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Abstract

Graph clustering is a challenging pattern recognition problem whose goal is to identify ver-
tex partitions with high intra-group connectivity. This paper investigates a bi-objective
problem that maximizes the number of intra-cluster edges of a graph and minimizes the
expected number of inter-cluster edges in a random graph with the same degree sequence as
the original one. The difference between the two investigated objectives is the definition of
the well-known measure of graph clustering quality: the modularity. We introduce a spec-
tral decomposition hybridized with an evolutionary heuristic, called MOSpecG, to approach
this bi-objective problem and an ensemble strategy to consolidate the solutions found by
MOSpecG into a final robust partition. The results of computational experiments with real
and artificial LFR networks demonstrated a significant improvement in the results and per-
formance of the introduced method in regard to another bi-objective algorithm found in the
literature. The crossover operator based on the geometric interpretation of the modularity
maximization problem to match the communities of a pair of individuals was of utmost
importance for the good performance of MOSpecG. Hybridizing spectral graph theory and
intelligent systems allowed us to define significantly high-quality community structures.

Keywords: Graph clustering, Community detection, Evolutionary heuristic,
Multi-objective optimization, Modularity maximization, Spectral decomposition

1. Introduction

The majority of graphs that describe real networks, such as social and metabolic networks
(Zachary, 1977; Lancichinetti et al., 2011), are characterized by vertex partitions with high

∗Corresponding author.
Email addresses: santos.camila@unifesp.br (Camila P.S. Tautenhain), mcv.nascimento@unifesp.br

(Mariá C.V. Nascimento)

Preprint submitted to Expert Systems with Applications September 10, 2019

ar
X

iv
:1

81
0.

03
65

2v
2 

 [
cs

.S
I]

  8
 S

ep
 2

01
9



intra-cluster connectivity (Girvan & Newman, 2002). The graph clustering problem, also
known as community detection problem, aims at finding such partitions. Ferrara et al.
(2014), for example, developed an expert system to detect communities in mobile phone
networks formed by interactions of criminals to possibly identify criminal organizations.
Larsson & Moe (2012) and Golbeck et al. (2010) applied community detection algorithms
to Twitter data to classify the users’ political leaning. In practice, this type of information
usually benefits political campaigners.

The formal definition of a graph clustering problem leans towards the criterion to assess
the partitioning quality. Examples of optimization criteria to finding graph clusterings are
the maximization of modularity (Newman & Girvan, 2004), the map equation minimization
(Rosvall & Bergstrom, 2008) and the maximization of the statistical significance of commu-
nities according to the measure introduced by Lancichinetti et al. (2011). In particular, the
map equation measure is based on the observation on the duality between graph clustering
problems and the data compression problem described by the minimization of the path length
of a random walker. The Infomap algorithm was then proposed to detect communities that
minimize the map equation. Lancichinetti et al. (2011) studied a measure that evaluates the
statistical significance of the communities in a network by calculating their probability of
existing in a random graph with the same degree sequence as the original one. The authors
introduced a solution method to find a partitioning of the vertices that maximizes these
probabilities named Order Statistics Local Optimization Method (OSLOM).

Despite Infomap and OSLOM being considered state-of-the-art methods, the optimiza-
tion criteria they employ have not been properly explored by other algorithms yet. Mod-
ularity maximization, on the other hand, is one of the most popular optimization criteria
to define graph clusterings. The modularity of a partition is the difference between the
number of edges in the same groups (first term) and the expected number of edges within
the groups in a random graph with the same vertex degree sequence as the original graph
(second term) (Newman & Girvan, 2004). However, many studies in the literature point
out that by simply defining the measure as the difference between these two terms, without
scaling them, may be a poor way to evaluate graph clusterings (Fortunato & Barthélemy,
2007; Reichardt & Bornholdt, 2006).

As an attempt to mitigate the scaling problem of modularity, Reichardt & Bornholdt
(2006) suggested multiplying the second term of the modularity measure by a parameter
called resolution parameter. A few studies approaching this modified modularity have shown
interesting results (Santos et al., 2016; Carvalho et al., 2014). Carvalho et al. (2014), for ex-
ample, introduced a supervised method that automatically adjusts the resolution parameter
based on the graph topology. The method was later employed in the consensus algorithm
proposed by Santos et al. (2016). In spite of the potential of the strategies, they require la-
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beled data for defining a training set of the supervised algorithm. Berry et al. (2011); De Meo
et al. (2013) and Khadivi et al. (2011) introduced pre-processing strategies to change the
edge weights of a graph in order to diminish the negative effects of the resolution limit
without the prior knowledge of the resolution parameter.

Another approach that explores the duality between the first and second terms of the
modularity measure was introduced by Shi et al. (2012). The authors introduced an evolu-
tionary algorithm called MOCD for solving the bi-objective problem that maximizes the first
term of modularity and minimizes the second term of modularity. The studies in (Pizzuti,
2012; Gong et al., 2012, 2014) also investigate bi-objective problems by optimizing different
criteria. In particular, MOCD achieved good quality partitions when compared to the other
evolutionary bi-objective clustering algorithm, known as Moga-Net (Pizzuti, 2012).

This paper investigates a weighted aggregation method for solving the bi-objective prob-
lem that optimizes the first and second terms of modularity. The resulting problem is here
called weighted aggregate modularity and is equivalent to solving the problems that max-
imize the modularity with different resolution parameter values, as demonstrated in this
paper. To solve the weighted aggregate modularity, we propose a multi-objective evolution-
ary algorithm whose fitness function is the spectral relaxation of the weighted aggregate
modularity matrix. In addition, we explore the close relationship between multi-objective
clusterings and ensemble clusterings by introducing an ensemble of the approximation of the
Pareto solutions that adjusts the edge weights of the graph. To the best of our knowledge,
ensemble or consensus clustering strategies have not been applied to solutions of the stud-
ied bi-objective graph clustering problem. The proposed algorithm deals with the resolution
limit by combining both the edge weighting and resolution parameter strategies, without the
need of pre-defining the resolution parameter. Furthermore, we estimate an upper bound to
the number of clusters in advance, which might contribute to further reductions of the neg-
ative effects of the resolution limit according to the computational experiments performed
by Darst et al. (2014).

Computational experiments were carried out using real and LFR networks (Lancichinetti
et al., 2008). We contrasted the results achieved by the proposed algorithm with those found
by Moga-Net, a reference multi-objective method. Moreover, we compared the results with
OSLOM and Infomap. The proposed algorithm outperformed the multi-objective algorithm
Moga-Net in all the networks and was from 6 to 64 times faster in the LFR networks. De-
spite the slightly better results achieved by the reference mono-objective algorithms OSLOM
(Lancichinetti et al., 2011) and Infomap (Rosvall & Bergstrom, 2008) in most of the LFR
networks, the proposed algorithm outperformed them in the LFR networks with large mix-
ture coefficients.

The rest of this paper is organized as follows: Section 2 presents a brief literature review
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of multi-objective and ensemble graph clustering algorithms; Section 3 thoroughly describes
the studied spectral decomposition of the weighted aggregate modularity; Section 4 intro-
duces the multi-objective evolutionary algorithm proposed in this paper; Section 5 discusses
the computational experiments carried out with the algorithm in question along with the
analysis of the results; and, to sum up, Section 6 brief summarizes the contributions of the
paper and outlines further works.

2. Related Works

This section presents a concise literature review focusing on multi-objective optimization
and consensus clustering. As earlier mentioned, both types of strategies are approached in
this paper to mitigate the bias of algorithms that optimize a single quality measure.

2.1. Multi-objective graph clustering methods

Multi-objective optimization involves solving problems with two or more conflicting ob-
jective functions. The existence of trade-offs amongst objective functions is the reason
why a single solution cannot optimize all the functions simultaneously; instead, a number
of efficient solutions, known as Pareto solutions, describes the best solutions for adequate
decision-making. In a multi-objective problem, a solution is called efficient when it is not
possible to improve the value of any objective function without worsening the value of an-
other function.

Because of the computational challenges involved in graph partitioning problems, espe-
cially in large-scale networks, the existing multi-objective solution methods are heuristics.
In particular, the overwhelming majority of multi-objective graph clustering solution meth-
ods are evolutionary algorithms (Pizzuti, 2012; Gong et al., 2012; Shi et al., 2012; Amiri
et al., 2013; Shang et al., 2016; Žalik & Žalik, 2018; Cheng et al., 2018; Zou et al., 2019),
due to the set of evolved solutions provided by their population-based structure. Methods
based on particle swarm optimization (Gong et al., 2014; Chen et al., 2016; Pourkazemi
& Keyvanpour, 2017; Rahimi et al., 2018) and other nature- or human-inspired algorithms
(Gong et al., 2011; Li et al., 2012; Gong et al., 2013; Xu et al., 2015; Zhou et al., 2016; Amiri
et al., 2011; Amiri et al., 2013) were also proposed to solve multi-objective graph clustering
problems.

2.1.1. Optimization of the modularity terms

As mentioned in the earlier section of this paper, Shi et al. (2012) introduced MOCD to
optimize the two terms of the modularity measure. Li et al. (2012) and Žalik & Žalik (2018)
also optimized the two terms of the modularity measure using multi-objective evolutionary
algorithms.
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For this, Li et al. (2012) applied a multi-objective harmony search clustering algorithm
called SCAH-MOHSA to the matrix of eigenvectors of the normalized adjacency matrix.
It is worth pointing out that Li et al. (2012) have suggested a spectral-based algorithm.
This strategy of detecting communities in networks by finding clusters in an eigenvector
matrix which is the solution of the spectral relaxation of graph partitioning problems is
widely employed in the literature. However, clustering algorithms based on this strategy are
known to not scale well since they work with a non-sparse matrix. In this context, there
is a dearth in the literature on efficient spectral-based methods to optimize multi-objective
graph clustering problems.

Žalik & Žalik (2018) introduced CM-Net as a combination of problem-specific genetic
operators with a multi-objective algorithm based on the Non-dominated Sorting Genetic
Algorithm II (NSGA-II) (Deb et al., 2002). SCAH-MOHSA and CM-Net outperformed
an algorithm found in the literature – known as Moga-Net, which is discussed in the next
section – in artificial networks proposed by (Girvan & Newman, 2002). On the one hand,
both SCAH-MOHSA and CM-Net found partitions with higher modularity values than
Moga-Net in real networks. On the other hand, when contrasting the partitions obtained
by SCAH-MOHSA and by Moga-Net with the expected partitions, the algorithms were
competitive1.

In the next section, we briefly present studies about multi-objective graph clustering
algorithms that employ criteria different from modularity to optimize.

2.1.2. Other optimization criteria

Pizzuti (2009, 2012) introduced a bi-objective genetic algorithm, also based on NSGA-
II, which the authors named Moga-Net, to detect communities by maximizing the so-called
community score (Pizzuti, 2008) and minimizing a function named community fitness (Lan-
cichinetti et al., 2008). On the one hand, the community score is based on the evaluation of
the number of edges inside communities. On the other, the community fitness relies on the
assessment of the number of edges between vertices from different communities. In compu-
tational experiments with large real networks, the modularity values of the best modularity
valued partitions from the Pareto sets found by Moga-Net were worse than those found
by a mono-objective spectral clustering algorithm in the literature. The studies performed
in (Gong et al., 2011; Amiri et al., 2011, 2012; Amiri et al., 2013) approached the same
bi-objective problem and presented heuristic methods competitive with Moga-Net.

Gong et al. (2012) suggested a bi-objective problem that aims at maximizing the ra-
tio association (Angelini et al., 2007) and minimizing the ratio cut (Wei & Cheng, 1991).

1Žalik & Žalik (2018) did not contrast the partitions obtained by CM-Net with the expected partitions.
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The ratio association and ratio cut assess the sum of the internal and external degrees,
respectively, of the subgraphs induced by the communities of the graph. Both measures are
normalized by the number of vertices in each community. Other authors also studied these
measures in the literature e.g. in (Zhou et al., 2016; Chen et al., 2016; Shang et al., 2016;
Pourkazemi & Keyvanpour, 2017; Zou et al., 2017; Cheng et al., 2018; Zhu et al., 2008).

2.1.3. Solution selection for the decision-making

It is worth mentioning that solution selection strategies can be used in applications which
require a single solution from multi-objective community detection algorithms that return
a Pareto set approximation. One of the most common strategies is to select from the set
the partition with the highest modularity value (Pizzuti, 2009, 2012; Shi et al., 2012; Gong
et al., 2012, 2013; Ghaffaripour et al., 2016; Pourkazemi & Keyvanpour, 2017). Shi et al.
(2012), in addition to this strategy, suggested considering the minimum standard deviation
of the Pareto solutions from those obtained to a graph generated randomly with the same
degree sequence as the graph under study. The selected Pareto solution is the one whose
minimum standard deviation is the largest among all Pareto solutions. Žalik & Žalik (2018)
suggested ranking the partitions according to their non-domination level measured by the
crowding distance, as suggested in NSGA-II.

Another form to return a single partition from a given set of solutions is by consensus
clustering strategies. Kanawati (2015) suggested using different consensus and ensemble
strategies to obtain a partition from outputs of a graph clustering algorithm. Nevertheless,
the method of Kanawati (2015) was designed only to find clusters of target nodes in a
distributed form. In this paper, we propose a consensus strategy to define a partition from
the Pareto solutions, instead of employing the measure-based strategies introduced in the
literature that are biased to a single evaluation metric. By using the consensus clustering,
our goal is to capture the core communities of the Pareto set and to weight the joint relation
between vertices to define their final communities.

In this context, the next section briefly reviews ensemble and consensus clustering meth-
ods for graph clustering.

2.2. Consensus clustering

Ensemble and consensus clustering are both solution methods that combine algorithms,
partitions or models to perform the clustering task. These methods have been intensively
studied in the last decades (Nascimento et al., 2009; Lancichinetti & Fortunato, 2012; Santos
et al., 2016). They tend to be more robust than those that optimize a single criterion.

The ensemble algorithms for graph clustering related to the study performed in this
paper belong to the class of consensus methods that combines partitions from a set of
diverse partitions in order to determine a consensus partition. The strategy to define such
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consensus partitions relies on observing whether a pair of vertices is in the same group in
most of the partitions in the set. Studies (Lancichinetti & Fortunato, 2012), (Liang et al.,
2014) and (Santos et al., 2016) obtained good results using these methods.

The consensus strategy proposed by Lancichinetti & Fortunato (2012) achieved better
results than ensemble algorithms based on the modularity maximization using the majority
rule. Liang et al. (2014) combined a consensus strategy with a label propagation (LP) algo-
rithm (Raghavan et al., 2007) to obtain better partitions than LP. As previously mentioned,
although Kanawati (2015) approached a graph clustering problem which does not find a
partitioning, one of the strategies the author employed is founded on the definition of a
consensus matrix, similar to the strategy that we introduce in this paper.

In their consensus clustering, Santos et al. (2016) identified a consensual partition from
a set of partitions obtained by an algorithm that aims to maximize the modularity adjusted
for different values of the resolution parameter. The consensual partition is obtained by
assigning the same community to vertices that are in the same community on at least half
of the partitions of the set.

3. Weighted Aggregate Modularity

This section discusses the spectral decomposition of the weighted aggregate modularity.
Throughout this paper, let G = (V,E) be an undirected graph, where V is its set of n
vertices and E is its set of m edges. The edges of G are unordered pairs of distinct adjacent
vertices (i, j), where i, j ∈ V . Let A = [aij ] ∈ Nn×n be the adjacency matrix of G, i.e., aij is
1 if (i, j) ∈ E, and 0 otherwise. The degree of a vertex i, di, is given by

∑
j∈V aij . A vertex

partition with k clusters (groups or communities) is here defined as P = {C1, C2, . . . , Ck},
where

⋃k
t=1Ct = V and Ct ∩ Ct′ = ∅, ∀t 6= t′ ∈ {1, 2, . . . , k}. The label of a cluster Ct is t

and, for ease of notation, we refer to cluster Ct as the cluster with label t and to the label
of the cluster of a vertex i in a partition P as CP (i).

Modularity is a measure that assesses the difference between the number of edges within
clusters and its expected number in a random graph with the same degree sequence as the
graph under consideration. Equation (1) presents a way to calculate the modularity measure
originally introduced by Newman & Girvan (2004).

Q(P ) =
1

2m

∑
i,j∈V

(
aij −

didj
2m

)
δCP (i),CP (j) (1)

In Equation (1), δCP (i),CP (j) is an indicator function that assumes value 1 if CP (i) = CP (j),
and 0 otherwise. The resolution parameter, as suggested by Reichardt & Bornholdt (2006),
is a scalar γ that multiplies the term didj

2m in Equation (1).
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Equation (1) shows that in order to maximize the modularity, the first term, i.e. aij ,
must be maximized and the second term, i.e. didj

2m , has to be minimized. On the one hand,
the higher the number of edges within clusters, the higher the first term. On the other,
the lower the number of edges within clusters, the lower the expected number of edges
within clusters and consequently, the lower the second term. These two terms, therefore,
are conflicting and result in a trade-off in the modularity measure (Brandes et al., 2008).

As discussed earlier in this paper, Shi et al. (2012) have approached the bi-objective
problem that optimizes the two terms of modularity. Equations (2) and (3) present the pair
of objective functions of the bi-objective problem.

max
P

QIN (P ) =
1

2m

∑
i,j∈V

aijδCP (i),CP (j) (2)

min
P
QNULL(P ) =

1

2m

∑
i,j∈V

didj
2m

δCP (i),CP (j) (3)

Consider the weighted aggregation of the objective functions QIN (P ) and QNULL(P ) as
presented in Equation (4). The objective function (3) can be transformed into a maximiza-
tion function without loss of generality by multiplying the function by -1.

QW (P ) =
1

2m

∑
i,j∈V

[
γ1aij − γ2

didj
2m

]
δCP (i),CP (j), (4)

where γ1, γ2 ∈ R, γ1 + γ2 = 1.
The set of solutions for the weighted aggregation problem for different values of γ1

and γ2 are efficient (Ehrgott, 2005), and thereby provide an approximation to the Pareto
frontier of the bi-objective problem. Moreover, as γ1 and γ2 are both scalars, when γ1 > 0

the optimization problem maxP QW is equivalent to 1
γ1

maxP QW , which is exactly the
adjusted modularity maximization problem. Therefore, the solutions of the modularity
maximization problem with different values of resolution parameter are also efficient Pareto
solutions for the bi-objective problem (2)-(3). In particular, the maximization of Equation
(4) for γ1 = γ2 = 0.5 is equivalent to the classical modularity maximization problem.

We also say that a partition Pa dominates a partition Pb if and only if QIN (Pa) >

QIN (Pb) andQNULL(Pa) ≤ QNULL(Pb) or if and only ifQIN (Pa) ≥ QIN (Pb) andQNULL(Pa)

< QNULL(Pb).

3.1. Spectral decomposition

This section presents the spectral decomposition of the weighted aggregation of modu-
larity provided in Equation (4). It is strongly based on the spectral decomposition proposed
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by Newman (2006). Let us first define in Equation (5) the weighted aggregate matrix
BW = [bwij ] ∈ Rn×n.

bwij = γ1aij − γ2
didj
2m

(5)

Note that the modularity matrix is B = 1
γ1
BW, where γ = γ2

γ1
= 1. Consider the

sequence of eigenvalues of matrix BW , λ1, λ2, . . . , λn, sorted in the decreasing order of
absolute value, that is, |λ1| ≥ |λ2| ≥ · · · ≥ |λn|. Let U ∈ Rn×n be a matrix such that its
j-th column, referred to as column uj , is an eigenvector of BW associated with eigenvalue
λj . BW is symmetric and thus admits an eigen-decomposition: BW = UΛUT , where
Λ = [Λij ] ∈ Rn×n is a diagonal matrix such that Λii = λi.

Let S = [sit] ∈ Nn×k be a binary matrix associated with a solution of the graph clustering
problem. Element sit receives 1 if vertex i belongs to cluster Ct, and 0 otherwise. Therefore,
δCP (i),CP (j) =

∑k
t=1 sitsjt. Equation (4) can hence be rewritten as indicated in Equation (6).

QW (P ) =
1

2m

∑
i,j∈V

k∑
t=1

bwijsitsjt =
1

2m
Tr(STBWS) (6)

Any given vertex belongs to exactly and only one cluster, which implies that
∑k

t=1 sit =

1, i = 1, . . . , n, and Tr(STS) = n. Knowing that U is an orthogonal matrix, we can rewrite
Equation (6) as Equation (7).

QW (P ) =
1

2m
Tr[STUΛUTS] =

1

2m

n∑
j=1

k∑
t=1

λj(

n∑
i=1

uijsit)
2 (7)

Since Equation (7) shows that only positive eigenvalues increase the value of QW ,
Newman (2006) suggested approximating Equation (7) using only the first largest positive
eigenvalues. Nonetheless, Newman (2006) also demonstrated that negative eigenvalues are
important to indicate vertices that decrease the QW (P ) in case they are clustered together.
This paper takes into account the negative eigenvalues by selecting the first p eigenvalues
sorted in decreasing order of absolute value.

Consider E the set of the first p eigenvalues of BW ; let Ep = {j|λj ∈ E such that λj ≥ 0}
and En = {j|λj ∈ E such that λj < 0} be the positive and negative eigenvalue indices,
respectively. Moreover, let rpi ∈ Rp and rni ∈ Rp be the vectors regarding vertex i whose
components are defined by Equations (8) and (9), respectively. Also, in this paper, rpi is
called positive vector of vertex i, whereas rni is referred to as negative vector of vertex i.

rpij =

{√
λjuij , if j ∈ Ep

0 , if j ∈ En
(8)
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rnij =

{√
−λjuij , if j ∈ En

0 , if j ∈ Ep
(9)

Equation (10) approximates Equation (7) using the p largest eigenvalues in absolute
value.

QW (P ) ' 1

2m

∑
λj∈E

k∑
t=1

[
n∑
i=1

√
|λj |uijsit

]2

=
1

2m

k∑
t=1

p∑
j=1

(∑
i∈Ct

rpij

)2

−

(∑
i∈Ct

rnij

)2


=
1

2m

k∑
t=1

(||Rpt||2 − ||Rnt||2)

(10)

where ∀j ∈ {1, . . . , p}, Rptj =
∑

i∈Ct
rpij and Rn

t
j =

∑
i∈Ct

rnij .
Furthermore, Rpt = [Rptj ]j=1...p and Rnt = [Rntj ]j=1...p are referred to as vectors of

cluster Ct. In this paper, Rpt is called positive vector of cluster Ct, whereas Rnt is referred
to as negative vector of cluster Ct.

Similarly to the results of the approximation with positive eigenvalues carried out by
Newman (2006), we have reduced the weighted aggregate modularity maximization problem
into a vector partitioning problem. The goal of the vector partitioning problem is to find
a vertex partition by maximizing the terms Rpt and minimizing the terms Rnt, for t =

1, 2, . . . , k.
It is well-known that the number of groups has a direct impact on the number of eigen-

vectors required to determine graph clusterings. Thereby, most spectral heuristics must first
define the number of groups, which is generally not known in advance.

3.2. Defining the number of clusters

In this paper, we adapted the strategy to identify the number of clusters presented
by Krzakala et al. (2013), who constructed a matrix called non-backtracking matrix from
the adjacency matrix of a given graph and estimated the number of clusters through the
eigenvalues of this matrix.

The adaptation proposed here consists in estimating the number of clusters based on
the weighted aggregate modularity matrix BW . Let χ be the largest (leading) eigenvalue of
BW . The proposed algorithm sets k′ as the number of eigenvalues of BW higher than √χ.
In this paper, we estimate the number of clusters, k, to be b1.25k′c. This estimation is an
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upper bound to the number of clusters because the proposed algorithm might leave one or
more clusters empty.

Figure 1 displays an example of the proposed strategy by depicting the eigenvalues of
the Karate network (Zachary, 1977), whose largest eigenvalue is 4.977. The red squares
in this figure indicate the points (−√χ, 0) and (

√
χ, 0) and a circumference of radius √χ

centered at the origin of the Cartesian plane. Most of the black dots, which correspond to
the eigenvalues of matrix BW , are enclosed by the circumference. The proposed algorithm
estimates k′ to be the number of eigenvalues higher than √χ, i.e., the number of positive
points outside the circumference, which is 3. Therefore, the upper bound estimation to the
number of clusters is k = 3.

● ●●● ● ●● ●● ●●●●● ● ●●●●●●●●●●●●●●●●●●●

−6 −4 −2 0 2 4 6
−4

−2

0

2

4

Figure 1: Distribution of the eigenvalues of the Karate network.

3.3. Geometric interpretation

Figure 2 illustrates, for a given bipartition P of the benchmark Karate network, the
geometric interpretation of all the vectors of vertices and clusters. This network has 34

vertices. The positive and negative vectors are shown in Figures 2(a) and 2(b), respectively.
In these figures, the vectors of clusters are identified by their labels and the solid and dashed
lines distinguish the vertex vectors regarding clusters 1 and 2, respectively.

The cluster vectors are the sum of the vertex vectors that compose the clusters. The
higher RptT rpi and the lower RntT rni, ∀i ∈ V and t = CP (i), the higher the modularity. On
the one hand, the obvious choice to maximize the magnitude of the positive cluster vectors in
Figure 2(a) is to select the vertices whose positive vertex vectors point to the same direction.
On the other hand, to minimize the magnitude of the negative cluster vectors in Figure 2(b),
the vertices whose negative vertex vectors point to opposite directions should be selected.
By comparing Figures 2(a) and 2(b), it is possible to observe that the magnitude of the
positive vectors of the clusters is approximately 4.51 times higher than the magnitude of the
negative vectors of the clusters.
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●

−4 −2 0 2 4

−4

−2

0

2

4

Cluster 1
Cluster 2

1 2

(a) Positive vertex and cluster vectors

●

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

Cluster 1
Cluster 2

12

(b) Negative vertex and cluster vectors

Figure 2: Vectors of the vertices and clusters of the bipartition found by the algorithm proposed in this
paper to maximize the weighted aggregate modularity with γ1 = γ2 = 0.5 applied to the Karate network.

3.4. Moving vertices between clusters

Given a partition P at hand, some procedures attempt to enhance its quality, which
can be evaluated using a fitness function. One way of performing this task is by moving
vertices from one cluster to another so that the modified partition has better quality than the
previous one. Many studies that employ this type of strategy can be found in the literature,
e.g. (Newman, 2006) and (Zhang & Newman, 2015).

Moving a vertex i from a cluster Cb to a cluster Ct modifies the fitness function value,
i.e., the weighted aggregate modularity. Let the vectors of clusters Cb and Ct, disregarding
the contribution of vertex i, be defined by Rpb =

∑
v∈Cb,v 6=i rp

v, Rnb =
∑

v∈Cb,v 6=i rn
v,

Rpt =
∑

v∈Ct
rpv and Rnt =

∑
v∈Ct

rnv.
On the one hand, before moving i to cluster Ct, the vectors of clusters Cb are given

by Rp′b = Rpb + rpi and Rn′b = Rnb + rni, respectively. On the other hand, before
any movement, the vectors of cluster Ct are Rp′t = Rpt and Rn′t = Rnt. After moving
i from cluster Cb to Ct, the vectors of the clusters are Rp′′b = Rpb, Rp′′t = Rpt + rpi,
Rn′′b = Rnb and Rn′′t = Rnt + rni. Equation (11) presents the change in the weighted
aggregate modularity of partition P after moving a vertex i from a cluster Cb to a cluster
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Ct.

∆QW (i, Cb, Ct) =
1

2m
[ ||Rp′′b||2 − ||Rn′′b||2 + ||Rp′′t||2 − ||Rn′′t||2

−(||Rp′b||2 − ||Rn′b||2 + ||Rp′t||2 − ||Rn′t||2) ]

=
1

m

[
Rpt

T
rpi −RntT rni −RpbT rpi +Rnb

T
rni
] (11)

From Equation (11), it is possible to see that ∆QW (i, b, t) ≥ 0 if (Rpt
T
rpi−RntT rni) ≥

(Rpb
T
rpi −RnbT rni).

Recently, Zhang & Newman (2015) presented a spectral greedy heuristic to solve the
vector partitioning problem considering only positive eigenvalues. In this heuristic, starting
from an initial group of vectors, at each iteration, the algorithm moves a vertex i to the
cluster Ct∗ that results in the largest positive gain in modularity. Concerning both positive
and negative eigenvalues, a simple greedy heuristic consists of moving vertex i to the cluster
Ct∗ that results in the largest value for Rpt∗T rpi − Rnt∗T rni. Equation (12) defines the
choice of t∗.

t∗ = arg max
t∈{1,...,k}

{
Rpt

T
rpi −RntT rni , if CP (i) 6= t

0 , if CP (i) = t
(12)

If t∗ = CP (i), vertex i will remain in its original cluster.

4. Proposed Spectral-evolutionary Hybrid Multi-objective Algorithm

This section thoroughly describes the spectral-evolutionary hybrid multi-objective al-
gorithm proposed in this paper and called MOSpecG. MOSpecG is an iterative two-phase
algorithm. At the first phase, the weighted aggregate modularity matrix is updated and its
eigen-decomposition is performed. At the second phase, a memetic algorithm works based
on the information of the vertex vectors – discussed in the earlier section. To a better
understanding of the method, Algorithm 1 presents a pseudocode of MOSpecG.

According to Algorithm 1, MOSpecG has as input: an undirected unweighted graph G;
the size of the Pareto frontier, NF ; the number of generations, NG; the number of solutions
in the population, NP; the percentage of solutions from the offspring, NO; the number of
eigenvalues and eigenvectors to be computed, p; and the number of iterations of the local
search procedure, IT .

In line 1 of Algorithm 1, set F is initialized as empty. Consider that the possible values
of γ1 and γ2 are defined in a grid to ensure a good spreading of the solutions in the Pareto
frontier approximation. Therefore, the grid spacing is dependent on the number of solutions
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Algorithm 1: MOSpecG
Input : G, NF , NG, NP, NO, p and IT
Output: F

1 F = ∅
2 inc = 1

NF−1

3 for γ1 = 0 to 1, γ1 = γ1 + inc do
4 γ2 = 1− γ1

5 Construct the weighted aggregate modularity matrix BW with weights γ1 and γ2

6 Λ, U := Eigen-decomposition of BW regarding the p largest eigenvalues in
absolute value

7 χ := maxΛii,∀i(Λii)
8 k′ := number of eigenvalues of BW with value larger than or equal to √χ
9 k := b1.25k′c

10 Define vertex vectors rpi and rni, ∀i ∈ V
11 P :=Memetic Algorithm(NG,NP,NO, IT, k, rpi, rni,∀i ∈ V )
12 F := F ∪ P
13 end

of the resulting Pareto frontier. In line 2, the grid spacing is assigned to variable inc in order
to define values for γ1. In the sequence, weight γ2 is calculated taking γ1 as reference, in line
4. From lines 5 to 11, the proposed heuristic creates a new solution to the approximation
of the Pareto frontier by optimizing QW with the current values of γ1 and γ2.

In particular, in line 5, the algorithm constructs matrix BW with weights γ1 and γ2

according to Equation (5). In line 6, the largest p eigenvalues and the associated eigenvectors
that compose Λ and U are computed using the implicitly restarted Arnoldi method from
ARPACK++ library (Lehoucq et al., 1998). In line 7, the leading eigenvalue is assigned to
χ. In lines 8 and 9, MOSpecG estimates the number of clusters, k, according to Section 3.2.
In line 10, vertex vectors rpi and rni, ∀i ∈ V , are defined according to Equations (8) and
(9), respectively. In line 11, MOSpecG calls the Memetic Algorithm function presented in
Algorithm 2 to optimize QW with weights γ1 and γ2. The resulting partition P is included
in the Pareto frontier approximation F in line 12. At the end, Algorithm 1 returns F .

In the next section, the Memetic Algorithm employed in line 11 of Algorithm 1 is com-
prehensively discussed.

4.1. Memetic Algorithm

Before going into detail on the algorithm, let us briefly introduce the notations employed
in this section.

Let the population of the g-ith generation be defined by Pg = {P g1 , P
g
2 , . . . , P

g
NP}, where

g ∈ {1, 2, . . . , NG}. The individuals from the population of the g-ith generation are the
partitions P gh , h ∈ {1, 2, . . . , NP}.
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Algorithm 2 presents the proposed Memetic Algorithm, whose inputs are: NG; NP ;
NO; IT ; the number of clusters, k; and the vertex vectors rpi and rni, ∀i ∈ V . In line 1 of
Algorithm 2, the initial population, i.e., individuals from the first generation, is constructed
using the strategy suggested by Zhang & Newman (2015). This strategy selects k vertices and
assigns each of them to a different cluster (k singletons). Then, the vectors of the selected
clusters Rpt and Rnt, t = 1, . . . , k, are updated. The remaining vertices are assigned to
clusters Ct∗ , where t∗ is chosen according to Equation (12).

Algorithm 2: Memetic Algorithm
Input : NG, NP, NO, IT , k, rpi and rni, ∀i ∈ V
Output: Fittest individual P ∗

1 P 1
s , s = 1, . . . , NP := construct solution using vertex vectors as directions

2 for g = 1 to NG do
3 O := Crossover(Pg, k, rpi, rni,∀i ∈ V )
4 O := Mutation(O, k, rpi, rni, ∀i ∈ V )
5 O := LocalSearch(O, IT, k, rpi, rni,∀i ∈ V )
6 Pg+1 := Update population Pg using O
7 end
8 P ∗ := the fittest individual from PNG

Figure 3 shows an example of an initial partition of the Karate network. To calculate
QW , we considered γ1 = γ2 = 0.5. In this figure, each square identifies the cluster label of
a vertex of the network.

1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2P 1
s

QW (P 1
s ) = 0.1443

Figure 3: Example of a solution for the Karate network when γ1 = γ2 = 0.5.

In line 3, the Memetic Algorithm constructs the offspring of generation g, O, by applying
the genetic operator crossover (Algorithm 3) to the current population Pg. In lines 4 and
5, the genetic operator mutation (Algorithm 4) and a local search procedure (Algorithm 5)
update the offspring population. The population of the next generation, Pg+1, is the pop-
ulation Pg but with the NO% fittest individuals from the offspring O replacing the NO%

least fit individuals from Pg. In line 8, the algorithm returns the fittest individual from
PNG , i.e., individual P ∗ such that P ∗ = arg maxP∈PNG QW (P ).

4.1.1. Crossover

Algorithm 3 presents the one-way crossover procedure of the Memetic Algorithm, which
has as input Pg, k, rpi and rni , ∀i ∈ V . At each iteration f , the crossover constructs a
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new solution for the offspring population, O, by combining two solutions from the current
population Pg. In line 2, the fitness proportionate roulette method selects two individuals
P gb and P gd , b, d ∈ {1, 2, . . . , NP}, b 6= d, to perform the crossover. In line 3, the algorithm
creates an offspring individual W as a copy of P gd . In line 4, the method randomly selects a
vertex vs and, in line 5, ls stores the label of the cluster of vs in individual P gb .

Algorithm 3: Crossover
Input : Pg, k, rpi and rni, ∀i ∈ V
Output: O = {O1, O2, . . . , ONP}

1 for f = 1 to NP do
2 Pick randomly P gb and P gd , b, d ∈ {1, 2, . . . , NP}, b 6= d, from Pg with probability

distribution pr(P gh ) =
QW (P g

h )∑
P
g
j
∈P QW (P g

j )
, h ∈ {1, 2, . . . , NP}.

3 W := P gd
4 Randomly select a vertex vs from V
5 ls := P gb (vs)
6 ld∗ := choose according to Equation (13)
7 Move vd to cluster Cld∗ in individual W , ∀vd ∈ V such that CP g

b
(vd) = ls and

CW (vd) 6= ld∗

8 Update QW and cluster vectors
9 Of := W

10 end

In line 6, the crossover procedure selects the cluster with label ld∗ from individual P gd
as the cluster whose sum of the inner products Rpbls

T
Rpdld and Rnbls

T
Rndld is the maximum

amongst all ld ∈ {1, . . . , k}, according to Equation (13).

ld∗ = arg maxld∈{1,...,k}(Rp
b
ls
T
Rpdld +Rnbls

T
Rndld) (13)

Figure 4 shows an example of the selection performed in line 6 of Algorithm 3. It
illustrates the cluster vector with label ls = 2 in individual P gb , as a solid red line, and
the cluster vectors with labels ld ∈ {1, 2} in individual P gd – candidates to ld∗ – as dashed
lines. The positive and negative vectors are identified by the label of the clusters and are
shown in Figures 4(a) and 4(b), respectively. The conjecture that justifies the selection
choice is that the clusters whose vectors point to the same direction have more vertices in
common. In this example, the cluster with label ld∗ = 1 from individual P gd is selected
because Rpbls=2

T
Rpdld∗=1 +Rnbls=2

T
Rndld∗=1 is higher than Rpbls=2

T
Rpdld=2 +Rnbls=2

T
Rndld=2

in individual P gb .
In line 7, the method moves the vertices vd in the cluster labeled ls in individual P gb to

cluster labeled ld∗ in individual W . For all vd ∈ V already belong to the cluster labeled
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●

−4 −2 0 2 4
−4

−2

0

2

4

ls=2
Candidates for ld*

2 1 2

(a) Positive cluster vectors

●

−0.6 −0.2 0.2 0.4 0.6

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

ls=2
Candidates for ld*

2

1

2

(b) Negative cluster vectors

Figure 4: Example of the selection of ld∗ performed by the crossover procedure in the Karate network.

ld∗, nothing is done. After each movement, line 8 of Algorithm 3 updates: (i) the weighted
aggregate modularity QW , according to Equation (11), and (ii) the vectors of the clusters
involved in the vertex moves in individual W , according to Section 3.4. After setting W
as the offspring individual Of in line 9, the crossover returns the offspring population O =

{O1,O2, . . . ,ONP}.
Figure 5 gives an example of the crossover procedure when γ1 = γ2 = 0.5. In the

example, the offspring individual W had a higher weighted aggregate modularity value than
the parents P 1

b and P 1
d . Let ls = 2; the selection of ld∗ = 1 was illustrated in Figure 4. The

vertices whose cluster label is ls = 2 on individual P 1
b are in bold on the partitions. At the

offspring individual, which is initially a copy of P 1
d , these vertices are moved to the group

labeled ld∗ = 1, if they are not yet in this group.

4.1.2. Mutation

Algorithm 4 presents the mutation procedure whose inputs are: the offspring population,
O; k; rpi and rni, ∀i ∈ V . In line 1, a random integer number in the interval [1, bn2 c] is
assigned to count, which indicates the number of mutations. In line 2, an individual Od is
randomly selected from O. In line 3, the algorithm picks count vertices from V at random
to define the set of vertices to be mutated, V ′ . Each vertex vd ∈ V ′ is assigned to a cluster
Cr chosen randomly from individual Od, in lines 5 and 6. Note that if a cluster Ct is empty,
vd will be assigned to a new cluster. After each movement of a vertex vd, both QW and the
vectors of cluster Cr are updated in line 8. The mutation procedure halts when all vertices
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1 2 1 2 2 2 2 2 1 1 2 2 2 2 1 1 2 2 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1P 1
b

QW (P 1
b ) = 0.1835

1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2P 1
d

QW (P 1
d ) = 0.1443

ls = 2 ld∗ = 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2W

QW (W ) = 0.1868

Figure 5: Example of the crossover procedure in a partition of the Karate network for γ1 = γ2 = 0.5.

of V ′ have been mutated and, then, returns the updated offspring O.

Algorithm 4: Mutation
Input : O, k, rpi and rni, ∀i ∈ V
Output: Updated O

1 Randomly choose an integer number count from interval [1, bn2 ]c with uniform
probability distribution

2 Randomly select an individual Od from O
3 Randomly pick count distinct elements from V and assign them to V ′

4 while V ′ 6= ∅ do
5 Randomly choose Cr from the k possible clusters of Od
6 Move a vd ∈ V ′ to cluster Cr, if COd

(vd) 6= r

7 V
′

:= V
′\{vd}

8 Update QW and vectors of cluster Cr
9 end

Figure 6 presents an example of the mutation procedure on an individual Od generated
to decode a solution for the Karate network. The mutated individual Od is a result of the
modification of the labels of 6 randomly selected vertices.

4.1.3. Local search

Algorithm 5 shows the local search procedure of the introduced Memetic Algorithm,
which has as input O, IT , k, rpi and rni, ∀i ∈ V . Each iteration of the local search
attempts to improve the modularity value of individuals of offspring O by moving vertices
to different communities. In line 4, for each individual Od ∈ O and each vertex vi ∈ V ,
the local search selects the label t∗ such that the relocation of vi to cluster Ct∗ will result
in the largest modularity gain. In line 5, vi is assigned to cluster Ct∗ , if it does not belong
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1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 2 2 1 2 1 2 1 1 1 1 1 1 1 2 2 1 1 1Od

QW (Od) = 0.1408

2 1 2 2 2 2 2 2 1 2 2 2 1 2 1 1 2 2 1 2 1 2 2 1 1 1 2 1 1 2 1 1 1 1Mutated Od

QW (Od) = 0.0799

Figure 6: Example of the mutation procedure on an individual that decodes a solution for the Karate network
when γ1 = γ2 = 0.5.

to it yet. After moving vi, in line 6 of the algorithm, QW , the vectors of cluster Ct∗ and
the vector of the cluster where vi was found before being moved are updated. Algorithm 5
returns the improved offspring O.

Algorithm 5: Local Search
Input : O, IT , k, rpi and rni, ∀i ∈ V
Output: O

1 for it = 1 to IT do
2 for Od ∈ O do
3 for vi ∈ V do
4 Select t∗ according to Equation (12)
5 Move vi to cluster Ct∗ if COd

(vi) 6= t∗

6 Update QW and the vectors of cluster Ct∗
7 end
8 end
9 end

Figure 7 illustrates the local search procedure on an individual of the offspring. In this
figure, the procedure improved the weighted aggregate modularity of an individual Od by
moving a single vertex to a different cluster.

0 1 2 1 1 1 1 1 2 2 1 1 1 1 2 2 1 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2Od

QW (Od) = 0.1835

1 1 1 1 1 1 1 1 2 2 1 1 1 1 2 2 1 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2Improved Od

QW (Od) = 0.1946

Figure 7: Example of the local search applied to a solution for the Karate network when γ1 = γ2 = 0.5.
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4.2. Ensemble algorithm
This section introduces an ensemble algorithm that uses information of partitions ob-

tained by MOSpecG to find a single partition that best captures the community structure
of a network. Algorithm 6 presents the proposed ensemble algorithm, called SpecG-EC. The
algorithm has as input G; NG; NP; NO; p; IT ; a set of partitions, F , and a required
threshold, τ . A partition from F is identified by Fi, i = {1, . . . , NF}, and represents the
solution achieved by MOSpecG for γ1 = (i− 1) 1

NF−1 , γ2 = 1− γ1.

Algorithm 6: SpecG-EC
Input : G, NG, NP, NO, p, IT , F and τ
Output: Ensemble partition EP

1 F ′ := F\{F1,FNF}
2 eij := number of times that F ′a(i) = F ′b(j),∀F ′a,F ′b ∈ F ′,∀i, j ∈ V
3 E := E

|F ′ |
4 eij = 0, if eij < τ , ∀i, j ∈ V
5 A := A+ E
6 ΛE , UE := Eigen-decomposition of B regarding the p largest eigenvalues in absolute

value
7 χ := maxΛEii,∀i(ΛEii)
8 k′ := number of eigenvalues of B with values larger than or equal to √χ
9 k := b1.25k′c

10 Define vertex vectors rpi and rni, i ∈ V
11 EP := Memetic Algorithm(NG,NP,NO, IT, k, rpi, rni, ∀i ∈ V )

Line 1 of Algorithm 6 assigns to F ′ every solution from F except those by MOSpecG for
the pair of values γ1 = 0, γ2 = 1 and γ1 = 1, γ2 = 0, i.e., F1 and FNF . Let E = [eij ] ∈ Rn×n

be a consensus matrix. In lines 2 to 4, E is defined according to Lancichinetti & Fortunato
(2012): in line 2, eij receives the number of times that vertices i and j appear in the same
cluster in the partitions from F ′; in line 3, matrix E is normalized; and, in line 4, elements
from E below a threshold τ are set to 0 to avoid noisy data. In particular, the step described
in line 4 is skipped for i′, j′ ∈ V , where j′ = arg maxj ei′j and ei′j′ < τ .

In order to favor the grouping of vertices that are in the same cluster in the majority
of the partitions from F ′, in line 5, the ensemble algorithm adjusts the original graph by
adding the consensus matrix to the adjacency matrix.

The ensemble algorithm calculates the eigenvalues and eigenvectors of the original mod-
ularity matrix B, in line 6. It estimates the number of clusters, k, in lines 7 to 9, according
to Section 3.2. In line 10, the vertex vectors rpi and rni, i ∈ V , are created from the eigen-
values and eigenvectors of B. Finally, SpecG-EC calls Algorithm 2 to find the partition EP
that maximizes the modularity of the adjusted graph in line 11. The ensemble algorithm
returns EP .
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5. Computational Experiments

This section discusses the computational experiments performed with MOSpecG in real
and artificial networks. In this section, we refer toMOSpecG for maximizing modularity, i.e.,
with γ1 = γ2 = 0.5, as MOSpecG-mod. Both SpecG-EC and MOSpecG were implemented in
C++ using the ARPACK++ library2. The following values of the parameters were defined
in the algorithms after preliminary tests, reported in Appendix A: NF = 11, τ = 0.5,
NG = 50, NP = 5, NO = 40 and p = b0.1nc. A single parameter was valued differently in
experiments with real networks and artificial networks, which is the number of iterations of
the local search, IT . In the experiments with real networks, the value of IT was 5, whereas
in the experiments with artificial networks, which are much larger than the real networks,
IT was valued 1. All the experiments were run on a computer with an Intel Core i7-4790S
processor with 3.20GHz and 8GB of main memory.

The experiments are divided into two parts, each of them with two experiments. The
first experiment of the first part shows the results obtained by MOSpecG with real networks.
In this experiment, we present the results including the dominated solutions obtained by
MOSpecG because some of them had good NMI values. Therefore, we refer to the sets of
solutions found by MOSpecG as solution sets rather than Pareto frontier approximations.
In the second experiment of the first part, also with real networks, we contrasted the re-
sults achieved by SpecG-EC and MOSpecG-mod with those found by the reference graph
clustering algorithms: Moga-Net, OSLOM and Infomap. Artificial networks were used in
the second part of the computational tests. In the first experiment of the second part, we
again present the results achieved by MOSpecG. In the second experiment, we compared
the results achieved by SpecG-EC and MOSpecG-mod with those obtained by Moga-Net,
OSLOM and Infomap. The codes of the reference algorithms used in the experiments are
those provided in the authors’ website.

In all experiments, the expected partitions of the tested networks are known. Thereby,
to evaluate the correlation between the solutions found by the algorithms and the ground
truth partitions, we used the measure Normalized Mutual Information (NMI) (Shannon,
1948). The NMI values lie in the range [0, 1] and the higher they are, the more correlated
is the pair of partitions.

5.1. Experiments with real networks

This section shows the results of the experiments with the real benchmark networks:
Karate (Zachary, 1977), Dolphins (Lusseau et al., 2003), Polbooks (Krebs, 2008) and Foot-

2The source code is available at https://github.com/camilapsan/MOSpecG_SpecG.
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ball (Girvan & Newman, 2002). Table 1 presents the number of vertices and edges in these
networks.

Table 1: Number of vertices and edges in the real benchmark networks.
Network

Karate Dolphins Polbooks Football
Number of vertices 34 62 105 115
Number of edges 78 159 441 613

5.1.1. Solution sets found by MOSpecG

Figure 8 exhibits the solution sets achieved by a single execution of MOSpecG for the
real benchmark networks. This figure illustrates the trade-offs between the two conflict-
ing objectives. Each point is labeled with the NMI value achieved by the corresponding
partitions.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.027

0
0

1
1

1
1

1
1 0

0

γ 2
 Q

nu
ll

γ1 Qin

0 0.1 0.2 0.4 0.5 0.6 0.7 0.8 0.9 1

1 0.9 0.8 0.6 0.5 0.4 0.3 0.2 0.1 0
γ1

γ2

(a) Karate network.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0 0

0

0.4860.514

0.6620.662
0.581

0.889
0.889

0.777
0

γ 2
 Q

nu
ll

γ1 Qin

0 0.1 0.3 0.5 0.7 0.8 0.9 1

1 0.9 0.7 0.5 0.3 0.2 0.1 0
γ1

γ2

(b) Dolphins network.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0 0

0.569
0.569

0.568

0.45 0.502
0.473 0.563 0.568

0.568 0

γ 2
 Q

nu
ll

γ1 Qin

0 0.1 0.2 0.3 0.5 0.7 0.8 0.9 1

1 0.9 0.8 0.7 0.5 0.3 0.2 0.1 0
γ1

γ2

(c) Polbooks network.
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Figure 8: Solution sets.

MOSpecG was able to correctly identify the expected partitions of the Karate network
for γ1 ∈ {0.3, 0.4, . . . , 0.8} and γ2 ∈ {0.2, 0.3, . . . , 0.7}. On the one hand, MOSpecG achieved
the highest NMI values for the Dolphins network when γ1Q

IN > γ2Q
NULL and γ1 > γ2. On
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the other hand, it achieved the highest NMI values for the Football and Polbooks networks
when γ2Q

NULL > γ1Q
IN and γ2 > γ1.

Figures 9, 10, 11 and 12 illustrate the partitions found by SpecG-EC and MOSpecG-
mod for the Karate, Dolphins, Polbooks and Football networks, respectively. These figures
also report the partitions found by MOSpecG with the γ1 and γ2 values that resulted in
the highest NMI values, here referred to as best partitions. Each vertex is identified by its
cluster label in these figures.
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Figure 9: The partition found by SpecG-EC, MOSpecG-mod and MOSpecG with γ1 ∈ {0.3, 0.4, . . . , 0.8} and
γ2 ∈ {0.2, 0.3, . . . , 0.7} for the Karate network: NMI value of 1.
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tion found by MOSpecG with
γ1 ∈ {0.7, 0.8}, γ2 ∈ {0.2, 0.3}:
NMI value of 0.889.
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Figure 10: Dolphins network.

Figure 9 exhibits the expected partition of the Karate network, found by the proposed
algorithm. Figure 10 shows that the ensemble and the best partition obtained by MOSpecG
for the Dolphins network have the expected number of clusters. The cluster with label 3

from the partition returned by MOSpecG-mod, in Figure 10(b), is merged with the cluster
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(a) The partition found by
SpecG-EC and the best parti-
tion found by MOSpecG with
γ1 ∈ {0.1, 0.2}, γ2 ∈ {0.8, 0.9}:
NMI value of 0.569.

3

3

1

3 3

3
3

1
1

1
1 1

1

1 3

3

1

33

1 1
1

1

1

3

1

1

2

3

2
2

1

1

1

1

1

1
11

1

1
1

1

1
1

1 1
1

4

4
4

4

1

1

3

1

1

4

2

2

2

22

4

4

2

4
4

4

2
2

22

2
2

2 2

2
2

22

22
2

4

2

2
2

2

2
22

22
2

2
2

2

2
2

2

2
4

4

3

(b) The partition found by
MOSpecG-mod : NMI value of
0.502.

Figure 11: Polbooks network.
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(a) The partition found by SpecG-
EC : NMI value of 0.839.
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(b) The partition found by
MOSpecG-mod : NMI value of
0.832.
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(c) The best partition found by
MOSpecG with γ1 = 0.4, γ2 = 0.6:
NMI value of 0.916.

Figure 12: Football network.

with label 1 in the ensemble partition in Figure 10(a). Figure 11 shows that most of the
vertices from clusters with labels 3 and 4 in the partition found by MOSpecG-mod for the
Polbooks network are merged in, respectively, clusters with labels 1 and 2 in the ensemble
partition obtained by SpecG-EC. None of the partitions found for the Football network in
Figure 12 correctly defined the number of clusters.

5.1.2. Comparative analysis

Table 2 reports the average results of ten independent executions of SpecG-EC,MOSpecG-
mod, Moga-Net, OSLOM and Infomap to detect communities in real networks. The results
presented are the NMI values, the CPU-times in seconds and number of clusters. The stan-
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dard deviation of the presented values is shown between parentheses. Table 2 also presents
the number of clusters in the expected partitions.

Table 2: NMI, CPU-times and number of clusters achieved by the algorithms for real graphs.
Network

Karate Dolphins Polbooks Football

SpecG-EC
NMI 1 (0) 0.889 (0) 0.565 (0.006) 0.864 (0.03)

CPU-time (s) 0.172 (0.05) 0.33 (0.053) 0.884 (0.131) 1.377 (0.203)
#Clusters 2 (0) 2 (0) 2.3 (0.483) 9 (1.054)

MOSpecG-mod
NMI 1 (0) 0.662 (0) 0.485 (0.026) 0.876 (0.023)

CPU-time (s) 0.015 (0.003) 0.025 (0.004) 0.081 (0.015) 0.129 (0.028)
#Clusters 2 (0) 3 (0) 4.3 (0.483) 9.4 (0.699)

Moga-Net
NMI 0.682 (0.047) 0.538 (0.067) 0.511 (0.054) 0.736 (0.048)

CPU-time (s) 7.85 (0.627) 11.827 (1.255) 25.231 (2.656) 28.61 (2.888)
#Clusters 3.9 (0.316) 6.1 (1.449) 5.5 (1.65) 7.8 (1.033)

OSLOM
NMI 1 (0) 0.786 (0.11) 0.558 (0.017) 0.916 (0)

CPU-time (s) 0.3 (0.483) 0.9 (0.568) 1.2 (0.422) 0.7 (0.483)
#Clusters 2 (0) 2 (0) 3.7 (0.675) 11 (0)

Infomap
NMI 0.699 (0) 0.519 (0) 0.537 (0) 0.924 (0)

CPU-time (s) 0.2 (0.422) 0.5 (0.527) 0.4 (0.516) 0.4 (0.516)
#Clusters 3 (0) 6 (0) 5 (0) 12 (0)

Expected #Clusters 2 2 3 12

As can be seen in Table 2, on the one hand, SpecG-EC outperformed Moga-Net in all
the networks. On the other hand, MOSpecG-mod only found lower NMI values than Moga-
Net for the Polbooks network. Moga-Net and Infomap were the only algorithms which
did not obtain the expected partition for the Karate network. SpecG-EC achieved higher
NMI values than all the reference algorithms, including MOSpecG-mod, for the Dolphins
and Polbooks networks. Furthermore, the number of clusters in the partitions obtained by
SpecG-EC and MOSpecG-mod varied at a maximum of 25% and 43.333%, respectively and
on average, when compared to the expected number of clusters. Thereby, there is empirical
evidence suggesting the effectiveness of the proposed algorithm in estimating the number of
clusters.

The differences between the NMI values reported in Figures 11 and 12 and those pre-
sented in Table 2 are due to the fact that the figures only report the results of a single
execution, whereas the table shows the average NMI values of ten executions. According
to Table 2, the average NMI value of partitions obtained by SpecG-EC for the Polbooks
network is only 0.703% lower than the highest NMI value of partitions from the solution
set presented in Figure 8(c). Furthermore, SpecG-EC found partitions for Football network
whose average NMI value was 5.677% worse than the highest NMI value of partitions from
the solution set presented in Figure 8(d).
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Table 3 demonstrates details of the experiment performed with the proposed and refer-
ence algorithms on network Dolphins3. The table presents the NMI and modularity values;
the running time in seconds; the number of pairs of vertices which were grouped correctly in
the same cluster and incorrectly grouped in the same or different clusters, when compared
to the expected partition; and the number and size of the clusters in the partitions obtained
by the algorithms. The expected partition of network dolphins has 2 clusters with 42 and
20 vertices.

Table 3: Details of the experiment performed using network dolphins.
Algorithm NMI Q CPU- Pairs of vertices Clusters

time (s) Correct Wrong # Sizes
MOSpecG - γ1=0,γ2=1 0 0 0.018 1051 840 1 62
MOSpecG - γ1=0.1,γ2=0.9 0 0 0.019 1051 840 1 62
MOSpecG - γ1=0.2,γ2=0.8 0.486 0.378 0.025 731 520 2 32, 30
MOSpecG - γ1=0.3,γ2=0.7 0.514 0.391 0.025 754 477 2 33, 29
MOSpecG - γ1=0.4,γ2=0.6 0.662 0.483 0.024 620 451 3 26, 21, 15
MOSpecG - γ1=0.5,γ2=0.5 0.662 0.483 0.022 620 451 3 26, 21, 15
MOSpecG - γ1=0.6,γ2=0.4 0.581 0.518 0.026 492 579 4 21, 20, 14, 7
MOSpecG - γ1=0.7,γ2=0.3 0.889 0.379 0.025 1010 61 2 41, 21
MOSpecG - γ1=0.8,γ2=0.2 0.889 0.379 0.025 1010 61 2 41, 21
MOSpecG - γ1=0.9,γ2=0.1 0.777 0.359 0.025 991 120 2 42, 20
MOSpecG - γ1=1,γ2=0 0 0 0.024 1051 840 1 62

SpecG-EC 0.889 0.379 0.281 1010 61 2 41, 21
Moga-Net 0.472 0.417 13.92 532 537 7 31, 10, 6, 6, 4, 3, 2
Infomap 0.519 0.523 1 417 654 6 21, 17, 12, 7, 3, 2
OSLOM 0.814 0.385 1 971 120 2 40, 22

The results in Table 3 show that the larger and the lower the number of pairs of vertices
classified correctly and incorrectly, respectively, the larger the NMI values of the partitions.
This table also shows that partitions with higher values of modularity are not necessarily
more similar to the expected partitions considering the NMI values, the number and size
of the clusters. The partition obtained by SpecG-EC presented the highest NMI value
and matched the expected number of clusters, 2. In this partition, exactly one vertex was
classified in the wrong cluster. In combining the solutions of MOSpecG by the consensus
strategy, SpecG-EC found the partition with the largest NMI. Even though MOSpecG with
γ1 = 0.9 and γ2 = 0.1 and OSLOM identified partitions with 2 clusters and whose numbers of
vertices are the expected, 2 vertices were displaced. Both Moga-Net and Infomap identified
a large number of clusters, far from the expected.

3The table additionally reports the results obtained by MOSpecG-MO for each combination of γ1 and γ2.
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5.2. Experiments with artificial networks

This experiment used 80 undirected LFR networks (Lancichinetti et al., 2011) with the
following characteristics: 1000 vertices; average degree within the range [20, 50]; small-sized
communities, whose number of vertices are in the interval [10, 50]; large-sized communi-
ties, whose number of vertices are in the interval [20, 100]; and degree of mixture (mixture
coefficient) between groups (µ) with values from the set {0.1, 0.2, . . . , 0.8}.

5.2.1. Solution sets found by MOSpecG

Figures 13 to 17 display the average results of the algorithms applied to the LFR net-
works (y-axis) by µ (x-axis). Figures 13(a) and 13(b) present the average NMI values of
partitions obtained by MOSpecG for, respectively, the small and large-sized community
networks considering each combination of weights γ1 and γ2.
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(a) Small-sized community networks.
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(b) Large-sized community networks.

Figure 13: Average NMI values of the partitions obtained by MOSpecG considering different values of γ1
and γ2.

As can be noted in Figures 13(a) and 13(b), the values of γ1 ∈ {0.2, 0.3} and γ2 ∈
{0.7, 0.8} resulted in partitions with the highest average NMI values for the networks with
µ ≥ 0.7. The proposed heuristic presented competitive results when detecting communities
in all networks by optimizing the modularity, i.e., when γ1 = γ2 = 0.5. The partitions found
when considering γ1 = 0 and γ2 = 1 failed to identify good quality clusters.

Figures 14(a) and 14(b) show the average number of clusters in the partitions from the
solution sets for, respectively, the small and large-sized community networks. Except for
the results when γ1 = 0, γ2 = 1, which misidentified the number of clusters, and when
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γ1 = 0.1, γ2 = 0.9, the lower the γ1 and the larger the γ2, the larger the number of clusters.
Thereby, the number of communities grows with γ = γ2

γ1
.
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(a) Small-sized community networks.

0.0 0.2 0.4 0.6 0.8
0

10

20

30

40

50

60

●
●

●
●

●

●

● ●

● ●
● ●

●

●

●

●

●
●

● ● ● ●

●

●

● ● ● ● ●

●

●
●

●

●

●

●

γ1 =0, γ2 =1,
γ1 =0.1, γ2 =0.9,
γ1 =0.2, γ2 =0.8,
γ1 =0.3, γ2 =0.7,
γ1 =0.4, γ2 =0.6,
γ1 =0.5, γ2 =0.5,
γ1 =0.6, γ2 =0.4,
γ1 =0.7, γ2 =0.3,
γ1 =0.8, γ2 =0.2,
γ1 =0.9, γ2 =0.1,
γ1 =1, γ2 =0,

N
um

be
r 

of
 c

lu
st

er
s

µ

(b) Large-sized community networks.

Figure 14: Average number of clusters in the partitions found by MOSpecG considering different values of
γ1 and γ2.

5.2.2. Comparative analysis

Figure 15 presents the average NMI values of the partitions found by SpecG-EC,MOSpecG-
mod, OSLOM, Infomap and Moga-Net whereas Figure 16 shows the respective average CPU-
times for the small and large-sized community networks.

Figure 15 shows that the partitions found by SpecG-EC and MOSpecG-mod had average
NMI values higher than those with the largest modularity found by Moga-Net. Moreover,
SpecG-EC outperformed MOSpecG-mod, Infomap and OSLOM in the small-sized commu-
nity networks with, respectively, µ ∈ {0.6, 0.7}, µ ≥ 0.7 and µ = 0.8. In the small-sized
community networks with µ ≤ 0.6, SpecG-EC obtained partitions whose NMI values were
higher or equal to 0.953. SpecG-EC outperformed MOSpecG-mod, Infomap and OSLOM in
large-sized community networks with, respectively, µ = 0.6, µ ≥ 0.6 and µ ∈ {0.6, 0.7}, and
achieved NMI values of at least 0.979 in the networks when µ ≤ 0.5.

MOSpecG-mod and Infomap were the algorithms with the lowest CPU-times in networks
with, respectively, small and large-sized community networks. Nonetheless, SpecG-EC was
from 6 to 64 times faster than Moga-Net in all the networks. On the one hand, SpecG-EC
was faster than OSLOM in the large-sized community networks with µ ≥ 0.6. On the other,
it required from 1.18 to 3.056 times more than the CPU time required by OSLOM in the
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(a) Small-sized community networks.
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(b) Large-sized community networks.

Figure 15: Average NMI values achieved by the algorithms.
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(a) Small-sized community networks.
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(b) Large-sized community networks.

Figure 16: Average CPU-times (s) required by the algorithms.

remaining networks. Because MOSpecG-mod was approximately 13.286 times faster than
SpecG-EC, it was also faster than OSLOM in all the networks.

Figure 17 shows the number of clusters obtained by the algorithms in the partitions and
in the expected partitions. As can be seen in Figure 17, Moga-Net obtained the partitions
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with the worst estimation of numbers of clusters with regard to the expected partitions. On
the one hand, OSLOM and Infomap found partitions whose number of clusters is exactly
the expected in small and large-sized community networks with, respectively, µ ≤ 0.6 and
µ ≤ 0.5. On the other hand, as opposed to SpecG-EC and MOSpecG-mod, Infomap failed to
identify the number of clusters in the networks with µ ≥ 0.7. OSLOM obtained partitions
with worse estimations of the number of clusters with regard to the expected partitions than
both versions of the proposed algorithm for small and large-sized community networks with,
respectively, µ = 0.8 and µ ≥ 0.7. In particular, despite presenting slightly better NMI
values than SpecG-EC and MOSpecG-mod for large-sized community network with µ = 0.8,
OSLOM wrongly identified approximately 381 clusters, on average, more than the expected.
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(a) Small-sized community networks.
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(b) Large-sized community networks.

Figure 17: Average number of clusters found by the algorithms in the partitions and in the expected parti-
tions.

6. Final Remarks and Future Works

This paper presented a novel spectral decomposition of modularity to clustering graphs
through a multi-objective memetic algorithm called MOSpecG. In addition, it introduced an
ensemble algorithm, here called SpecG-EC, that combines partitions obtained by MOSpecG
to provide a single partition.

The results of computational experiments using real and LFR networks showed that
SpecG-EC and the version of MOSpecG that maximizes modularity, named MOSpecG-
mod, outperformed a multi-objective genetic algorithm found in the literature and pre-
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sented reasonable running times when compared to reference algorithms. The SpecG-EC
and MOSpecG-mod found partitions more similar to the expected ones than state-of-the-art
mono-objective algorithms in artificial networks with higher mixture coefficients and sat-
isfactory results in the remaining artificial networks. In particular, SpecG-EC performed
better in artificial large-sized community networks and outperformed state-of-the-art mono-
objective algorithms in two real networks.

Because SpecG-EC obtained better results than MOSpecG-mod for most of the net-
works, we can conclude that the ensemble strategy outperformed the maximization of the
classical modularity. Nonetheless, SpecG-EC constructs its solution using partitions found
by MOSpecG and thus is slower than MOSpecG-mod. The experiments also suggested that
both the ensemble and the modularity maximization version of the proposed algorithm pro-
vide a reasonable number of clusters in real and artificial networks.

The empirical finding that some partitions obtained by MOSpecG were more similar
to the expected partitions than both the modularity maximization and ensemble partitions
suggests advantages of studying the duality between the terms of the modularity using multi-
objective graph clustering algorithms. In this sense, as future work, we intend to further
improve the results achieved by SpecG-EC by studying more effective procedures to select
partitions from multi-objective problems for the ensemble.

To combine pairs of vertex partitions, evolutionary algorithms usually match the commu-
nities of the different partitions to then perform the crossover operator. The matching of the
communities is difficult to establish. In SpecG-EC, however, we propose a spectral analysis
to this step. Unfortunately, SpecG-EC does not scale well due to the computational burden
in the eigenvalues and eigenvectors computation. Therefore, reducing the computational
cost of the spectral decomposition would make this algorithm more effective in detecting
communities in larger graphs. As in applications the networks are mostly sparse, a future
research direction would be the study of the spectral decomposition of the non-backtracking
matrix as the fitness function to reduce the cost of the eigen-decomposition operations of
SpecG-EC.

Moreover, it is worth to highlight that in many case-oriented applications, such as the
study of metabolic networks, the specialist who performs the cluster analysis prefers to
investigate the results of a set of solutions instead of a unique partition. In fact, hierarchical
clustering algorithms are widely employed in these studies, primarily due to the unclear
definition of clustering and the diversified characteristics of the applications. Therefore, in
this sense, MOSpecG can be a powerful tool, since it provides a pool of solutions from the
optimization of the bi-objective problem.

31



Acknowledgments

The authors would like to acknowledge the foundings provided by São Paulo Research
Foundation (FAPESP), grant numbers: 2016/22688-2 and 2015/21660-4; and by Conselho
Nacional de Desenvolvimento Científico e Tecnológico (CNPq), grant numbers: 306036/2018-
5. The authors would also like to thank the anonymous reviewers for their valuable com
ments. The second author also thanks Leonardo V. Rosset for giving her a hand.

References

Amiri, B., Hossain, L., & Crawford, J. (2012). A hybrid evolutionary algorithm based
on HSA and cls for multi-objective community detection in complex networks. In 2012
IEEE/ACM International Conference on Advances in Social Networks Analysis and Min-
ing (pp. 243–247). https://doi.org/10.1109/ASONAM.2012.49.

Amiri, B., Hossain, L., & Crawford, J. W. (2011). An efficient multiobjective evolutionary al-
gorithm for community detection in social networks. In 2011 IEEE Congress of Evolution-
ary Computation (CEC) (pp. 2193–2199). https://doi.org/10.1109/CEC.2011.5949886.

Amiri, B., Hossain, L., Crawford, J. W., & Wigand, R. T. (2013). Community detection in
complex networks: Multi–objective enhanced firefly algorithm. Knowledge-Based Systems,
46 , 1 – 11. https://doi.org/10.1016/j.knosys.2013.01.004.

Angelini, L., Boccaletti, S., Marinazzo, D., Pellicoro, M., & Stramaglia, S. (2007). Identifica-
tion of network modules by optimization of ratio association. Chaos: An Interdisciplinary
Journal of Nonlinear Science, 17 , 023114. https://doi.org/10.1063/1.2732162.

Berry, J. W., Hendrickson, B., LaViolette, R. A., & Phillips, C. A. (2011). Tolerating the
community detection resolution limit with edge weighting. Physical Review E , 83 , 056119.
https://doi.org/10.1103/PhysRevE.83.056119.

Brandes, U., Delling, D., Gaertler, M., Gorke, R., Hoefer, M., Nikolosk, Z., & Wagner, D.
(2008). On modularity clustering. IEEE Transactions on Knowledge and Data Engineer-
ing , 20 , 172–188. https://doi.org/10.1109/TKDE.2007.190689.

Carvalho, D. M., Resende, H., & Nascimento, M. C. V. (2014). Modularity maximization
adjusted by neural networks. In C. K. Loo, K. S. Yap, K. W. Wong, A. Teoh, & K. Huang
(Eds.), Neural Information Processing (pp. 287–294). Cham: Springer volume 8834 of
Lecture Notes in Computer Science. https://doi.org/10.1007/978-3-319-12637-1_36.

Chen, D., Zou, F., Lu, R., Yu, L., Li, Z., & Wang, J. (2016). Multi-objective optimization of
community detection using discrete teaching–learning-based optimization with decompo-
sition. Information Sciences, 369 , 402 – 418. https://doi.org/10.1016/j.ins.2016.06.025.

32



Cheng, F., Cui, T., Su, Y., Niu, Y., & Zhang, X. (2018). A local information based multi-
objective evolutionary algorithm for community detection in complex networks. Applied
Soft Computing , 69 , 357 – 367. https://doi.org/10.1016/j.asoc.2018.04.037.

Darst, R. K., Nussinov, Z., & Fortunato, S. (2014). Improving the performance
of algorithms to find communities in networks. Physical Review E , 89 , 032809.
https://doi.org/10.1103/PhysRevE.89.032809.

De Meo, P., Ferrara, E., Fiumara, G., & Provetti, A. (2013). Enhancing community
detection using a network weighting strategy. Information Sciences, 222 , 648–668.
https://doi.org/10.1016/j.ins.2012.08.001.

Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6 , 182–
197. https://doi.org/10.1109/4235.996017.

Ehrgott, M. (2005). Multicriteria optimization. Berlin, Heidelberg: Springer volume 491 of
Lecture Notes in Economics and Mathematical Systems. https://doi.org/10.1007/3-540-
27659-9.

Ferrara, E., Meo, P. D., Catanese, S., & Fiumara, G. (2014). Detecting criminal organi-
zations in mobile phone networks. Expert Systems with Applications, 41 , 5733 – 5750.
https://doi.org/10.1016/j.eswa.2014.03.024.

Fortunato, S., & Barthélemy, M. (2007). Resolution limit in community
detection. Proceedings of the National Academy of Sciences, 104 , 36.
https://doi.org/10.1073/pnas.0605965104.

Ghaffaripour, Z., Abdollahpouri, A., & Moradi, P. (2016). A multi-objective genetic
algorithm for community detection in weighted networks. In 2016 Eighth Interna-
tional Conference on Information and Knowledge Technology (IKT) (pp. 193–199).
https://doi.org/10.1109/IKT.2016.7777766.

Girvan, M., & Newman, M. E. (2002). Community structure in social and biolog-
ical networks. Proceedings of the National Academy of Sciences, 99 , 7821–7826.
https://doi.org/10.1073/pnas.122653799.

Golbeck, J., Grimes, J. M., & Rogers, A. (2010). Twitter use by the us congress.
Journal of the Association for Information Science and Technology , 61 , 1612–1621.
https://doi.org/10.1002/asi.21344.

33



Gong, M., Cai, Q., Chen, X., & Ma, L. (2014). Complex network clustering by multiobjective
discrete particle swarm optimization based on decomposition. IEEE Transactions on
Evolutionary Computation, 18 , 82–97. https://doi.org/10.1109/TEVC.2013.2260862.

Gong, M., Chen, X., Ma, L., Zhang, Q., & Jiao, L. (2013). Identification of multi-resolution
network structures with multi-objective immune algorithm. Applied Soft Computing , 13 ,
1705 – 1717. https://doi.org/10.1016/j.asoc.2013.01.018.

Gong, M., Hou, T., Fu, B., & Jiao, L. (2011). A non-dominated neighbor immune algorithm
for community detection in networks. In Proceedings of the 13th Annual Conference on
Genetic and Evolutionary Computation GECCO ’11 (pp. 1627–1634). New York, NY,
USA: ACM. https://doi.org/10.1145/2001576.2001796.

Gong, M., Ma, L., Zhang, Q., & Jiao, L. (2012). Community detection in networks by using
multiobjective evolutionary algorithm with decomposition. Physica A: Statistical Mechan-
ics and its Applications, 391 , 4050–4060. https://doi.org/10.1016/j.physa.2012.03.021.

Kanawati, R. (2015). Empirical evaluation of applying ensemble methods to ego-centred
community identification in complex networks. Neurocomputing , 150 , 417 – 427. Special
Issue on Information Processing and Machine Learning for Applications of Engineering
Solving Complex Machine Learning Problems with Ensemble Methods Visual Analytics
using Multidimensional Projections. https://doi.org/10.1016/j.neucom.2014.09.042.

Khadivi, A., Rad, A. A., & Hasler, M. (2011). Network community-
detection enhancement by proper weighting. Physical Review E , 83 , 046104.
https://doi.org/10.1103/PhysRevE.83.046104.

Krebs, V. (2008). A network of books about recent us politics sold by the online book-
seller amazon.com. URL: http://www-personal.umich.edu/~mejn/netdata/ Accessed
13 october 2018.

Krzakala, F., Moore, C., Mossel, E., Neeman, J., Sly, A., Zdeborová, L., & Zhang, P. (2013).
Spectral redemption in clustering sparse networks. Proceedings of the National Academy
of Sciences, 110 , 20935–20940. https://doi.org/10.1073/pnas.1312486110.

Lancichinetti, A., Fortunato, S., & Radicchi, F. (2008). Benchmark graphs
for testing community detection algorithms. Physical Review E , 78 , 046110.
https://doi.org/10.1103/PhysRevE.78.046110.

Lancichinetti, A., Radicchi, F., Ramasco, J. J., & Fortunato, S. (2011). Find-
ing statistically significant communities in networks. PLOS ONE , 6 , 1–18.
https://doi.org/10.1371/journal.pone.0018961.

34

http://www-personal.umich.edu/~mejn/netdata/


Lancichinetti, A., & Fortunato, S. (2012). Consensus clustering in complex networks. Sci-
entific Reports, 2 , 336. https://doi.org/10.1038/srep00336.

Larsson, A. O., & Moe, H. (2012). Studying political microblogging: Twitter users
in the 2010 swedish election campaign. New Media & Society , 14 , 729–747.
https://doi.org/10.1177/1461444811422894.

Lehoucq, R. B., Sorensen, D. C., & Yang, C. (1998). ARPACK users’ guide: solution of
large-scale eigenvalue problems with implicitly restarted arnoldi methods. SIAM volume 6
of Software, Environments, Tools. https://doi.org/10.1137/1.9780898719628.

Li, Y., Chen, J., Liu, R., & Wu, J. (2012). A spectral clustering-based adaptive hybrid multi-
objective harmony search algorithm for community detection. In 2012 IEEE Congress on
Evolutionary Computation (pp. 1–8). IEEE. https://doi.org/10.1109/CEC.2012.6253013.

Liang, Z.-W., Li, J.-P., Yang, F., & Petropulu, A. (2014). Detecting community structure
using label propagation with consensus weight in complex network. Chinese Physics B ,
23 , 098902. https://doi.org/10.1088/1674-1056/23/9/098902.

Lusseau, D., Schneider, K., Boisseau, O., Haase, P., Slooten, E., & Dawson, S.
(2003). The bottlenose dolphin community of doubtful sound features a large propor-
tion of long-lasting associations. Behavioral Ecology and Sociobiology , 54 , 396–405.
https://doi.org/10.1007/s00265-003-0651-y.

Nascimento, M. C. V., de Toledo, F. M. B., & Carvalho, A. C. P. L. F. (2009). Consensus
clustering using spectral theory. In M. Köppen, N. Kasabov, & G. Coghill (Eds.), Advances
in Neuro-Information Processing (pp. 461–468). Berlin, Heidelberg: Springer volume 5506
of Lecture Notes in Computer Science. https://doi.org/10.1007/978-3-642-02490-0_57.

Newman, M. E. J., & Girvan, M. (2004). Finding and evaluating community structure in
networks. Physical Review E , 69 , 026113. https://doi.org/10.1103/PhysRevE.69.026113.

Newman, M. E. J. (2006). Finding community structure in networks using the eigenvectors of
matrices. Physical Review E , 74 , 036104. https://doi.org/10.1103/PhysRevE.74.036104.

Pizzuti, C. (2008). GA-NET: A genetic algorithm for community detection in social net-
works. In International Conference on Parallel Problem Solving from Nature (pp. 1081–
1090). Springer. https://doi.org/10.1007/978-3-540-87700-4_107.

Pizzuti, C. (2009). A multi-objective genetic algorithm for community detection in networks.
In 2009 21st IEEE International Conference on Tools with Artificial Intelligence (pp. 379–
386). IEEE. https://doi.org/10.1109/ICTAI.2009.58.

35



Pizzuti, C. (2012). A multiobjective genetic algorithm to find communities in com-
plex networks. IEEE Transactions on Evolutionary Computation, 16 , 418–430.
https://doi.org/10.1109/TEVC.2011.2161090.

Pourkazemi, M., & Keyvanpour, M. R. (2017). Community detection in social network by
using a multi-objective evolutionary algorithm. Intelligent Data Analysis, 21 , 385–409.
https://doi.org/10.3233/IDA-150429.

Raghavan, U. N., Albert, R., & Kumara, S. (2007). Near linear time algorithm to de-
tect community structures in large-scale networks. Physical Review E , 76 , 036106.
https://doi.org/10.1103/PhysRevE.76.036106.

Rahimi, S., Abdollahpouri, A., & Moradi, P. (2018). A multi-objective particle swarm
optimization algorithm for community detection in complex networks. Swarm and Evo-
lutionary Computation, 39 , 297 – 309. https://doi.org/10.1016/j.swevo.2017.10.009.

Reichardt, J., & Bornholdt, S. (2006). Statistical mechanics of community detection. Phys-
ical Review E , 74 , 016110. https://doi.org/10.1103/PhysRevE.74.016110.

Rosvall, M., & Bergstrom, C. T. (2008). Maps of random walks on complex networks reveal
community structure. Proceedings of the National Academy of Sciences, 105 , 1118–1123.
https://doi.org/10.1073/pnas.0706851105.

Santos, C. P., Carvalho, D. M., & Nascimento, M. C. (2016). A consensus graph clus-
tering algorithm for directed networks. Expert Systems with Applications, 54 , 121–135.
https://doi.org/10.1016/j.eswa.2016.01.026.

Shang, R., Luo, S., Zhang, W., Stolkin, R., & Jiao, L. (2016). A multiobjec-
tive evolutionary algorithm to find community structures based on affinity propa-
gation. Physica A: Statistical Mechanics and its Applications, 453 , 203 – 227.
https://doi.org/10.1016/j.physa.2016.02.020.

Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical
Journal , 27 , 379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x.

Shi, C., Yan, Z., Cai, Y., & Wu, B. (2012). Multi-objective commu-
nity detection in complex networks. Applied Soft Computing , 12 , 850–859.
https://doi.org/10.1016/j.asoc.2011.10.005.

Wei, Y.-C., & Cheng, C.-K. (1991). Ratio cut partitioning for hierarchical designs. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 10 , 911–921.
https://doi.org/10.1109/43.87601.

36



Xu, B., Qi, J., Zhou, C., Hu, X., Xu, B., & Sun, Y. (2015). Hybrid self-adaptive algorithm
for community detection in complex networks. Mathematical Problems in Engineering ,
2015 . https://doi.org/10.1155/2015/273054.

Zachary, W. W. (1977). An information flow model for conflict and fis-
sion in small groups. Journal of Anthropological Research, 33 , 452–473.
https://doi.org/10.1086/jar.33.4.3629752.

Žalik, K. R., & Žalik, B. (2018). Multi-objective evolutionary algorithm using problem-
specific genetic operators for community detection in networks. Neural Computing and
Applications, 30 , 2907–2920. https://doi.org/10.1007/s00521-017-2884-0.

Zhang, X., & Newman, M. (2015). Multiway spectral community detection in networks.
Physical Review E , 92 , 052808. https://doi.org/10.1103/PhysRevE.92.052808.

Zhou, X., Liu, Y., & Li, B. (2016). A multi-objective discrete cuckoo search algorithm with
local search for community detection in complex networks. Modern Physics Letters B ,
30 , 1650080. https://doi.org/10.1142/S0217984916500809.

Zhu, Z., Wang, C., Ma, L., Pan, Y., & Ding, Z. (2008). Scalable community discovery of large
networks. WAIM ’08 Proceedings of the 2008 The Ninth International Conference on Web-
Age Information Management , (pp. 381–388). https://doi.org/10.1109/WAIM.2008.13.

Zou, F., Chen, D., Huang, D.-S., Lu, R., & Wang, X. (2019). Inverse modelling-based
multi-objective evolutionary algorithm with decomposition for community detection in
complex networks. Physica A: Statistical Mechanics and its Applications, 513 , 662 – 674.
https://doi.org/10.1016/j.physa.2018.08.077.

Zou, F., Chen, D., Li, S., Lu, R., & Lin, M. (2017). Community detec-
tion in complex networks: Multi-objective discrete backtracking search optimiza-
tion algorithm with decomposition. Applied Soft Computing , 53 , 285 – 295.
https://doi.org/10.1016/j.asoc.2017.01.005.

Appendix A. Setting up parameters

In this appendix, we present the preliminary experiments carried out using LFR and
real networks to fine-tune the parameters of the proposed algorithms. First, we identified
the best parameters for MOSpecG-mod, which is MOSpecG when maximizing the classical
version of the modularity measure. After these parameters have been defined, we decide the
best value of the parameters NF and τ of SpecG-EC.
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Tables A.4, A.5, A.6 and A.7 present the results achieved by MOSpecG-mod to detect
communities in LFR networks. Tables A.8 and A.9 demonstrate the average results of 10
independent executions of MOSpecG-mod to find partitions of the real networks Karate
(Zachary, 1977), Dolphins (Lusseau et al., 2003), Polbooks (Krebs, 2008) and Football (Gir-
van & Newman, 2002). These tables show the NMI values of the partitions with respect
to the expected ones and the respective execution times in seconds of MOSpecG-mod. All
possible combinations of the following parameter values were considered in these experi-
ments: NG ∈ {10, 50}, NP ∈ {5, 10}, NO ∈ {10, 40, 70}, p ∈ {b0.1nc, b0.3nc, b0.5nc} and
IT ∈ {1, 5}. In addition, Tables A.4, A.5, A.6 and A.7 report the average (AVG), maximum
(MAX) and minimum (MIN) NMI values and execution times in detecting communities in
the networks with each mixture coefficient value. The shades of gray used as background
colors of the table cells are in accordance with the NMI values.

In Tables A.10 and A.11, we show the Pearson correlation coefficients4 between the
MOSpecG-mod parameters and (i) the NMI values of the partitions with respect to the
expected partitioning of LFR networks considering each possible value of µ, and (ii) the cor-
responding average (AVG), maximum (MAX) and minimum (MIN) execution times. Table
A.12 presents the Pearson correlation coefficients between the MOSpecG-mod parameters
and the NMI values and execution time in seconds for real networks.

As expected, the parameter p, which refers to the number of eigenvalues and eigenvectors
used in the spectral relaxation, presented the highest positive correlation coefficient values
with respect to the execution times. On the one hand, the correlation coefficients between p
and the NMI values were lower than 0 for small- and large-sized community networks with,
respectively, µ ≤ 0.2 and µ ≤ 0.5. On the other, when considering networks with µ ≥ 0.7,
the correlation coefficients between p and the NMI values ranged from 0.197 to 0.903. The
Pearson correlations between p and the NMI values of the real network partitions were also
conflicting: their values were −0.803, 0.406 and 0.374 for Karate, Polbooks and Football
networks, respectively. Therefore, in spite of being difficult to draw general conclusions by
these results, we remark that the NMI values of partitions of LFR networks increased with
p only in networks with high mixture coefficients.

In addition, according to Tables A.10 and A.11, one can also observe that the correlations
between NP and the NMI values of the partitions of LFR networks with µ ≤ 0.7 were at
least 0.371. Nevertheless, the correlations were −0.109 and −0.226 when considering small-
and large-sized community networks with µ = 0.8. One conjecture that might justify the
negative correlations in such cases is that MOSpecG-mod has more chance of selecting high-

4The Pearson correlation coefficient assesses the linear correlation between two variables. It is valued
from -1 to 1, where -1 and 1 indicate a perfect negative and positive linear correlation, respectively; the
value 0 indicates no linear correlation between the pair of variables.
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quality partitions more often for the crossover operator when NP is lower. Tables A.10,
A.11 and A.12 also show that regardless the network under consideration the execution time
increases alongside NP.

In the parameter-tuning, we selected the set of parameters for MOSpecG-mod to obtain
partitions with satisfactory NMI values taking a reasonable running time. In line with
this, parameters p and NP received values b0.1nc and 5, respectively. Nonetheless, we
recommend setting higher values for p and NP when the networks under study have high
and low mixture coefficients, respectively.

The correlation coefficients between parameter NO and the NMI values did not present
a clear pattern when considering the LFR networks showed in Tables A.10 and A.11. On
the one hand, these correlations were at least 0.463 when µ ≤ 0.7. On the other, they were
−0.157 and −0.286 respectively for small- and large-community size networks with µ = 0.8.
Since increasing NO does not augment the execution times, we adopted the median value
to this parameter, 40.

NG and IT did not have a strong correlation with the NMI values for the LFR networks
even though the execution times increased alongside NG and IT . When considering the real
networks, however, the correlations between NG and the NMI values shown in Table A.12
ranged from 0.034 to 0.211. We therefore considered NG = 50 to enhance the robustness of
MOSpecG-mod. Because the parameter IT only showed a strong correlation with the NMI
value of the partition obtained to the Polbooks network, we used the lowest value of IT ,
1, to carry out the experiments with the LFR networks. Nevertheless, in small networks
such as the real networks tested in the experiments presented in this paper, we recommend
increasing IT since the computational time is significantly low in practice.

Therefore, we chose the following values of parameters: NG = 50, NP = 5, NO = 40,
p = b0.1nc. The parameter IT was 1 in tests with LFR networks and 5 in the experiments
with real networks.

Tables A.13, A.14 and A.15 show the NMI values of the partitions obtained by SpecG-EC
in small- and large-sized community networks with different mixture coefficients and in real
networks. This experiment was performed by fixing the values of NG, NP, NO and p at
values decided on the previous parameter tuning experiments and considering the respective
combination of the remaining parameters: NF ∈ {6, 11} and τ ∈ {0.1, 0.25, 0.5, 0.75}. In
addition, Tables A.13 and A.14 report the average (AVG), maximum (MAX) and minimum
(MIN) values of NMI and execution times in seconds of the consensus step in SpecG-EC
considering the networks with different mixture coefficients. Even though we did not report
the running times of SpecG-EC to obtain the NF partitions required to define the consensus
partition, the average execution times increase alongside NF and τ .

According to Tables A.13 and A.14, the highest NMI values were achieved whenNF = 11
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and τ = 0.75. Considering Table A.15, the highest NMI values were obtained whenNF = 11

and τ = 0.5. The NMI values of partitions of the LFR networks with µ ≤ 0.5 when τ = 0.5

were on average only 2% worse than the NMI values of partitions when τ = 0.75. As
considering the real networks SpecG-EC performed better when τ was fixed at 0.5, we
assigned 0.5 to parameter τ .

Table A.4: Experiments to adjust parameters of MOSpecG-mod to small-sized community networks - part
1.

Parameters µ NMI Time (s)
NG NP NO p IT 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 AVG MAX MIN AVG MAX MIN
10 5 10 b0.1nc 10 0.901 0.882 0.887 0.907 0.853 0.774 0.55 0.323 0.76 0.907 0.323 3.939 4.563 3.396
10 5 10 b0.1nc 50 0.886 0.882 0.897 0.896 0.844 0.769 0.55 0.327 0.756 0.897 0.327 5.86 6.632 5.321
10 5 10 b0.3nc 10 0.849 0.838 0.851 0.831 0.781 0.697 0.589 0.469 0.738 0.851 0.469 11.346 13.567 7.686
10 5 10 b0.3nc 50 0.841 0.838 0.858 0.83 0.781 0.69 0.597 0.465 0.738 0.858 0.465 28.864 36.643 13.642
10 5 10 b0.5nc 10 0.821 0.81 0.822 0.798 0.761 0.685 0.634 0.548 0.735 0.822 0.548 20.778 28.898 12.412
10 5 10 b0.5nc 50 0.829 0.811 0.82 0.803 0.758 0.695 0.629 0.542 0.736 0.829 0.542 60.065 91.883 22.256
10 5 40 b0.1nc 10 0.985 0.98 0.98 0.969 0.968 0.943 0.767 0.331 0.865 0.985 0.331 1.865 2.118 1.689
10 5 40 b0.1nc 50 0.979 0.977 0.979 0.972 0.969 0.952 0.79 0.339 0.87 0.979 0.339 4.136 4.53 3.498
10 5 40 b0.3nc 10 0.981 0.98 0.999 0.999 0.996 0.99 0.919 0.409 0.909 0.999 0.409 10.05 13.067 5.876
10 5 40 b0.3nc 50 0.98 0.983 0.997 0.999 0.999 0.998 0.937 0.411 0.913 0.999 0.411 29.572 38.344 11.395
10 5 40 b0.5nc 10 0.988 0.987 0.998 0.999 1 0.997 0.903 0.469 0.918 1 0.469 20.374 27.569 12.813
10 5 40 b0.5nc 50 0.986 0.987 1 1 1 0.999 0.959 0.456 0.923 1 0.456 61.71 100.439 22.056
10 5 70 b0.1nc 10 0.981 0.981 0.973 0.969 0.969 0.953 0.749 0.33 0.863 0.981 0.33 2.335 2.622 1.896
10 5 70 b0.1nc 50 0.984 0.981 0.98 0.969 0.973 0.953 0.779 0.334 0.869 0.984 0.334 4.728 5.086 3.979
10 5 70 b0.3nc 10 0.983 0.98 0.997 1 0.997 0.99 0.916 0.414 0.91 1 0.414 10.37 12.769 6.580
10 5 70 b0.3nc 50 0.981 0.983 0.999 1 0.996 0.996 0.942 0.419 0.915 1 0.419 27.99 40.331 11.746
10 5 70 b0.5nc 10 0.988 0.99 0.998 0.999 0.999 0.997 0.901 0.464 0.917 0.999 0.464 19.707 26.755 13.802
10 5 70 b0.5nc 50 0.983 0.988 0.999 0.999 1 0.999 0.962 0.447 0.922 1 0.447 57.508 92.233 20.299
10 10 10 b0.1nc 10 0.987 0.986 0.98 0.973 0.97 0.948 0.749 0.329 0.865 0.987 0.329 2.466 2.823 2.217
10 10 10 b0.1nc 50 0.988 0.984 0.982 0.976 0.977 0.958 0.792 0.339 0.875 0.988 0.339 6.916 7.535 5.380
10 10 10 b0.3nc 10 0.987 0.985 0.998 0.999 0.996 0.992 0.908 0.418 0.91 0.999 0.418 13.816 17.218 7.192
10 10 10 b0.3nc 50 0.985 0.984 0.998 1 1 0.996 0.95 0.419 0.917 1 0.419 49.406 66.762 18.639
10 10 10 b0.5nc 10 0.985 0.99 0.999 0.998 0.999 0.997 0.887 0.47 0.916 0.999 0.47 28.757 42.609 13.662
10 10 10 b0.5nc 50 0.987 0.99 1 1 1 1 0.947 0.461 0.923 1 0.461 108.069 175.175 36.357
10 10 40 b0.1nc 10 0.986 0.98 0.982 0.976 0.973 0.95 0.78 0.331 0.87 0.986 0.331 2.391 2.648 2.184
10 10 40 b0.1nc 50 0.989 0.983 0.983 0.982 0.973 0.95 0.793 0.337 0.874 0.989 0.337 7.228 8.476 5.596
10 10 40 b0.3nc 10 0.986 0.985 0.999 0.999 1 0.992 0.919 0.411 0.911 1 0.411 14.935 18.538 8.249
10 10 40 b0.3nc 50 0.984 0.983 1 0.999 0.999 0.999 0.942 0.411 0.915 1 0.411 49.835 64.276 19.583
10 10 40 b0.5nc 10 0.987 0.99 1 0.999 0.999 0.999 0.929 0.482 0.923 1 0.482 28.679 44.118 12.843
10 10 40 b0.5nc 50 0.989 0.99 1 1 1 0.999 0.969 0.46 0.926 1 0.46 106.041 175.882 33.539
10 10 70 b0.1nc 10 0.992 0.979 0.979 0.976 0.975 0.955 0.754 0.326 0.867 0.992 0.326 2.527 3.088 2.236
10 10 70 b0.1nc 50 0.984 0.982 0.982 0.973 0.972 0.956 0.788 0.338 0.872 0.984 0.338 6.912 7.577 5.488
10 10 70 b0.3nc 10 0.986 0.981 0.999 0.999 0.998 0.995 0.919 0.411 0.911 0.999 0.411 13.736 17.072 6.914
10 10 70 b0.3nc 50 0.985 0.986 0.999 1 0.999 0.997 0.954 0.429 0.919 1 0.429 48.612 64.408 18.673
10 10 70 b0.5nc 10 0.99 0.99 0.996 1 0.999 0.998 0.911 0.446 0.916 1 0.446 28.189 42.39 13.094
10 10 70 b0.5nc 50 0.986 0.993 0.999 1 1 0.999 0.957 0.453 0.923 1 0.453 106.077 175.132 32.210
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Table A.5: Experiments to adjust parameters of MOSpecG-mod to small-sized community networks - part
2.

Parameters µ NMI Time (s)
NG NP NO p IT 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 AVG MAX MIN AVG MAX MIN
50 5 10 b0.1nc 10 0.899 0.885 0.896 0.892 0.849 0.776 0.542 0.326 0.758 0.899 0.326 4.241 4.554 3.764
50 5 10 b0.1nc 50 0.885 0.888 0.901 0.892 0.852 0.783 0.562 0.315 0.76 0.901 0.315 15.326 16.689 11.897
50 5 10 b0.3nc 10 0.849 0.851 0.859 0.819 0.786 0.695 0.595 0.463 0.74 0.859 0.463 26.935 34.837 11.574
50 5 10 b0.3nc 50 0.851 0.841 0.845 0.823 0.777 0.689 0.597 0.467 0.736 0.851 0.467 114.172 153.981 39.929
50 5 10 b0.5nc 10 0.826 0.824 0.818 0.795 0.754 0.693 0.633 0.549 0.737 0.826 0.549 57.523 91.836 21.432
50 5 10 b0.5nc 50 0.824 0.809 0.822 0.792 0.751 0.689 0.633 0.545 0.733 0.824 0.545 250.024 423.033 68.129
50 5 40 b0.1nc 10 0.984 0.98 0.98 0.971 0.975 0.95 0.779 0.336 0.869 0.984 0.336 4.101 4.582 3.415
50 5 40 b0.1nc 50 0.986 0.987 0.976 0.977 0.973 0.957 0.812 0.343 0.876 0.987 0.343 15.084 16.476 11.360
50 5 40 b0.3nc 10 0.979 0.98 0.997 0.999 0.996 0.991 0.909 0.412 0.908 0.999 0.412 27.033 36.392 11.138
50 5 40 b0.3nc 50 0.985 0.983 0.998 1 0.999 0.996 0.963 0.4 0.916 1 0.4 113.672 152.987 39.445
50 5 40 b0.5nc 10 0.988 0.99 0.999 0.998 1 0.998 0.928 0.465 0.921 1 0.465 56.769 91.557 20.047
50 5 40 b0.5nc 50 0.989 0.99 0.999 1 1 1 0.982 0.436 0.925 1 0.436 250.195 421.961 67.939
50 5 70 b0.1nc 10 0.979 0.978 0.98 0.975 0.967 0.948 0.767 0.336 0.866 0.98 0.336 4.082 4.389 3.398
50 5 70 b0.1nc 50 0.981 0.975 0.977 0.971 0.968 0.957 0.806 0.342 0.872 0.981 0.342 15.157 16.679 11.699
50 5 70 b0.3nc 10 0.98 0.981 0.998 0.998 0.996 0.996 0.922 0.413 0.911 0.998 0.413 26.693 34.541 11.423
50 5 70 b0.3nc 50 0.983 0.983 0.996 0.999 0.998 0.995 0.958 0.425 0.917 0.999 0.425 113.984 152.902 39.230
50 5 70 b0.5nc 10 0.984 0.982 0.998 0.999 0.997 0.999 0.928 0.478 0.921 0.999 0.478 56.74 91.630 20.113
50 5 70 b0.5nc 50 0.984 0.986 0.998 1 1 0.999 0.983 0.427 0.922 1 0.427 250.17 421.768 68.330
50 10 10 b0.1nc 10 0.988 0.98 0.984 0.977 0.974 0.957 0.754 0.332 0.868 0.988 0.332 6.882 7.759 5.594
50 10 10 b0.1nc 50 0.987 0.982 0.982 0.978 0.978 0.957 0.811 0.344 0.877 0.987 0.344 28.632 31.543 21.711
50 10 10 b0.3nc 10 0.986 0.985 0.997 0.999 0.997 0.991 0.917 0.416 0.911 0.999 0.416 48.794 64.591 18.255
50 10 10 b0.3nc 50 0.986 0.987 1 1 0.999 0.998 0.962 0.424 0.92 1 0.424 222.775 300.265 74.748
50 10 10 b0.5nc 10 0.991 0.989 0.998 1 1 0.996 0.937 0.468 0.922 1 0.468 105.128 174.042 32.190
50 10 10 b0.5nc 50 0.989 0.989 0.998 1 1 0.999 0.98 0.442 0.925 1 0.442 490.752 833.401 129.655
50 10 40 b0.1nc 10 0.987 0.983 0.979 0.981 0.973 0.951 0.761 0.332 0.868 0.987 0.332 6.809 7.695 5.380
50 10 40 b0.1nc 50 0.981 0.983 0.981 0.985 0.972 0.958 0.803 0.346 0.876 0.985 0.346 28.649 31.526 21.613
50 10 40 b0.3nc 10 0.987 0.981 0.998 1 0.998 0.996 0.937 0.416 0.914 1 0.416 48.478 64.132 18.186
50 10 40 b0.3nc 50 0.989 0.988 0.998 1 0.999 0.996 0.96 0.41 0.918 1 0.41 222.641 301 74.162
50 10 40 b0.5nc 10 0.987 0.99 0.998 0.999 0.998 0.998 0.942 0.467 0.922 0.999 0.467 105.672 174.514 32.057
50 10 40 b0.5nc 50 0.99 0.993 1 1 1 0.999 0.983 0.425 0.924 1 0.425 490.804 834.429 128.175
50 10 70 b0.1nc 10 0.985 0.985 0.985 0.978 0.977 0.95 0.772 0.33 0.87 0.985 0.33 6.867 7.601 5.289
50 10 70 b0.1nc 50 0.988 0.984 0.983 0.975 0.972 0.956 0.805 0.341 0.876 0.988 0.341 28.624 31.634 21.670
50 10 70 b0.3nc 10 0.984 0.984 0.998 0.999 0.998 0.995 0.939 0.418 0.914 0.999 0.418 48.673 64.261 18.514
50 10 70 b0.3nc 50 0.986 0.985 0.999 1 1 0.998 0.96 0.416 0.918 1 0.416 223.151 300.679 75.510
50 10 70 b0.5nc 10 0.988 0.99 0.999 1 0.999 0.997 0.953 0.459 0.923 1 0.459 105.182 174.151 31.984
50 10 70 b0.5nc 50 0.988 0.99 0.998 1 0.999 1 0.983 0.433 0.924 1 0.433 490.98 837.837 128.176
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Table A.6: Experiments to adjust parameters of MOSpecG-mod to large-sized community networks - part
1.

Parameters µ NMI Time (s)
NG NP NO p IT 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 AVG MAX MIN AVG MAX MIN
10 5 10 b0.1nc 10 0.926 0.931 0.92 0.895 0.795 0.595 0.369 0.188 0.702 0.931 0.188 4.15 4.754 3.774
10 5 10 b0.1nc 50 0.927 0.921 0.91 0.886 0.783 0.606 0.354 0.188 0.697 0.927 0.188 5.878 6.711 5.152
10 5 10 b0.3nc 10 0.833 0.794 0.748 0.699 0.625 0.507 0.419 0.329 0.619 0.833 0.329 12.368 13.562 10.294
10 5 10 b0.3nc 50 0.839 0.789 0.738 0.699 0.624 0.513 0.419 0.327 0.619 0.839 0.327 33.63 38.342 21.380
10 5 10 b0.5nc 10 0.803 0.755 0.719 0.662 0.605 0.527 0.484 0.412 0.621 0.803 0.412 23.246 28.721 15.972
10 5 10 b0.5nc 50 0.81 0.757 0.719 0.668 0.608 0.528 0.481 0.415 0.623 0.81 0.415 70.536 99.119 35.598
10 5 40 b0.1nc 10 1 1 1 1 0.993 0.915 0.537 0.147 0.824 1 0.147 2.629 3.3 2.094
10 5 40 b0.1nc 50 1 0.999 0.999 1 0.994 0.923 0.584 0.151 0.831 1 0.151 4.989 5.562 4.291
10 5 40 b0.3nc 10 1 1 0.999 1 0.996 0.911 0.524 0.227 0.832 1 0.227 11.791 12.949 9.636
10 5 40 b0.3nc 50 1 1 1 1 1 0.965 0.576 0.212 0.844 1 0.212 34.373 38.461 21.337
10 5 40 b0.5nc 10 1 1 1 1 0.994 0.879 0.528 0.288 0.836 1 0.288 22.75 28.699 15.740
10 5 40 b0.5nc 50 1 1 1 1 1 0.94 0.585 0.273 0.85 1 0.273 71.339 95.149 36.073
10 5 70 b0.1nc 10 0.998 1 0.998 0.997 0.991 0.909 0.534 0.156 0.823 1 0.156 2.429 3 2.041
10 5 70 b0.1nc 50 1 1 0.999 0.998 0.993 0.92 0.562 0.147 0.827 1 0.147 5.268 6.615 4.113
10 5 70 b0.3nc 10 1 1 1 1 0.998 0.926 0.528 0.228 0.835 1 0.228 11.001 11.555 10.506
10 5 70 b0.3nc 50 1 1 1 1 1 0.962 0.595 0.213 0.846 1 0.213 31.367 34.998 19.831
10 5 70 b0.5nc 10 1 1 0.999 1 0.992 0.875 0.549 0.293 0.839 1 0.293 20.65 26.147 13.595
10 5 70 b0.5nc 50 1 1 1 1 0.998 0.957 0.587 0.265 0.851 1 0.265 67.941 93.517 33.107
10 10 10 b0.1nc 10 1 1 1 1 0.993 0.917 0.527 0.156 0.824 1 0.156 2.487 2.936 2.125
10 10 10 b0.1nc 50 0.999 1 1 1 0.995 0.923 0.558 0.163 0.83 1 0.163 6.855 7.51 6.141
10 10 10 b0.3nc 10 1 1 1 1 0.991 0.907 0.516 0.232 0.831 1 0.232 15.943 18.082 10.799
10 10 10 b0.3nc 50 1 1 1 1 1 0.952 0.579 0.217 0.844 1 0.217 59.627 73.394 34.367
10 10 10 b0.5nc 10 1 1 1 0.995 0.986 0.871 0.523 0.304 0.835 1 0.304 32.498 43.211 18.572
10 10 10 b0.5nc 50 1 1 1 1 1 0.936 0.564 0.282 0.848 1 0.282 128.304 179.584 57.375
10 10 40 b0.1nc 10 1 1 0.999 1 0.993 0.914 0.546 0.152 0.826 1 0.152 2.584 2.807 2.286
10 10 40 b0.1nc 50 1 1 1 1 0.995 0.924 0.557 0.15 0.828 1 0.15 6.831 7.496 6.279
10 10 40 b0.3nc 10 1 1 1 1 1 0.924 0.55 0.228 0.838 1 0.228 15.832 17.616 11.098
10 10 40 b0.3nc 50 1 1 1 1 1 0.958 0.581 0.22 0.845 1 0.22 57.065 64.895 33.826
10 10 40 b0.5nc 10 1 1 1 1 0.998 0.894 0.534 0.288 0.839 1 0.288 32.421 43.250 18.655
10 10 40 b0.5nc 50 1 1 1 1 1 0.955 0.552 0.267 0.847 1 0.267 126.972 178.203 59.322
10 10 70 b0.1nc 10 1 1 0.998 1 0.993 0.916 0.55 0.163 0.828 1 0.163 2.474 2.855 2.129
10 10 70 b0.1nc 50 1 1 0.997 1 0.994 0.923 0.562 0.162 0.83 1 0.162 6.802 7.603 6.094
10 10 70 b0.3nc 10 1 1 1 1 1 0.951 0.562 0.224 0.842 1 0.224 15.567 17.461 10.675
10 10 70 b0.3nc 50 1 1 1 1 1 0.957 0.604 0.218 0.847 1 0.218 56.963 64.597 33.589
10 10 70 b0.5nc 10 1 1 1 1 1 0.908 0.549 0.288 0.843 1 0.288 33.021 43.464 19.996
10 10 70 b0.5nc 50 1 1 1 1 1 0.958 0.586 0.264 0.851 1 0.264 125.699 177.726 58.092
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Table A.7: Experiments to adjust parameters of MOSpecG-mod to large-sized community networks - part
2.

Parameters µ NMI Time (s)
NG NP NO p IT 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 AVG MAX MIN AVG MAX MIN
50 5 10 b0.1nc 10 0.932 0.926 0.915 0.881 0.779 0.592 0.358 0.186 0.696 0.932 0.186 4.224 4.759 3.710
50 5 10 b0.1nc 50 0.93 0.931 0.914 0.893 0.792 0.591 0.366 0.181 0.7 0.931 0.181 14.998 16.184 13.520
50 5 10 b0.3nc 10 0.844 0.793 0.753 0.684 0.626 0.524 0.423 0.325 0.622 0.844 0.325 31.105 35.189 19.478
50 5 10 b0.3nc 50 0.843 0.789 0.754 0.702 0.622 0.509 0.426 0.322 0.621 0.843 0.322 135.181 153.748 76.298
50 5 10 b0.5nc 10 0.808 0.756 0.718 0.666 0.609 0.528 0.479 0.412 0.622 0.808 0.412 67.111 93.828 33.073
50 5 10 b0.5nc 50 0.807 0.745 0.716 0.669 0.602 0.532 0.478 0.409 0.62 0.807 0.409 301.115 428.742 131.385
50 5 40 b0.1nc 10 1 0.998 1 0.998 0.99 0.911 0.547 0.163 0.826 1 0.163 4.087 4.635 3.712
50 5 40 b0.1nc 50 1 0.999 0.997 0.997 0.99 0.921 0.579 0.158 0.83 1 0.158 14.683 16.143 13.091
50 5 40 b0.3nc 10 1 1 1 1 1 0.937 0.563 0.23 0.841 1 0.23 31.282 34.875 20.368
50 5 40 b0.3nc 50 1 1 1 1 1 0.974 0.641 0.201 0.852 1 0.201 134.389 153.39 75.743
50 5 40 b0.5nc 10 1 1 1 1 0.999 0.937 0.529 0.301 0.846 1 0.301 67.367 94.62 32.814
50 5 40 b0.5nc 50 1 1 1 1 1 0.985 0.644 0.229 0.857 1 0.229 300.352 428.367 131.312
50 5 70 b0.1nc 10 1 0.999 0.997 1 0.99 0.918 0.527 0.162 0.824 1 0.162 4.027 4.447 3.703
50 5 70 b0.1nc 50 1 1 1 1 0.989 0.922 0.58 0.164 0.832 1 0.164 14.66 16.232 13.067
50 5 70 b0.3nc 10 1 1 1 1 1 0.936 0.535 0.226 0.837 1 0.226 30.878 34.783 19.224
50 5 70 b0.3nc 50 1 1 1 1 1 0.976 0.656 0.204 0.855 1 0.204 135.167 155.312 75.903
50 5 70 b0.5nc 10 0.999 1 1 1 1 0.927 0.541 0.293 0.845 1 0.293 67.147 93.092 33.515
50 5 70 b0.5nc 50 1 1 1 1 1 0.981 0.643 0.233 0.857 1 0.233 299.192 427.945 130.060
50 10 10 b0.1nc 10 1 1 1 1 0.993 0.911 0.545 0.15 0.825 1 0.150 6.723 7.645 5.909
50 10 10 b0.1nc 50 1 1 1 1 0.992 0.921 0.584 0.149 0.831 1 0.149 28.019 30.141 25.396
50 10 10 b0.3nc 10 1 1 1 1 1 0.936 0.56 0.228 0.841 1 0.228 56.882 64.804 33.292
50 10 10 b0.3nc 50 1 1 1 1 1 0.964 0.626 0.201 0.849 1 0.201 264.048 302.558 146.594
50 10 10 b0.5nc 10 1 1 1 1 0.996 0.907 0.534 0.292 0.841 1 0.292 125.298 176.993 57.505
50 10 10 b0.5nc 50 1 1 1 1 1 0.982 0.646 0.24 0.859 1 0.24 591.621 848.621 253.270
50 10 40 b0.1nc 10 1 1 0.999 1 0.992 0.919 0.55 0.159 0.827 1 0.159 6.754 7.557 6.089
50 10 40 b0.1nc 50 1 1 1 1 0.994 0.924 0.574 0.157 0.831 1 0.157 27.789 30.046 25.031
50 10 40 b0.3nc 10 1 1 1 1 1 0.943 0.574 0.222 0.842 1 0.222 56.830 64.593 33.236
50 10 40 b0.3nc 50 1 1 1 1 1 0.978 0.657 0.202 0.855 1 0.202 264.380 304.638 146.540
50 10 40 b0.5nc 10 1 1 1 1 1 0.915 0.529 0.289 0.842 1 0.289 125.720 176.901 58.693
50 10 40 b0.5nc 50 1 1 1 1 1 0.985 0.638 0.228 0.856 1 0.228 590.405 846.248 251.792
50 10 70 b0.1nc 10 1 1 1 1 0.994 0.923 0.554 0.153 0.828 1 0.153 6.721 7.487 5.951
50 10 70 b0.1nc 50 1 1 1 1 0.994 0.917 0.574 0.16 0.831 1 0.160 27.836 30.097 25.076
50 10 70 b0.3nc 10 1 1 1 1 1 0.955 0.574 0.213 0.843 1 0.213 56.987 64.592 33.512
50 10 70 b0.3nc 50 1 1 1 1 1 0.97 0.657 0.206 0.854 1 0.206 267.935 310.419 146.354
50 10 70 b0.5nc 10 1 1 1 1 1 0.943 0.555 0.29 0.849 1 0.290 127.842 177.911 57.568
50 10 70 b0.5nc 50 1 1 1 1 1 0.987 0.636 0.229 0.857 1 0.229 605.327 927.813 255.824
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Table A.8: Experiments to adjust parameters of MOSpecG-mod to real networks - part 1.

Parameters Karate Dolphins Polbooks Football
NG NP NO p IT NMI Time (s) NMI Time (s) NMI Time (s) NMI Time (s)
10 5 10 b0.1nc 10 0.828 0.002 0.429 0.007 0.446 0.028 0.83 0.039
10 5 10 b0.1nc 50 0.795 0.005 0.448 0.022 0.441 0.073 0.828 0.074
10 5 10 b0.3nc 10 0.589 0.014 0.445 0.017 0.409 0.042 0.831 0.058
10 5 10 b0.3nc 50 0.55 0.014 0.44 0.023 0.413 0.066 0.834 0.091
10 5 10 b0.5nc 10 0.489 0.012 0.42 0.012 0.419 0.042 0.829 0.06
10 5 10 b0.5nc 50 0.54 0.012 0.439 0.027 0.426 0.081 0.828 0.124
10 5 40 b0.1nc 10 1 0.002 0.541 0.005 0.454 0.018 0.863 0.017
10 5 40 b0.1nc 50 1 0.004 0.57 0.01 0.477 0.028 0.866 0.039
10 5 40 b0.3nc 10 0.699 0.011 0.523 0.013 0.524 0.024 0.89 0.041
10 5 40 b0.3nc 50 0.675 0.013 0.533 0.029 0.527 0.056 0.875 0.079
10 5 40 b0.5nc 10 0.675 0.011 0.534 0.014 0.503 0.033 0.897 0.053
10 5 40 b0.5nc 50 0.699 0.013 0.573 0.029 0.536 0.097 0.892 0.121
10 5 70 b0.1nc 10 1 0.002 0.561 0.004 0.456 0.014 0.865 0.02
10 5 70 b0.1nc 50 1 0.004 0.561 0.01 0.463 0.026 0.852 0.031
10 5 70 b0.3nc 10 0.699 0.015 0.53 0.015 0.498 0.038 0.872 0.043
10 5 70 b0.3nc 50 0.699 0.016 0.529 0.025 0.524 0.06 0.891 0.082
10 5 70 b0.5nc 10 0.7 0.011 0.554 0.012 0.5 0.049 0.903 0.049
10 5 70 b0.5nc 50 0.697 0.015 0.574 0.037 0.508 0.09 0.888 0.124
10 10 10 b0.1nc 10 1 0.002 0.56 0.005 0.457 0.02 0.867 0.028
10 10 10 b0.1nc 50 1 0.006 0.561 0.017 0.477 0.05 0.866 0.069
10 10 10 b0.3nc 10 0.699 0.01 0.52 0.02 0.542 0.043 0.883 0.051
10 10 10 b0.3nc 50 0.699 0.017 0.533 0.043 0.541 0.086 0.885 0.128
10 10 10 b0.5nc 10 0.699 0.013 0.58 0.017 0.533 0.044 0.895 0.102
10 10 10 b0.5nc 50 0.699 0.019 0.588 0.049 0.524 0.125 0.892 0.187
10 10 40 b0.1nc 10 1 0.003 0.561 0.006 0.47 0.024 0.88 0.024
10 10 40 b0.1nc 50 1 0.007 0.561 0.022 0.486 0.049 0.868 0.074
10 10 40 b0.3nc 10 0.699 0.011 0.524 0.018 0.533 0.037 0.903 0.054
10 10 40 b0.3nc 50 0.699 0.017 0.533 0.034 0.527 0.086 0.884 0.123
10 10 40 b0.5nc 10 0.699 0.013 0.572 0.021 0.515 0.062 0.892 0.08
10 10 40 b0.5nc 50 0.699 0.018 0.587 0.051 0.547 0.135 0.9 0.181
10 10 70 b0.1nc 10 1 0.003 0.581 0.006 0.477 0.013 0.862 0.02
10 10 70 b0.1nc 50 1 0.008 0.57 0.016 0.473 0.043 0.87 0.06
10 10 70 b0.3nc 10 0.699 0.008 0.542 0.014 0.556 0.026 0.879 0.04
10 10 70 b0.3nc 50 0.699 0.008 0.533 0.034 0.541 0.084 0.884 0.125
10 10 70 b0.5nc 10 0.7 0.009 0.568 0.012 0.515 0.047 0.89 0.059
10 10 70 b0.5nc 50 0.699 0.01 0.587 0.037 0.524 0.121 0.887 0.167
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Table A.9: Experiments to adjust parameters of MOSpecG-mod to real networks - part 2.

Parameters Karate Dolphins Polbooks Football
NG NP NO p IT NMI Time (s) NMI Time (s) NMI Time (s) NMI Time (s)
50 5 10 b0.1nc 10 0.806 0.006 0.428 0.01 0.442 0.025 0.846 0.04
50 5 10 b0.1nc 50 0.808 0.014 0.425 0.044 0.44 0.095 0.844 0.137
50 5 10 b0.3nc 10 0.537 0.019 0.462 0.039 0.431 0.061 0.845 0.106
50 5 10 b0.3nc 50 0.507 0.04 0.442 0.091 0.423 0.19 0.833 0.254
50 5 10 b0.5nc 10 0.59 0.025 0.426 0.035 0.411 0.108 0.844 0.162
50 5 10 b0.5nc 50 0.548 0.038 0.456 0.104 0.403 0.265 0.833 0.391
50 5 40 b0.1nc 10 1 0.008 0.581 0.015 0.47 0.034 0.855 0.082
50 5 40 b0.1nc 50 1 0.031 0.581 0.079 0.475 0.111 0.882 0.25
50 5 40 b0.3nc 10 0.699 0.032 0.52 0.055 0.529 0.128 0.873 0.176
50 5 40 b0.3nc 50 0.699 0.053 0.533 0.121 0.538 0.272 0.885 0.36
50 5 40 b0.5nc 10 0.675 0.022 0.546 0.046 0.508 0.185 0.888 0.216
50 5 40 b0.5nc 50 0.699 0.077 0.575 0.156 0.531 0.389 0.89 0.559
50 5 70 b0.1nc 10 1 0.009 0.571 0.029 0.472 0.052 0.882 0.084
50 5 70 b0.1nc 50 1 0.029 0.581 0.064 0.474 0.147 0.866 0.211
50 5 70 b0.3nc 10 0.71 0.016 0.532 0.052 0.525 0.137 0.888 0.157
50 5 70 b0.3nc 50 0.699 0.049 0.533 0.114 0.538 0.291 0.889 0.378
50 5 70 b0.5nc 10 0.698 0.032 0.57 0.049 0.504 0.132 0.89 0.215
50 5 70 b0.5nc 50 0.699 0.056 0.586 0.159 0.537 0.395 0.891 0.565
50 10 10 b0.1nc 10 1 0.009 0.581 0.028 0.464 0.076 0.885 0.126
50 10 10 b0.1nc 50 1 0.097 0.581 0.121 0.486 0.24 0.875 0.325
50 10 10 b0.3nc 10 0.699 0.031 0.536 0.077 0.555 0.194 0.891 0.198
50 10 10 b0.3nc 50 0.699 0.077 0.533 0.192 0.546 0.447 0.894 0.652
50 10 10 b0.5nc 10 0.699 0.033 0.58 0.078 0.536 0.264 0.904 0.284
50 10 10 b0.5nc 50 0.699 0.088 0.588 0.237 0.548 0.621 0.899 0.926
50 10 40 b0.1nc 10 1 0.011 0.581 0.036 0.476 0.095 0.873 0.128
50 10 40 b0.1nc 50 1 0.076 0.581 0.115 0.497 0.24 0.875 0.297
50 10 40 b0.3nc 10 0.699 0.034 0.529 0.07 0.533 0.17 0.904 0.239
50 10 40 b0.3nc 50 0.699 0.085 0.533 0.19 0.543 0.408 0.894 0.646
50 10 40 b0.5nc 10 0.699 0.027 0.58 0.094 0.52 0.278 0.893 0.275
50 10 40 b0.5nc 50 0.699 0.118 0.588 0.209 0.533 0.581 0.89 0.803
50 10 70 b0.1nc 10 1 0.009 0.581 0.026 0.479 0.054 0.879 0.083
50 10 70 b0.1nc 50 1 0.031 0.581 0.131 0.481 0.246 0.88 0.245
50 10 70 b0.3nc 10 0.699 0.03 0.532 0.058 0.531 0.189 0.878 0.195
50 10 70 b0.3nc 50 0.699 0.073 0.533 0.129 0.547 0.378 0.885 0.588
50 10 70 b0.5nc 10 0.699 0.028 0.568 0.06 0.521 0.293 0.896 0.218
50 10 70 b0.5nc 50 0.699 0.072 0.587 0.262 0.537 0.526 0.894 0.803
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Table A.10: Pearson correlation coefficients between MOSpecG-mod parameters and results for small-sized
networks.

Parameters NMI value achieved over each µ Time (s)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8| AVG MAX MIN

NG 0.004 0.011 0.001 -0.004 0 0.006 0.056 -0.016 0.397 0.376 0.428
NP 0.463 0.456 0.441 0.435 0.44 0.438 0.381 -0.109 0.198 0.188 0.215
NO 0.518 0.522 0.52 0.51 0.523 0.531 0.463 -0.157 -0.002 0 -0.009
p -0.076 -0.041 0.022 0.025 0.038 0.096 0.467 0.903 0.492 0.5 0.489
IT -0.01 0.004 0.007 0.005 0.002 0.014 0.124 -0.029 0.403 0.38 0.444

Table A.11: Pearson correlation coefficients between MOSpecG-mod parameters and results for large-sized
networks.

Parameters NMI value achieved over each µ Time (s)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8| AVG MAX MIN

NG 0.007 -0.002 0.003 -0.001 0.002 0.05 0.175 -0.055 0.393 0.372 0.420
NP 0.416 0.407 0.408 0.411 0.434 0.443 0.371 -0.225 0.197 0.189 0.209
NO 0.508 0.497 0.496 0.503 0.531 0.557 0.49 -0.286 0 0.005 -0.002
p -0.145 -0.162 -0.155 -0.149 -0.083 0.009 0.197 0.797 0.492 0.496 0.478
IT 0.003 -0.004 -0.003 0.005 0.005 0.095 0.34 -0.119 0.398 0.376 0.428

Table A.12: Pearson correlation coefficients between the parameters and results obtained by MOSpecG-mod
for real networks.

Parameters Karate Dolphins Polbooks Football
NMI Time (s) NMI Time (s) NMI Time (s) NMI Time (s)

NG 0.034 0.582 0.154 0.605 0.150 0.614 0.211 0.569
NP 0.186 0.292 0.499 0.315 0.476 0.337 0.507 0.294
NO 0.181 -0.071 0.414 -0.006 0.276 0.001 0.313 -0.026
p -0.803 0.245 0.021 0.302 0.406 0.411 0.374 0.377
IT -0.006 0.487 0.077 0.509 0.115 0.436 -0.040 0.485

Table A.13: Parameter-tuning experiments for SpecG-EC with small-sized community networks.

Parameters µ NMI Time (s)
NF τ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 AVG MAX MIN AVG MAX MIN
6 0.1 0.339 0.296 0.007 0.222 0.097 0 0 0.001 0.12 0.339 0 3.189 3.637 2.030
6 0.25 0.905 0.889 0.869 0.733 0.008 0.007 0 0 0.426 0.905 0 3.354 4.165 1.855
6 0.5 0.968 0.96 0.954 0.927 0.833 0.588 0.011 0.01 0.656 0.968 0.01 3.381 4.068 2.283
6 0.75 0.982 0.972 0.976 0.977 0.973 0.97 0.842 0.397 0.886 0.982 0.397 4.434 7.283 3.163
11 0.1 0.918 0.916 0.912 0.9 0.73 0 0 0 0.547 0.918 0 3.825 4.978 2.999
11 0.25 0.966 0.958 0.953 0.961 0.958 0.878 0.33 0.032 0.755 0.966 0.032 3.403 3.614 3.146
11 0.5 0.98 0.978 0.974 0.972 0.965 0.962 0.822 0.284 0.867 0.98 0.284 4.903 6.938 4.029
11 0.75 0.982 0.974 0.976 0.976 0.973 0.961 0.871 0.402 0.889 0.982 0.402 5.251 8.905 3.247
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Table A.14: Parameter-tuning experiments for SpecG-EC with large-sized community networks.

Parameters µ NMI Time (s)
NF τ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 AVG MAX MIN AVG MAX MIN
6 0.1 0.783 0.815 0.765 0.42 0 0.002 0 0 0.348 0.815 0 3.56 4.313 2.825
6 0.25 0.947 0.941 0.953 0.705 0.005 0 0 0 0.444 0.953 0 3.587 4.446 2.094
6 0.5 0.986 0.997 0.988 0.965 0.771 0.112 0.006 0.006 0.604 0.997 0.006 4.059 5.211 3.152
6 0.75 0.982 0.994 0.985 0.989 0.976 0.903 0.575 0.196 0.825 0.994 0.196 5.379 9.376 3.570
11 0.1 0.957 0.939 0.942 0.915 0.811 0 0 0 0.571 0.957 0 3.794 4.447 3.218
11 0.25 0.989 0.986 0.991 0.986 0.963 0.693 0.106 0.011 0.716 0.991 0.011 2.787 3.276 2.360
11 0.5 0.992 0.985 0.984 0.987 0.978 0.917 0.523 0.108 0.809 0.992 0.108 4.349 7.4 3.007
11 0.75 0.98 0.99 0.979 0.991 0.979 0.931 0.594 0.201 0.831 0.991 0.201 5.54 9.455 3.908

Table A.15: Parameter-tuning experiments for SpecG-EC with real networks.

Parameters Karate Dolphins Polbooks Football
NF τ NMI Time (s) NMI Time (s) NMI Time (s) NMI Time (s)
6 0.1 1 0.012 0.889 0.028 0.432 0.079 0.327 0.115
6 0.25 1 0.013 0.889 0.028 0.546 0.079 0.55 0.123
6 0.5 1 0.013 0.889 0.035 0.552 0.084 0.748 0.135
6 0.75 1 0.015 0.581 0.028 0.536 0.097 0.877 0.13
11 0.1 1 0.013 0.889 0.026 0.569 0.077 0.564 0.116
11 0.25 1 0.011 0.889 0.028 0.569 0.079 0.717 0.121
11 0.5 1 0.014 0.889 0.029 0.561 0.119 0.883 0.161
11 0.75 1 0.011 0.581 0.027 0.554 0.074 0.872 0.116

47


	1 Introduction
	2 Related Works
	2.1 Multi-objective graph clustering methods
	2.1.1 Optimization of the modularity terms
	2.1.2 Other optimization criteria
	2.1.3 Solution selection for the decision-making

	2.2 Consensus clustering

	3 Weighted Aggregate Modularity
	3.1 Spectral decomposition
	3.2 Defining the number of clusters
	3.3 Geometric interpretation
	3.4 Moving vertices between clusters

	4 Proposed Spectral-evolutionary Hybrid Multi-objective Algorithm
	4.1 Memetic Algorithm
	4.1.1 Crossover
	4.1.2 Mutation
	4.1.3 Local search

	4.2 Ensemble algorithm

	5 Computational Experiments
	5.1 Experiments with real networks
	5.1.1 Solution sets found by MOSpecG
	5.1.2 Comparative analysis

	5.2 Experiments with artificial networks
	5.2.1 Solution sets found by MOSpecG
	5.2.2 Comparative analysis


	6 Final Remarks and Future Works
	Appendix A Setting up parameters

