is limited to 1, 3, 5 or 10, where weak learners with depth 1
are decision tree stumps from section 3.1.

Each of these classifiers has many more hyper-parameters that could be potentially
tested, but that would slow down computation a lot. It is important to notice that each
classification algorithm is tested with various hyper-parameters that enable an objec-
tive comparison. Some algorithms have a greater search space of hyper-parameters.
Also, for the case of XGBoosting, it is designed to perform better than regular Gradient
Boosting and AdaBoost. Thus, more configurations are tested. These classification
algorithms are compared against various Multi-Layer Perceptron architectures. All
MLP architectures are trained with categorical cross-entropy loss, Adam optimiser
with learning rates of 0.0001, 0.001 and 0.01 and accuracy as the optimisation metric.
The models are trained for 10,20,30,50 and 100 epochs20. The final layer is encoded
with one neuron per output class, thus each neuron hold a continuous value between
0 and 1 indicating the likelihood of that given class. Regarding topology, the author
chose the three architectures that are inspired by the fully-connected layers of exist-
ing convolutional neural network architectures. These architectures are fine-tuned
evolutionally through trial-and-error.

• MLP-1: MLP-1 is a neural network with one fully-connected hidden layer and
one output layer. Its hidden layer is a dense layer with 1024 neurons, followed by
an ELU activation function and a dropout layer with probability 0.5. The output
layer with as many neurons as final classes is followed by a softmax activation to
squash the values between 0 and 1. Its architecture is visualised in figure 412.

• MLP-2: MLP-2 has one fully-connected hidden and one output layer. Its hid-
den dense layer has 512 neurons, followed by a ReLU activation function and a

20Although this could be done more e�ciently, the models are created from scratch every time to
leverage the di↵erences of random initialisation. Else, it would be su�cient to create a model for the
maximum number of iteration and save the model after each indicated number of iteration

73

CHAPTER 4. EXPERIMENTAL SETUP

dropout layer with probability 0.5. The dense output layer with as many neurons
as final classes is squashed between 0 and 1 with a softmax activation function.
Its architecture is visualised in figure 413.

• MLP-3: MLP-3 only has one fully-connected output layer. Hence, it directly
performs the mapping from the flattened image features to the output. The
only layer has as many neurons as final classes, followed by a softmax activation
function. Its architecture is visualised in figure 414. Technically, this is not an
MLP since it consists only of an input and an output layer.

Since these three architectures are combined with 3 possible learning rates and 5
di↵erent number of epochs, the total number of created models is 45. During training,
all model architectures converged. Thus, the hyper-parameters are assumed to be
good.

Figure 412: MLP-1 Visualisation for CIFAR-10

74

4.7. SELECTION OF EVALUATION METRICS

Figure 413: MLP-2 Visualisation for CIFAR-10

Figure 414: MLP-3 Visualisation for CIFAR-10

4.7 Selection of Evaluation Metrics

Since the thesis is dealing with a multi-class problem, many of the metrics from sec-
tion 3.7 are not directly applicable. Therefore, only the top-n-accuracy score (or top-
n-error), including “normal” accuracy (top-1-accuracy) are used as evaluation metrics.
For CIFAR-10, only top-1, top-2, and top-5 accuracy are reported, where top-5 accu-
racy simplifies the problem to a binary problem since CIFAR-10 only has 10 classes.
For CIFAR-100 and the reduced ILSVRC dataset, top-1, top-2, top-5, top-10, and top-
20 accuracy are reported. Top-1 and top-5 test accuracy turn out to be strongly cor-
related on most datasets. Therefore, mostly top-1 accuracy is used in the discussions

75

CHAPTER 4. EXPERIMENTAL SETUP

in chapter 5, unless top-5 accuracy or other accuracy measures provide any relevant
insights or new perspectives.

Apart from that, the complexity of the models is measured in terms of the size of the
produced models. For the MLP models, the size is determined as the size of the model
structure in JSON format and the trained weights serialised in HDF5 format. The other
models are serialised in Python Pickle format.

The time complexity of training the individual models is not measured due to di↵er-
ent training environments and conditions. The overall approach from this thesis is
inevitably longer than just training a convolutional neural network. If n time units
were available to train di↵erent CNNs of average complexity cCNN time units, one
could create the following number of CNN networks: pCNN = n

cCNN
. The additional

complexity of training k additional classification algorithms with an average complex-
ity of cclass time units reduces this to pthesis = n

k·cclass+cCNN
. It can easily be seen how

pthesis < pCNN for any k,cclass > 0, hence for any additional classification algorithm
benchmarked.

4.8 Software Architecture of the Final Solution

The code base used for this thesis can be found on GitHub21. The program is en-
tirely written in Python but makes use of various external libraries that use other
programming languages. The main external packages that are used are Keras [49]
with TensorFlow [1] in the backend, sklearn [82] using various classification algo-
rithms, cross-validation methods, and evaluation metrics and XGBoost [83] for the
XGBoosting algorithm implementation.

The program is split over two iPython notebooks that recreate the process described
in section 4.2. The first notebook does the data-producing step of loading in the input
images, training the neural networks (where applicable) and returning the flattened
output from the last convolutional layer. This notebook also saves the created models
for later reuse, if necessary.

The second notebook performs the image feature analysis. It loads the data from the
first step, applies di↵erent classifiers on the intermediate data and produces the final
model. Furthermore, this notebook saves the created models such that they can be
reused in the future, aggregates the performance metrics from the di↵erent models to
save them in a CSV file and performs a significance test on the produced results.

21
https://github.com/novajon/classy-conv-features

76

https://github.com/novajon/classy-conv-features

C
h
a
p
t
e
r

5
Experimental Evaluation

This chapter summarises and interprets the results that were achieved using the ex-
perimental setup from chapter 4. The experimental setup consists of an initial step
of creating candidate intermediate datasets through di↵erent CNNs, followed by a
benchmark of di↵erent classifiers on these intermediate datasets. Firstly, the results
and observations from the intermediate data creation step are displayed in section 5.1.
After that, the results from the second classification step on these intermediate datasets
are presented and described in sections 5.2 and 5.3. The achieved results are after-
wards analysed and interpreted in section 5.4. Finally, section 5.5 summarises the
previous results and draws general conclusions.

Throughout sections 5.1 and 5.3, the discussion is separated between the three initial
image datasets used: CIFAR-10, CIFAR-100, and a subset of ILSVRC-2012. The con-
cluding sections 5.4 and 5.5 abstract these individual observations to develop general
patterns.

In the following, CIFAR-10, CIFAR-100, and the used subset of ILSVRC-2012 are
referred to as initial or original datasets. The CNNs trained or obtained on these initial
datasets, e.g., CNN-1, are called original, trained or benchmark CNNs. The produced
datasets from the CNNs are referred to as intermediate datasets, usually denoted with
the corresponding CNN and original dataset, e.g., CNN-1 intermediate dataset trained
on CIFAR-10. This information is omitted if the context allows. The benchmarked
classification algorithms are named benchmark classifiers or generally classification
algorithms. When top-n accuracy is mentioned, the author refers to the top-n accuracy
on test data, unless explicitly stated di↵erently.

77

CHAPTER 5. EXPERIMENTAL EVALUATION

5.1 Output from Convolutional Neural Network Structures

The following section describes the observations that were made during the creation
of the intermediate datasets through the training of CNNs on the initial datasets.

The training progress of CNN-1, CNN-2 and SimpleNet with the development of
both loss and accuracy over time for the train and test data can be found in Appen-
dices A.3.1.1 for CIFAR-10 and A.3.2.1 for CIFAR-100. The networks were trained
for 80 iterations, and they all seem to have converged for both the training and the
test dataset, apart from CNN-2 on CIFAR-100 (see figure A32). As described in sec-
tion 4.4.2, the algorithms’ architectures were selected after trying out di↵erent archi-
tectures and hyper-parameters, which is why the set of CNN models does not contain
any entirely erroneously trained models.

5.1.1 CIFAR-10 Intermediate Observations

For CIFAR-10, the training of the three convolutional neural networks took 101:25
h1. The results can be found in table 51. VGG-19 is not trained separately because
it is available as a pre-trained model for CIFAR-10. The overall accuracy of VGG-19
on CIFAR-10 is 0.9359, as reported for test and train accuracy in table 51. VGG-19
produces 512 high-level image features in the intermediate dataset.

Architecture Top-1 Test
Accuracy

Top-1 Train
Accuracy

Model
Size [MB]

Train Data
Size [MB]

Test Data
Size [MB]

Intermediate
Features Param

CNN-1 0.8504 0.9846 26.5 636.8 127.7 2,048 6.7M
CNN-2 0.8113 0.9155 5 520.2 104.4 2,304 1.3M
SimpleNet 0.8852 0.9869 22.1 69.6 14.3 256 5.5M
VGG-19 0.9359 0.9359 60.1 143.2 28.9 512 15M

Table 51: CIFAR-10 Intermediate Dataset Results, trained on MacBook Pro

The learning process of CNN-1 on CIFAR-10 for 80 iterations can be found in fig-
ure A24. CNN-1 has a very steep learning curve with both train and test data reaching
an accuracy around 0.8 after 10 iterations already. After that, the test curve flattens
out while the training accuracy improves until around iteration 35, where the accuracy
is around 0.95. The final training accuracy is at 0.9846 while the test accuracy is only
at 0.8504. This gap is slightly bigger than the one for the other training algorithms and
indicates that this network architecture seemingly observes patterns in the training
image data that are not generalisable. The loss of CNN-1 architecture on test data
behaves a bit unsteady after around 20 iterations. The loss rises slightly again but in

1MacBook Pro 2017, Intel Core i7 @ 2.80 GHz, 16 GB RAM, GPU not used

78

5.1. OUTPUT FROM CONVOLUTIONAL NEURAL NETWORK STRUCTURES

combination with the development of the accuracy on test data, this is not a signifi-
cantly negative behaviour. CNN-1 produces 2,048 high-level image features as input
to its intermediate dataset.

The training progress of CNN-2 on CIFAR-10 for 80 iterations is plotted in figure A26.
CNN-2 makes a similar but less steep development in comparison to CNN-1. Until
around iteration 20, the learning progress on train and test data is quite similar, with
the algorithm reaching an accuracy of around 0.75 on both datasets. After these initial
20 iterations, the CNN-2 architecture starts to learn some features that are not gener-
alisable on the test set and thus overfits a bit on the training data. The final accuracy
on train data is 0.9155. Nonetheless, the test dataset still improves slightly, reaching a
final score of 0.8113, with a final di↵erence of 10 percentage points between the train
and test data. CNN-2 produces 2,304 high-level image features in its intermediate
dataset, which is the most among all CNNs trained on CIFAR-10.

The learning process of SimpleNet on CIFAR-10 over 80 iterations is visualised in
figure A28. SimpleNet has the steepest learning curve with most of its learning hap-
pening in the first 20 iterations, where it already reaches a training accuracy of more
than 0.9. Remarkably, the di↵erence between test and training accuracy does not
increase much after 20 iterations, and the two measures are generally close. This indi-
cates that the network can create relevant image features from the input data without
overfitting too much on training data. SimpleNet produces 256 high-level image fea-
tures in its intermediate dataset. The final accuracy for SimpleNet is 0.8852 on test
and 0.9869 on train data.

To sum up, it is notable that SimpleNet converges the fastest on both training and
test data and also reaches the best final accuracy. Nonetheless, the CNN-1 architec-
ture achieves only marginally worse results with SimpleNet outperforming the test
accuracy of CNN-1 by 3.5 percentage points. CNN-2 performs worse than the afore-
mentioned two architectures, which could be caused by the reduced complexity of the
model, leading to it being unable to observe more complex patterns. Overall, despite
some indications of overfitting of the algorithms on the training data compared to the
test data, the detected features that are not applicable on the test data do not worsen
the test data’s accuracy score. Since the test accuracy did not go down but stayed
steady or even improved slightly, the networks are considered to be well suited for
further analyses. Compared to the results from the pretrained VGG-19 net, the three
benchmark models performed slightly worse (between 5 to 12 percentage points) on

79

CHAPTER 5. EXPERIMENTAL EVALUATION

unseen data2. By the size of the VGG-19 network, it can be seen that it is more com-
plex than the other networks which is likely why it can observe more complex patterns
in the image data. Apart from that, more time could have been invested in image
preprocessing before passing the data to the CNNs to improve their final accuracy, as
described in section 4.5. As mentioned before, this is not primarily within the scope
of the thesis because the benchmark from this initial training step is not too relevant
for the subsequent step.

5.1.2 CIFAR-100 Intermediate Observations

For CIFAR-100, the training of the three convolutional neural networks took 412:01 h3.
The results can be found in table 52. As for CIFAR-10, a pre-trained VGG-19 model
with an accuracy of 0.7048 on CIFAR-100 is used. VGG-19 produces 512 high-level
image features in the intermediate dataset.

Architecture Top-1 Test
Accuracy

Top-1 Train
Accuracy

Model
Size [MB]

Train Data
Size [MB]

Test Data
Size [MB]

Intermediate
Features Param

CNN-1 0.5834 0.9297 26.5 602.5 120.5 2048 6.7M
CNN-2 0.4750 0.6308 5 501.9 100.4 2304 1.3M
SimpleNet 0.6099 0.9303 22.1 72.0 14.4 256 5.5M
VGG-19 0.7048 0.7048 60.3 141.3 28.3 512 15M

Table 52: CIFAR-100 intermediate dataset results

For CNN-1, most of the learning on the training data seems to take place within the
first 60 iterations. At the end of the graph, the network converges towards an accuracy
of 0.9297 after 80 iterations. The chart from figure A31 does not indicate that more
training would have much additional e↵ect on the network. Anyways, the accuracy
curve already flattens out on test data after 20 iterations, reaching an accuracy of
0.5834. The loss curve even indicates that the loss on the test data increases after 20
iterations, suggesting that the algorithm starts to lose its generalisability and overfits
on the train data. This observation does not reflect the development of the accuracy
score. Furthermore, CNN-1 produces 2,048 intermediate high-level image features.

CNN-2 ends up with a much lower accuracy score, both on train and test than the
other two network structures trained. This overall lower score seems to be explainable
by CNN-2 having less complexity within its internal structures and thus not being able
to detect more complex patterns in the input images. Nonetheless, the performance

2VGG-19 was not trained by the author thus it is not possible to determine which data points were
used as train and test data. A comparison between the final model’s performance with the performance
of the other models on unseen data is therefore not wholly accurate.

3Windows 10, Intel Core i7-4510U CPU @ 2.00 GHz 2.60 GHz, 8.00 GB RAM, GPU not used

80

5.1. OUTPUT FROM CONVOLUTIONAL NEURAL NETWORK STRUCTURES

on test data seems to converge during the training process after around 40 epochs,
see figure A32. The training curve indicates that it does not reach its maximum per-
formance after 80 epochs with an accuracy of 0.6308. This does not imply that the
results cannot be used for the benchmark, because the network converges on test data.
Thus, any additional training would not be generalisable to unseen data. The final
accuracy on test data is 0.4750. All additionally observed patterns in the input image
would probably not be generalisable. CNN-2 produces 2,304 high-level features in its
intermediate dataset, which is the most among all benchmarked CNN architectures.

As for CIFAR-10, SimpleNet converged the quickest towards its maximum accuracy
of 0.9303 on train and 0.6099 on test data from CIFAR-100. The training curve from
SimpleNet makes a similar but faster development than the one of CNN-1 on CIFAR-
100, as can be seen in figure A30 for CNN-1 and figure A34 for SimpleNet. Although
the graph from figure A35 indicates that the training loss could have reduced more
if the CNN was trained for more epochs, the test accuracy did not improve much
after 30 epochs into the training process, indicating that most further training is only
applicable on the training data. This would lead to overfitting on training data. Since
the test metrics for loss and accuracy stayed steady, there is no sign of malicious
overfitting or less generalisability. The steepest learning process is within the first
10 epochs of model training. SimpleNet produces the fewest high-level image features
with 256 features.

To summarise these findings, CNN-1 and SimpleNet reach a similar accuracy on their
training data around 0.93. Nonetheless, SimpleNet can learn more quickly and ab-
stracts better to unseen data, as its test data accuracy is about 2 percentage points
higher. As on CIFAR-10, CNN-2 performs worse than the other architectures, proba-
bly because it can capture less non-linear relationships. The results from the custom-
trained neural networks are worse than the pre-trained and more complex one for
VGG-19. All other networks perform more than 9 percentage points worse. VGG-19
seems to detect more patterns in the train data that generalise to unseen data4, reach-
ing an ultimate accuracy of 0.7048, which is almost 10 percentage points higher than
the second best from SimpleNet. Apart from the increased complexity of VGG-19,
another reason for its superiority could lie within the data preprocessing stage. Sec-
tion 4.5 indicates some more preprocessing techniques that could have been applied
but were not used on the models within this thesis due to practical implications.

4VGG-19 was not trained by the author thus it is not possible to determine which data points were
used as train and test data. A comparison between the final model’s performance with the performance
of the other models on unseen data is therefore not wholly accurate.

81

CHAPTER 5. EXPERIMENTAL EVALUATION

5.1.3 ILSVRC-2012 Subset Intermediate Observations

An overview of the model specifications created from the benchmarked CNN architec-
tures on the subset of ILSVRC-2012 with 100 classes can be found in table 53. The
top-5 accuracy measures slightly di↵er from the values reported in table 43 and de-
scribed in section 4.3.3. The reason for that is that the numbers referenced below are
the numbers reported from the Keras implementation [48], while section 4.3.3 reports
the numbers from the authors’ papers. From the numbers of features in table 53, one
can already see that the intermediate datasets from the ILSVRC-2012 CNN networks
contain many more high-level image features.

The best performing model on both top-1 and top-5 is Inception ResNet V2 with a
top-1 accuracy of 0.8030 and a top-5 accuracy of 0.9530. From the model’s size, it is
also the biggest and most complex model. Apart from the structural advantages that
the Inception ResNet architecture brings, this additional model complexity enables
the model to learn more complex non-linear relationships within the data. Contrarily
to the model’s size, the produced train and test data size for the subsequent step is
the smallest with 1,620 MB for train and 539 MB for test. This is an indicator that the
network’s complexity does not substantially lie in its last fully-connected layers. The
number of produced features from the flattened convolutional layer is also the lowest
among the compared models. Inception ResNet V2 produces 98,304 features for the
intermediate dataset.

Inception V3 and Xception seem to be similar in overall model complexity with In-
ception V3 having a model size of 92 MB while Xception only has a size of 88 MB.
Nonetheless, Xception can outperform Inception both on top-1 and on top-5 test accu-
racy. Xception reaches a top-1 test accuracy of 0.7900 while Inception V3 only reaches
a top-1 test accuracy of 0.7790. The top-5 test accuracy of Xception is 0.9450 while the
top-5 test accuracy of Inception is 0.9370. Regarding the complexity of the produced
intermediate datasets, Xception generates the intermediate dataset with the most fea-
tures: 204,800. Inception V3’s intermediate dataset has 131,072 features. The train
and test intermediate data sizes for Inception V3 are 2,200 MB and 732 MB respec-
tively. For Xception, the train intermediate dataset size is 3,240 MB, and its test set
has a size of 1,080 MB.

Architecture Top-1
Accuracy

Top-5
Accuracy

Model
Size [MB]

Train Data
Size [MB]

Test Data
Size [MB]

Intermediate
Features Param

Inception V3 0.7790 0.9370 92 2,200 732 131,072 21.8M
Xception 0.7900 0.9450 88 3,240 1,080 204,800 20.8M
Inception ResNet 0.8030 0.9530 215 1,620 539 98,304 54.3M

Table 53: ILSVRC-2012 Intermediate Dataset Results for 100 Classes

82

5.2. MLP ARCHITECTURE COMPARISON ON INTERMEDIATE DATASETS

5.2 MLP Architecture Comparison on Intermediate Datasets

The following chapter describes the observations made when retraining MLP architec-
tures on the intermediate datasets. This benchmarkmainly shows howwell a separated
learning process can imitate the original learning process of a full convolutional neural
network. Since the intermediate data is created by removing the fully-connected layers
from the trained convolutional neural networks, training a fully-connected neural net-
work on this intermediate dataset should be able to achieve at least comparable results
to the initially trained models, apart from random influences. This is, given that the
network structure used in the second step is similar to the one that is used for the
final classification in the first step. The observations in this chapter are based on the
intermediate datasets created from CIFAR-100. Nonetheless, the findings generalise
to other datasets since the observations on CIFAR-100 were similar to the ones on the
other benchmarked datasets.

As described in section 4.6, the MLP architectures are trained on the intermediate
output data for 10, 20 and 50 epochs combined with learning rates of 0.001, and
0.0001. As this is done with 10-fold cross-validation, this leads to 60 neural networks
being created per architecture with a total of 1,600 epochs of training 45,000 entities
per epoch. Nonetheless, it can be observed that some of these hyper-parameters do
not work well on the intermediate dataset. To exemplify this, the results on the first
intermediate dataset, created through CNN-1, can be found in Appendix A.3.2.3. Most
networks already converge after 10 epochs, and further training does not lead to any
improvements, neither on the train nor on the validation set (during cross-validation).
Figure 51 shows the behaviour of MLP-1 being trained on CNN-1 intermediate data
after 10 epochs, whereas figure 52 shows the same training procedure after 50 epochs.
It can be seen that the networks seemingly cannot detect any new patterns after 10
iterations. As for the learning rate, it turns out that a lower learning rate works better
than a higher learning rate. Both on the training and the validation set, a higher
learning rate led to less smooth learning curves with the networks making rather
big jumps without converging to an optimal value. This can be seen by comparing
figure 52 with MLP-1 being trained on CNN-1 intermediate data for 50 epochs with
a learning rate of 0.0001 to figure 53 with the same network being trained with a
higher learning rate of 0.001. The same behaviour is observable for the other MLP
architectures. Experimentation with an even lower learning rate than 0.0001 did not
lead to any significant improvements.

For the threeMLP architectures, the results in tables 54, 55, 56 and 57were achieved on
the intermediate datasets from CNN-1, CNN-2, SimpleNet and VGG-19 respectively.
Tables A17, A18, A19 and A20 in Appendix A.3.2.4 show the p-value of a two-sided
student’s t-test for the respective validation results. From the p-values, the statistical

83

CHAPTER 5. EXPERIMENTAL EVALUATION

Figure 51: Learning Curve of MLP-0 on CNN-1 Intermediate Data for 10 Iterations
with Learning Rate 0.0001

Figure 52: Learning Curve of MLP-0 on CNN-1 Intermediate Data for 50 Iterations
with Learning Rate 0.0001

Figure 53: Learning Curve of MLP-0 on CNN-1 Intermediate Data for 50 Iterations
with Learning Rate 0.001

84

5.2. MLP ARCHITECTURE COMPARISON ON INTERMEDIATE DATASETS

significance levels of the results can be derived.

Model
Top-1
Test

Accuracy

Top-2
Test

Accuracy

Top-5
Test

Accuracy

Top-10
Test

Accuracy

Top-20
Test

Accuracy

Average
Validation
Accuracy

Average
Train

Accuracy
Model Size

MLP-1
LR-0.0001 0.5585 0.6770 0.8117 0.8790 0.9349 0.9896 0.9997 8,611 KB

MLP-2
LR-0.0001 0.5630 0.6860 0.8148 0.8874 0.9422 0.9884 0.9997 4,313 KB

MLP-3
LR-0.0001 0.5592 0.6753 0.8002 0.8717 0.9310 0.9888 0.9998 811 KB

MLP-1
LR-0.001 0.5415 0.5976 0.6277 0.6521 0.6922 0.9680 0.9929 8,161 KB

MLP-2
LR-0.001 0.5500 0.6381 0.7006 0.7305 0.7645 0.9738 0.9979 4,313 KB

MLP-3
LR-0.001 0.5293 0.6466 0.7803 0.8593 0.9288 0.9681 0.9979 811 KB

Table 54: CIFAR-100 MLP Classification Results on CNN-1 Intermediate Data

Model
Top-1
Test

Accuracy

Top-2
Test

Accuracy

Top-5
Test

Accuracy

Top-10
Test

Accuracy

Top-20
Test

Accuracy

Average
Validation
Accuracy

Average
Train

Accuracy
Model Size

MLP-1
LR-0.0001 0.4498 0.5773 0.7272 0.8279 0.9060 0.4494 0.9069 9,635 KB

MLP-2
LR-0.0001 0.4402 0.5692 0.7311 0.8235 0.9058 0.4402 0.8191 4,825 KB

MLP-3
LR-0.0001 0.4223 0.5439 0.7051 0.8144 0.9055 0.4235 0.7330 911 KB

MLP-1
LR-0.001 0.4017 0.5247 0.6844 0.7843 0.8807 0.4102 0.8852 9,635 KB

MLP-2
LR-0.001 0.3741 0.4974 0.6616 0.7748 0.8740 0.3762 0.6694 4,825 KB

MLP-3
LR-0.001 0.3687 0.4911 0.6520 0.7653 0.8717 0.3713 0.8906 911 KB

Table 55: CIFAR-100 MLP Classification Results on CNN-2 Intermediate Data

85

CHAPTER 5. EXPERIMENTAL EVALUATION

Model
Top-1
Test

Accuracy

Top-2
Test

Accuracy

Top-5
Test

Accuracy

Top-10
Test

Accuracy

Top-20
Test

Accuracy

Average
Validation
Accuracy

Average
Train

Accuracy
Model Size

MLP-1
LR-0.0001 0.6326 0.7549 0.8744 0.9320 0.9683 0.9838 0.9970 1,443 KB

MLP-2
LR-0.0001 0.6265 0.7531 0.8777 0.9354 0.9715 0.9589 0.9825 729 KB

MLP-3
LR-0.0001 0.6067 0.7394 0.8642 0.9276 0.9699 0.9417 0.9694 111 KB

MLP-1
LR-0.001 0.6066 0.7277 0.8549 0.9172 0.9638 0.9430 0.9711 1,443 KB

MLP-2
LR-0.001 0.6027 0.7316 0.8601 0.9220 0.9653 0.9275 0.9643 729 KB

MLP-3
LR-0.001 0.6137 0.7410 0.8602 0.9207 0.9593 0.9557 0.9707 111 KB

Table 56: CIFAR-100 MLP Classification Results on SimpleNet Intermediate Data

Model
Top-1
Test

Accuracy

Top-2
Test

Accuracy

Top-5
Test

Accuracy

Top-10
Test

Accuracy

Top-20
Test

Accuracy

Average
Validation
Accuracy

Average
Train

Accuracy
Model Size

MLP-1
LR-0.0001 0.7048 0.7960 0.8646 0.9069 0.9423 0.9962 0.9980 2,467 KB

MLP-2
LR-0.0001 0.7080 0.8051 0.8817 0.9193 0.9533 0.9968 0.9984 1,241 KB

MLP-3
LR-0.0001 0.7052 0.8034 0.8782 0.9183 0.9525 0.9969 0.9982 211 KB

MLP-1
LR-0.001 0.6927 0.7574 0.8059 0.8312 0.8583 0.9940 0.9957 2,467 KB

MLP-2
LR-0.001 0.6994 0.7767 0.8387 0.8798 0.9150 0.9955 0.9966 1,241 KB

MLP-3
LR-0.001 0.6973 0.7829 0.8498 0.8938 0.9317 0.9948 0.9978 211 KB

Table 57: CIFAR-100 MLP Classification Results on VGG-19 Intermediate Data

Comparing the models from tables 54, 55, 56 and 57, one can observe that some inter-
mediate datasets’ test accuracy scores are consistently lower than others. For example,
the accuracy scores on CNN-2 intermediate data in table 55 are between 0.3687 (MLP-
3, LR-0.001) and 0.4498 (MLP-1, LR-0.0001) on the test dataset, while the accuracy
scores on VGG-19 intermediate data in table 57 are between 0.6927 (MLP-1, LR-0.001)
and 0.7080 (MLP-2, LR-0.0001) on the test dataset. The VGG-19 network already
performed much better in the previous step of creating the intermediate dataset (see
table 52). This emphasises the importance of the previously learned image features in

86

5.2. MLP ARCHITECTURE COMPARISON ON INTERMEDIATE DATASETS

this subsequent step.

Concerning architectures, it is hard to pick a configuration that works best over all
datasets. Of the six compared configurations (3 MLP architectures, 2 learning rates),
MLP-1 with a learning rate of 0.0001 performs the best on CNN-2 and SimpleNet in-
termediate data regarding top-1 test accuracy. For the other two intermediate datasets,
MLP-2 reaches higher accuracy scores.

• On CNN-1 Intermediate Data, the di↵erence between MLP-1, MLP-2 and MLP-
3 on validation data accuracy, all trained with learning rates of 0.0001, is not
statistically significant at the 5 % significance level (see table A17). Nonetheless,
MLP-2 scores the highest top-1 test accuracy score of 0.5630 on CNN-1 inter-
mediate data. Compared to the initially reached top-1 accuracy of the CNN-1
network of 0.5834 from table 52, this network architectures learns almost as well
as the initially trained model.

• On CNN-2 Intermediate Data, the best scoring model, MLP-1 with a learning
rate of 0.0001, scores an accuracy of around 0.4498 on the test set. Comparing
MLP-1 to MLP-2 with a learning rate of 0.0001 that reaches an accuracy of 0.4402,
the average validation accuracy of MLP-1 is significantly higher at the 5 % signifi-
cance level (see table A18). The accuracy score fromMLP-1 is slightly lower than
the accuracy of 0.4750 that CNN-2 reached during the initial training process
from table 52. Interestingly for all configurations on CNN-2 intermediate data,
the model’s validation accuracy is similar to the accuracy on the test set.

• On SimpleNet Intermediate Data, MLP-1 with a learning rate of 0.0001 reaches
a top-1 accuracy of 0.6326 on the test data. MLP-1 significantly outperforms
all other architectures on the average validation accuracy (see table A19). The
top-1 test accuracy of 0.6326 is better than the top-1 test accuracy of 0.6099
that SimpleNet reached during the initial training process on CIFAR-100 (see
table 52).

• On VGG-19 Intermediate Data, the best performing model is MLP-2, trained
with a learning rate of 0.0001. This model achieves a top-1 accuracy of 0.7080
on the test data. This score is slightly higher than the initial VGG-19 model’s
score on CIFAR-100 of 0.7048 from table 52.

Overall, apart from the MLP architectures trained on CNN-2 intermediate data, all
models perform much better on both the train and the validation dataset than on
the test dataset. The average validation accuracy for CNN-1, SimpleNet, and VGG

87

CHAPTER 5. EXPERIMENTAL EVALUATION

intermediate data is in the range of 0.92755 up to 0.99696, whereas the above-described
test scores are lower. Although this indicates that the models overfit on the validation
data, this outperformance is not very surprising. The validation data is generated from
the data that the respective initial CNN architecture was trained on, which already
performed better than the test data in this first step, see section 5.1.2. As can be
seen in table 52, because the CNN models trained better on the training data and
were not able to generalise all the learned features to the test data, the validation
data created from the training data from the first step will inevitably perform better
than the test dataset. For CNN-2 intermediate data, a potential explanation for the
lack of outperformance on the validation data could be that the initial CNN-2 model
already did not learn enough features to reach much higher scores properly. This was
not further investigated since it could be clearly seen that the benchmarks on these
datasets perform inevitably worse.

To sum up, this section shows that the separation of the learning process to create
image features and train fully-connected neural networks on those image features
performs comparable to the initial training process of an entire convolutional neural
network. While the final top-1 test accuracy was slightly lower on CNN-1 and CNN-2
intermediate data than on the initially trained CNN-1 and CNN-2models, the contrary
was the case for the VGG-19 and SimpleNet intermediate data. Therefore, it can be
concluded that a detached final classifier is in general still able to learn as well as the
full network in practice. These observations were also confirmed during the other
training processes on CIFAR-10 and the ILSVRC-2012 subset.

5.3 Comparing Di↵erent Classification Algorithms on Image
Features

The following section lists the accuracy values that were achieved in the second step
on the intermediate datasets produced on CIFAR-10, CIFAR-100, and ILSVRC-2012.
The tables are split by the intermediate datasets. Each table holds a comparison of
di↵erent classifiers trained on the respective intermediate datasets. Since four CNNs
were used on the CIFAR networks to create the intermediate datasets and three CNNs
were used on ILSVRC-2012, the number of intermediate datasets benchmarked in this
section totals to 11. Each section contains a textual description of the findings, point-
ing out the key points from the tables to focus on and comparing the performance of
the di↵erent classifiers. Apart from the top-n test accuracies, the tables list the average
validation and average train accuracy achieved over the 10-fold cross-validation. More-
over, the model size of the best performing parameter selection that achieved these

5MLP-2 with LR of 0.001 on SimpleNet intermediate data
6e.g., for MLP-3 with LR of 0.0001 on VGG-19 intermediate data

88

5.3. COMPARING DIFFERENT CLASSIFICATION ALGORITHMS ON IMAGE
FEATURES

results is included each row. The best performing model parameters can be found in
Appendices A.3.1.2, A.3.3 and A.3.2.3.

5.3.1 CIFAR-10 Results

The performance results of the classification algorithms on the intermediate datasets
produced from CNN-1, CNN-2, SimpleNet and VGG-19 on CIFAR-10 can be found
in tables 58, 59, 510 and 511 respectively. The corresponding model configurations
for the best performing models of each architecture can be found in tables A1, A2,
A3 and A4 in Appendix A.3.1.2. The significance matrices on the validation data
benchmarks are presented in tables A9, A10, A11 and A12.

Model Top-1 Test
Accuracy

Top-2 Test
Accuracy

Top-5 Test
Accuracy

Average
Validation
Accuracy

Average
Train

Accuracy
Model Size

MLP 0.8490 0.9367 0.9880 0.9987 0.9994 4,200 KB
SVM 0.8454 0.9321 0.9850 0.9819 1.0000 497,200 KB
LR 0.8469 0.9339 0.9868 0.9998 0.8130 191 KB
KNN 0.7369 0.8503 0.9385 0.8245 0.8691 1,300,000 KB
RFE 0.8120 0.9202 0.9893 0.9254 1.0000 1,990,000 KB
ADB 0.7967 0.9086 0.9833 0.9119 0.9614 843 KB
GBC 0.8175 0.9204 0.9874 0.9722 1.0000 1,200 KB
XGB 0.8182 0.9198 0.9877 0.9527 0.9985 2,400 KB

Table 58: CIFAR-10 Final Classification Results on CNN-1 Intermediate Data

Model Top-1 Test
Accuracy

Top-2 Test
Accuracy

Top-5 Test
Accuracy

Average
Validation
Accuracy

Average
Train

Accuracy
Model Size

MLP 0.7686 0.8974 0.9851 0.7908 0.8893 4,800 KB
SVM 0.7952 0.9140 0.9869 0.7851 1.0000 724,600 KB
LR 0.7622 0.8933 0.9810 0.7750 0.8130 191 KB
KNN 0.6170 0.6577 0.8050 0.5789 1.0000 1,460,000 KB
RFE 0.6994 0.8496 0.9736 0.6962 1.0000 206,300 KB
ADB 0.6446 0.8306 0.9699 0.6456 0.6616 844 KB
GBC 0.7022 0.8539 0.9735 0.7015 0.7818 1,300 KB
XGB 0.7353 0.8788 0.9790 0.7331 1.0000 22,100 KB

Table 59: CIFAR-10 Final Classification Results on CNN-2 Intermediate Data

89

CHAPTER 5. EXPERIMENTAL EVALUATION

Model Top-1 Test
Accuracy

Top-2 Test
Accuracy

Top-5 Test
Accuracy

Average
Validation
Accuracy

Average
Train

Accuracy
Model Size

MLP 0.8941 0.9591 0.9929 0.9994 0.9997 1,100 KB
SVM 0.8945 0.9605 0.9921 0.9995 1.0000 2,800 KB
LR 0.8806 0.9572 0.9945 1.0000 1.0000 27 KB
KNN 0.8960 0.9366 0.9682 0.9982 0.9987 162,900 KB
RFE 0.8933 0.9632 0.9958 0.9986 1.0000 221,600 KB
ADB 0.8766 0.9472 0.9916 0.9909 0.9950 843 KB
GBC 0.8907 0.9594 0.9937 0.9982 1.0000 1,300 KB
XGB 0.8881 0.9586 0.9940 0.9971 1.0000 1,500 KB

Table 510: CIFAR-10 Final Classification Results on SimpleNet Intermediate Data

Model Top-1 Test
Accuracy

Top-2 Test
Accuracy

Top-5 Test
Accuracy

Average
Validation
Accuracy

Average
Train

Accuracy
Model Size

MLP 0.9352 0.9696 0.9835 0.9999 0.9999 1,100 KB
SVM 0.9349 0.9797 0.9952 0.9999 0.9999 3,500 KB
LR 0.9346 0.9772 0.9932 0.9999 0.9999 46 KB
KNN 0.9350 0.9541 0.9757 0.9999 0.9999 324,800 KB
RFE 0.9350 0.9661 0.9864 0.9999 1.0000 868 KB
ADB 0.9330 0.9659 0.9927 0.9998 1.0000 844 KB
GBC 0.9318 0.9523 0.9803 0.9996 1.0000 1,100 KB
XGB 0.9327 0.9683 0.9890 0.9998 1.0000 273 KB

Table 511: CIFAR-10 Final Classification Results on VGG-19 Intermediate Data

The results on CNN-1 intermediate data can be found in table 58. Firstly, the separately
trained fully-connected neural networks perform comparably to the initially trained
CNN-1 from table 51, reaching a final accuracy around 0.85 on test data. Moreover,
other network structures can learn similarly well on the data. SVM and LR achieve a
top-1 test accuracy of 0.8454 and 0.8469 respectively. From the tree-based methods,
both GBC and XGB reach a top-1 test accuracy around 0.82, while RFE reaches a top-1
accuracy of 0.8120 and ADB reaches a top-1 accuracy of 0.7967 on test data. KNN’s
top-1 test accuracy on the CNN-1 intermediate data is only at 0.7369. For the best
performing models, the average validation accuracy is very close to 1.00 while the
gap to the top-1 test accuracy is rather big with up to 15 percentage points, e.g., for
MLP and LR. The top-2 and top-5 accuracies in table 58 are highly correlated with
the top-1 accuracy on test data with a Pearson correlation coe�cient ⇢ of 0.9781 and
0.8634 respectively. The produced model sizes vary largely between the classification
models. LR produces the smallest model with 191 KB and RFE produces the largest
model of almost 2 GB. MLP has the fifth largest model after LR and the three boosting

90

5.3. COMPARING DIFFERENT CLASSIFICATION ALGORITHMS ON IMAGE
FEATURES

approaches.

For the CNN-2 intermediate data, the benchmark top-1 accuracy of 0.8113 on test data
from table 51 could not be reached by any of the models from table 59. Nonetheless,
an SVM configuration (C = 10, � = 0.001, RBF kernel) reaches the highest top-1 test
accuracy of 0.7952. The benchmark MLP has a test accuracy of only 0.7686. The
other models’ accuracy scores on test are mostly between 0.6994 for RFE up to 0.7622
for the linear regression model. The XGB algorithm performs better than the other
boosting algorithms but still onlymanages to reach a test accuracy of 0.7353. The worst
performing model is KNN, which reaches a top-1 test accuracy of 0.6170. Interestingly,
none of the models seem to overfit much on the training data. For all models, the gap
between the validation and the test accuracies is quite small. Regarding top-2 and top-
5 test accuracies in table 59, the values follow the same order as the top-1 accuracy. E.g.,
the best performing model, SVM, also has the highest top-2 test accuracy of 0.9140
and the highest top-5 test accuracy of 0.9869. Regarding model size, LR produces the
smallest model again, followed by the three boosting approaches and MLP in fifth
place. The largest model comes from the KNN model with 1,460,000 KB.

The benchmarked models on SimpleNet intermediate data in table 510 all perform
comparable or outperform the initial benchmark of 0.8852 on CIFAR-10 from table 51.
While the MLP benchmark architecture performs well with a top-1 accuracy of 0.8941
on test data, KNN even reaches a slightly higher top-1 accuracy of 0.8960 on the test
set. On the validation set, LR is the best performer, but its top-1 test accuracy only
reaches 0.8806. Apart from MLP, the models SVM, RFE, GBC, and XGB all perform
comparably to the MLP benchmark with accuracies around 0.89. ADB performs worse
than the rest with a test accuracy of 0.8766. Apart from minor variations in the vali-
dation performance, this indicates that all these models perform similarly to an MLP.
Some models even show slightly better performances than the benchmarked MLP
model. Regarding top-2 and top-5 test accuracy, RFE produces the highest values with
0.9632 and 0.9958 respectively. All top-5 test accuracy values lie very closely, apart
from the value of KNN. On top-2 test accuracy, RFE is followed by SVM with a score
of 0.9605. The MLP (0.9591) model only follows in fourth place after GBC (0.9594).
The produced model sizes are rather small in comparison to the other intermediate
datasets from CIFAR-10. The LR model only takes up 27 KB. MLP is the third smallest
model with 1,100 KB. The largest model, RFE, has 221,600 KB.

VGG-19 originally scored a top-1 test accuracy of 0.9359 on CIFAR-10 (see table 51)7.
The best performing models from table 511 perform similarly to this benchmark result
regarding top-1 accuracy, including MLP (0.9325), RFE (0.9350), KNN (0.9350), SVM

7The test accuracy is identical to the train accuracy because an external model was used for the
benchmark

91

CHAPTER 5. EXPERIMENTAL EVALUATION

(0.9349) and LR (0.9346). But even the remaining three models score top-1 accuracies
above 0.93, meaning the di↵erences between the models’ performances are very small.
This indicates that the VGG network’s performance is less reliant on the final classifi-
cation layer and more focused on the CNN’s internal structure. Interestingly, on the
top-2 and top-5 test accuracy values, SVM reaches the best results with 0.9797 and
0.9952 respectively. These accuracy values are more than one percentage point higher
than the respective MLP values. In fact, the MLP model only has the third highest
top-2 test accuracy after SVM and LR (0.9772) and even has the third lowest top-5
test accuracy, only outperforming KNN and GBC. The LR model has a size of 46 KB.
Interestingly, the RFE model is small compared to the other intermediate datasets with
only 868 KB. The largest model is produced by KNN with 324,800 KB.

To summarise the observations from the benchmark on the intermediate datasets
trained on CIFAR-10, most intermediate datasets’ models were not able to consistently
produce better values than the initially benchmarked CNN models. Only for Sim-
pleNet intermediate data, six of the eight benchmarked models score better than the
SimpleNet benchmark score. For most intermediate datasets, the best top-1 accuracy
values are similar to the benchmarked values. Apart from the retrained MLP models,
the models from SVM and LR frequently appear among the best performing mod-
els. LR has the advantage of petite model sizes. Although SVM outperforms MLP at
times, the model sizes of SVMs have a high variance. E.g., the best performing model
on SimpleNet intermediate data is an SVM model of 2,800 KB size, while the best
performing model on CNN-2 intermediate data is an SVM model of size 724,600 KB.
Considering model size and performance, MLP and LR perform best. Regarding the
tree-based models, ADB performs the worst among these. Overall, XGB manages to
produce slightly better results than GBC, particularly on CNN-2 intermediate data.
Nonetheless, GBC is remarkably constant in model size between 1,100 and 1,300 KB,
whereas XGB fluctuates more. Between RFE and XGB it is hard to choose of whether
the bagging or the boosting approach performed better overall. While RFE reaches
slightly higher top-1 test accuracies on VGG-19, SimpleNet, and CNN-1 intermedi-
ate data, XGB performs much better on CNN-2 intermediate data. Nonetheless, all
models produced from boosting algorithms are much smaller in size than RFE. The
KNNmodel has some interesting behaviour: While it performs comparably to the best
model on VGG-19 and outperforms all other models on SimpleNet, its performance
on CNN-1 and CNN-2 is much lower than the other benchmarked models. While the
CNN-2 intermediate data uses a model with only 1 neighbour, all other intermediate
datasets use models with 10 neighbours. Apart from these observations, KNN gen-
erally produces huge models, sometimes even over 1 GB in size, e.g., on CNN-1 and
CNN-2.

92

5.3. COMPARING DIFFERENT CLASSIFICATION ALGORITHMS ON IMAGE
FEATURES

5.3.2 CIFAR-100 Results

The results of the classification algorithms on the intermediate datasets from CNN-1,
CNN-2, SimpleNet and VGG-19 on CIFAR-100 can be found in tables 512, 513, 514
and 515 respectively. The corresponding model configurations for the best perform-
ing models of each architecture can be found in tables A13, A14, A15 and A16 in
Appendix A.3.2.3. The significance matrices on the validation data benchmarks are
presented in tables A21, A22, A23 and A24.

Model
Top-1
Test

Accuracy

Top-2
Test

Accuracy

Top-5
Test

Accuracy

Top-10
Test

Accuracy

Top-20
Test

Accuracy

Average
Validation
Accuracy

Average
Train

Accuracy
Model Size

MLP 0.5630 0.6860 0.8148 0.8874 0.9422 0.9884 0.9997 4,313 KB
SVM 0.6030 0.7250 0.8515 0.9146 0.9623 0.9820 0.9998 791,833 KB
LR 0.5706 0.6797 0.7994 0.8705 0.9269 0.9935 0.9996 1,605 KB
KNN 0.3284 0.3320 0.3547 0.3929 0.4694 0.3769 0.9998 1,266,158 KB
RFE 0.3192 0.4173 0.5485 0.6525 0.7514 0.3576 0.9998 3,223,027 KB
ADB 0.2042 0.3058 0.4851 0.6325 0.7876 0.2482 0.2758 335 KB
GBC 0.2547 0.3602 0.5422 0.6111 0.7493 0.4369 0.9994 12,150 KB
XGB 0.3326 0.4397 0.5692 0.6801 0.8115 0.4721 0.9996 4,100 KB

Table 512: CIFAR-100 Final Classification Results on CNN-1 Intermediate Data

Model
Top-1
Test

Accuracy

Top-2
Test

Accuracy

Top-5
Test

Accuracy

Top-10
Test

Accuracy

Top-20
Test

Accuracy

Average
Validation
Accuracy

Average
Train

Accuracy
Model Size

MLP 0.4498 0.5733 0.7272 0.8279 0.9060 0.4494 0.9988 9635 KB
SVM 0.4741 0.6020 0.7554 0.8499 0.9242 0.4576 0.9770 890827 KB
LR 0.4518 0.5702 0.7266 0.8281 0.9089 0.4417 0.6336 1805 KB
KNN 0.2878 0.2912 0.3139 0.3538 0.4308 0.2666 0.9998 1424346 KB
RFE 0.2931 0.3822 0.5211 0.6243 0.7298 0.2793 0.9998 3518103 KB
ADB 0.1728 0.2682 0.4336 0.5793 0.7313 0.1732 0.1845 335 KB
GBC 0.2880 0.3402 0.5041 0.6034 0.7021 0.3044 0.9555 12150 KB
XGB 0.3009 0.3798 0.5386 0.6403 0.7567 0.3518 0.9993 3400 KB

Table 513: CIFAR-100 Final Classification Results on CNN-2 Intermediate Data

93

CHAPTER 5. EXPERIMENTAL EVALUATION

Model
Top-1
Test

Accuracy

Top-2
Test

Accuracy

Top-5
Test

Accuracy

Top-10
Test

Accuracy

Top-20
Test

Accuracy

Average
Validation
Accuracy

Average
Train

Accuracy
Model Size

MLP 0.6326 0.7549 0.8744 0.9320 0.9683 0.9838 0.9970 1443 KB
SVM 0.6380 0.7615 0.8826 0.9419 0.9772 0.9801 0.9989 80543 KB
LR 0.6247 0.7439 0.8554 0.9141 0.9543 0.9937 0.9997 205 KB
KNN 0.6066 0.7286 0.8237 0.8465 0.8646 0.8380 0.8904 158842 KB
RFE 0.5955 0.7216 0.8436 0.9029 0.9460 0.8258 0.9998 2049021 KB
ADB 0.3850 0.5275 0.7259 0.8408 0.9261 0.5165 0.5377 335 KB
GBC 0.5532 0.6802 0.7947 0.8834 0.9339 0.8812 0.9995 12150 KB
XGB 0.5894 0.7107 0.8473 0.9132 0.9450 0.9683 0.9996 2200 KB

Table 514: CIFAR-100 Final Classification Results on SimpleNet Intermediate Data

Model
Top-1
Test

Accuracy

Top-2
Test

Accuracy

Top-5
Test

Accuracy

Top-10
Test

Accuracy

Top-20
Test

Accuracy

Average
Validation
Accuracy

Average
Train

Accuracy
Model Size

MLP 0.7080 0.8051 0.8817 0.9193 0.9533 0.9968 0.9984 1241 KB
SVM 0.7114 0.8113 0.8950 0.9336 0.9651 0.9972 0.9978 32203 KB
LR 0.7071 0.8056 0.8768 0.9133 0.9568 0.9969 0.9983 406 KB
KNN 0.7095 0.7644 0.7892 0.8016 0.8262 0.9970 0.9972 317030 KB
RFE 0.7095 0.8086 0.8886 0.9266 0.9568 0.9969 0.9999 2397625 KB
ADB 0.6629 0.7505 0.8453 0.8939 0.9403 0.9854 0.9897 335 KB
GBC 0.6747 0.7502 0.8147 0.8534 0.8939 0.9911 0.9999 12150 KB
XGB 0.6897 0.7707 0.8423 0.8851 0.9260 0.9948 0.9999 4787 KB

Table 515: CIFAR-100 Final Classification Results on VGG-19 Intermediate Data

A comparison of the models trained on the intermediate data from CNN-1 being
trained on CIFAR-100 can be found in table 512. Two models perform better on
test accuracy than the trained MLP model: SVM and LR. The best performing SVM
model configuration uses an RBF kernel and parameters C and � of 10 and 0.0001
respectively. It reaches a top-1 test accuracy of 0.6030 which is higher than the initially
benchmarked accuracy of 0.5834 of CNN-1 on CIFAR-100 from table 52. The LRmodel
reaches a top-1 test accuracy of 0.5706, and the retrained MLP model achieves a top-1
test accuracy of 0.5630. Both accuracy values are slightly worse than the one of the
initially benchmarked CNN-1 from table 53. MLP, SVM, and LR follow the same order
for top-2, top-5, top-10, and top-20 test accuracy. SVM reaches a top-5 test accuracy
of 0.8515, LR reaches one of 0.7994 and MLP achieves a top-5 test accuracy of 0.8148.
On the downside, SVM also produces the largest model with 791,833 KB. The MLP
and LR models are much smaller with 4,313 KB and 1,605 KB respectively. MLP, SVM,
and LR have a small gap between train and validation top-1 accuracy, which shows
that the algorithms can reproduce the non-linear combinations from the first step.

94

5.3. COMPARING DIFFERENT CLASSIFICATION ALGORITHMS ON IMAGE
FEATURES

Nonetheless, the numbers from the test accuracy described above are lower than the
validation and train accuracy values. This is caused by the fact that the validation data
was part of the train dataset during the creation of the intermediate dataset. KNN and
all ensemble models perform much worse than the other algorithms. XGBoost reaches
a top-1 test accuracy of 0.3326, which is 23 percentage points worse than MLP. The
worst performing model, ADB, only achieves a top-1 test accuracy of 0.2042. GBC
reaches a top-1 test accuracy of 0.2547 and KNN reaches one of 0.3284. Interestingly,
converge on the training data, apart from ADB. The largest model in the comparison
is produced by RFE. The final RFE model has a size of 3,223,027 KB.

The benchmarked performances on CNN-2 intermediate data from CIFAR-100 are
displayed in table 513. As for CNN-1 intermediate data, SVM (0.4741) and LR (0.4518)
perform better than the benchmarked MLP architecture (0.4498). SVM’s performance
of 0.4741 is also similar to the initially benchmarked performance of CNN-2 on CIFAR-
100 of 0.4750 from table 52. As for CNN-1, the best performing SVMmodel on CNN-2
is configured with an RBF kernel, a parameter C of 10 and a � value of 0.0001. The
KNN and ensemble models reach top-1 accuracy values between 0.3009 for XGB and
0.1728 for ADB. GBC reaches a top-1 test accuracy of 0.2880 and RFE reaches a top-1
test accuracy of 0.2931. The top-n accuracies for higher values of n mainly follow the
trend of the previously described models. SVM’s top-5 accuracy is 0.7554, followed
by MLP with a value of 0.7272 and LR with 0.7266. Only the top-n-accuracy of KNN
seems to be worse for higher values of n than for the other models. Despite having the
best accuracy values, the SVM model is much larger than LR and MLP. While the LR
model only takes up 1,805 KB and MLP takes up 9,635 KB, the SVM model has a size
of 890,827 KB. Among the other models, KNN is the largest with 1,424,346 KB. Most
model’s top-1 train accuracy reach values close to 1, meaning these models overfit on
the training data. Only ADB reaches a much lower top-1 train accuracy of 0.5377 and
top-1 validation accuracy of 0.5165. For MLP, SVM, and LR, the di↵erences between
train and validation top-1 accuracies are not that large, meaning these models did not
overfit. Nonetheless, the di↵erence to the test data is larger. This gap is caused by the
fact that the validation data was part of the train data in the first step of creating the
high-level image features for the intermediate dataset.

An overview of the performances of the classification models on SimpleNet interme-
diate data from CIFAR-100 is given in table 514. Contrarily to CNN-1 and CNN-2,
the top-1 accuracy di↵erence between most models is not that big. Apart from ADB,
all models perform between a top-1 test accuracy of 0.5532 (GBC) and 0.6380 (SVM),
meaning a total gap of around 8 percentage points. ADB on the other hand only
reaches a top-1 test accuracy of 0.3850. SVM, MLP and LR all outperform the initial
SimpleNet benchmark on CIFAR-100 of 0.6099 from table 514 with top-1 test accu-
racy values of 0.6380, 0.6326 and 0.6247 respectively. KNN performs similarly to the

95

CHAPTER 5. EXPERIMENTAL EVALUATION

benchmark with a top-1 test accuracy of 0.6066. From the ensemble models, RFE has
the best top-1 test accuracy value of 0.5955 followed by XGB with a value of 0.5894.
The GBC model reaches a slightly lower top-1 accuracy of 0.5532. The top-n accuracy
scores for higher values of n behave similarly to the top-1 accuracies. SVM reaches a
top-5 accuracy of 0.8826, followed by MLP with a value of 0.8744 and LR with a top-5
accuracy of 0.8554. As for CNN-1 and CNN-2 intermediate data, the KNN model’s
top-n accuracy for higher values of n gets worse in comparison to the other bench-
marked models. E.g., on top-20 accuracy, KNN has the lowest value of all with 0.8646,
which is about 6 percentage points lower than the second worst. The largest model on
this intermediate data benchmark is RFE with a size of 2,049,021 KB. This is by far
the largest model, followed by KNN with a size of 158,842 KB and SVM with a size
of 80,543 KB. Despite its good performance, the SVM model is much larger than the
MLP and LR models that are of sizes 1,443 KB and 205 KB respectively.

The performance of the di↵erent classification models on the intermediate dataset
produced from VGG-19 on CIFAR-100 can be found in table 515. On VGG-19 interme-
diate data from CIFAR-100, five out of eight models can outperform the benchmarked
VGG-19 score of 0.7048 on CIFAR-100 from table 52. Apart from the MLP model that
scores a top-1 test accuracy of 0.7080, three models even reach higher top-1 accura-
cies. Among those, SVM achieves a top-1 test accuracy of 0.7114, while KNN and RFE
both reach a value of 0.7095. The LR model only scores slightly worse than MLP with
a top-1 test accuracy of 0.7071. All boosted models, ADB, GBC, and XGB, perform
worse than the aforementioned models on top-1 test accuracy, ranging between 0.6629
(ADB) to 0.6897 (XGB). For all the models, the developments on top-2, top-5, top-10,
and top-20 test accuracy mostly remain similar and in the same order as the one of the
top-1 test accuracy. SVM has a top-5 accuracy of 0.9337, followed by RFE with a value
of 0.9266, MLP with 0.9193 and LR with 0.9133. Only the KNN model seemingly
performs much worse on these top-n accuracy measures in comparison to its top-1
accuracy, with its top-5, top-10 and top-20 test accuracies even being the lowest in the
comparison of all models. The three best performing models are also the largest mod-
els in the benchmark: RFE has a size of 2,397,625 KB, KNN has a size of 2,397,625 KB
and SVM is of size 32,203 KB. In comparison, the smallest models are LR and ADB
with sizes of 406 KB and 335 KB respectively.

To sum up the findings, the best performing model on all intermediate datasets from
CIFAR-100 is SVM. After that, mostly LR and MLP follow with LR being superior
on CNN-1 and CNN-2 intermediate data and MLP performing better on SimpleNet
and VGG-19 intermediate data. SVM also outperforms the top-1 accuracy of the CNN
benchmarks from the first step (table 52) on CNN-1, SimpleNet, and VGG-19 interme-
diate data. On SimpleNet and VGG-19 intermediate data, the retrained MLP and the
LR model are also superior to the initial benchmark in performance. Considering the

96

5.3. COMPARING DIFFERENT CLASSIFICATION ALGORITHMS ON IMAGE
FEATURES

external benchmarks on CIFAR-100 from table 42, the achieved top-1 test accuracy
scores on VGG-19 intermediate data from table 515 rank among the best available
model benchmarks on CIFAR-100.

The bagging and boosting approaches perform similarly concerning top-1 accuracy,
but their performance is generally worse than the other benchmarked algorithms. Sim-
ilar performance to the other classification algorithms is only achieved by RFE on
VGG-19 intermediate data. Among the boosting algorithms, XGB is the best algo-
rithms on all intermediate datasets. ADB has the lowest top-1 test accuracy among all
classifiers on every intermediate dataset. Regarding model size, RFE produces much
larger models than all other models, with the largest model being of size 3.5 GB from
CNN-2 intermediate data. The boosting algorithms generally produce rather small
models. The smallest in each intermediate dataset benchmark is either ADB or LR.
The latter additionally has good performance values despite being very small in size
of up to 7 times smaller than MLP (e.g., see table 514). The top-5 accuracy scores gen-
erally follow the same trend as the top-1 accuracy scores. SVM has the highest top-5
accuracy on every intermediate dataset. Interestingly, MLP performs better than LR
in top-5 accuracy on every dataset, although the same is not always the case for top-1
accuracy. For larger values of n, the top-n accuracy of KNN gets worse in comparison
to other models.

5.3.3 ILSVRC-2012 Results

The results of the classification algorithms on the intermediate datasets from Inception
ResNet V2, Inception V3 and Xception on the ILSVRC-2012 subset can be found in
tables 516, 517 and 518 respectively. The corresponding model configurations for the
best performing models of each architecture can be found in tables A25, A26 and A27
in Appendix A.3.3. The significance matrices on the validation data benchmarks are
presented in tables A28, A29 and A30.

Since the original models for Inception V3, Xception and Inception ResNet were
trained on 1000 classes, there is no benchmark for the CNN performance on the
ILSVRC-2012 dataset with 100 classes as used in this thesis. Therefore, the other
classification models can only be compared to the respective MLP models for the
intermediate datasets.

97

CHAPTER 5. EXPERIMENTAL EVALUATION

Model
Top-1
Test

Accuracy

Top-2
Test

Accuracy

Top-5
Test

Accuracy

Top-10
Test

Accuracy

Top-20
Test

Accuracy

Average
Validation
Accuracy

Average
Train

Accuracy
Model Size

MLP 0.7936 0.8984 0.9480 0.9672 0.9808 0.7760 0.8920 537,300 KB
SVM 0.3552 0.6184 0.6576 0.7000 0.7576 0.3168 0.9997 1,204,000 KB
LR 0.8512 0.9304 0.9768 0.9920 0.9944 0.8459 0.9997 104,900 KB
KNN 0.7608 0.7680 0.7792 0.7904 0.8064 0.7509 0.9997 4,580,000 KB
RFE 0.8256 0.9176 0.9656 0.9792 0.9880 0.8157 0.9997 1,780,000 KB
ADB 0.2024 0.2856 0.4360 0.5560 0.7048 0.1341 0.3835 3,800 KB
GBC 0.4152 0.5488 0.6912 0.7448 0.7816 0.4515 0.9997 6,100 KB
XGB 0.7888 0.8848 0.9336 0.9560 0.9752 0.7461 0.9973 4,700 KB

Table 516: ILSVRC-2012 Final Classification Results on Inception V3 Intermediate
Data

Model
Top-1
Test

Accuracy

Top-2
Test

Accuracy

Top-5
Test

Accuracy

Top-10
Test

Accuracy

Top-20
Test

Accuracy

Average
Validation
Accuracy

Average
Train

Accuracy
Model Size

MLP 0.8208 0.9128 0.9488 0.9664 0.9800 0.8245 0.9136 419,700 KB
SVM 0.7608 0.8800 0.9216 0.9512 0.9696 0.7483 0.9997 1,530,000 KB
LR 0.8528 0.9336 0.9792 0.9936 0.9976 0.8528 0.9976 163,800 KB
KNN 0.8296 0.9152 0.9464 0.9552 0.9592 0.8184 0.8667 5,921,000 KB
RFE 0.8496 0.9336 0.9776 0.9920 0.9960 0.8429 0.9997 1,640,000 KB
ADB 0.3552 0.4912 0.6360 0.7304 0.8352 0.1874 0.5829 3,800 KB
GBC 0.3760 0.5008 0.6496 0.7000 0.7536 0.3885 0.9992 6,300 KB
XGB 0.7888 0.8912 0.9416 0.9568 0.9728 0.7744 0.9987 6,000 KB

Table 517: ILSVRC-2012 Final Classification Results on Xception Intermediate Data

Model
Top-1
Test

Accuracy

Top-2
Test

Accuracy

Top-5
Test

Accuracy

Top-10
Test

Accuracy

Top-20
Test

Accuracy

Average
Validation
Accuracy

Average
Train

Accuracy
Model Size

MLP 0.8424 0.9248 0.9568 0.9704 0.9816 0.8459 0.9211 201,500 KB
SVM 0.7360 0.8184 0.8512 0.8736 0.9136 0.7334 0.9997 984,000 KB
LR 0.8712 0.9472 0.9768 0.9960 0.9992 0.8632 0.9957 70,100 KB
KNN 0.8504 0.9344 0.9528 0.9568 0.9600 0.8451 0.8816 78,600 KB
RFE 0.8536 0.9384 0.9792 0.9856 0.9896 0.8629 0.9997 1,530,000 KB
ADB 0.4296 0.5512 0.6720 0.7544 0.8256 0.2347 0.5965 3,800 KB
GBC 0.5056 0.5976 0.6776 0.7192 0.7776 0.4549 0.9997 6,200 KB
XGB 0.8216 0.9056 0.9456 0.9608 0.9728 0.8117 0.9984 4,200 KB

Table 518: ILSVRC-2012 Final Classification Results on Inception ResNet V2 Interme-
diate Data

98

5.3. COMPARING DIFFERENT CLASSIFICATION ALGORITHMS ON IMAGE
FEATURES

The benchmarked performances of the di↵erent classification algorithms on the In-
ceptionV3 intermediate dataset from ILSVRC-2012 is shown in table 516. The per-
formance of the classification models varies between a top-1 accuracy of 0.2024 for
ADB and 0.8512 for LR. Two models outperform the MLP top-1 test accuracy bench-
mark of 0.7936: LR reaches a top-1 test accuracy score of 0.8512 and RFE reaches a
score of 0.8256. XGB performs almost as good as MLP with a top-1 test accuracy of
0.7888, followed by KNN with a top-1 accuracy of 0.7608. The top-1 accuracy of GBC
is 0.4152 and SVM reaches a score of 0.3552. The smallest models are produced by
the boosting algorithms ADB, GBC, and XGB with sizes of 3,800 KB, 6,100 KB and
4,700 KB respectively. The best performing model, LR, has a size of 104,900 KB, which
is five times smaller than the MLP model with a size of 537,300 KB. The largest model
is produced by KNN with 4,580,000 KB. The RFE model that performed the second
best in the benchmark has a size of 1,780,000 KB. On top-5 test accuracy, LR and RFE
still perform much better than the compared MLP model. The top-5 test accuracy of
LR is 0.9768, and for RFE it is 0.9656. The MLP model’s top-5 test accuracy is 0.9480.

The results for the benchmark on Xception intermediate data trained on the ILSVRC-
2012 subset is displayed in table 517. Three models score better top-1 test accuracy
values than the MLP model: LR with a top-1 test accuracy of 0.8528, RFE with a top-1
test accuracy of 0.8496 and KNN with a top-1 test accuracy of 0.8296. The LR and
the RFE models’ top-1 test accuracies are about 3 percentage points higher than the
top-1 test accuracy from the MLP model. XGB managed to get a top-1 test accuracy
of 0.7888 and SVM reaches one of 0.7608. The other boosting models, ADB and GBC,
are much worse with values of 0.3552 and 0.3760 respectively. The delta between LR,
RFE and MLP stays similar for top-5 test accuracy with LR reaching a score of 0.9792
and RFE reaching a score of 0.9776, while MLP reaches a score of 0.9488. The top-5
accuracy of XGB of 0.9416 is relatively close to the one from MLP. The largest model
in the benchmark is the KNN model with a total size of 5,921,000 KB, followed by the
RFE model with 1,640,000 KB and the SVM model with 1,530,000 KB. The remaining
models are much smaller. The best performing LR has 163,800 KB. The MLP model is
of size 419,700 KB. The smallest model is produced from ADB with a size of 3,800 KB.
The GBC and XGB models are similar in size with 6,300 KB and 6,000 KB respectively.

The benchmark on Inception ResNet V2 trained on the ILSVRC-2012 subset is pre-
sented in table 518. LR, KNN, and RFE all perform better on top-1 and top-2 accuracy
than MLP. LR and RFE also outperform MLP on all other top-n accuracy values. KNN
performs worse for top-n accuracies with larger values of n. LR reaches the highest
top-1 test accuracy of 0.8712. This is also the highest among all benchmarked interme-
diate datasets trained on the ILSVRC-2012 subset. RFE has a top-1 accuracy of 0.8536
and KNN has one of 0.8504. MLP follows with 0.8424. The next highest performing
model regarding top-1 accuracy is XGB with a value of 0.8216. SVM reaches a top-1

99

CHAPTER 5. EXPERIMENTAL EVALUATION

test accuracy of 0.7360. The remaining boosting algorithms, ADB and GBC, perform
much worse with top-1 accuracy values of 0.4296 and 0.5056 respectively. On top-5
test accuracy, the best performing model is RFE although its value of 0.9792 is only
slightly higher than the one from LR of 0.9768. MLP reaches a top-5 test accuracy of
0.9568. The KNN model performs worse than MLP on top-5 accuracy with a score
of 0.9528. XGB manages to reach a top-5 accuracy of 0.9456. The largest model is
produced by RFE with a size of 1,530,000 KB, followed by SVM with 984,000 KB. The
other models are much smaller. The next biggest model is MLP with a total size of
201,500 KB. KNN has a size of 78,600 KB and LR has a size of 70,100 KB. The boosting
models are much smaller in size with ADB having 3,800 KB, GBC having 6,200 KB
and XGB having 4,200 KB.

On ILSVRC-2012 intermediate datasets, LR constantly reaches the highest accuracy
results among the benchmarked models. LR outperforms MLP by about 3 percentage
points top-1 accuracy or more on all ILSVRC-2012 intermediate datasets. The same
observation goes for the top-5 accuracy, although the minimal di↵erence between MLP
and LR is 2 percentage points on this measure in table 518. Moreover, the LR models
are much smaller than the corresponding MLP models, thus enabling a reduction of
size and better performance. Apart from LR, the RFE model also manages to outper-
form MLP but with much larger model sizes. E.g., RFE reaches an accuracy of 0.8536
on ResNet V2 intermediate data with a model of 1,530,000 KB size. The correspond-
ing MLP model is more than seven times smaller at 201,500 KB. The performances
of KNN models vary. On Inception ResNet V2 and Xception intermediate data, KNN
is the third best model on top-1 test accuracy, outperforming MLP. Interestingly, the
performance on other metrics such as top-5 test accuracy is not as good for KNN as
for other models. KNN models do not improve that much between top-1 and higher
values of n. To illustrate this, on Inception V3 in table 516, KNN performs almost
10 percentage points better than ADB regarding top-1 test accuracy with a score of
0.76608 for KNN and 0.6629 for ADB. On top-10 test accuracy, ADB performs about
10 percentage points better than KNN with a performance of 0.8938 versus 0.7904
respectively. The same pattern can be observed between other models and KNN and
on other intermediate datasets. On every ILSVRC-2012 intermediate dataset, bagging
manages to reach at least 3 percentage points higher accuracy values than any of the
boosting algorithms. Among the boosting approaches, XGB is consistently proficient
to ADB and GBC, outperforming the latter by more than 30 percentage points. GBC
still consistently performs better than ADB on all datasets. The ADB model’s top-1
test accuracy was less than half of the score of the best performing model (LR) on every
dataset. On all datasets, the accuracy on validation data is similar to the test data. This
shows that the image filters from the benchmarked CNNs are not overfitted on the
validation dataset.

100

5.4. INTERPRETATION OF RESULTS

5.4 Interpretation of Results

The following section provides an interpretation of the previously observed and de-
scribed results from section 5.3. This section concludes which classification algo-
rithms perform the best on high-level image features. The chapter further analyses
under which conditions specific classification algorithms outperform MLPs and can
be considered superior to the traditional approach. Lastly, the chapter reveals which
initial and intermediate datasets are more suitable for testing di↵erent classification
algorithms. The goal of this section is to derive a guideline of when to test which
classification algorithms on high-level image features, based on the observations from
section 5.3. The evaluation is based on the top-n test accuracy values and the model
sizes8.

First of all, section 5.2 proves that separately training the fully-connected layers does
not worsen the overall results. Neither did it lead to an improvement in classification
accuracy. It follows that the performance during the separated learning process is only
dependant on the chosen classifier and is not worse than a unified learning procedure.
Among the benchmark classifiers, the findings in section 5.3 reveal a set of pareto-
optimal algorithms over all datasets. The pareto-optimum is derived with respect to
top-1 test accuracy and model size. Top-5 test accuracy is not used to build this set
because some models randomly reach slightly higher top-5 accuracy values. E.g., GBC
would only be pareto-optimal on CNN-1 intermediate data from CIFAR-10 because
of a marginally higher top-5 accuracy than LR. This would make the set of pareto-
optimal classifiers noisier.

On CIFAR-10 intermediate datasets, the set of pareto-optimal classifiers is MLP, LR,
SVM, and RFE. On CIFAR-100 intermediate datasets, the set of classifiers is SVM, LR,
MLP, and ADB and on the ILSVRC-2012 intermediate datasets, it is LR, ADB and XGB.

The following analysis of classification algorithms will focus on the union of these
pareto-optimal sets: LR, SVM, MLP, XGB, RFE, and KNN. These algorithms have
unique characteristics that can be reasons for applying them to high-level image fea-
tures. ADB is discarded from the comparison because it has consistently very bad
accuracy scores. ADB is only pareto-optimal on some intermediate datasets because of
its small model sizes, but ADB consistently underperformed on top-n accuracy scores
on all datasets. The following unique features can be identified among the models:

8The model size depends on the choice of parameters and is therefore only an indicator of the general
complexity of a given classification algorithm. As can be seen in the observations from the previous
section, for some classification algorithms, the model size has a high variance depending on the chosen
parameters and the dataset.

101

CHAPTER 5. EXPERIMENTAL EVALUATION

• Logistic Regression: LR produces very small models that usually have very high
and consistent top-n accuracy values

• Support Vector Machines: The overall top-n accuracy of SVM varies. On cer-
tain intermediate datasets, SVM is very good. I.e., SVM is the best classifier on
all intermediate datasets from CIFAR-100. On the other hand, SVM seems to
perform worse for datasets with more input features, such as the intermediate
datasets from ILSVRC-2012. Additionally, the produced models are up to 100
times larger than the ones from MLP.

• Multi-Layer Perceptron: MLP consistently has solid performances among the
top performing models with moderate model sizes. On some benchmarks, MLP
even outperforms all other models on top-1 accuracy, e.g., see table 58. An LR
model can, in theory, be reproduced by an MLP model. Nonetheless, LR models
can be advantageous because they have fewer parameters to learn. Although this
takes away complexity and limits the ability to detect more non-linear structures,
this can be positive for fewer training samples.

• eXtremeGradient Boosting: XGB produces reasonable top-n accuracies at small
model sizes. In most cases, both top-n accuracy and model size are worse than
LR, but XGB manages to perform better on some intermediate datasets. Anyhow,
XGB can be proficient on very many input features and output classes, because
the produced model is still relatively small. E.g., XGB keeps the model size very
small on ILSVRC-2012 intermediate datasets while having reasonable accuracy
scores.

• Random Forests Estimator: The benchmark performance of RFE varies. The
only benchmark run where RFE is pareto-optimal is on the VGG-19 intermediate
dataset from CIFAR-10, and this superiority is caused by the small model size.
Although a small model size is an atypical characteristic of an RFE model, RFE
was still included in this set of optimal classifiers, because it can be superior to
MLP in many cases, e.g., on all ILSVRC-2012 intermediate benchmarks.

• K-Nearest Neighbours: KNN produces very good top-1 accuracies on some
benchmark datasets. Nonetheless, the top-n-accuracies for higher values of n
are much worse than the compared classification algorithms. This indicates that
the KNNmodel has more trouble in detecting similarities among images because
similar images should be more likely to be included in the top-n accuracy scores.
KNN typically produces very large models.

Regarding model properties, the 11 benchmarked models di↵erentiated between their
number of input features and output classes. While CIFAR-10 produces 10 output
classes, CIFAR-100 and the sub-sample of ILSVRC-2012 predict among 100 possible

102

5.4. INTERPRETATION OF RESULTS

classes. For CIFAR-10 and CIFAR-100, the intermediate datasets had comparably few
input features. SimpleNet intermediate data has the lowest number of input features
with 256 features, followed by VGG-19 intermediate data with 512 features. CNN-1
intermediate data has 2,048 input features, and CNN-2 intermediate data has 2,304.
In comparison, the intermediate datasets from ILSVRC-2012 have much more input
features. Inception ResNet V2 intermediate data has 98,304 input features, Inception
V3 intermediate dataset has 131,072 input features, and Xception intermediate dataset
has 204,800 input features. This gives four intermediate datasets with relatively few
input features and few output classes (CIFAR-10 intermediate datasets), four interme-
diate datasets with relatively few input features and many output classes (CIFAR-100
intermediate data) and three intermediate datasets with relatively many input features
and many output classes (ILSVRC-2012 intermediate datasets).

• CIFAR-10 Intermediate Dataset: On CIFAR-10 intermediate datasets, the ini-
tial CNN model’s top-1 test accuracy was only outperformed on the SimpleNet
intermediate dataset. Nonetheless, the di↵erences between the MLP and the
outperforming models are rather small with MLP only performing 0.2 % worse
than the best model (KNN). Apart from the SimpleNet intermediate dataset, the
retrained MLP benchmark is only outperformed by SVM on CNN-2.

• CIFAR-100 Intermediate Dataset: On CIFAR-100 intermediate datasets, the
CNN model’s top-1 test accuracy is beaten on every intermediate dataset, apart
from CNN-2. Many models outperform the CNN benchmark on SimpleNet and
VGG-19 intermediate dataset, including MLP, SVM, LR, KNN, and RFE. The
MLP model is outperformed on every intermediate dataset, although the di↵er-
ences on SimpleNet and VGG-19 intermediate datasets are comparably smaller.
In general, the accuracy values on those intermediate datasets were closer to-
gether. SVM has the highest top-1 test accuracy on every intermediate dataset.

• ILSVRC-2012 Intermediate Dataset: On ILSVRC-2012 intermediate datasets,
LR and RFE outperform the MLP benchmark on every dataset while LR still
performs better than RFE. Additionally, KNN outperforms MLP on top-1 test
accuracy on the Xception and Inception ResNet V2 intermediate datasets. SVM,
on the other hand, performs much worse on all intermediate datasets in com-
parison to its previous performance on CIFAR-10 and CIFAR-100 intermediate
datasets.

From the above described, one can derive a guideline to choose the best classifica-
tion algorithms, depending on the intermediate dataset attributes. For intermediate
datasets with few high-level image features as inputs and few output classes, like
CIFAR-10 intermediate datasets, MLP seems to be proficient or equal to the other

103

CHAPTER 5. EXPERIMENTAL EVALUATION

benchmarked algorithms. LR is a good choice if the model size needs to be kept small.
On intermediate datasets with few output classes and relatively many input features,
like the CNN-2 and CNN-1 intermediate datasets, SVM is likely to perform better than
MLP.

For datasets with few input features and many output classes, like CIFAR-100 inter-
mediate datasets, it is advisable to use other classification algorithms than MLP. The
best choice of model is SVM, although this comes at the cost of large model sizes. For
the models with fewer input features (SimpleNet, VGG-19), the choice of the final clas-
sifier does not have such a big impact on top-n accuracy. On the other hand, the e↵ect
of the model choice on the final performance is larger for intermediate datasets with
more input features (CNN-1, CNN-2). The superior performance of the benchmarked
classification algorithms over MLP can also be caused by the fewer training samples of
600 samples per class compared to 6000 samples per class for CIFAR-10. E.g., SVMs
generally learn well on small datasets.

For datasets with many input features and many output classes, like ILSVRC-2012
intermediate datasets, more proficientmodels thanMLP are available. The LR andRFE
models consistently outperform MLP in the benchmark and can thus be considered
superior for these datasets. LR has the additional advantage of small model sizes
whereas RFE should not be used if model complexity is an issue. But even some of the
other benchmarked models, including KNN and XGB, should be considered to replace
MLPs as they can be advantageous.

Overall, other classification algorithms are usually more proficient than MLP if the
intermediate dataset has many input features or if the classification problem has many
output classes. Another decisive factor can be the number of samples per class for the
classifier to learn on. The number of output classes is determined by the problem at
hand. The number of input features from the intermediate dataset can be controlled
for in the configuration of the CNN that is used to create the intermediate dataset.
Therefore, it is a design choice whether fewer high-level output features are created
and a higher likelihood of an MLP being the best choice or more output features in
combination with other classification algorithms is desirable.

Apart from the established guidelines, it is always good practice to benchmark as
many di↵erent classification algorithms and setups as possible, subject to time and
computational constraints.

104

5.5. CONCLUSION OF RESULTS

5.5 Conclusion of Results

The choice of the best classifier for a given problem is not a deterministic decision. The
overall CNN architecture, independently from the final classifier, already makes a big
di↵erence for the final classification. The final classifier’s performance depends on the
produced high-level image features from the convolutional layers. The performances
of the initially trained CNN architectures from table 52 correlate strongly with the per-
formances of the subsequent classification step on the respective intermediate datasets
from tables 58, 59, 510 and 511. The better these high-level image features, the higher
the range of the top-n accuracy scores of the following classifiers.

But apart from modifying the internal CNN network structures with all the innovative
approaches outlined in chapter 2.3, one can choose di↵erent setups for the final clas-
sification step of the high-level image features. Traditionally, this final classification
is done with fully-connected neural network layers (MLP). Their advantage is that
these models can be integrated into the learning process of CNNs because both can use
backpropagation as their training procedure. Nonetheless, sections 5.3 and 5.4 show
that other network architectures can be even more suitable for the final classification
step.

This thesis answers the research question from section 1.3 by showing that other classi-
fication algorithms, namely LR, SVM, XGB, RFE, and KNN, have unique characteristics
that can lead to a better performance than MLP models, depending on the dataset at
hand and the computation and time constraints. Particularly high-dimensional inter-
mediate datasets, i.e., the ILSVRC-2012 intermediate datasets, seemed to give other
models an advantage over the benchmarked MLP models. But also setups with many
output classes, as is the case in the CIFAR-100 intermediate models, proved to have
better classification accuracies with models other than MLP. Overall, MLP is usually
a safe choice and among the best performing models, but specific classifiers can im-
prove the accuracy or model size. For example, LR consistently returned comparable
or better results to MLP over all intermediate datasets at much smaller model sizes.
RFE models also give promising results at the cost of much larger models. For lower-
dimensional intermediate datasets, SVM provides the best results. XGB produces very
small model sizes in comparison to the other models, especially on high-dimensional
intermediate datasets. KNN can perform well on top-1 accuracy for some datasets, but
its top-n accuracy for higher values of n usually gets worse. This shows that KNN is
not able to develop a notion of closeness between related pictures or classes.

To summarise, other models can outperform MLPs. It is advisable to consider the
guidelines established above and benchmark di↵erent classification algorithms before
making a final decision about the preferred final solution. Overall, models with fewer

105

CHAPTER 5. EXPERIMENTAL EVALUATION

high-level image features are less reliant on the choice of the final classifier. This
observation enables the choice of smaller model sizes for these intermediate datasets
without sacrificing performance.

The findings above could be amplified and overall training time reduced if the final
classifier were directly integrated into the CNN learning process. For the current pro-
cess, only the MLP architecture can be directly embedded into the CNN architecture
as both use gradients to fine-tune their weights iteratively. The other architectures
are therefore still dependent on a CNN being trained with fully-connected layers first.
Nonetheless, if it were possible to combine these architectures, the produced image
filters might even be more appropriate for the respective models because they would
be established in conjunction. Since boosting approaches use gradients during the
learning process, the training of XGB could be directly integrated into a convolutional
network to replace the final classification layer. The other algorithms would have to
be adapted to be trainable with gradients.

106

C
h
a
p
t
e
r

6
Conclusion and Outlook

Before the introduction of neural networks, computer vision relied onmanually crafted
image filters. For classification problems, digital images were inputted to these image
filters and their output was passed to a classification algorithm to predict the final class
of a given image. Any classification algorithm could be used. With the breakthrough
of deep convolutional neural networks, fostered by research, the availability of data
and computational means, these manually crafted image filters were replaced with
multiple layers of automatically generated image filters. The convolutional neural
network layers form a hierarchy of image filters from low-level filters at its beginning
to high-level filters towards the output. Image filters are learned with respect to the
training data by iteratively reducing the overall error of the CNN. By design, CNNs
use neural networks to make the final classification on the last layer of image filters.
The approach of this thesis is to reiterate over this process by analysing the proficiency
of fully-connected neural networks for this final classification step.

Section 6.1 summarises the approach from this thesis and presents the key findings.
Section 6.2 gives an outlook and mentions aspects that are not covered in this thesis.
These could be addressed in future research.

6.1 Conclusion

Most of the recent developments around CNNs a↵ect their convolutional layers. Sec-
tion 2.3 lists numerous developments that improve the networks e↵ectiveness or e�-
ciency. While inventions such as the Inception module from section 2.3.7 facilitate the
learning process by breaking the complex non-linear relationships to be learned into

107

CHAPTER 6. CONCLUSION AND OUTLOOK

multiple sub-problems, batch normalisation and residual blocks from sections 2.3.6
and 2.3.8 improve the gradient flow and overall learning process. Dropout from sec-
tion 2.3.5 increases generalisability and depthwise separable convolutions introduced
in section 2.3.2 reduce the network’s complexity. But none of these developments
a↵ect the final classification step. In the nature of a CNN, this step is performed by a
fully-connected neural network.

Nonetheless, once the image filters produced by a CNN are available, the fully-connected
neural network can be removed from the CNN and other classification algorithms can
be used to make predictions on the output from the last layer of high-level image
filters. As the no-free-lunch theorem states, no classification algorithm is superior to
any other classification algorithm. Therefore, the research question is formulated as:

Research Question ”Can classification model performance in computer vision be im-
proved by using di↵erent classification algorithms on high-level image features?”

The answer to that question is found in a two-step approach. In the first step, di↵erent
instances of convolutional neural network configurations are trained on several bench-
mark datasets. In the second step, the fully-connected neural network layers, that
make the final prediction, are removed from the convolutional neural networks, such
that the last remaining layer produces a flattened output from the last layer of image
filters. This output is referred to as intermediate dataset. On this intermediate dataset,
multiple classification algorithms are benchmarked. Chapter 3 introduces several
classification algorithms that can potentially be used for this benchmark and evalua-
tion metrics to make an objective comparison. The following classification algorithms
are used for the benchmark: Support Vector Machines (SVM), Logistic Regression
(LR), K-Nearest Neighbours (KNN), Random Forests (RFE), Adaptive Boosting (ADB),
Gradient Boosting (GBC), eXtreme Gradient Boosting (XGB). Additionally, someMulti-
Layer Perceptron (MLP) architectures were added to the benchmark to represent the
original fully-connected neural network classifier. The reasoning for this and the re-
spective hyper-parameter choices are explained in section 4.6. For the evaluation of
the models, top-n accuracy is used as a performance measure, with n 2 {1,2,5,10,20}.

In the description of the experimental setup in chapter 4, the choice of benchmark
datasets and CNNs to produce the high-level image filters is introduced. As for the
datasets, this thesis uses CIFAR-10, CIFAR-100 and a subset of ILSVRC-2012 to en-
able an objective analysis of the research question. As for CNN architectures to pro-
duce the high-level image filters, CIFAR-10 and CIFAR-100 use four di↵erent CNN
architectures. Of these architectures, two CNN models have been designed for this

108

6.1. CONCLUSION

thesis and are manually trained, one is taken from previous research but also man-
ually trained (SimpleNet) and one model is available as a pre-trained model (VGG-
19). ILSVRC-2012 uses three pre-trained CNN architectures that are among the best
available models on this dataset: Inception V3, Xception, Inception ResNet V2. The
CNN architectures applied on ILSVRC-2012 produce intermediate datasets with rela-
tively many input dimensions, while the CNN architectures trained on CIFAR-10 and
CIFAR-100 produce fewer high-level image features. This diversity of number of input
features and number of output classes between the datasets enables the author to draw
conclusions about the proficiency of individual algorithms for di↵erent setups.

The finding of this thesis with regards to the research question is that model perfor-
mance can be improved by using di↵erent classification algorithms on high-level image
features. Depending on the dataset at hand and the CNN architecture to produce the
high-level image filters, di↵erent recommendations are derived for the choice of model
architecture. Generally spoken, LR, SVM, XGB, RFE and KNN have been found to
be able to outperform the initial CNN benchmark or the respective MLP benchmark.
Therefore, these are considered to have unique characteristics that can make them
superior to fully-connected neural networks for classifications on high-level image
features. The likelihood of a model outperforming a MLP model is higher for high-
dimensional intermediate datasets or more output classes. While the classification
algorithms largely perform on par with MLP and also the initial CNN benchmark on
CIFAR-10, some models perform clearly better than those two benchmarks on CIFAR-
100 or ILSVRC-2012. Particularly, LR and SVM show strong performances throughout
the benchmark. While LR works well for high-dimensional datasets, e.g., the interme-
diate datasets from ILSVRC-2012, SVM works better for lower-dimensional datasets
with many output classes, e.g., CIFAR-100. LR produces among the smallest models in
the benchmarks while the SVMmodels are rather large. From the remaining classifiers
with unique characteristics, RFE and KNN tend to produce very large models. KNN
also gets worse on top-n accuracy for higher values of n. The used configurations of
XGB have the advantage of producing small model sizes even for high-dimensional
datasets, e.g., on the ILSVRC-2012 intermediate datasets.

For datasets with very few input features, e.g. SimpleNet and VGG-19 intermediate
data from CIFAR-10 and CIFAR-100, the final classification performance is less reliant
on the actual classification algorithm used in the end. This insight can be used to make
these models more performant by choosing smaller models to produce their outputs.

This thesis proves that the principle of the no-free-lunch theorem is also applicable
in computer vision. Although fully-connected neural networks are required for the
training process of CNNs. If available training time allows, it is recommended to
benchmark other classification algorithms on the produced image features.

109

CHAPTER 6. CONCLUSION AND OUTLOOK

6.2 Outlook

The following chapter reflects on the research from this thesis and suggests modifica-
tions or new aspects that could be interesting to investigate.

The insights from this thesis give various opportunities for further research. This the-
sis focuses on the classification task from computer vision and shows that the inclusion
of other benchmark algorithms can clearly outperform fully-connected neural network
layers. This insight alone is very valuable for further research and for industry appli-
cations. Nonetheless, the scope of these findings can even be expanded from image
classification to the classification part of the other computer vision tasks introduced in
chapter 1. Furthermore, the same idea can be expanded from classification to regres-
sion tasks. It would need to be investigated whether there is a performance increase
when using other regression models instead of fully-connected neural networks to
make continuous outputs.

The observations presented were conducted on a limited set of datasets, including only
a partial version of ILSVRC-2012. Therefore, it could be interesting to apply these
ideas on larger datasets with more space to learn for the models. Additionally, a more
extensive model training and hyper-parameter search could yield more interesting in-
sights into proficient model configurations. Apart from the hyper-parameters, a more
thorough image preprocessing on these datasets can have an impact on the overall
performance of the benchmarks. The thesis discovered some situations where MLP
performance is inferior to other classification algorithms, but it would need further
evaluation with more datasets to identify the root causes for these outperformances.
E.g., the fact that other classification algorithms outperform MLP on CIFAR-100 could
be caused by the fact that CIFAR-100 makes a prediction among 100 output classes
and thus gives the models more space to outperform MLPs. But the outperformance
could also be caused by the fact that CIFAR-100 contains less samples of each class to
learn on in comparison to CIFAR-10.

The approach could also be tested in a transfer learning scenario, where the high-level
image features are not modified and only the final classification algorithm is altered.

Another addition could be the unification of the two-step procedure from this thesis.
The classification algorithm from the second step would have to be integrated into the
overall learning process of the convolutional network. In a first step, this could be
implemented for classifiers that use gradients to learn, e.g., boosting approaches. In a
second step, this could be extended to other classification algorithms.

Currently, the final prediction is only done on the final high-level image filters. A

110

6.2. OUTLOOK

di↵erent approach could be to use the output from the image filters from multiple
layers as features for the final predictor. That way the classifier can decide whether
specific low-level features are proficient to make specific classifications.

Lastly, the set of benchmark classification algorithms can be enlarged to more classi-
fication algorithms. It could be interesting to introduce evolutionary algorithms or
other innovative approaches into this procedure.

111

Bibliography

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,
M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O.
Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. TensorFlow:
Large-Scale Machine Learning on Heterogeneous Systems. Software available from
tensorflow.org. 2015. url: https://www.tensorflow.org/.

[2] Advanced Guide to Inception v3 on Cloud TPU. https://cloud.google.com/
tpu/docs/inception-v3-advanced. Accessed: 2018-03-21.

[3] S. Akbar, M. Peikari, S. Salama, S. Nofech-Mozes, and A. L. Martel. “Tran-
sitioning between Convolutional and Fully Connected Layers in Neural Net-
works.” In: CoRR abs/1707.05743 (2017). arXiv: 1707.05743. url: http:

//arxiv.org/abs/1707.05743.

[4] J. Ali, R. Khan, N. Ahmad, and I. Maqsood. “Random Forests and Decision
Trees.” In: 2012.

[5] Animal Big Blur Breed. https://www.pexels.com/photo/animal-big-blur-
breed-532310/. Accessed: 2018-01-27.

[6] G. Biau. “Analysis of a Random Forests Model.” In: J. Mach. Learn. Res. 13.1
(Apr. 2012), pp. 1063–1095. issn: 1532-4435. url: http://dl.acm.org/
citation.cfm?id=2503308.2343682.

[7] Y. Boureau, J. Ponce, and Y. Lecun. “A theoretical analysis of feature pooling
in visual recognition.” English (US). In: ICML 2010 - Proceedings, 27th Interna-

tional Conference onMachine Learning. 2010, pp. 111–118. isbn: 9781605589077.

[8] Y. Boureau, N. Le Roux, F. Bach, J. Ponce, and Y. Lecun. “Ask the locals:
Multi-way local pooling for image recognition.” English (US). In: 2011 In-

ternational Conference on Computer Vision, ICCV 2011. 2011, pp. 2651–2658.
isbn: 9781457711015. doi: 10.1109/ICCV.2011.6126555.

113

https://www.tensorflow.org/
https://cloud.google.com/tpu/docs/inception-v3-advanced
https://cloud.google.com/tpu/docs/inception-v3-advanced
https://arxiv.org/abs/1707.05743
http://arxiv.org/abs/1707.05743
http://arxiv.org/abs/1707.05743
https://www.pexels.com/photo/animal-big-blur-breed-532310/
https://www.pexels.com/photo/animal-big-blur-breed-532310/
http://dl.acm.org/citation.cfm?id=2503308.2343682
http://dl.acm.org/citation.cfm?id=2503308.2343682
https://doi.org/10.1109/ICCV.2011.6126555

BIBLIOGRAPHY

[9] L. Breiman. “Random Forests.” In: Machine Learning 45.1 (2001), pp. 5–32.
issn: 1573-0565. doi: 10.1023/A:1010933404324. url: https://doi.org/
10.1023/A:1010933404324.

[10] Capsule Network Explanation. https://www.oreilly.com/ideas/introducing-
capsule-networks. Accessed: 2018-01-27.

[11] T. Chen and C. Guestrin. “XGBoost: A Scalable Tree Boosting System.” In:
CoRR abs/1603.02754 (2016). arXiv: 1603.02754. url: http://arxiv.org/
abs/1603.02754.

[12] F. Chollet. “Xception: Deep Learning with Depthwise Separable Convolu-
tions.” In: CoRR abs/1610.02357 (2016). arXiv: 1610.02357. url: http:

//arxiv.org/abs/1610.02357.

[13] J. Chung, Ç. Gülçehre, K. Cho, and Y. Bengio. “Gated Feedback Recurrent
Neural Networks.” In: CoRR abs/1502.02367 (2015). arXiv: 1502.02367. url:
http://arxiv.org/abs/1502.02367.

[14] Clack and Brown Short Haired Puppy in Cup. https://www.pexels.com/

photo/black-and-brown-short-haired-puppy-in-cup-39317/. Accessed:
2018-01-27.

[15] T. Cooijmans, N. Ballas, C. Laurent, and A. C. Courville. “Recurrent Batch
Normalization.” In: CoRR abs/1603.09025 (2016). arXiv: 1603.09025. url:
http://arxiv.org/abs/1603.09025.

[16] J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, and L. Fei-Fei. “ImageNet: A
large-scale hierarchical image database.” In: 2009 IEEE Conference on Computer

Vision and Pattern Recognition. 2009, pp. 248–255. doi: 10.1109/CVPR.2009.
5206848.

[17] G. Enderlein. “McCullagh, P., J. A. Nelder: Generalized linear models. Chap-
man and Hall London – New York 1983, 261 S., £ 16,–.” In: Biometrical Jour-

nal 29.2 (), pp. 206–206. doi: 10.1002/bimj.4710290217. eprint: https:
//onlinelibrary.wiley.com/doi/pdf/10.1002/bimj.4710290217. url:
https://onlinelibrary.wiley.com/doi/abs/10.1002/bimj.4710290217.

[18] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. “LIBLINEAR: a
library for large linear classification.” In: 9 (Aug. 2008), pp. 1871–1874.

[19] C. Fernando, D. Banarse, C. Blundell, Y. Zwols, D. Ha, A. A. Rusu, A. Pritzel,
and D. Wierstra. “PathNet: Evolution Channels Gradient Descent in Super
Neural Networks.” In: CoRR abs/1701.08734 (2017). arXiv: 1701.08734. url:
http://arxiv.org/abs/1701.08734.

[20] J. H. Friedman. “Greedy Function Approximation: A Gradient Boosting Ma-
chine.” In: The Annals of Statistics 29.5 (2001), pp. 1189–1232. issn: 00905364.
url: http://www.jstor.org/stable/2699986.

114

https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://www.oreilly.com/ideas/introducing-capsule-networks
https://www.oreilly.com/ideas/introducing-capsule-networks
https://arxiv.org/abs/1603.02754
http://arxiv.org/abs/1603.02754
http://arxiv.org/abs/1603.02754
https://arxiv.org/abs/1610.02357
http://arxiv.org/abs/1610.02357
http://arxiv.org/abs/1610.02357
https://arxiv.org/abs/1502.02367
http://arxiv.org/abs/1502.02367
https://www.pexels.com/photo/black-and-brown-short-haired-puppy-in-cup-39317/
https://www.pexels.com/photo/black-and-brown-short-haired-puppy-in-cup-39317/
https://arxiv.org/abs/1603.09025
http://arxiv.org/abs/1603.09025
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1002/bimj.4710290217
https://onlinelibrary.wiley.com/doi/pdf/10.1002/bimj.4710290217
https://onlinelibrary.wiley.com/doi/pdf/10.1002/bimj.4710290217
https://onlinelibrary.wiley.com/doi/abs/10.1002/bimj.4710290217
https://arxiv.org/abs/1701.08734
http://arxiv.org/abs/1701.08734
http://www.jstor.org/stable/2699986

BIBLIOGRAPHY

[21] J. H. Friedman. “Stochastic Gradient Boosting.” In: Comput. Stat. Data Anal.

38.4 (Feb. 2002), pp. 367–378. issn: 0167-9473. doi: 10 . 1016 / S0167 -

9473(01)00065-2. url: http://dx.doi.org/10.1016/S0167-9473(01)
00065-2.

[22] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik. “Rich feature hierarchies for
accurate object detection and semantic segmentation.” In: CoRR abs/1311.2524
(2013). arXiv: 1311.2524. url: http://arxiv.org/abs/1311.2524.

[23] X. Glorot and Y. Bengio. “Understanding the di�culty of training deep feedfor-
ward neural networks.” In: Proceedings of the Thirteenth International Conference
on Artificial Intelligence and Statistics. Ed. by Y. W. Teh and M. Titterington.
Vol. 9. Proceedings of Machine Learning Research. Chia Laguna Resort, Sar-
dinia, Italy: PMLR, 2010, pp. 249–256. url: http://proceedings.mlr.

press/v9/glorot10a.html.

[24] I. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Bengio. “Max-
out Networks.” In: Proceedings of the 30th International Conference on Machine

Learning. Ed. by S. Dasgupta and D. McAllester. Vol. 28. Proceedings of Ma-
chine Learning Research 3. Atlanta, Georgia, USA: PMLR, 2013, pp. 1319–
1327. url: http://proceedings.mlr.press/v28/goodfellow13.html.

[25] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio. “Generative Adversarial Nets.” In: Advances in
Neural Information Processing Systems 27. Ed. by Z. Ghahramani, M. Welling, C.
Cortes, N. D. Lawrence, and K. Q. Weinberger. Curran Associates, Inc., 2014,
pp. 2672–2680. url: http://papers.nips.cc/paper/5423-generative-
adversarial-nets.pdf.

[26] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. http : / / www .

deeplearningbook.org. MIT Press, 2016.

[27] Google Brain. https://ai.google/research/teams/brain. Accessed: 2018-
02-02.

[28] L. G. C. Hamey. “A Functional Approach to Border Handling in Image Process-
ing.” In: 2015 International Conference on Digital Image Computing: Techniques

and Applications (DICTA). 2015, pp. 1–8. doi: 10.1109/DICTA.2015.7371214.

[29] M. Hardt and T.Ma. “IdentityMatters in Deep Learning.” In: CoRR abs/1611.04231
(2016). arXiv: 1611.04231. url: http://arxiv.org/abs/1611.04231.

[30] S. H. HasanPour, M. Rouhani, M. Fayyaz, and M. Sabokrou. “Lets keep it
simple, Using simple architectures to outperform deeper and more complex
architectures.” In: CoRR abs/1608.06037 (2016). arXiv: 1608.06037. url:
http://arxiv.org/abs/1608.06037.

115

https://doi.org/10.1016/S0167-9473(01)00065-2
https://doi.org/10.1016/S0167-9473(01)00065-2
http://dx.doi.org/10.1016/S0167-9473(01)00065-2
http://dx.doi.org/10.1016/S0167-9473(01)00065-2
https://arxiv.org/abs/1311.2524
http://arxiv.org/abs/1311.2524
http://proceedings.mlr.press/v9/glorot10a.html
http://proceedings.mlr.press/v9/glorot10a.html
http://proceedings.mlr.press/v28/goodfellow13.html
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://ai.google/research/teams/brain
https://doi.org/10.1109/DICTA.2015.7371214
https://arxiv.org/abs/1611.04231
http://arxiv.org/abs/1611.04231
https://arxiv.org/abs/1608.06037
http://arxiv.org/abs/1608.06037

BIBLIOGRAPHY

[31] K. He, X. Zhang, S. Ren, and J. Sun. “Deep Residual Learning for Image Recog-
nition.” In: CoRR abs/1512.03385 (2015). arXiv: 1512.03385. url: http:

//arxiv.org/abs/1512.03385.

[32] C. F. Higham and D. J. Higham. “Deep Learning: An Introduction for Applied
Mathematicians.” In: CoRR abs/1801.05894 (2018).

[33] G. E. Hinton, A. Krizhevsky, and S. D. Wang. “Transforming Auto-encoders.”
In: Proceedings of the 21th International Conference on Artificial Neural Networks

- Volume Part I. ICANN’11. Espoo, Finland: Springer-Verlag, 2011, pp. 44–51.
isbn: 978-3-642-21734-0. url: http://dl.acm.org/citation.cfm?id=
2029556.2029562.

[34] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.
“Improving neural networks by preventing co-adaptation of feature detectors.”
In: CoRR abs/1207.0580 (2012). arXiv: 1207.0580. url: http://arxiv.org/
abs/1207.0580.

[35] G. E. Hinton, O. Vinyals, and J. Dean. “Distilling the Knowledge in a Neural
Network.” In: CoRR abs/1503.02531 (2015).

[36] S. Hochreiter and J. Schmidhuber. “Long Short-Term Memory.” In: Neural

Comput. 9.8 (Nov. 1997), pp. 1735–1780. issn: 0899-7667. doi: 10.1162/
neco.1997.9.8.1735. url: http://dx.doi.org/10.1162/neco.1997.9.8.
1735.

[37] S. Hochreiter and J. Schmidhuber. “Long Short-term Memory.” In: 9 (Dec.
1997), pp. 1735–80.

[38] E. Ho↵er, I. Hubara, and D. Soudry. “Fix your classifier: the marginal value of
training the last weight layer.” In: International Conference on Learning Repre-

sentations. 2018. url: https://openreview.net/forum?id=S1Dh8Tg0-.

[39] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M.
Andreetto, and H. Adam. “MobileNets: E�cient Convolutional Neural Net-
works forMobile Vision Applications.” In: CoRR abs/1704.04861 (2017). arXiv:
1704.04861. url: http://arxiv.org/abs/1704.04861.

[40] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger. “Deep Networks
with Stochastic Depth.” In: CoRR abs/1603.09382 (2016). arXiv: 1603.09382.
url: http://arxiv.org/abs/1603.09382.

[41] G. Huang, Z. Liu, and K. Q. Weinberger. “Densely Connected Convolutional
Networks.” In: CoRR abs/1608.06993 (2016). arXiv: 1608.06993. url: http:
//arxiv.org/abs/1608.06993.

116

https://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://dl.acm.org/citation.cfm?id=2029556.2029562
http://dl.acm.org/citation.cfm?id=2029556.2029562
https://arxiv.org/abs/1207.0580
http://arxiv.org/abs/1207.0580
http://arxiv.org/abs/1207.0580
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
https://openreview.net/forum?id=S1Dh8Tg0-
https://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1603.09382
http://arxiv.org/abs/1603.09382
https://arxiv.org/abs/1608.06993
http://arxiv.org/abs/1608.06993
http://arxiv.org/abs/1608.06993

BIBLIOGRAPHY

[42] Z. Huang, Z. Pan, and B. Lei. “Transfer Learning with Deep Convolutional
Neural Network for SAR Target Classification with Limited Labeled Data.” In:
Remote Sensing 9.9 (2017). issn: 2072-4292. doi: 10.3390/rs9090907. url:
http://www.mdpi.com/2072-4292/9/9/907.

[43] S. Io↵e and C. Szegedy. “Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift.” In: CoRR abs/1502.03167
(2015). arXiv: 1502.03167. url: http://arxiv.org/abs/1502.03167.

[44] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. B. Girshick, S. Guadar-
rama, and T. Darrell. “Ca↵e: Convolutional Architecture for Fast Feature Em-
bedding.” In: CoRR abs/1408.5093 (2014). arXiv: 1408.5093. url: http:

//arxiv.org/abs/1408.5093.

[45] L. Kaiser, A. N. Gomez, and F. Chollet. “Depthwise Separable Convolutions
for Neural Machine Translation.” In: CoRR abs/1706.03059 (2017). arXiv:
1706.03059. url: http://arxiv.org/abs/1706.03059.

[46] L. Kaiser, A. N. Gomez, N. Shazeer, A. Vaswani, N. Parmar, L. Jones, and J.
Uszkoreit. “One Model To Learn Them All.” In: CoRR abs/1706.05137 (2017).
arXiv: 1706.05137. url: http://arxiv.org/abs/1706.05137.

[47] S. S. Keerthi and C.-J. Lin. “Asymptotic Behaviors of Support Vector Machines
with Gaussian Kernel.” In: Neural Comput. 15.7 (July 2003), pp. 1667–1689.
issn: 0899-7667. doi: 10.1162/089976603321891855. url: http://dx.doi.
org/10.1162/089976603321891855.

[48] Keras Applications - Pretrained Models. https://keras.io/applications/.
Accessed: 2018-01-12.

[49] Keras: The Python Deep Learning library. https://keras.io. Accessed: 2018-
01-22.

[50] J. Kim, M. El-Khamy, and J. Lee. “Residual LSTM: Design of a Deep Recurrent
Architecture for Distant Speech Recognition.” In: CoRR abs/1701.03360 (2017).
arXiv: 1701.03360. url: http://arxiv.org/abs/1701.03360.

[51] A. Krizhevsky, I. Sutskever, and G. E. Hinton. “ImageNet Classification with
Deep Convolutional Neural Networks.” In: Advances in Neural Information Pro-

cessing Systems 25. Ed. by F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.
Weinberger. Curran Associates, Inc., 2012, pp. 1097–1105. url: http://

papers.nips.cc/paper/4824- imagenet- classification- with- deep-

convolutional-neural-networks.pdf.

[52] J. S. L. Torrey. “Transfer Learning.” In: Handbook of Research on Machine Learn-

ing Applications ().

117

https://doi.org/10.3390/rs9090907
http://www.mdpi.com/2072-4292/9/9/907
https://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1408.5093
http://arxiv.org/abs/1408.5093
http://arxiv.org/abs/1408.5093
https://arxiv.org/abs/1706.03059
http://arxiv.org/abs/1706.03059
https://arxiv.org/abs/1706.05137
http://arxiv.org/abs/1706.05137
https://doi.org/10.1162/089976603321891855
http://dx.doi.org/10.1162/089976603321891855
http://dx.doi.org/10.1162/089976603321891855
https://keras.io/applications/
https://keras.io
https://arxiv.org/abs/1701.03360
http://arxiv.org/abs/1701.03360
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

BIBLIOGRAPHY

[53] Large Scale Visual Recognition Challenge 2012 (ILSVRC2012) All Results. http:
//www.image-net.org/challenges/LSVRC/2012/results.html. Accessed:
2018-05-01.

[54] Large Scale Visual Recognition Challenge 2014 (ILSVRC2014) All Results. http:
//image-net.org/challenges/LSVRC/2014/results. Accessed: 2018-05-01.

[55] Large Scale Visual Recognition Challenge 2015 (ILSVRC2015) All Results. http:
//image-net.org/challenges/LSVRC/2015/results. Accessed: 2018-05-01.

[56] C.-Y. Lee, S. Xie, P. W. Gallagher, Z. Zhang, and Z. Tu. “Deeply-Supervised
Nets.” In: CoRR abs/1409.5185 (2015).

[57] C.-Y. Lee, P. W. Gallagher, and Z. Tu. “Generalizing Pooling Functions in
Convolutional Neural Networks: Mixed, Gated, and Tree.” In: (Sept. 2015).

[58] M. Lin, Q. Chen, and S. Yan. “Network In Network.” In: CoRR abs/1312.4400
(2013). arXiv: 1312.4400. url: http://arxiv.org/abs/1312.4400.

[59] J. Luna, E. Eaton, L. Ungar, E. Di↵enderfer, S. Jensen, E. Gennatas, M. Wirth,
I. Charles B. Simone, T. D. Solberg, and G. Valdes. “Tree-Structured Boosting:
Connections Between Gradient Boosted Stumps and Full Decision Trees.” In:
(Nov. 2017).

[60] W. Ma and J. Lu. “An Equivalence of Fully Connected Layer and Convolutional
Layer.” In: CoRR abs/1712.01252 (2017). arXiv: 1712.01252. url: http:

//arxiv.org/abs/1712.01252.

[61] A. F. Mashat, M. M. Fouad, P. S. Yu, and T. F. Gharib. “A Decision Tree Classifi-
cation Model for University Admission System.” In: International Journal of Ad-
vanced Computer Science and Applications 3.10 (2012). doi: 10.14569/IJACSA.
2012.031003. url: http://dx.doi.org/10.14569/IJACSA.2012.031003.

[62] W. S. McCulloch and W. Pitts. “A logical calculus of the ideas immanent in
nervous activity.” In: The bulsin of mathematical biophysics 5.4 (1943), pp. 115–
133. issn: 1522-9602. doi: 10.1007/BF02478259. url: https://doi.org/
10.1007/BF02478259.

[63] G. A. Miller. “WordNet: A Lexical Database for English.” In: Commun. ACM

38.11 (Nov. 1995), pp. 39–41. issn: 0001-0782. doi: 10.1145/219717.219748.
url: http://doi.acm.org/10.1145/219717.219748.

[64] MNIST Dataset Introduction and Benchmarks. http://yann.lecun.com/exdb/
mnist/. Accessed: 2018-05-01.

[65] G. E. Moore. “Cramming more components onto integrated circuits, Reprinted
from Electronics, volume 38, number 8, April 19, 1965, pp.114 ↵.” In: IEEE
Solid-State Circuits Society Newsletter 11.3 (2006), pp. 33–35. issn: 1098-4232.
doi: 10.1109/N-SSC.2006.4785860.

118

http://www.image-net.org/challenges/LSVRC/2012/results.html
http://www.image-net.org/challenges/LSVRC/2012/results.html
http://image-net.org/challenges/LSVRC/2014/results
http://image-net.org/challenges/LSVRC/2014/results
http://image-net.org/challenges/LSVRC/2015/results
http://image-net.org/challenges/LSVRC/2015/results
https://arxiv.org/abs/1312.4400
http://arxiv.org/abs/1312.4400
https://arxiv.org/abs/1712.01252
http://arxiv.org/abs/1712.01252
http://arxiv.org/abs/1712.01252
https://doi.org/10.14569/IJACSA.2012.031003
https://doi.org/10.14569/IJACSA.2012.031003
http://dx.doi.org/10.14569/IJACSA.2012.031003
https://doi.org/10.1007/BF02478259
https://doi.org/10.1007/BF02478259
https://doi.org/10.1007/BF02478259
https://doi.org/10.1145/219717.219748
http://doi.acm.org/10.1145/219717.219748
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1109/N-SSC.2006.4785860

BIBLIOGRAPHY

[66] S. J. Pan andQ. Yang. “A Survey on Transfer Learning.” In: IEEE Transactions on

Knowledge and Data Engineering 22.10 (2010), pp. 1345–1359. issn: 1041-4347.
doi: 10.1109/TKDE.2009.191.

[67] C.-Y. J. Peng, K. L. Lee, and G. M. Ingersoll. “An Introduction to Logistic
Regression Analysis and Reporting.” In: The Journal of Educational Research

96.1 (2002), pp. 3–14. doi: 10.1080/00220670209598786. eprint: https:

//doi.org/10.1080/00220670209598786. url: https://doi.org/10.1080/
00220670209598786.

[68] S. Pradhan. “Exploring the Depths of Recurrent Neural Networks with Stochas-
tic Residual Learning.” In: 2016.

[69] L. Y. Pratt. “Discriminability-Based Transfer between Neural Networks.” In:
Advances in Neural Information Processing Systems 5. Ed. by S. J. Hanson,
J. D. Cowan, and C. L. Giles. Morgan-Kaufmann, 1993, pp. 204–211. url:
http://papers.nips.cc/paper/641-discriminability-based-transfer-

between-neural-networks.pdf.

[70] J. Redmon and A. Farhadi. “YOLO9000: Better, Faster, Stronger.” In: CoRR
abs/1612.08242 (2016). arXiv: 1612.08242. url: http://arxiv.org/abs/
1612.08242.

[71] J. Redmon and A. Farhadi. “YOLOv3: An Incremental Improvement.” In: CoRR
abs/1804.02767 (2018). arXiv: 1804.02767. url: http://arxiv.org/abs/
1804.02767.

[72] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi. “You Only Look Once:
Unified, Real-Time Object Detection.” In: CoRR abs/1506.02640 (2015). arXiv:
1506.02640. url: http://arxiv.org/abs/1506.02640.

[73] F. Rosenblatt. “The perceptron: A probabilistic model for information storage
and organization in the brain [J].” In: 65 (Dec. 1958), pp. 386 –408.

[74] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. “Parallel Distributed Pro-
cessing: Explorations in the Microstructure of Cognition, Vol. 1.” In: ed. by
D. E. Rumelhart, J. L. McClelland, and C. PDP Research Group. Cambridge,
MA, USA: MIT Press, 1986. Chap. Learning Internal Representations by Error
Propagation, pp. 318–362. isbn: 0-262-68053-X. url: http://dl.acm.org/
citation.cfm?id=104279.104293.

[75] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A.
Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. “ImageNet
Large Scale Visual Recognition Challenge.” In: International Journal of Computer

Vision (IJCV) 115.3 (2015), pp. 211–252. doi: 10.1007/s11263-015-0816-y.

119

https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1080/00220670209598786
https://doi.org/10.1080/00220670209598786
https://doi.org/10.1080/00220670209598786
https://doi.org/10.1080/00220670209598786
https://doi.org/10.1080/00220670209598786
http://papers.nips.cc/paper/641-discriminability-based-transfer-between-neural-networks.pdf
http://papers.nips.cc/paper/641-discriminability-based-transfer-between-neural-networks.pdf
https://arxiv.org/abs/1612.08242
http://arxiv.org/abs/1612.08242
http://arxiv.org/abs/1612.08242
https://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1804.02767
https://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1506.02640
http://dl.acm.org/citation.cfm?id=104279.104293
http://dl.acm.org/citation.cfm?id=104279.104293
https://doi.org/10.1007/s11263-015-0816-y

BIBLIOGRAPHY

[76] R S. Woodworth and E L. Thorndike. “The influence of improvement in one
mental function upon the e�ciency of other functions. Upon the e�ciency of
other functions (I).” In: 8 (May 1901), pp. 247–261.

[77] R S. Woodworth and E L. Thorndike. “The influence of improvement in one
mental function upon the e�ciency of other functions. Upon the e�ciency of
other functions (II) - The estimation of magnitudes.” In: 8 (May 1901), pp. 384–
395.

[78] R S. Woodworth and E L. Thorndike. “The influence of improvement in one
mental function upon the e�ciency of other functions. Upon the e�ciency of
other functions (III) - Functions involving attention, observation and discrimi-
nation.” In: 8 (May 1901), pp. 553–564.

[79] S. Sabour, N. Frosst, and G. E. Hinton. “Dynamic Routing Between Capsules.”
In: CoRR abs/1710.09829 (2017). arXiv: 1710.09829. url: http://arxiv.
org/abs/1710.09829.

[80] F. Schilling. “The E↵ect of Batch Normalization on Deep Convolutional Neural
Networks.” In: (2016). url: http://urn.kb.se/resolve?urn=urn:nbn:se:
kth:diva-191222.

[81] H. Schwenk and Y. Bengio. “Boosting Neural Networks.” In: Neural Com-

put. 12.8 (Aug. 2000), pp. 1869–1887. issn: 0899-7667. doi: 10 . 1162 /

089976600300015178. url: http://dx.doi.org/10.1162/089976600300015178.

[82] scikit-learn: Machine Learning in Python. http://scikit-learn.org/stable/.
Accessed: 2018-01-22.

[83] scikit-learn: XGBoost library. https://xgboost.readthedocs.io/en/latest/.
Accessed: 2018-01-22.

[84] H. Sharma and S. Kumar. “A Survey on Decision Tree Algorithms of Classifica-
tion in Data Mining.” In: 5 (Apr. 2016).

[85] H. Shimodaira. Improving predictive inference under covariate shift by weighting

the log-likelihood function. 2000.

[86] K. Simonyan and A. Zisserman. “Very Deep Convolutional Networks for Large-
Scale Image Recognition.” In: CoRR abs/1409.1556 (2014). arXiv: 1409.1556.
url: http://arxiv.org/abs/1409.1556.

[87] M. B. A. Snousy, H. M. El-Deeb, K. Badran, and I. A. A. Khlil. “Suite of deci-
sion tree-based classification algorithms on cancer gene expression data.” In:
Egyptian Informatics Journal 12.2 (2011), pp. 73 –82. issn: 1110-8665. doi:
https://doi.org/10.1016/j.eij.2011.04.003. url: http://www.

sciencedirect.com/science/article/pii/S1110866511000223.

120

https://arxiv.org/abs/1710.09829
http://arxiv.org/abs/1710.09829
http://arxiv.org/abs/1710.09829
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-191222
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-191222
https://doi.org/10.1162/089976600300015178
https://doi.org/10.1162/089976600300015178
http://dx.doi.org/10.1162/089976600300015178
http://scikit-learn.org/stable/
https://xgboost.readthedocs.io/en/latest/
https://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
https://doi.org/https://doi.org/10.1016/j.eij.2011.04.003
http://www.sciencedirect.com/science/article/pii/S1110866511000223
http://www.sciencedirect.com/science/article/pii/S1110866511000223

BIBLIOGRAPHY

[88] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. A. Riedmiller. “Striving for
Simplicity: The All Convolutional Net.” In: CoRR abs/1412.6806 (2014). arXiv:
1412.6806. url: http://arxiv.org/abs/1412.6806.

[89] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.
“Dropout: A Simple Way to Prevent Neural Networks from Overfitting.” In:
Journal of Machine Learning Research 15 (2014), pp. 1929–1958. url: http:
//jmlr.org/papers/v15/srivastava14a.html.

[90] R. K. Srivastava, K. Gre↵, and J. Schmidhuber. “Highway Networks.” In: CoRR
abs/1505.00387 (2015). arXiv: 1505.00387. url: http://arxiv.org/abs/
1505.00387.

[91] Stanford Computer Vision CS231n: Lecture 11 - Detection and Segmentation.
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture11.pdf.
Accessed: 2018-01-02.

[92] M. F. Stollenga, J. Masci, F. J. Gomez, and J. Schmidhuber. “Deep Networks
with Internal Selective Attention through Feedback Connections.” In: CoRR
abs/1407.3068 (2014). arXiv: 1407.3068. url: http://arxiv.org/abs/1407.
3068.

[93] J. Su, D. V. Vargas, and K. Sakurai. “One pixel attack for fooling deep neural
networks.” In: CoRR abs/1710.08864 (2017). arXiv: 1710.08864. url: http:
//arxiv.org/abs/1710.08864.

[94] C. Sun, A. Shrivastava, S. Singh, and A. Gupta. “Revisiting Unreasonable
E↵ectiveness of Data in Deep Learning Era.” In: CoRR abs/1707.02968 (2017).
arXiv: 1707.02968. url: http://arxiv.org/abs/1707.02968.

[95] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov, D. Erhan, V.
Vanhoucke, and A. Rabinovich. “Going Deeper with Convolutions.” In: CoRR
abs/1409.4842 (2014). arXiv: 1409.4842. url: http://arxiv.org/abs/1409.
4842.

[96] C. Szegedy, V. Vanhoucke, S. Io↵e, J. Shlens, and Z. Wojna. “Rethinking the
Inception Architecture for Computer Vision.” In: CoRR abs/1512.00567 (2015).
arXiv: 1512.00567. url: http://arxiv.org/abs/1512.00567.

[97] C. Szegedy, S. Io↵e, and V. Vanhoucke. “Inception-v4, Inception-ResNet and
the Impact of Residual Connections on Learning.” In: AAAI. 2017.

[98] P.-N. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining. Pearson
Education, 2006.

[99] M. Thoma. “Analysis and Optimization of Convolutional Neural Network
Architectures.” Masters’s Thesis. Karlsruhe, Germany: Karlsruhe Institute of
Technology, June 2017. url: https://martin-thoma.com/msthesis/.

121

https://arxiv.org/abs/1412.6806
http://arxiv.org/abs/1412.6806
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://arxiv.org/abs/1505.00387
http://arxiv.org/abs/1505.00387
http://arxiv.org/abs/1505.00387
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture11.pdf
https://arxiv.org/abs/1407.3068
http://arxiv.org/abs/1407.3068
http://arxiv.org/abs/1407.3068
https://arxiv.org/abs/1710.08864
http://arxiv.org/abs/1710.08864
http://arxiv.org/abs/1710.08864
https://arxiv.org/abs/1707.02968
http://arxiv.org/abs/1707.02968
https://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1512.00567
https://martin-thoma.com/msthesis/

BIBLIOGRAPHY

[100] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. J. Lang. “Phoneme
recognition using time-delay neural networks.” In: IEEE Transactions on Acous-

tics, Speech, and Signal Processing 37.3 (1989), pp. 328–339. issn: 0096-3518.
doi: 10.1109/29.21701.

[101] R. Wang. “AdaBoost for Feature Selection, Classification and Its Relation with
SVM, A Review.” In: Physics Procedia 25 (2012). International Conference on
Solid State Devices and Materials Science, April 1-2, 2012, Macao, pp. 800
–807. issn: 1875-3892. doi: https://doi.org/10.1016/j.phpro.2012.
03.160. url: http://www.sciencedirect.com/science/article/pii/

S1875389212005767.

[102] X. Wang, L. Wang, and Y. Qiao. “A Comparative Study of Encoding, Pooling
and Normalization Methods for Action Recognition.” In: Computer Vision –

ACCV 2012. Ed. by K. M. Lee, Y. Matsushita, J. M. Rehg, and Z. Hu. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp. 572–585. isbn: 978-3-642-
37431-9.

[103] Y. Wang and F. Tian. “Recurrent Residual Learning for Sequence Classifica-
tion.” In: EMNLP. 2016.

[104] P. J.P. J. Werbos. The roots of backpropagation : from ordered derivatives to neural

networks and political forecasting. English. Published simultaneously in Canada.
New York : Wiley, 1994. isbn: 0471598976 (cloth : alk. paper).

[105] Y., L. Bottou, Y. Bengio, and P. Ha↵ner. “Gradient-based learning applied to
document recognition.” In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324.
issn: 0018-9219. doi: 10.1109/5.726791.

[106] J. Yim and K. Sohn. “Enhancing the Performance of Convolutional Neural
Networks on Quality Degraded Datasets.” In: CoRR abs/1710.06805 (2017).
arXiv: 1710.06805. url: http://arxiv.org/abs/1710.06805.

[107] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. “How transferable are features
in deep neural networks?” In: CoRR abs/1411.1792 (2014). arXiv: 1411.1792.
url: http://arxiv.org/abs/1411.1792.

[108] B. Yue, J. Fu, and J. Liang. “Residual Recurrent Neural Networks for Learning
Sequential Representations.” In: Information 9.3 (2018). issn: 2078-2489. doi:
10.3390/info9030056. url: http://www.mdpi.com/2078-2489/9/3/56.

[109] S. Zagoruyko andN. Komodakis. “Wide Residual Networks.” In: CoRR abs/1605.07146
(2016). arXiv: 1605.07146. url: http://arxiv.org/abs/1605.07146.

[110] M. D. Zeiler and R. Fergus. “Stochastic Pooling for Regularization of Deep
Convolutional Neural Networks.” In: CoRR abs/1301.3557 (2013). arXiv: 1301.
3557. url: http://arxiv.org/abs/1301.3557.

122

https://doi.org/10.1109/29.21701
https://doi.org/https://doi.org/10.1016/j.phpro.2012.03.160
https://doi.org/https://doi.org/10.1016/j.phpro.2012.03.160
http://www.sciencedirect.com/science/article/pii/S1875389212005767
http://www.sciencedirect.com/science/article/pii/S1875389212005767
https://doi.org/10.1109/5.726791
https://arxiv.org/abs/1710.06805
http://arxiv.org/abs/1710.06805
https://arxiv.org/abs/1411.1792
http://arxiv.org/abs/1411.1792
https://doi.org/10.3390/info9030056
http://www.mdpi.com/2078-2489/9/3/56
https://arxiv.org/abs/1605.07146
http://arxiv.org/abs/1605.07146
https://arxiv.org/abs/1301.3557
https://arxiv.org/abs/1301.3557
http://arxiv.org/abs/1301.3557

BIBLIOGRAPHY

[111] M. D. Zeiler and R. Fergus. “Visualizing and Understanding Convolutional
Networks.” In: CoRR abs/1311.2901 (2013). arXiv: 1311.2901. url: http:
//arxiv.org/abs/1311.2901.

123

https://arxiv.org/abs/1311.2901
http://arxiv.org/abs/1311.2901
http://arxiv.org/abs/1311.2901

A
p
p
e
n
d
i
x

A
Appendix

A.1 Convolutional Neural Networks

A.1.1 Exemplification of Computer Vision challenges

Deformation

Figure A1: Example of deformation

125

APPENDIX A. APPENDIX

Occlusion

Figure A2: Example of occlusion

Viewpoint variation

Figure A3: Example of viewpoint variation

126

A.1. CONVOLUTIONAL NEURAL NETWORKS

Scale Variation

Figure A4: Example of scale variation

Background Clutter

Figure A5: Example of background clutter

127

APPENDIX A. APPENDIX

Intra-class variation

Figure A6: Example of intra class variation

A.1.2 Reformulation and simplification of Inception Module Formula

The depth (n) of k 2 Kpred on the right-side of the equation equals Ikd of k 2 K \K1 if
k 2 Kpred is followed by a convolutional layer within the inception block. This is the
case, if the reductional convolutional layer was not used after a pooling layer.

X

k2K\K1

0
BBBB@1�

Ikd

I
inp
d

1
CCCCA · kn · kw · kh >

X

k2K\K1

Ikd +
X

k2Kaf ter_pool

kn (A.1)

X

k2K\K1

0
BBBB@
✓
1� Ikd

I
inp
d

◆
· kn · kw · kh � Ikd

1
CCCCA >

X

k2Kaf ter_pool

kn (A.2)

There is no theoretical limit to the number of pooling layers within an Inception
module, although Szegedy et al. (2014) only use one pooling layer within the inception
module. In this case, the term on the right side of the equation A.2 becomes a constant
of the depth of the reduction layer after that pooling layer. If no reduction were used
after pooling, this term would be zero.

A.1.3 Visualisation of general architecture of CNN

Figure A7 is a visualisation of the general classification procedure of a convolutional
neural network. This image is used during the thesis to explain the scientific approach,
see chapter 4.

128

A.2. EXPERIMENTAL DATASETS

Figure A7: Visualisation of general architecture of CNN

A.2 Experimental datasets

A.2.1 Normalised images from CIFAR-10

129

APPENDIX A. APPENDIX

Figure A8: Normalised images from CIFAR-10

[airplane] [automobile] [bird]

[cat] [deer] [dog]

[frog] [horse] [ship]

[truck]

A.2.2 Image classes from CIFAR-100

130

A.2. EXPERIMENTAL DATASETS

Figure A9: Sample images from CIFAR-100

131

APPENDIX A. APPENDIX

Figure A10: Sample images from CIFAR-100

132

A.2. EXPERIMENTAL DATASETS

Figure A11: Sample images from CIFAR-100

133

APPENDIX A. APPENDIX

Figure A12: Sample images from CIFAR-100

134

A.2. EXPERIMENTAL DATASETS

Figure A13: Sample images from CIFAR-100

135

APPENDIX A. APPENDIX

A.2.3 Normalised images from CIFAR-100

136

A.2. EXPERIMENTAL DATASETS

Figure A14: Normalised images from CIFAR-100

137

APPENDIX A. APPENDIX

Figure A15: Normalised images from CIFAR-100

138

A.2. EXPERIMENTAL DATASETS

Figure A16: Normalised images from CIFAR-100

139

APPENDIX A. APPENDIX

Figure A17: Normalised images from CIFAR-100

140

A.2. EXPERIMENTAL DATASETS

Figure A18: Normalised images from CIFAR-100

141

APPENDIX A. APPENDIX

A.2.4 100 classes used from ILSVRC-2012

142

A.2. EXPERIMENTAL DATASETS

Figure A19: Sample images from ILSVRC-2012

143

APPENDIX A. APPENDIX

Figure A20: Sample images from ILSVRC-2012

144

A.2. EXPERIMENTAL DATASETS

Figure A21: Sample images from ILSVRC-2012

145

APPENDIX A. APPENDIX

Figure A22: Sample images from ILSVRC-2012

146

A.2. EXPERIMENTAL DATASETS

Figure A23: Sample images from ILSVRC-2012

147

APPENDIX A. APPENDIX

A.3 Classification results

A.3.1 CIFAR-10

A.3.1.1 Plots of train and test metrics during training of CNNmodels on
CIFAR-10

Figure A24: CNN1 Accuracy Graph on CIFAR-10

Figure A25: CNN1 Loss Graph on CIFAR-10

Figure A26: CNN2 Accuracy Graph on CIFAR-10

148

A.3. CLASSIFICATION RESULTS

Figure A27: CNN2 Loss Graph on CIFAR-10

Figure A28: SimpleNet Accuracy Graph on CIFAR-10

Figure A29: SimpleNet Loss Graph on CIFAR-10

149

APPENDIX A. APPENDIX

A.3.1.2 Best parameters for classification algorithms on CIFAR-10 intermediate
data

model best model parameters on test

MLP MLP-2, LR: 0.0001
SVM C: 10, � : 0.001, kernel: rbf
LR C: 0.001, penalty: `2
KNN neighbours: 10
RFE 1000 estimators, gini criterion
ADB 1000 estimators, LR: 0.5
GBC 100 estimators, LR: 0.5
XGB 100 estimators, LR: 0.1, max. depth: 5

Table A1: CIFAR-10 final classification results on CNN-1 intermediate data

model best parameters on test

MLP MLP-2, LR: 0.0001
SVM C: 10, � : 0.001, kernel: rbf
LR C: 0.001, penalty: `2
KNN neighbours: 1
RFE 1000 estimators, gini criterion
ADB 1000 estimators, LR: 0.1
GBC 100 estimators, LR: 0.1
XGB 100 estimators, LR: 0.1, max. depth: 10

Table A2: CIFAR-10 final classification results on CNN-2 intermediate data

model best parameters on test

MLP MLP-1, LR: 0.0001
SVM C: 10, � : 0.001, kernel: rbf
LR C: 0.1 , penalty: `2
KNN neighbours: 10
RFE 1000 estimators, entropy criterion
ADB 1000 estimators, LR: 0.1
GBC 100 estimators, LR: 0.1
XGB 100 estimators, LR: 0.1,max. depth: 5

Table A3: CIFAR-10 final classification results on SimpleNet intermediate data

150

A.3. CLASSIFICATION RESULTS

model best parameters on test

MLP MLP-2, LR: 0.0001
SVM C: 1, � : 0.0001, kernel: rbf
LR C: 0.001, penalty: `2
KNN neighbours: 10
RFE 100 estimators, gini criterion
ADB 1000 estimators, LR: 0.5
GBC 100 estimators, LR: 0.05
XGB 100 estimators, LR: 0.1, max. depth: 1

Table A4: CIFAR-10 final classification results on VGG-19 intermediate data

A.3.1.3 Validation data performance from best parameters on CIFAR-10 with
significance tests

In the diagonal lines of the tables, the mean accuracy of the validation data over 10
cross-validation folds is displayed. In the other cells, the p-value of the comparison
of the two indicated networks is given. The p-value is calculated for the validation
results during the 10-fold cross-validation. Since the comparison in tables A5, A6,
A7, A8, A9, A10, A11 and A12 are symmetric, the p-value is only displayed for those
values where the estimated population mean of the network in the column name is
higher than the estimated population mean of the network in the row name that it is
compared to. The other corresponding cell is left empty.

151

A
P
P
E
N
D
IX

A
.
A
P
P
E
N
D
IX

MLP-1_LR-0.0001 MLP-2_LR-0.0001 MLP-3_LR-0.0001 MLP-1_LR-0.001 MLP-2_LR-0.001 MLP-3_LR-0.001

MLP-1_LR-0.0001 0.9987 1.000000
MLP-2_LR-0.0001 1.000000 0.9987
MLP-3_LR-0.0001 0.000486 0.000460 0.9913 0.007849 0.001729 0.000714
MLP-1_LR-0.001 0.000040 0.000017 0.9948 0.004341 0.000031
MLP-2_LR-0.001 0.165070 0.160896 0.9974 0.569094
MLP-3_LR-0.001 0.003684 0.000180 0.9979

Table A5: Pairwise p-values of performance on validation set with performance on test and validation set displayed on the diagonal for
MLP-1, MLP-2, MLP-3 on CNN-1 intermediate data from CIFAR-10 with di↵erent learning rates (LR)

MLP-1_LR-0.0001 MLP-2_LR-0.0001 MLP-3_LR-0.0001 MLP-1_LR-0.001 MLP-2_LR-0.001 MLP-3_LR-0.001

MLP-1_LR-0.0001 0.7781 0.049141 0.856546
MLP-2_LR-0.0001 0.7908
MLP-3_LR-0.0001 0.017194 0.000465 0.7638 0.002109 0.001123
MLP-1_LR-0.001 0.357700 0.002737 0.7742 0.031511
MLP-2_LR-0.001 0.019511 0.7789
MLP-3_LR-0.001 0.000077 0.000009 0.000068 0.000001 0.000003 0.7364

Table A6: Pairwise p-values of performance on validation set with performance on test and validation set displayed on the diagonal for
MLP-1, MLP-2, MLP-3 on CNN-2 intermediate data from CIFAR-10 with di↵erent learning rates (LR)

152

A
.3

.
C
L
A
S
S
IF

IC
A
T
IO

N
R
E
S
U
L
T
S

MLP-1_LR-0.0001 MLP-2_LR-0.0001 MLP-3_LR-0.0001 MLP-1_LR-0.001 MLP-2_LR-0.001 MLP-3_LR-0.001

MLP-1_LR-0.0001 0.9993 1.000000
MLP-2_LR-0.0001 0.492346 0.9992 0.601552
MLP-3_LR-0.0001 0.031542 0.149381 0.9990 0.114346
MLP-1_LR-0.001 0.088899 0.117000 0.193333 0.9983 0.362304 0.096405
MLP-2_LR-0.001 0.216891 0.313552 0.591050 0.9988 0.238096
MLP-3_LR-0.001 1.000000 0.9993

Table A7: Pairwise p-values of performance on validation set with performance on test and validation set displayed on the diagonal for
MLP-1, MLP-2, MLP-3 on SimpleNet intermediate data from CIFAR-10 with di↵erent learning rates (LR)

MLP-1_LR-0.0001 MLP-2_LR-0.0001 MLP-3_LR-0.0001 MLP-1_LR-0.001 MLP-2_LR-0.001 MLP-3_LR-0.001

MLP-1_LR-0.0001 0.9999 0.813477 1.000000 1.000000 1.000000
MLP-2_LR-0.0001 0.9999
MLP-3_LR-0.0001 1.000000 0.813477 0.9999 1.000000 1.000000
MLP-1_LR-0.001 1.000000 0.632812 1.000000 0.9999 1.000000
MLP-2_LR-0.001 0.638186 0.546509 0.638186 0.627193 0.9998 0.627193
MLP-3_LR-0.001 1.000000 0.632812 1.000000 1.000000 0.9999

Table A8: Pairwise p-values of performance on validation set with performance on test and validation set displayed on the diagonal for
MLP-1, MLP-2, MLP-3 on VGG-19 intermediate data from CIFAR-10 with di↵erent learning rates (LR)

153

APPENDIX A. APPENDIX

MLP SVM LR KNN RFE ADB GBC XGB

MLP 0.9987 0.000447
SVM 0.000009 0.9819 0.000007
LR 0.9998
KNN 0.000003 0.000005 0.000003 0.8245 0.000030 0.000058 0.000007 0.000012
RFE 0.000000 0.000000 0.000000 0.9254 0.000002 0.000022
ADB 0.000001 0.000003 0.000001 0.001773 0.9119 0.000006 0.000033
GBC 0.000029 0.001752 0.000024 0.9722
XGB 0.000009 0.000058 0.000008 0.000364 0.9527

Table A9: Pairwise p-values of performance on validation set with performance on test
and validation set displayed on the diagonal for di↵erent classification algorithms on
CNN-1 intermediate data from CIFAR-10

MLP SVM LR KNN RFE ADB GBC XGB

MLP 0.7908
SVM 0.220137 0.7851
LR 0.079600 0.182234 0.7750
KNN 0.000001 0.000001 0.000003 0.5789 0.000007 0.000070 0.000007 0.000002
RFE 0.000014 0.000005 0.000047 0.6962 0.133099 0.000113
ADB 0.000003 0.000001 0.000007 0.000052 0.6456 0.000042 0.000004
GBC 0.000024 0.000011 0.000078 0.7015 0.000379
XGB 0.000061 0.000016 0.000387 0.7331

Table A10: Pairwise p-values of performance on validation set with performance on
test and validation set displayed on the diagonal for di↵erent classification algorithms
on CNN-2 intermediate data from CIFAR-10

MLP SVM LR KNN RFE ADB GBC XGB

MLP 0.9994 0.309181 0.000622
SVM 0.9995 0.000276
LR 1.0000
KNN 0.073066 0.060078 0.018841 0.9982 0.565505
RFE 0.000664 0.000376 0.000046 0.9986
ADB 0.000901 0.000868 0.000685 0.001720 0.001316 0.9909 0.002936
GBC 0.000512 0.000356 0.000077 0.788268 0.035673 0.9982
XGB 0.000011 0.000008 0.000003 0.010997 0.000069 0.000324 0.9971

Table A11: Pairwise p-values of performance on validation set with performance on
test and validation set displayed on the diagonal for di↵erent classification algorithms
on SimpleNet intermediate data from CIFAR-10

154

A.3. CLASSIFICATION RESULTS

MLP SVM LR KNN RFE ADB GBC XGB

MLP 0.9999 1.000000 1.000000 1.000000 1.000000
SVM 1.000000 0.9999 1.000000 1.000000 1.000000
LR 1.000000 1.000000 0.9999 1.000000 1.000000
KNN 1.000000 1.000000 1.000000 0.9999 1.000000
RFE 1.000000 1.000000 1.000000 1.000000 0.9999
ADB 0.360622 0.370111 0.365139 0.382835 0.382835 0.9998 1.000000
GBC 0.031259 0.033679 0.032393 0.037590 0.037152 0.130492 0.9996 0.110787
XGB 0.226325 0.242443 0.234023 0.266265 0.263719 1.000000 0.9998

Table A12: Pairwise p-values of performance on validation set with performance on
test and validation set displayed on the diagonal for di↵erent classification algorithms
on VGG-19 intermediate data from CIFAR-10

155

APPENDIX A. APPENDIX

A.3.2 CIFAR-100

A.3.2.1 Plots of train and test metrics during training of CNNmodels on
CIFAR-100

Figure A30: CNN1 Accuracy Graph on CIFAR-100

Figure A31: CNN1 Loss Graph on CIFAR-100

Figure A32: CNN2 Accuracy Graph on CIFAR-100

156

A.3. CLASSIFICATION RESULTS

Figure A33: CNN2 Loss Graph on CIFAR-100

Figure A34: SimpleNet Accuracy Graph on CIFAR-100

Figure A35: SimpleNet Loss Graph on CIFAR-100

157

APPENDIX A. APPENDIX

A.3.2.2 Images of training graphs fromMLPs on intermediate dataset from
CIFAR-100

Figure A36: Accuracy Curve of MLP 0 on CNN1 for 10 epochs with a learning rate of
0.0001

Figure A37: Loss Curve of MLP 0 on CNN1 for 10 epochs with a learning rate of 0.0001

Figure A38: Accuracy Curve of MLP 0 on CNN1 for 20 epochs with a learning rate of
0.0001

158

A.3. CLASSIFICATION RESULTS

Figure A39: Loss Curve of MLP 0 on CNN1 for 20 epochs with a learning rate of 0.0001

Figure A40: Accuracy Curve of MLP 0 on CNN1 for 50 epochs with a learning rate of
0.0001

Figure A41: Loss Curve of MLP 0 on CNN1 for 50 epochs with a learning rate of 0.0001

159

APPENDIX A. APPENDIX

Figure A42: Accuracy Curve of MLP 0 on CNN1 for 10 epochs with a learning rate of
0.001

Figure A43: Loss Curve of MLP 0 on CNN1 for 10 epochs with a learning rate of 0.001

Figure A44: Accuracy Curve of MLP 0 on CNN1 for 20 epochs with a learning rate of
0.001

160

A.3. CLASSIFICATION RESULTS

Figure A45: Loss Curve of MLP 0 on CNN1 for 20 epochs with a learning rate of 0.001

Figure A46: Accuracy Curve of MLP 0 on CNN1 for 50 epochs with a learning rate of
0.001

Figure A47: Loss Curve of MLP 0 on CNN1 for 50 epochs with a learning rate of 0.001

161

APPENDIX A. APPENDIX

Figure A48: Accuracy Curve of MLP 1 on CNN1 for 10 epochs with a learning rate of
0.0001

Figure A49: Loss Curve of MLP 1 on CNN1 for 10 epochs with a learning rate of 0.0001

Figure A50: Accuracy Curve of MLP 1 on CNN1 for 20 epochs with a learning rate of
0.0001

162

A.3. CLASSIFICATION RESULTS

Figure A51: Loss Curve of MLP 1 on CNN1 for 20 epochs with a learning rate of 0.0001

Figure A52: Accuracy Curve of MLP 1 on CNN1 for 50 epochs with a learning rate of
0.0001

Figure A53: Loss Curve of MLP 1 on CNN1 for 50 epochs with a learning rate of 0.0001

163

APPENDIX A. APPENDIX

Figure A54: Accuracy Curve of MLP 1 on CNN1 for 50 epochs with a learning rate of
0.001

Figure A55: Loss Curve of MLP 1 on CNN1 for 50 epochs with a learning rate of 0.001

Figure A56: Accuracy Curve of MLP 2 on CNN1 for 10 epochs with a learning rate of
0.0001

164

A.3. CLASSIFICATION RESULTS

Figure A57: Loss Curve of MLP 2 on CNN1 for 10 epochs with a learning rate of 0.0001

Figure A58: Accuracy Curve of MLP 2 on CNN1 for 20 epochs with a learning rate of
0.0001

Figure A59: Loss Curve of MLP 2 on CNN1 for 20 epochs with a learning rate of 0.0001

165

APPENDIX A. APPENDIX

Figure A60: Accuracy Curve of MLP 2 on CNN1 for 50 epochs with a learning rate of
0.0001

Figure A61: Loss Curve of MLP 2 on CNN1 for 50 epochs with a learning rate of 0.0001

Figure A62: Accuracy Curve of MLP 2 on CNN1 for 50 epochs with a learning rate of
0.001

166

A.3. CLASSIFICATION RESULTS

Figure A63: Loss Curve of MLP 2 on CNN1 for 50 epochs with a learning rate of 0.001

A.3.2.3 Results of classification algorithms on CIFAR-100 intermediate data

model best parameters on test

MLP MLP-2, LR: 0.0001
SVM C: 10, � : 0.0001, kernel: rbf
LR C: 0.1, penalty: `2
KNN neighbours: 1
RFE 100 estimators, entropy criterion
ADB 100 estimators, LR: 0.1
GBC 100 estimators, LR: 0.05
XGB 100 estimators, LR: 0.1, max. depth: 5

Table A13: CIFAR-100 final classification results on CNN-1 intermediate data

model best parameters on test

MLP MLP-1, LR: 0.0001
SVM C: 10, � : 0.0001, kernel: rbf
LR C: 0.001, penalty: `2
KNN neighbours: 1
RFE 100 estimators, entropy criterion
ADB 100 estimators, LR: 0.1
GBC 100 estimators, LR: 0.1
XGB 100 estimators, LR: 0.1, max. depth: 1

Table A14: CIFAR-100 final classification results on CNN-2 intermediate data

167

APPENDIX A. APPENDIX

model best parameters on test

MLP MLP-1, LR: 0.0001
SVM C: 10, � : 0.0001, kernel: rbf
LR C: 0.1, penalty: `2
KNN neighbours: 10
RFE 100 estimators, entropy criterion
ADB 100 estimators, LR: 0.1
GBC 100 estimators, LR: 0.05
XGB 100 estimators, LR: 0.1, max. depth: 5

Table A15: CIFAR-100 final classification results on SimpleNet intermediate data

model best parameters on test

MLP MLP-2, LR: 0.0001
SVM C: 1, � : 0.001, kernel: rbf
LR C: 0.1, penalty: `2
KNN neighbours: 10
RFE 1000 estimators, gini criterion
ADB 100 estimators, LR: 0.1
GBC 100 estimators, LR: 0.05
XGB 100 estimators, LR: 0.1, max. depth: 5

Table A16: CIFAR-100 final classification results on VGG-19 intermediate data

A.3.2.4 Validation data performance from best parameters on CIFAR-100 with
with significance tests

In the diagonal lines of the tables, the mean accuracy of the validation data over 10
cross-validation folds is displayed. In the other cells, the p-value of the comparison
of the two indicated networks is given. The p-value is calculated for the validation
results during the 10-fold cross-validation. Since the comparison in tables A17, A18,
A19, A20, A21, A22, A23 and A24 are symmetric, the p-value is only displayed for
those values where the estimated population mean of the network in the column name
is higher than the estimated population mean of the network in the row name that it
is compared to. The other corresponding cell is left empty.

168

A
.3

.
C
L
A
S
S
IF

IC
A
T
IO

N
R
E
S
U
L
T
S

MLP-1_LR-0.0001 MLP-2_LR-0.0001 MLP-3_LR-0.0001 MLP-1_LR-0.001 MLP-2_LR-0.001 MLP-3_LR-0.001

MLP-1_LR-0.0001 0.9896
MLP-2_LR-0.0001 0.495178 0.9884 0.911870
MLP-3_LR-0.0001 0.768048 0.9887
MLP-1_LR-0.001 0.000041 0.000170 0.000776 0.9680 0.117228 0.964277
MLP-2_LR-0.001 0.000948 0.002707 0.006929 0.9738
MLP-3_LR-0.001 0.000022 0.000117 0.000652 0.111027 0.9681

Table A17: Pairwise p-values of performance on validation set with performance on test and validation set displayed on the diagonal for
MLP-1, MLP-2, MLP-3 on CNN-1 intermediate data from CIFAR-100 with di↵erent learning rates (LR)

MLP-1_LR-0.0001 MLP-2_LR-0.0001 MLP-3_LR-0.0001 MLP-1_LR-0.001 MLP-2_LR-0.001 MLP-3_LR-0.001

MLP-1_LR-0.0001 0.4494
MLP-2_LR-0.0001 0.047952 0.4402
MLP-3_LR-0.0001 0.000395 0.009172 0.4235
MLP-1_LR-0.001 0.000030 0.000419 0.019135 0.4102
MLP-2_LR-0.001 0.000003 0.000013 0.000069 0.000391 0.3762
MLP-3_LR-0.001 0.000000 0.000001 0.000004 0.000016 0.266753 0.3713

Table A18: Pairwise p-values of performance on validation set with performance on test and validation set displayed on the diagonal for
MLP-1, MLP-2, MLP-3 on CNN-2 intermediate data from CIFAR-100 with di↵erent learning rates (LR)

169

A
P
P
E
N
D
IX

A
.
A
P
P
E
N
D
IX

MLP-1_LR-0.0001 MLP-2_LR-0.0001 MLP-3_LR-0.0001 MLP-1_LR-0.001 MLP-2_LR-0.001 MLP-3_LR-0.001

MLP-1_LR-0.0001 0.9838
MLP-2_LR-0.0001 0.000016 0.9589
MLP-3_LR-0.0001 0.000001 0.000483 0.9417 0.785663 0.064169
MLP-1_LR-0.001 0.000064 0.010291 0.9430 0.123347
MLP-2_LR-0.001 0.000006 0.000237 0.014039 0.029564 0.9275 0.006670
MLP-3_LR-0.001 0.003429 0.622582 0.9557

Table A19: Pairwise p-values of performance on validation set with performance on test and validation set displayed on the diagonal for
MLP-1, MLP-2, MLP-3 on SimpleNet intermediate data from CIFAR-100 with di↵erent learning rates (LR)

MLP-1_LR-0.0001 MLP-2_LR-0.0001 MLP-3_LR-0.0001 MLP-1_LR-0.001 MLP-2_LR-0.001 MLP-3_LR-0.001

MLP-1_LR-0.0001 0.9962 0.143564 0.046350
MLP-2_LR-0.0001 0.9968 0.629954
MLP-3_LR-0.0001 0.9969
MLP-1_LR-0.001 0.000577 0.000032 0.000008 0.9940 0.007765 0.122792
MLP-2_LR-0.001 0.133959 0.004566 0.000736 0.9955
MLP-3_LR-0.001 0.000872 0.000008 0.000000 0.036959 0.9948

Table A20: Pairwise p-values of performance on validation set with performance on test and validation set displayed on the diagonal for
MLP-1, MLP-2, MLP-3 on VGG-19 from CIFAR-100 intermediate data with di↵erent learning rates (LR)

170

A.3. CLASSIFICATION RESULTS

MLP SVM LR KNN RFE ADB GBC XGB

MLP 0.9884 0.017690
SVM 0.011099 0.9820 0.000015
LR 0.9935
KNN 0.000000 0.000000 0.000000 0.3769 0.000891 0.000000
RFE 0.000000 0.000000 0.000000 0.002812 0.3576 0.000174 0.000000
ADB 0.000000 0.000000 0.000000 0.000000 0.000000 0.2482 0.000001 0.000000
GBC 0.000000 0.000000 0.000000 0.4369 0.009697
XGB 0.000000 0.000000 0.000000 0.4721

Table A21: Pairwise p-values of performance on validation set with performance on
test and validation set displayed on the diagonal for di↵erent classification algorithms
on CNN-1 intermediate data from CIFAR-100

MLP SVM LR KNN RFE ADB GBC XGB

MLP 0.4494 0.007095 0.000000
SVM 0.4576 0.000000
LR 0.011338 0.000003 0.4417 0.000000
KNN 0.000000 0.000000 0.000000 0.2666 0.017161 0.000017 0.000000
RFE 0.000000 0.000000 0.000000 0.2793 0.000028 0.000000
ADB 0.000000 0.000000 0.000000 0.000001 0.000000 0.1732 0.000001 0.000000
GBC 0.000699 0.000317 0.001287 0.3885 0.000000
XGB 0.7744

Table A22: Pairwise p-values of performance on validation set with performance on
test and validation set displayed on the diagonal for di↵erent classification algorithms
on CNN-2 intermediate data from CIFAR-100

171

APPENDIX A. APPENDIX

MLP SVM LR KNN RFE ADB GBC XGB

MLP 0.9838 0.000140
SVM 0.031662 0.9801 0.000002
LR 0.9937
KNN 0.000000 0.000000 0.000000 0.8380
RFE 0.000000 0.000000 0.000000 0.000173 0.8258
ADB 0.000000 0.000000 0.000000 0.000000 0.000000 0.5165 0.000000
GBC 0.000000 0.000000 0.000000 0.000000 0.000000 0.000011 0.3885 0.000000
XGB 0.000000 0.000000 0.000000 0.000000 0.000000 0.7744

Table A23: Pairwise p-values of performance on validation set with performance on
test and validation set displayed on the diagonal for di↵erent classification algorithms
on SimpleNet intermediate data from CIFAR-100

MLP SVM LR KNN RFE ADB GBC XGB

MLP 0.9968 0.538834 0.844880 0.780704 0.837241
SVM 0.9972
LR 0.591208 0.9969 0.916699 1.000000
KNN 0.672895 0.9970
RFE 0.435668 1.000000 0.889494 0.9969
ADB 0.003409 0.002797 0.003162 0.003104 0.003087 0.9854 0.033907 0.006504
GBC 0.000145 0.000010 0.000059 0.000058 0.000022 0.9911 0.000098
XGB 0.009915 0.000921 0.004280 0.003928 0.002136 0.9948

Table A24: Pairwise p-values of performance on validation set with performance on
test and validation set displayed on the diagonal for di↵erent classification algorithms
on VGG-19 intermediate data from CIFAR-100

172

A.3. CLASSIFICATION RESULTS

A.3.3 Subset of ILSVRC-2012

A.3.3.1 Best parameters of classifiers on high-level image features

model best parameters on test

MLP MLP-2, LR: 0.0001
SVM C: 10, � : 0.0001, kernel: rbf
LR C: 0.001, penalty: `2
KNN neighbours: 10
RFE 1000 estimators, gini criterion
ADB 1000 estimators, LR: 0.1
GBC 100 estimators, LR: 0.1
XGB 100 estimators, LR: 0.1, max. depth: 1

Table A25: ILSVRC-2012 final classification results on Inception ResNet V2 interme-
diate data

model best parameters on test

MLP MLP-1, LR: 0.0001
SVM C: 10, � : 0.0001, kernel: rbf
LR C: 0.001, penalty: `2
KNN neighbours: 1
RFE 1000 estimators, entropy criterion
ADB 1000 estimators, LR: 0.1
GBC 100 estimators, LR: 0.1
XGB 100 estimators, LR: 0.1, max. depth: 1

Table A26: ILSVRC-2012 final classification results on Inception V3 intermediate data

model best parameters on test

MLP MLP-2, LR: 0.0001
SVM C: 10, � : 0.0001, kernel: rbf
LR C: 0.001, penalty: `2
KNN neighbours: 10
RFE 1000 estimators, entropy criterion
ADB 1000 estimators, LR: 0.1
GBC 100 estimators, LR: 0.1
XGB 100 estimators, LR: 0.1, max. depth: 1

Table A27: ILSVRC-2012 final classification results on Xception intermediate data

173

APPENDIX A. APPENDIX

A.3.3.2 Comparison of best MLP architectures with other classification
algorithms

In the diagonal lines of the tables, the mean accuracy of the validation data over 10
cross-validation folds is displayed. In the other cells, the p-value of the comparison of
the two indicated networks is given. The p-value is calculated for the validation results
during the 10-fold cross-validation. Since the comparison in tables A28, A29 and A30
are symmetric, the p-value is only displayed for those values where the estimated
population mean of the network in the column name is higher than the estimated
population mean of the network in the row name that it is compared to. The other
corresponding cell is left empty.

174

A.3. CLASSIFICATION RESULTS

MLP SVM LR KNN RFE ADB GBC XGB

MLP 0.8459 0.066856 0.0385599
SVM 0.004757 0.7334 0.004751 0.004816 0.004160 0.011838
LR 0.8632
KNN 0.640929 0.061322 0.8451 0.035040
RFE 0.966227 0.8629
ADB 0.000267 0.000635 0.000303 0.000267 0.000277 0.2347 0.008479 0.000340
GBC 0.002082 0.004832 0.002029 0.002090 0.001969 0.4549 0.002602
XGB 0.013122 0.013178 0.013648 0.009488 0.8117

Table A28: Pairwise p-values of performance on validation set with performance on
test and validation set displayed on the diagonal for di↵erent classification algorithms
on Inception ResNet V2 intermediate data from ILSVRC-2012 with 100 classes

MLP SVM LR KNN RFE ADB GBC XGB

MLP 0.7760 0.013603 0.014036
SVM 0.000677 0.3168 0.000295 0.000427 0.000286 0.005692 0.000598
LR 0.8459
KNN 0.090350 0.000589 0.7509 0.000207
RFE 0.004382 0.8157
ADB 0.000732 0.009356 0.000476 0.000628 0.000473 0.1341 0.002601 0.000718
GBC 0.000846 0.000186 0.000298 0.000166 0.4515 0.000651
XGB 0.092342 0.003518 0.490825 0.003357 0.7461

Table A29: Pairwise p-values of performance on validation set with performance on
test and validation set displayed on the diagonal for di↵erent classification algorithms
on Inception V3 intermediate data from ILSVRC-2012 with 100 classes

MLP SVM LR KNN RFE ADB GBC XGB

MLP 0.82453 0.016872 0.029549
SVM 0.014604 0.74827 0.007258 0.023661 0.008464 0.099931
LR 0.85280
KNN 0.492943 0.037980 0.81840 0.066340
RFE 0.037032 0.84293
ADB 0.000200 0.000466 0.000168 0.000288 0.000166 0.18467 0.005867 0.000216
GBC 0.000970 0.001933 0.000825 0.001180 0.000844 0.38853 0.001192
XGB 0.005395 0.001140 0.023656 0.000777 0.77440

Table A30: Pairwise p-values of performance on validation set with performance on
test and validation set displayed on the diagonal for di↵erent classification algorithms
on Xception intermediate data from ILSVRC-2012 with 100 classes

175

	Contents
	List of Figures
	List of Tables
	Introduction
	Background Information
	Structure of the Thesis
	Purpose of the Thesis

	Artificial Neural Networks for Computer Vision
	How are Digital Images Represented
	Challenges in Computer Vision
	Convolutional Neural Networks
	Convolutional Layers
	Depthwise Separable Convolutions
	Pooling Layers
	Fully-Connected Layers
	Dropout Layer
	Batch Normalisation Layers
	Inception Modules
	Residual Blocks
	Capsules
	Transfer Learning

	Classification in Supervised Environments
	Decision Trees
	Ensemble Methods
	Random Forest Classifier
	Adaptive Boost Classifier
	Gradient Boosting Classifier
	eXtreme Gradient Boosting Classifier

	Logistic Regression
	Support Vector Machines
	K-Nearest Neighbours
	Multi-Layer Perceptrons
	Classification Evaluation Methods
	Accuracy
	Top-n Accuracy
	Confusion Matrices
	Precision, Recall and Fn Measure
	ROC AUC Score
	Model Speed

	Experimental Setup
	Work References
	Scientific Procedure
	Dataset Benchmarks
	CIFAR-10
	CIFAR-100
	ImageNet Large Scale Visual Recognition Challenge 2012

	Model Architecture Benchmarks
	ILSVRC-2012 Architecture Benchmarks
	CIFAR Architecture Benchmarks

	Image Preprocessing
	Classification Algorithms Used
	Selection of Evaluation Metrics
	Software Architecture of the Final Solution

	Experimental Evaluation
	Output from Convolutional Neural Network Structures
	CIFAR-10 Intermediate Observations
	CIFAR-100 Intermediate Observations
	ILSVRC-2012 Subset Intermediate Observations

	MLP Architecture Comparison on Intermediate Datasets
	Comparing Different Classification Algorithms on Image Features
	CIFAR-10 Results
	CIFAR-100 Results
	ILSVRC-2012 Results

	Interpretation of Results
	Conclusion of Results

	Conclusion and Outlook
	Conclusion
	Outlook

	Bibliography
	Appendix
	Convolutional Neural Networks
	Exemplification of Computer Vision challenges
	Reformulation and simplification of Inception Module Formula
	Visualisation of general architecture of CNN

	Experimental datasets
	Normalised images from CIFAR-10
	Image classes from CIFAR-100
	Normalised images from CIFAR-100
	100 classes used from ILSVRC-2012

	Classification results
	CIFAR-10
	CIFAR-100
	Subset of ILSVRC-2012

