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Abstract

Air-writing is the process of writing characters or words in free space using finger or

hand movements without the aid of any hand-held device. In this work, we address

the problem of mid-air finger writing using web-cam video as input. In spite of recent

advances in object detection and tracking, accurate and robust detection and tracking

of the fingertip remains a challenging task, primarily due to small dimension of the

fingertip. Moreover, the initialization and termination of mid-air finger writing is also

challenging due to the absence of any standard delimiting criterion. To solve these

problems, we propose a new writing hand pose detection algorithm for initialization of

air-writing using the Faster R-CNN framework for accurate hand detection followed

by hand segmentation and finally counting the number of raised fingers based on ge-

ometrical properties of the hand. Further, we propose a robust fingertip detection and

tracking approach using a new signature function called distance-weighted curvature

entropy. Finally, a fingertip velocity-based termination criterion is used as a delimiter

to mark the completion of the air-writing gesture. Experiments show the superiority of
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the proposed fingertip detection and tracking algorithm over state-of-the-art approaches

giving a mean precision of 73.1 % while achieving real-time performance at 18.5 fps,

a condition which is of vital importance to air-writing. Character recognition experi-

ments give a mean accuracy of 96.11 % using the proposed air-writing system, a result

which is comparable to that of existing handwritten character recognition systems.

Keywords: Air-writing, Hand pose detection, Fingertip

detection and tracking, Handwritten character

recognition, Human-computer interaction (HCI)

1. Introduction

With the emergence of virtual and augmented reality, the need for the development

of natural human-computer interaction (HCI) systems to replace the traditional HCI

approaches is increasing rapidly. In particular, interfaces incorporating hand gesture-

based interaction have gained popularity in many fields of application viz. automotive

interfaces (Ohn-Bar and Trivedi, 2014), human activity recognition (Rohrbach et al.,

2016) and several state-of-the-art hand gesture recognition approaches have been de-

veloped (Molchanov et al., 2015; Rautaray and Agrawal, 2015). However, hand motion

gestures as such are not sufficient to input text. This necessitates the need for the devel-

opment of touch-less air-writing systems which may replace touch and electromechani-

cal input panels leading to a more natural human-computer interaction (HCI) approach.

A vision-based system for the recognition of mid-air finger-writing trajectories is

not a new problem and substantial work has been done in the past two decades. One

of the early works by Oka et al. (Oka et al., 2002) used a sophisticated device with

an infrared and color sensor for fingertip tracking and recognition of simple geomet-

ric shapes trajectories. In (Amma et al., 2012), inertial sensors attached to a glove

were used for continuous spotting and recognition of air-writing. Recently, Misra et

al. (Misra et al., 2017) have developed a hand gesture recognition framework that can

recognize letters, numbers, arithmetic operators as well as 18 printable ASCII charac-

ters using a red marker placed on the tip of the index finger for fingertip detection. In

spite of satisfactory performance in terms of accuracy of character trajectory recogni-
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tion, the above approaches using cumbersome motion sensing and tracking hardware

devices impose many behavioral constraints on the user. For example, wearing data

gloves on the hand may change the user’s natural handwriting pattern and is often con-

sidered as an undesirable burden by many users. During the past few years, several

research works have been carried out addressing the problem of air-writing recogni-

tion using depth sensors such as Microsoft Kinect and special hardware namely the

Leap Motion Controller from Leap Motion1, for input. Chang et al. (Chang et al.,

2016) have proposed a Spatio-Temporal Hough Forest for the detection, localization

and recognition of mid-air finger-writing in egocentric depth video. Chen et al. (Chen

et al., 2016) have developed a robust system for air-writing recognition using the Leap

Motion Controller for marker-free and glove-free finger tracking. However, the high

cost and limited availability of such sophisticated hardware to the majority of users

render them unsuitable for real-world applications.

The work that is closest to ours is by Huang et al. (Huang et al., 2016) where they

use a two stage CNN-based fingertip detection framework for recognition of air-writing

in egocentric RGB video. However, capturing egocentric video requires head-mounted

smart cameras or mixed reality headsets such as Google Glass, Microsoft HoloLens

and Facebook Oculus, which may not be available to all users. Therefore, to make our

system more general, we use video inputs from a standard laptop camera or a web-cam

for the air-writing application. This makes the task even more challenging due to the

presence of the face in the video frames, which being a moving object of similar skin

tone as the hand, makes the detection of the hand and hence the fingertip much more

complicated.

To address these issues we propose a new system for air-writing recognition in

videos using a standard laptop camera or a web-cam for the video input. The key

challenges in this task are: (1) writing hand pose detection for initialization of air-

writing; (2) accurate fingertip detection and tracking in real-time; (3) recognition of

air-writing character trajectory. The task is fairly difficult due to several factors such as

hand shape deformation, fingertip motion blur, cluttered background and variation in

1https://www.leapmotion.com/

3

https://www.leapmotion.com/


illumination.

To address the aforementioned challenges, our work makes the following contribu-

tions:

• We propose a new writing hand pose detection algorithm for the initialization

of air-writing using the Faster R-CNN framework for accurate hand detection

followed by hand segmentation and finally counting the number of raised fingers

based on geometrical properties of the hand.

• We propose a robust fingertip detection approach using a new signature function

called distance-weighted curvature entropy.

• We propose a fingertip velocity-based termination criterion which serves as a

delimiter and marks the completion of the air-writing gesture.

The rest of the paper is organized as follows. Section 2 provides a review of the re-

lated work. Section 3 presents the proposed air-writing recognition algorithm detailing

its four stages namely writing hand pose detection, fingertip detection, fingertip track-

ing and trajectory generation and character recognition. In Section 4, details of the

implementation, dataset and experimental analysis are presented. Finally, in Section 5,

conclusions are drawn and the scope for future development of the proposed approach

is discussed.

2. Related Work

Recognizing mid-air finger-writing is a difficult and open problem in computer

vision, due to the various challenges outlined in the previous section. We review the

previous research works related to this work as follows: (1) fingertip detection and

tracking; (2) air-writing recognition; and (3) the existing hand datasets related to air-

writing recognition.

2.1. Fingertip Detection and Tracking

Fingertips detection and tracking has been an active topic in the fields of HCI and

augmented reality (AR) using color as well as depth cameras. A model-based approach

4



for 3D hand tracking (de La Gorce et al., 2011; Tang et al., 2017) may be used as a pre-

ceding step for fingertip detection, but these approaches involve high computational

cost and require a large amount of training data. This makes them unsuitable for our

real-time application. In the model-less approach, the hand silhouette is first segmented

using color, depth or motion cues and then the fingertips are detected from the extracted

binary hand mask. Liang et al. (Liang et al., 2012) used a distance metric from hand

palm to the contour furthest points to localize candidate fingertip points. Krejov and

Bowden (Krejov and Bowden, 2013) extended the distance concept employing it with

the natural structure of hand using a geodesic distance. This improved the localiza-

tion of fingertips in hand configurations where previous methods failed. In (Lee and

Hollerer, 2007), the authors used the contour curvature as a cue to detect fingertips,

exploiting the fact that fingertips are high curvature points, compared to other parts of

the hand.

However, all the above approaches suffer from the drawback that the fingertip de-

tection depends largely on the hand segmentation, and suffer severely from poor seg-

mentation results while making use of solely color, depth and motion cues (Zhang et al.,

2013). The problem can be solved by accurate detection of hands as a preceding step

for hand segmentation. In (Mittal et al., 2011), a skin-based detector, a deformable part

models (DPM)-based hand shape detector and a context detector are combined to de-

tect hands in still images, but this method is time consuming for real-time applications

due to the sliding window approach. In (Li and Kitani, 2013), hand detection and pixel-

level segmentation from egocentric RGB videos using local appearance features have

produced good results, but the performance is affected by variation in illumination.

Recent advances in deep learning based methods are giving excellent results on

general object detection tasks. However hand detection remains a challenging task and

numerous works have been done in recent times. The Region-based CNN (R-CNN)

framework is applied in (Bambach et al., 2015) to detect hands in egocentric videos.

This method achieves promising performance in complex environments but is slow

due to CNN-based feature computation for redundant overlapping region proposals. A

recent work by Deng et al. (Deng et al., 2018) proposes a CNN-based joint hand detec-

tion and rotation estimation framework, using on an online de-rotation layer embedded
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in the network. In (Roy et al., 2017), a two-step framework is proposed for detec-

tion and segmentation of hands using a Faster R-CNN based hand detector followed

by a CNN based skin detection technique. An experimental survey of existing hand

segmentation datasets, state-of-the art methods as well as three new datasets for hand

segmentation can be found in (Khan and Borji, 2018). Deep learning based methods

have been extended to fingertip detection in (Huang et al., 2016). They use a two-stage

framework consisting of Faster R-CNN based hand detection followed by CNN-based

fingertip detection. More recently, Wu et al. (Wu et al., 2017) proposed a framework

called YOLSE (You Only Look what You Should See), that uses a heatmap-based fully

convolution network for multiple fingertip detection from single RGB images in ego-

centric view.

Tracking a small object such as the fingertip from an image accurately and robustly

remains a great challenge and to the best of our knowledge no standard method for

fingertip tracking has yet been proposed. Mayol et. al. (Mayol et al., 2004) and Kurata

et. al. (Kurata et al., 2001) have used template matching and mean-shift respectively

for hand tracking in constrained environments, from images captured using a wearable

camera. (Stenger et al., 2006) gives a tracking framework, which is applied to the re-

covery of three-dimensional hand motion from an image sequence using a hierarchical

Bayesian filter. In (Kolsch and Turk, 2004), a fast tracking method has been proposed

for non-rigid and highly articulated objects such as hands. It uses KLT features along

with a learned foreground color distribution for tracking in 2D monocular videos. How-

ever, these methods cannot deal with long-term continuous tracking problems such as

change in object appearance and object moving in and out of the frame, since they are

designed and evaluated for short video sequences. The Tracking-Learning-Detection

(TLD) framework (Kalal et al., 2012) has been proposed for long-term tracking. TLD

works well when there are frequent variations in the appearance of an object, but is

slow compared to many other tracking algorithms. Therefore, long-term tracking of

small objects remains a challenging task.
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2.2. Air-Writing Recognition

Some methods have been proposed in the literature for the recognition of air-

writing, treating it as a spatial-temporal signal. In (Chen et al., 2016), various mod-

ifications of Hidden Markov Models (HMMs) have been used for the recognition of

air-writing generated using Leap Motion Controller. An attention-based model, called

attention recurrent translator has been used in (Gan and Wang, 2017) for in-air hand-

written English word recognition, which gives performance comparable to the connec-

tionist temporal classification (CTC). Kane and Khanna (Kane and Khanna, 2017) have

proposed an equipolar signature (EPS) technique for a vision-based mid-air unistroke

character input framework that is resistant to variations in scale, translation and rota-

tion. Some recent works have also addressed the problem of 3D air signature recog-

nition and verification (Behera et al., 2017, 2018). (Behera et al., 2018) presents a

method for analyzing 3D air signatures captured using the Leap Motion Controller,

with the help of a new geometrical feature extracted from the convex hull enclosing a

signature.

In recent years, deep convolutional neural networks (CNNs) have achieved great

success in handwritten character recognition, beating benchmark performances by wide

margins (Ciregan et al., 2012; Cireşan and Meier, 2015). The multi-column deep neu-

ral network proposed in (Ciregan et al., 2012) reaches near-human performance on

the MNIST handwritten digits dataset. A variation of CNNs called DeepCNet, first

proposed by Graham (Graham, 2013), won first place in the ICDAR 2013 Chinese

Handwriting Recognition Competition (Yin et al., 2013). Further advances in CNN

architectures namely DropWeight (Xiao et al., 2017) and new training strategies such

as DropDistortion (Lai et al., 2017) and DropSample (Yang et al., 2016) have led to

improved performance of CNNs in online handwritten character recognition tasks.

2.3. Related Datasets

At present, there isn’t any benchmark dataset in the area of finger air-writing re-

search, to evaluate the performance of the methods. Recently, some datasets have

been released for the recognition of air-writing in egocentric view. The EgoFinger
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Figure 1: Flowchart for the proposed air-writing recognition system. The three main contributions in the

work have been highlighted by numbering them in the order in which they appear is the pipeline.

dataset (Huang et al., 2016) containing 93,729 labelled RGB frames from 24 egocen-

tric videos and captured from 24 different individuals, is the most extensive among such

datasets. Other datasets for the recognition of egocentric hand gesture include the Ego-

Hands dataset (Bambach et al., 2015), containing 48 videos of egocentric interactions

between two people, with pixel-level ground-truth annotations for 4,800 frames and

15,053 hands. RGB-D datasets are comparatively more numerous. The EgoGesture

(Zhang et al., 2018) is a multi-modal large scale dataset for egocentric hand gesture

recognition containing 2,081 RGB-D videos, 24,161 gesture samples and 2,953,224

frames acquired from 50 distinct subjects. In (Suau et al., 2014) a real-time fingertip

detection method has been proposed with fingertip labeled RGB-D dataset. However,

none of these datasets are suitable for our proposed air-writing application using web-

cam video input.

3. Proposed Algorithm

A flowchart for the proposed air-writing recognition system is shown in Figure 1.

The proposed algorithm can be broken into the following four components: (1) writing

8



hand pose detection; (2) fingertip detection in each frame; (3) fingertip tracking and

character trajectory generation; (4) recognition of air-writing characters.

3.1. Writing Hand Pose Detection

The detection of writing hand pose and its recognition from other gestures is an

integral step towards air-writing initialization since, unlike conventional handwriting

which has the pen-down and pen-up motion, air-writing does not have such a delimited

sequence of writing events. In this work, we define the writing hand pose to be a

single raised finger with the assumptions that the finger is free from occlusions and is

not manipulating any object. We detect a writing hand pose and discriminate it from

a non-writing hand pose by counting the number of raised fingers. To this end we

propose a four-fold approach consisting of hand detection, hand region segmentation,

localization of the hand centroid, followed by utilizing geometrical properties of the

hand to count the number of raised fingers.

3.1.1. Hand Detection

The Faster R-CNN (FRCNN) (Ren et al., 2015) framework has been used for hand

detection. Faster R-CNN is a state-of-the-art object detection algorithm that removes

dependency on external hypothesis generation methods, as in case of Fast R-CNN (Gir-

shick, 2015). The first step involves using the output of an intermediate layer of a CNN

pretrained for the task of classification (called base network) to generate a convolu-

tional feature map. The original Faster R-CNN used VGG-16 network (Simonyan and

Zisserman, 2014) pretrained on ImageNet, but since then many different networks with

a varying number of weights have been used. The base network returns a convolutional

feature map that forms the input to the Region Proposal Network (RPN). The RPN is

a fully convolutional network that takes the reference bounding boxes (anchors) and

outputs a set of object proposals. This is followed by region of interest (RoI) pooling

for extraction of features from each of the object proposals. Finally, we use these fea-

tures for classification using a region-based convolutional neural network (R-CNN).

After putting the complete FRCNN model together, we train it end-to-end as a single

network, with four losses, RPN classification loss, RPN regression loss, R-CNN clas-
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Figure 2: Hand detection and segmentation.

sification loss and R-CNN regression loss. The details of implementation and training

of the proposed Faster R-CNN based hand detector is given in Section 4.2.

3.1.2. Hand Region Segmentation

Once we have accurately detected the hand using the above technique, hand region

segmentation is achieved using a two-step approach viz. skin segmentation and back-

ground subtraction and the final binary hand image is obtained as an aggregation of the

two. In spite of the success of semi-supervised segmentation algorithms namely Grab-

Cut for hand segmentation (Bambach et al., 2015), we find that such algorithms are

computationally expensive and hence not suitable for our purpose. The proposed algo-

rithm is found to work well in real-time and gives fairly accurate segmentation results.

Figure 2 shows a schematic diagram for the proposed hand segmentation algorithm.

Skin Segmentation: We propose a skin color filtering approach based on a static

skin color model in the YCbCr color space for skin segmentation. Although skin colors

vary considerably across races, it has been observed that the skin chrominance has only

a small range across different skin types, while the skin luminance varies considerably.

This forms the basis of the static skin color model (Phung et al., 2005). Based on
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extensive experimentation (Phung et al., 2005), we extracted the narrow band 77 ≤

Cb ≤ 127 and 133 ≤ Cr ≤ 173 as our static skin color model and discarded the

Y component to exclude the luminance information. A frame of the video sequence

acquired by the web-cam is in RGB color space, and we can convert it to YCbCr color

space using the following equation (Wu and Kang, 2016):


Y

Cb

Cr

1

 =


0.2990 0.5870 0.1140 0

−0.1687 −0.3313 0.5000 128

0.5000 −0.4187 −0.0813 128

0 0 0 1

 ·

R

G

B

1

 (1)

We construct a skin filter based on the YCbCr static skin color model and filter

the candidate hand bounding box, obtained from detection phase to get the binary skin

mask Ih1 as follows:

Ih1(x, y) =

1 if 77 ≤ Cb ≤ 127 and 133 ≤ Cr ≤ 173

0 otherwise

(2)

Skin color filtering method is chosen for skin segmentation over other methods

namely Gaussian classifiers and the Bayesian classifier, in spite of their slightly better

performance, since they increase the computational load significantly and hence are

not suitable for real-time applications.

Background Subtraction: Since accurate hand detection using the Faster R-CNN

based hand detector followed by skin color filtering in the candidate hand bounding

box gives a reasonably good segmentation result, the background subtraction step is

used only to remove any skin colored object (not a part of the hand) that may be present

inside the detected hand bounding box. We use the adaptive Gaussian Mixture Model

(GMM) based background subtraction algorithm proposed in (Zivkovic, 2004) for this

purpose. The main advantage of GMM is that it can reach real-time processing. Let

the binary foreground mask obtained from this step be Ih2.

The final binary hand image is obtained by a logical and operation between the
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(a) (b)

Figure 3: Hand centroid localization using distance transform. (a) Binary hand image. (b) Distance transform

(the pixel having the maximum intensity is highlighted with a red marker).

binary skin mask Ih1 and the binary foreground mask Ih2 as follows:

Ih = Ih1 ∧ Ih2 (3)

The above approach using an aggregation of two segmentation algorithms gives us

an accurate hand segmentation result which is free from noise due to moving objects

in the scene which are not the hand as well as any other object inside the detected hand

bounding box which is skin colored but does not belong to the hand. The segmented

hand image Ih is then filtered applying the morphological operations of dilation ⊕ and

erosion 	, as described in equation (4), where Ih is the segmented hand image, Ihf

is the resulting filtered image and K is a circular disk structuring element of radius 3

with the anchor at its center.

Ihf = ((Ih ⊕K)	K)⊕K (4)

These morphological operations are employed in order to fill spaces in the fore-

ground object (hand) with dilation, and then clean any background noise with an ero-

sion. Finally, the hand silhouette is regularized using dilation. Lastly, we sort all con-

nected regions in Ihf by area, and extract the connected region having the maximum

area as the hand region.
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3.1.3. Hand Centroid Localization

Since the accurate determination of the centroid of the hand plays a crucial role

in the following steps, we employ two algorithms to find the initial estimates of the

centroid and the final centroid is calculated as the mean of the two.

The method of distance transform is used to get the first estimate of the centroid

(xc1, yc1). In the distance transform image, each pixel is represented by its distance

from the nearest boundary pixel. Figure 3 shows an example of distance transform.

Figure 3a shows a binary hand image and Figure 3b shows the distance transform

image of the former. The Euclidean distance has been used to measure the distance

between a pixel and its nearest boundary pixel. As it can be seen in the Figure 3b,

the center point of the hand has the largest distance (depicted by maximum intensity).

Therefore, the pixel having the maximum intensity in the distance transform image

(Figure 3b), is taken to be the centroid.

The second estimate of the centroid (xc2, yc2) is found using the concept of image

region moments. The image moments Mij , for an image with pixel intensities I(x, y),

can be calculated as:

Mij =
∑
x

∑
y

xiyjI(x, y) (5)

The centroid (xc2, yc2) is given by:

xc2 =
M10

M00
, yc2 =

M01

M00
(6)

where M10,M01,M00 are the moments of the binary hand region obtained from the

previous segmentation step.

The final centroid (xc, yc) is obtained as the mean of the two initial estimates.

3.1.4. Counting Raised Fingers

We use the geometrical properties of the hand to count the number of raised fingers.

From the centroid of the hand (xc, yc) we draw a circle of maximum radius such that it

lies entirely within the hand i.e., not including any background pixel. We call this circle

as the inner circle of maximum radius and take its radius to be r. Now with the same

center, we construct another circle of radius R = Mr × r to intersect all the raised
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fingers. Here, Mr is a magnification factor which is chosen to be 1.5 based on the

geometrical shape of the hand and extensive experimentation (Wu and Kang, 2016).

We say that the circle of radius R intersects the hand whenever it crosses from a

background pixel to a foreground pixel and vice-versa. Let the number of such inter-

sections be n. Therefore, taking into account the fact that the circle intersects each

finger twice and excluding the two intersections with the wrist, the number of raised

fingers is given by:

N =
n

2
− 1 (7)

Finally, if N = 1 i.e., there is a single raised finger, the writing hand pose is

detected and the air-writing is initialized, otherwise, the screen is cleared and the entire

writing hand pose detection algorithm is repeated on successive frames until a match

of N = 1 is found.

3.2. Fingertip Detection

Although recent CNN-based approaches can give good results for many object de-

tection tasks, detecting the fingertip directly in RGB videos remains challenging, pri-

marily due to its extremely small dimension. Therefore, following a two-stage pipeline,

we first detect and segment the hand as discussed before, and secondly we find the fin-

gertip position from the segmented hand using a new signature function called distance-

weighted curvature entropy.

The first step involves the detection of the hand using the Faster R-CNN based hand

detector followed by the hand region segmentation as already described in the previous

section. Similarly, as discussed before, we calculate the coordinates of the centroid of

the segmented binary hand region (xc, yc).

A signature function is a 1-D functional representation of a boundary and can be

generated in many ways. The basic idea behind this is to reduce the original 2-D bound-

ary representation to a 1-D function, that is easier to describe. We propose a novel

signature function called as distance-weighted curvature entropy which is a combina-

tion of the distance of each of the contour points of the segmented binary hand region

from the centroid and the curvature entropy at each contour point. Fingertips are high
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(a) (b)

Figure 4: Fingertip detection. (a) Binary hand image. (b) Binary hand image with centroid and fingertip.

curvature points and are also distant from the hand center. We use these two distinctive

features of fingertips for their accurate detection.

The first factor of the proposed signature function is a scale in-variant measure of

the curvature of a contour presented in (Feldman and Singh, 2005) and is referred to

as curvature entropy u. As shown in Figure 4a, the segmented hand is represented

as a binary image. Let s be a planar contour curve extracted from the segmented hand

region of the binary image. If the contour s is of length L and is sampled at n uniformly

spaced points, then the sampling interval will be4s = L/n. We consider that between

any two points along the sampled contour curve, the tangent direction changes by an

angle α, called the turning angle. The curvature κ is the change in the tangent direction

as we move along the curve and hence may be approximated by the ratio between the

turning angle α and the sampling interval4s:

κ(s) ≈ α

4s
(8)

Following the derivation in (Feldman and Singh, 2005), the curvature entropy u

may be approximated as follows:

u(κ(s)) ∝ − cos(4s · κ(s)) (9)

Therefore, we find that the curvature entropy u is is locally proportional to the curva-

ture κ(s) and is also scale-invariant. This allows us to localize high curvature points,

namely the fingertip in our case, without the need for exploring different scales.

15



The second factor of the signature function will be a distance function δ(s) which is

equal to the distance between each contour point and the centroid of the hand (xc, yc).

We define the signature function of a contour Ψ(s) as the product of the curvature

entropy of the contour u(κ(s)) and the distance function δ(s):

Ψ(s) = u(κ(s)) · δ(s)γ (10)

where the parameter γ is a weight for the distance term in the signature function and

is tuned during experiments. The distance term weighted by the parameter γ elimi-

nates any high curvature points along the hand contour that are not fingertips, thereby

reducing false positives caused by irregularities in the hand contour.

Since the fingertip will have a high value of curvature entropy and will be also far-

away from the hand centroid, the signature function Ψ(s), which may be considered as

an 1-D array, will have a maximum at the fingertip position (see Figure 4b). Therefore,

the coordinates of the fingertip (xf , yf ) may be calculated as follows:

(xf , yf ) = s(arg max
s

Ψ(s)) (11)

3.3. Fingertip Tracking and Character Trajectory Generation

The third step in the air-writing recognition system is the generation of charac-

ters from trajectories formed by sequentially detected fingertip locations. For this, we

need to track the fingertips over successive frames starting from the frame in which

the writing hand pose is detected until a stopping criterion is reached. This will gener-

ate the required character trajectory. Following this, we apply a trajectory smoothing

algorithm to remove noise on account of poor fingertip detection or hand trembling.

3.3.1. Fingertip Tracking

Detection and tracking of the hand over successive frames is integral to the fingertip

detection and tracking performance. Experiments show that using the Faster R-CNN

hand detector for every frame is computationally costly and leads to frame rates much

lower than real-time performance. Therefore, the KCF tracking algorithm (Henriques

et al., 2015) is used for tracking of the detected hand region. The tracker is initial-

ized with the Faster R-CNN hand detector output and re-initialization is done at an
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interval of t frames. Re-initialization is necessary in this case since the hand being a

highly non-rigid object is difficult to track over a long time. Taking the interval for

re-initialization t to be equal to 50 is experimentally found to give the best compromise

between tracking accuracy and frame rate.

Tracking a fingertip robustly and accurately is fairly challenging due to its small di-

mension. However, it is essential to an air-writing application since any erroneous track

results in a distorted character. Following the success of CNN-based detection-tracking

of fingertips in (Huang et al., 2016), we use a detection-based fingertip tracking ap-

proach. In each frame, once the hand region is obtained, fingertip detection is carried

out as discussed in Section 3.2. Experiments prove that the proposed detection-based

tracking method gives the best result in terms of tracking accuracy and speed while

state-of-the-art tracking algorithms either suffer from poor frame rate or the fingertip

track is lost after only a few frames.

3.3.2. Termination Criterion

The termination or delimiting criterion is important to an air-writing system since

there is no pen-up motion, as in case of traditional online handwriting. Once the ter-

mination criterion is satisfied, the character trajectory is assumed to be complete and

the trajectory is passed to the following smoothing and recognition stages. We use the

velocity of the detected fingertip as the natural stopping criterion for the air-writing

recognition system. The rationale behind this choice is that the velocity of the fingertip

while writing the character will be high compared to when the writing is complete and

the fingertip will be nearly at rest. Let the coordinates of fingertip for the rth frame be

(xr, yr), and the coordinates for the (r + 1)th frame be (xr+1, yr+1). Then the dis-

placement d of the fingertip over one frame is given by the Euclidean distance between

the two points and the velocity v is the product of the displacement and the frame rate

f in fps as shown in the following equations:

d =
√

(xr+1 − xr)2 + (yr+1 − yr)2 (12)

v = d · f (13)
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(a) Initial trajectory. (b) First iteration. (c) Second iteration. (d) Final iteration.

Figure 5: Trajectory smoothing for an initially distorted character trajectory.

When the velocity v < τ the stopping criterion is satisfied. Here τ is a threshold

and experiments reveal the a value of τ = 40 gives best results for most users. Besides,

in case a distorted trajectory is plotted on account of hand trembling or any other dis-

turbance, the user can manually reach the stopping criterion by providing a non-writing

hand pose, which also clears the screen and then again initialize the writing sequence

by a writing hand pose in following frames.

3.3.3. Trajectory Smoothing

Poor fingertip detection or trembling of hands may lead to the formation of un-

even or distorted character trajectory, resulting in misclassification of characters in the

recognition stage. Thus, smoothing of the character trajectory is an essential post-

processing step in order to attenuate the noise.

Let T be the character trajectory obtained from the preceding steps. We propose a

simple iterative smoothing algorithm that replaces a trajectory point Ti by the average

value of the two neighboring points Ti−1 and Ti+1, based on the condition that the

distance between the point Ti and its preceding point Ti−1 is greater than a threshold λ.

The process is repeated over the entire trajectory until the difference between curvature

entropy of the trajectory u(T ) for two consecutive iterations is less than a tolerance ε.

The stopping criterion for the iteration is based on the concept of curvature entropy of

a curve described in Section 3.2. It is found experimentally that the average distance

between two consecutive points of a character trajectory lies close to 1. Therefore,

the value of λ is experimentally chosen as 5, to give a trade-off between accuracy and

speed. Also, experiments show that the tolerance ε kept at 0.4 gives fairly a good
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(a) (b)

(c) (d)

Figure 6: Air-writing character trajectories of digits and letters along with hand pose description, predicted

outputs and frame rates using the proposed air-writing recognition system.

performance in real-time. The proposed smoothing algorithm gives competitive results

compared to others, namely the Ramer-Douglas-Peucker algorithm (Misra et al., 2017)

at a significantly lower computational cost. Visualizations for successive iterations

involved in smoothing of an initially distorted character trajectory is shown in Figure

5.

3.4. Character Recognition

Following the recent success of deep convolutional neural networks (CNNs) on

handwritten character recognition tasks, we use the AlexNet architecture (Krizhevsky

et al., 2012), pre-trained on the EMNIST dataset (Cohen et al., 2017) for the recognition

of the air-writing character trajectories. Figure 6 shows the final character recognition

results for four different characters using the proposed framework.
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(a) (b)

(c) (d)

Figure 7: Different stages of air-writing using the proposed framework. (a) Non-writing hand pose, therefore,

fingertip detection does not occur. (b) User starts writing, writing hand pose is detected. The fingertip is

detected and tracked over successive frames. (c) User is in the process of writing a character. Character

recognition does not occur since the termination criterion is not satisfied. (d) Fingertip velocity is less than

the threshold. Therefore, the termination criterion is satisfied, and the character ’3’ is recognized.

4. Experiments

In this section, we present extensive experiments to demonstrate the superior per-

formance of the proposed fingertip detection and tracking algorithm and state-of-the-

art recognition performance for air-writing character trajectories. All experiments are

performed on a machine equipped with a single NVIDIA GeForce GTX 1080 and an

Intel Core i7-4790K Processor with 16GB RAM. Figure 7 shows the different stages

involved in performing a complete air-writing gesture by an user using the proposed

framework.

4.1. Dataset Preparation

The dataset contains air-writing videos with corresponding fingertip trajectories by

five subjects. The trajectories have been recorded for numbers (from 0 to 9) and English
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Tracker
OPE TRE

Speed (fps)
IoU Precision IoU Precision

KCF (Henriques et al., 2015) 58.7 71.6 60.4 73.5 27.1

TLD (Kalal et al., 2012) 60.2 74.1 62.5 76.3 14.5

MIL (Babenko et al., 2011) 48.7 58.4 49.7 58.9 16.1

Table 1: Hand tracking performance on the test set in terms of overlap (IoU) and precision following the

OTB-2013 benchmark. The proposed and best results are highlighted for each column.

alphabet letters (from a to z) using a standard web-cam with backgrounds of varying

complexity and illumination levels. In total, 1800 different air-writing character trajec-

tories (10 samples each of 36 characters) have been recorded. Each trajectory consists

of a set of points (x, y, t), where (x, y) is the position of the fingertip at time t . Our

dataset differs from egocentric fingertip detection datasets viz. the SCUT EgoFinger

Dataset (Huang et al., 2016) in the fact that the video sequences have been captured

using a web-cam and hence contains the subject’s face as well (which is mostly absent

in case of egocentric videos). This makes the task more challenging.

4.2. Hand Detection and Tracking

It is essential to evaluate the hand detection and tracking performance, since it

forms the first stage of the algorithm. As explained in Section 3.1.1, the Faster R-CNN

framework is used for the detection of hands. The proposed Faster R-CNN based hand

detector is trained on a dataset consisting of 15,000 images collected from the EgoFin-

ger dataset (Huang et al., 2016) and the EgoHands dataset (Bambach et al., 2015) with

annotated hand regions. We use Inception-v2 model (Szegedy et al., 2016) trained on

the Microsoft COCO dataset (Lin et al., 2014) as the base network for Faster R-CNN.

The network is trained end-to-end using stochastic gradient descent with momentum.

The momentum value used is 0.9 and the learning rate starts from 0.0002 and decreases

to 0.00002 after 900,000 steps.

For hand tracking, we compare three state-of-the-art tracking algorithms, viz. KCF

(Henriques et al., 2015), TLD (Kalal et al., 2012) and MIL (Babenko et al., 2011),
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Figure 8: Comparison of tracking performances. (a) Hand tracking. (b) Fingertip tracking.

initialization in each case being done with the detected hand regions using FRCNN.

As pointed out earlier re-initialization of the tracker is done at an interval of 50 frames

to enable long-term tracking. We test the hand tracking performance for 1200 video

sequences from our air-writing dataset.

We use the OTB-2013 (Wu et al., 2013) benchmark to evaluate our hand tracking

results. The OTB-2013 benchmark considers the average per-frame success rate at

different values of thresholds. For a particular frame, if the intersection-over-union

(IoU) between the estimate produced by a tracker and the ground-truth is greater than

a certain threshold, the tracker is successful in that frame. For comparing different

trackers, we use the area under the curve of success rates for different values of the

threshold. The overlap (IoU) and precision scores for OPE (one pass evaluation) and

TRE (temporal robustness evaluation) have been reported in Table 1. In OPE, the

tracker is run once on each video sequence, from the start to the end, while in TRE, the

tracker is started from twenty different starting points, and run until the end from each.

While MIL clearly suffers from the drifting problem, TLD gives superior tracking

performance in terms of precision but has a very poor frame rate. Experiments on the

test set reveal that Faster R-CNN based hand detection followed by KCF tracking gives

the best compromise between precision of tracking and frame rate and therefore we use

it for fingertip detection. Figure 8a shows the summarized hand tracking performance.

22



Tracker
Mean Precision

(15 px.)
Speed (fps)

Proposed (Tracking-by-detection) 73.1 18.5

KCF (Henriques et al., 2015) 55.4 26.4

TLD (Kalal et al., 2012) 66.7 10.6

MIL (Babenko et al., 2011) 42.4 12.1

Table 2: Fingertip tracking performance on the test set in terms of mean precision (15 px.). The proposed

and best results are highlighted for each column.

4.3. Fingertip Detection and Tracking

A test set of 1200 video sequences from our air-writing dataset has been used for

evaluation of fingertip detection and tracking performance. For fingertip detection,

the distance weighting parameter γ, referred to in Section 3.2, is tuned for maximum

detection accuracy. The value of γ is varied in the range [1, 5] with steps of 0.5, the

maximum detection accuracy occurring at 2.5.

For fingertip tracking, we use the precision curve proposed in (Henriques et al.,

2015) as the evaluation metric. A frame may be considered correctly tracked if the pre-

dicted target center is within a distance threshold of the ground truth. Precision curves

show the percentage of correctly tracked frames for a range of distance thresholds. This

is particularly suitable for our fingertip tracking application since the fingertip is best

represented by a point and not a bounding box.

A tracker having higher precision at low thresholds is more accurate, while a lower

precision at high thresholds implies that the target is lost. When a representative pre-

cision score is needed, we choose 15 pixels as the threshold instead of the standard

practice of choosing 20 pixels (Henriques et al., 2015), since the fingertip tracking

performance largely determines the resulting character trajectory, and hence the lower

tolerance. The precision scores have been reported in Table 2. The results clearly show

the superior performance of the proposed fingertip tracking algorithm over state-of-
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Figure 9: Confusion matrix for air-writing character recognition results using the proposed framework.

the-art trackers. Figure 8b shows the summarized fingertip tracking performance.

4.4. Air-Writing Character Recognition

For character recognition experiments, the entire air-writing dataset consisting of

1800 video sequences has been used as the test set. The character recognition model

based on the AlexNet architecture and pre-trained on the EMNIST dataset gives an

air-writing character recognition accuracy of 96.11 % on the test set. The confusion

matrix for character recognition results in Figure 9 shows that most characters have

been correctly recognized, but some characters having similar shape and appearance

were confused by the system, such as ’1’-’7’, ’3’-’8’, ’a’-’d’, ’g’-’q’, ’j’-’i’, ’l’-’1’,

’n’-’m’, ’o’-’0’, ’r’-’n’, ’w’-’v’. Actually is has been found that these similar looking

characters are often confused by humans too. The erroneous character recognition

results might be improved by better models for handwritten character recognition using

context such as words to decide the correct character.
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(a) (b)

Figure 10: Failure cases for the proposed air-writing recognition system. (a) Failure in character recognition.

(b) Failure in fingertip detection and tracking. The tracked fingertip trajectory is shown in blue color and the

ground truth trajectory is shown in red color.

5. Conclusion

In this paper, we presented a new framework for the recognition of mid-air finger

writing using web-cam video as input. We proposed a new writing hand pose detec-

tion algorithm for the initialization of air-writing. Further, we used a novel signature

function called distance-weighted curvature entropy for robust fingertip detection and

tracking. Finally, a fingertip velocity based termination criterion was used as a de-

limiter to mark the completion of the air-writing gesture. Extensive experiments on

our air-writing dataset revealed the superior performance of the proposed fingertip de-

tection and tracking approach over state-of-the-art trackers while achieving real-time

performance in terms of frame rate. Character recognition results are impressive as

well.

The proposed air-writing recognition framework can find applications in HCI as a

virtual touch-less text entry interface. A key application may be in smart home automa-

tion for gesture-controlled smart home devices. This is analogous to home automation

hubs such as the Amazon Echo, which uses voice commands to control smart home

devices. Instead, our framework (with suitable hardware implementation) can be used

to take a fingertip trajectory based visual command (using a smart camera) as input

to perform a particular task, based on the visual command or keyword. For e.g., a

keyword ’b5’ may be used to turn on the fifth light of the bedroom.
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Some failure cases however exist for the proposed air-writing recognition system,

as depicted in Figure 10. In Figure 10a, it is clearly seen that the failure results due

to misclassification by the character recognition model. The failure case in Figure

10b is however more subtle, as it results from poor fingertip detection and tracking.

This can be accounted for by the fact that, when the hand is not completely inside the

frame, the hand detector performance deteriorates. This in turn degrades the fingertip

detection and tracking performance. Moreover, when the hand is largely occluded, the

geometrical features of the hand used for fingertip detection are also no longer valid.

As a future work, we would like to extend the proposed framework to utilize the

spatio-temporal as well as motion features of the air-writing trajectories for the recog-

nition of characters. Further, we would also like to extend our framework to the recog-

nition of words as well as signatures, which can have potential application in touch-

less and marker-less biometric authentication systems. More robust fingertip detection

techniques can also be explored to improve the overall performance of the air-writing

recognition system.
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