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Portfolio formation with preselection using deep learning from long-1 

term financial data 2 

Abstract: Portfolio theory is an important foundation for portfolio management which is a well-3 

studied subject yet not fully conquered territory. This paper proposes a mixed method consisting of 4 

long short-term memory networks and mean-variance model for optimal portfolio formation in 5 

conjunction to the asset preselection, in which long-term dependences of financial time-series data 6 

can be captured. The experiment uses a large volume of sample data from UK Stock Exchange 100 7 

Index between March 1994 and March 2019. In the first stage, long short-term memory networks 8 

are used to forecast the return of assets and select assets with higher potential returns. After 9 

comparing the outcomes of the long short-term memory networks against support vector machine, 10 

random forest, deep neural networks and autoregressive integrated moving average model, we 11 

discover that long short-term memory networks are appropriate for financial time-series forecasting, 12 

to beat the other benchmark models by a very clear margin. In the second stage, based on selected 13 

assets with higher returns, the mean-variance model is applied for portfolio optimisation. The 14 

validation of this methodology is carried out by comparing the proposed model with other five 15 

baseline strategies, to which the proposed model clearly outperforms others in terms of the 16 

cumulative return per year, Sharpe ratio per triennium as well as average return to the risk per 17 

month of each triennium. i.e. potential returns and risks.  18 

Key words: asset preselection, long-term financial data, financial forecasting, portfolio 19 

optimisation 20 
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Portfolio formation with preselection using deep learning from long-22 

term financial data  23 

1. Introduction 24 

Portfolio management is a decision-making process in which an amount of fund is allocated 25 

to multiple financial assets, and the allocation weight is constantly changed in order to maximize 26 

the return and restrain the risk (Markowitz, 1952). Portfolio theory proposed by Markowitz in 27 

1952, is an important foundation for portfolio management which is a well-studied subject yet not 28 

fully conquered territory. There are two issues with portfolio formation. The first one is to select 29 

assets with higher revenue, and another one is to determine the value composition of assets in the 30 

portfolio to achieve the goal of maximal potential returns with minimal risk. Quantitative approach 31 

to the portfolio formation has often been adopted in investment decisions. Based on Markowitz’s 32 

mean-variance (MV) model, numerous researches have discovered many model extensions and 33 

supplemented plentiful reasonable insights about the portfolio formation (Tobin, 1958; Sharpe, 34 

1963; Merton, 1969; Grauer and Hakansson, 1993; Liu and Loewenstein, 2002; Tu and Zhou, 35 

2010; Brown and Smith, 2011; Li et al., 2013; Li et al., 2015; Bodnar et al., 2017).  36 

In the portfolio optimisation process, the expected return on an asset is a crucial factor, which 37 

means that a preliminary selection of assets is critical for portfolio management (Guerard Jr et al., 38 

2015). But few researches pay attention to the preselection of assets before forming a portfolio. 39 

Asset selection has been a meaningful, but difficult issue in financial investment area. This line of 40 

research depends on a long-term volatility of financial time-series data in the past as well as a 41 

reliable performance forecasting of assets in the future (Huang, 2012). Traditional statistical 42 

methods are not effective in dealing with complex, multi-dimensional and noisy time-series data 43 



(Längkvist et al., 2014; Baek and Kim, 2018), while early machine learning methods, such as 44 

support vector machine (SVM), principal component analysis (PCA), and artificial neural network 45 

(ANN), are not most suited for learning and storing financial time-series data over a long period 46 

(LeCun et al., 2015; Bao et al., 2017). This situation leads to the difficulties of financial assets 47 

preselection. In fact, during the investment decision-making process, it would be unsustainable to 48 

only apply complex portfolio optimisation methods without high-quality asset input (Deng and Min, 49 

2013). 50 

In the financial market, individual investors usually would like to know the changes in the 51 

returns of their investment assets today, the possible trends in the returns tomorrow and which 52 

measures should be adopted to help them possess the best portfolio (Zhang et al., 2018). Therefore, 53 

incorporating forecasting theory into the portfolio formation will be promising in financial 54 

investment (Kolm et al., 2014). Forecasting financial time-series is always regarded as one of the 55 

most challenging tasks because of the dynamic, nonlinear, unstable and complex nature with long-56 

term fluctuations of the financial market (Chen and Hao, 2018; Paiva et al, 2019). But a reliable 57 

investment decision should rely on long-term observations and patterns of behaviour of asset 58 

data rather than short-term (Chourmouziadis and Chatzoglou 2016; Chong et al., 2017). In this 59 

case, it is necessary to observe the change and volatility of financial data over a long time in the 60 

past so as to make a good preparation for future trends forecasting and investment decisions. And 61 

numerous widely accepted empirical researches suggest that financial time-series have a memory 62 

of a period in the past, thus to some extent, financial markets are predictable. The behaviour of the 63 

asset over a long period will significantly influence the risks and returns of a portfolio, and then 64 

further affect the investment decisions (Liu and Loewenstein, 2002). However, this important 65 

https://www.sciencedirect.com/science/article/pii/S0167865514000221#!


point is always ignored by current researches. For instance, some apply early machine learning 66 

methods, GA (Huang, 2012), SVM (Huang, 2012; Paiva et al., 2019), to predict and select good 67 

assets, but fail to capture long-term dependencies of financial time-series data. To overcome this 68 

limitation, we present a novel method for portfolio formation in conjunction to the asset 69 

preselection, in which long-term dependences of financial time-series data are duly considered.   70 

The primary purpose of this paper is to construct an investment decision-making model for 71 

individual investors that combines the deep learning LSTM method which concentrates on 72 

capturing the long-term dependencies of the returns on assets and the Markowitz’s MV method to 73 

form optimal portfolios. In this respect, our study has two primary contributions which fill the gaps 74 

in existing literature. Firstly, this paper develops a novel method consisting of long short-term 75 

memory networks and mean-variance model (LSTM+MV) for optimal portfolio formation. This 76 

method considers the long-term dependences on the fluctuations of financial market and captures 77 

long-time change patterns of company stocks from the time-series data. To show the benefit of the 78 

proposed method in terms of the prediction, early machine learning and statistical models are used 79 

in our experiments as baselines to compare with the LSTM networks. Secondly, our proposed 80 

model explores in-depth the preselection process of assets before optimal portfolio formation, 81 

which guarantees high-quality inputs to the optimal portfolio. Unlike the majority of the methods 82 

which aim to improve the existing portfolio management models, this paper focuses on the 83 

preliminary phase of portfolio construction, i.e. the preselection of assets. Meanwhile our work 84 

provides practical guidance for investors in making better investment decisions. Specifically, the 85 

systematic approach present in current paper is able to help decide which assets should be part of 86 

the portfolio and the value composition of assets in the portfolio.  87 



The remainder of this paper is organised as follows. In Section 2, we review the development 88 

of modern portfolio theory and summarise empirical work that has used deep learning to solve 89 

issues corresponding to financial time-series data. In Section 3, we describe our methodology in 90 

detail, i.e. data source, input variable selection, the proposed model architecture. In Section 4, we 91 

present the results of the experiments and explain the results appropriately. In Section 5, we discuss 92 

our key findings, implications for theory and practice, also future work. 93 

2. Theoretical background 94 

2.1 Modern Portfolio Theory 95 

Markowitz (1952) proposes mean-variance (MV) methodology to solve portfolio selection 96 

issue, which initiates the foundation of Modern Portfolio Theory (MPT). He quantifies investment 97 

return and risk by expected return and variance, respectively. The main idea of MV methodology 98 

is to maximize expected return keeping unchanged variance, or minimize variance keeping 99 

unchanged expected return. MPT has been widely accepted and studied by researchers. Tobin 100 

(1958) indicates that liquidity preference could determine how much wealth is to be invested in 101 

monetary assets, and constructs an effective portfolio combined with risk-free assets as well as a 102 

special type of risky assets. Sharpe (1963) puts forward the diagonal model assuming that there is 103 

no interrelationship among securities so as to simplify the calculation, which significantly 104 

facilitates the development of portfolio theory. Some researchers notice that multi-period portfolio 105 

selection should be considered to deal with the complex financial markets. For instance, Merton 106 

(1969) extends modern portfolio theory by introducing a continuous-time model in order to achieve 107 

the goal of maximal expected utility within a constant planning region. Grauer and Hakansson 108 

(1993) apply a discrete-time dynamic investment model to compare the MV and the quadratic 109 



approximations computing the optimal portfolios. Some researches put several realistic constraints 110 

into the Markowitz’s MV model. For instance, Liu and Loewenstein (2002) incorporate transaction 111 

cost into stock trading strategy to help maximize the investors’ wealth utility. Brown and Smith 112 

(2011) consider risk aversion, transaction cost, portfolio constraints into MV model and find that 113 

it would be difficult to solve portfolio optimisation issues when three more assets are involved. 114 

Moreover, some studies use robust optimisation techniques in portfolio management. Tu and Zhou 115 

(2010) involve the financial objectives into Bayesian priors to estimate uncertain parameters and 116 

they prove that Bayesian method under the objective-based priors performs better than those under 117 

alternative priors in portfolio selection. Under a Bayesian estimation framework, Bodnar et al. 118 

(2017) analyse the global minimum variance portfolio and consider investors’ prior beliefs into the 119 

portfolio decisions. On the basis of random matrix theory, Bodnar et al. (2018) evaluate the global 120 

minimum variance portfolio with high-dimensional data to minimize the out-of-sample variance. 121 

 Furthermore, numerous scholars start to analyse portfolio issue using fuzzy set theory. Li 122 

and Xu (2013) indicate that there are often fuzzy uncertainty and random uncertainty existing in 123 

financial market, hence, they incorporate investors’ sentiments and experts’ insights into the 124 

process of portfolio construction. Assuming that expected rate of returns obeys normal distribution, 125 

Li et al. (2013) integrate two constraints, value at risk (VaR) and risk-free assets, into a fuzzy 126 

portfolio selection model so as to find a more suitable portfolio. Li et al. (2015) put forward another 127 

fuzzy portfolio selection model with background risk to obtain the effective frontier of portfolio. 128 

Recently, with the development of big data and artificial intelligence technology, it is possible to 129 

use computers and a large number of calculations to achieve optimal portfolio management. Huang 130 

(2012) focuses on high-return stock selection using support using genetic algorithms (GAs) as well 131 



as vector regression (SVR), but he ignores risk factor. Based on support vector machine (SVM), 132 

Paiva et al. (2019) classify the assets to achieve a certain return and determine the components of 133 

the investment portfolio. Almahdi and Yang (2017) set three optimisation objectives, annualised 134 

Sharpe ratio, Sterling ratio and Calmar ratio, respectively, then choose the best performance 135 

algorithm to select optimal portfolio. Yunusoglu and Selim (2013) develop expert system (ES) to 136 

support portfolio managers for investment decisions. The expert system contains three stages, the 137 

first stage is elimination of unacceptable stock. The second stage is to evaluate stock through a 138 

comprehensive literature survey and interviews with a domain expert. The last stage is to construct 139 

portfolio based on a mixed-integer linear programming model. Their results demonstrate that under 140 

the different risk preference, ES performance is not particularly big difference, moreover, ES is 141 

more suitable for 6 months, 9 months and 12 months of investment period. 142 

It is obvious that various extensions of Markowitz’s MV model help enrich the modern 143 

portfolio theory and provide researchers with more research perspectives. And these extensions 144 

further confirm that MV model plays an extremely significant role in portfolio management. 145 

However, most of the related researches ignores the selection of high-quality assets, the stage before 146 

the optimal portfolio formation. Instead, they focus more on how to improve the MV model. 147 

Actually, high-quality asset input is a reliable guarantee for optimal portfolio formation during the 148 

investment process. In this regard, this paper will continue to adopt the classical MV model, 149 

moreover, we will study deeply the preliminary selection of assets in order to provide MV model 150 

with better asset inputs. At the same time, different transaction costs will be considered for 151 

simulation to visualize the performance of different models. 152 



2.2 Return prediction with deep learning 153 

In recent years, with the development of big data and artificial intelligence (AI) technology, 154 

more and more scholars start to use AI as support for their research solutions and prove that AI 155 

methods deal with problem of nonlinear, nonstationary characteristics better than traditional 156 

statistical models. For example, a number of researches based on SVM (Paiva et al., 2019), PCA 157 

(Chen and Hao, 2018; Zbikowski, 2015), GA or random forest (Li and Xu, 2013; Mousavi, 2014), 158 

ANN (Patel et al., 2015; Chong et al., 2017) to classify, predict and optimise complex financial 159 

assets. Among these technologies, the deep learning is thought to be an appropriate method for the 160 

financial time-series forecasting solution, since it is good at processing complex, high-dimensional 161 

data as well as extracting abstract characteristics from mass data without depending on any 162 

assumptions.  163 

The deep learning method proposed by Hinton and Salakhutdinov (2006), has become a 164 

leading application in the financial area, especially in predicting financial market movement and 165 

processing text information. Deep learning architectures mainly include deep neural networks 166 

(DNNs), deep belief networks (DBNs), recurrent neural networks (RNNs) and convolutional neural 167 

networks (CNNs) (LeCun et al., 2015). Amongst them, DNNs are feedforward networks in which 168 

data flows from the input layer to the output layer by their single directional forward links without 169 

going backwards (Arévalo et al., 2016). Chong et al. (2017) testify that with regard to future 170 

returns prediction, DNN is obviously superior to a linear autoregressive model based on data from 171 

Korean stock market. Identifying the correlation between different stocks, Lachiheba and Gouider 172 

(2018) come up with a DNN model with special structure to predict the trend of stock returns over 173 

the next five minutes and the results manifest that the accuracy is improved to 71% considerably. 174 



DBNs are composed of multiple layers of latent variables, with connections between the layers but 175 

not between units within each layer (Hinton, 2009). Shen et al. (2015) construct a DBN using 176 

continuous restricted Boltzmann machines to predict exchange rate and their results show that their 177 

method performs better than traditional methods. Unlike feedforward neural networks, RNNs can 178 

use their internal states (memory) to process sequences of inputs. For instance, Rather et al. (2015) 179 

construct a novel hybrid model constituting autoregressive moving average model, exponential 180 

smoothing model and RNN to obtain more accurate returns prediction. Similarly, Long et al. (2019) 181 

integrate CNN and RNN into their proposed model entitled “multi-filters neural network” aiming 182 

to see the trend of the stock price over time, finally, they verify the prediction accuracy of the model 183 

through simulation. Long short-term memory (LSTM) networks are one of classes of recurrent 184 

neural networks (RNNs), but it has the advantage to retaining information over a long time-span 185 

compared with RNNs (LeCun et al., 2015; Fischer and Krauss, 2018). Kraus and Feuerriegel 186 

(2017) analyse the text data using the long short-term memory (LSTM) networks, finally they 187 

prove that their method increases the accuracy of the stock price prediction. Fischer and Krauss 188 

(2018) take advantage of the LSTM networks to forecast stocks directional movement and their 189 

results show that LSTM outperforms some classical machine learning models in this prediction 190 

task. Besides, Ding et al. (2015) apply CNNs to predict the short-term and long-term influences of 191 

events on stock price movements and they prove that the accuracy of the model outperforms other 192 

baseline methods. 193 

It is clear that the deep learning method is able to find complex structures in high-dimensional 194 

financial data and acquire features through simple and non-linear modules, and then transform 195 

features from lower level to higher level and more abstract features (LeCun et al., 2015). Based 196 



on above literature review, it is easy to discover that the majority of the existing studies on 197 

predicting assets returns based on deep learning pay more attention to improve the prediction 198 

accuracy, however, few of them apply their prediction results to actual financial markets, such as 199 

portfolio management, assets selection, or trading strategy, to give investors more practical 200 

guidance. Actually, the high accuracy of prediction does not represent the optimal investment 201 

strategy. The advantages of deep learning methods in predicting can be very helpful for decision 202 

making in financial investments (Saurabh Aggarwal and Somya Aggarwal, 2017). Therefore, 203 

how to combine the prediction of deep learning to help choose the optimal investment strategy is a 204 

meaningful and promising research direction (Zhang et al., 2018). 205 

3. Methodology 206 

3.1 Data 207 

The biggest challenge of prediction is to recognise a relation in financial time-series data between 208 

the past and the future (Paiva et al., 2019). Since the continuity of financial stock data, the longer 209 

the sample data is involved, the more likely it is to capture history information memory (Fischer 210 

and Krauss, 2018; Long et al., 2019). Hence, a large amount of long-term data is required in the 211 

empirical experiment (Chourmouziadis and Chatzoglou, 2016). In this research, we collect daily 212 

stock data from the UK Stock Exchange 100 Index (FTSE 100) from March 1994 until March 2019, 213 

covering 25 years. Since the majority of related studies have been conducted over a period of 10 214 

years or less (Kara et al, 2011; Patel et al., 2015; Chen and Hao, 2018), 15 years (Paiva et al., 2019; 215 

Almahdi and Yang; 2017), or 25 years (Fischer and Krauss, 2018), our samples spanning 25 years 216 

can be considered to provide a sufficiently large volume data to generate statistically significant 217 

results. Our sample data involves the historical series of adjusted open prices, close prices, the 218 



highest prices, the lowest prices, and the trading volume of assets. Numerous scholars agree on that 219 

holding tens of thousands of different stocks as a portfolio is not realistic for individual investors 220 

(Tanaka et al., 2000; Ranguelova, 2001; Kocuk and Cornuéjols, 2018; Almahdi and Yang, 2017). 221 

For instance, Tanaka et al. (2000) select 9 securities as the sample to form the optimal portfolio. 222 

Almahdi and Yang (2017) construct a five-asset portfolio. Hence, this paper randomly chooses 223 

twenty-one stocks from FTSE 100 as sample data, which is sufficiently large for the asset 224 

preselection before forming portfolio for individual investors. The names of these sample stocks 225 

are “BP” (BP), “Barclays” (BAR), “Tesco” (TES), “Vodafone Group” (VG), “Halma” (HAL), 226 

“Johnson Matthey” (JM), “HSBC Holdings” (HH), “Sainsbury J” (SJ), “Marks & Spencer Group” 227 

(MSG), “Astrazeneca” (AST), “British American Tobacco” (BAT), “PEARSON” (PEA), “Relx” 228 

(RELX), “SSE” (SSE), “Legal & General” (LG), “Royal Bank” (RB), “Royal Dutch Shell B” 229 

(RDSB), “Sage Group” (SG), “Schroders” (SCH), “Seven Trent” (ST) and “Smiths Group” (SG). 230 

Their abbreviations are used for convenience, respectively. Table 1 shows the descriptive statistics 231 

of close prices for the 21stocks selected from FTSE 100. As can be seen, stock AST has the highest 232 

daily mean prices: 2923.12, stock LG has the lowest standard deviation: 65.36, stock VG follows, 233 

with 65.81. 234 

Table 1 Descriptive statistics for sample data 235 

Stock  Mean Std.  Maximum Minimum 

TES 255.66  104.65  492.0  67.33 

AST 2923.12  1142.28  6317.0 658.41 

BAR 318.90 141.05  710.69 47.0 

BP 468.58  109.99 712.0 174.5 

BAT 1808.8 1468.73  5643.0 217.59  

HAL 357.44 349.40 1648.0 81.5 

HH 611.21  165.72  951.6  171.09 

JM 1572.69 967.46 3823.0  263.85  

LG 141.78  65.36  23.0 294.4  

MSG 396.84  111.54  749.0  170.75 



PEA 887.68  316.77  2301.79  429.5 

RELX 714.0  352.18 1782.0 348.82  

RB 2076.30  1877.32  6026.35 103.0 

RDSB 1753.62  451.63 761.02  2841.0  

SG 978.12  283.06 424.34  1801  

SJ 343.75  77.27  594.0 214.6 

SCH 1416.98  875.33 3773.0 346.01 

ST 1257.59  536.65  2553.0 487.17 

SG 978.12  283.06  1801.0 424.34 

SSE 984.88 433.62 1696.0 272.5 

VG 158.88  65.81  408.57  32.29 

3.2 LSTM networks 236 

LSTM networks were introduced by Hochreiter and Schmidhuber (1997) as an alternative 237 

method to learn sequential patterns. LSTM networks are one of classes of recurrent neural networks 238 

(RNNs), but it has the advantage to retaining information over a long time-span compared with 239 

RNNs (LeCun et al., 2015; Fischer and Krauss, 2018). Graves and Schmidhuber (2005) 240 

demonstrate that LSTM networks are able to overcome the previously inherent problems and 241 

memorize temporal patterns over a long period of time. 242 

LSTM networks are comprised of an input layer, several hidden layers, and an output layer. 243 

The most important characteristics of LSTMs is memory cells which contained in the hidden layers. 244 

Fig. 1 illustrates the structure of an LSTM memory cell. As we can see, for each memory cell, 𝑥𝑡 245 

and ℎ𝑡 correspond to the input and hidden state respectively, at time 𝑡, and 𝑖𝑡, 𝑜𝑡 and 𝑓𝑡, are the 246 

gates which are called input, output and forget gates, respectively, 𝑠𝑡 is adjusting its cell state. It 247 

is worth noting that the input gate decides which data can be added into the memory cell, the output 248 

gate decides which data from the memory cell can be used as output, and the forget gate decides 249 

which data should be deleted from the memory cell. The calculations for each state and gate are 250 

performed as the following formulas.  251 



 252 

Fig.1. Structure of LSTM memory cell following Fischer and Krauss (2018) 253 

𝑓𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑓,𝑥𝑥𝑡 +𝑊𝑓,ℎℎ𝑡−1 + 𝑏𝑓)                                      (1) 254 

𝑠̃𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑠̃,𝑥𝑥𝑡 +𝑊𝑠̃,ℎℎ𝑡−1 + 𝑏𝑠̃)                                      (2) 255 

𝑖𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑖,𝑥𝑥𝑡 +𝑊𝑖,ℎℎ𝑡−1 + 𝑏𝑖)                                       (3) 256 

𝑠𝑡 = 𝑓𝑡 ∗ 𝑠𝑡−1 + 𝑖𝑡 ∗ 𝑠̃𝑡                                                     (4) 257 

𝑜𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑜,𝑥𝑥𝑡 +𝑊𝑜,ℎℎ𝑡−1 + 𝑏𝑜)                                      (5) 258 

ℎ𝑡 = 𝑜𝑡 ∗ tanh⁡(𝑠𝑡)                                                        (6) 259 

Where 𝑊𝑓,𝑥 , 𝑊𝑓,ℎ , 𝑊𝑠̃,𝑥 , 𝑊𝑠̃,ℎ , 𝑊𝑖,𝑥 , 𝑊𝑖,ℎ , 𝑊𝑜,𝑥  and 𝑊𝑜,ℎ  are weight matrices, 𝑏𝑓 , 𝑏𝑠̃ , 260 

𝑏𝑖, and 𝑏𝑜 are bias vectors of the respective gates. Those bias vectors are added to increase the 261 

flexibility of the model to fit the data. Bias vectors 𝑏𝑠̃, 𝑏𝑖, and 𝑏𝑜 are initialized to zero, but the 262 

bias 𝑏𝑓 for the forget gate in LSTM is initialized to 1.0 (Jozefowicz et al., 2015). The symbol of 263 

∗ indicates element-wise multiplication. Because of this selective process of information, LSTM 264 

is able to deal with longer temporal patterns.  265 

3.3 Mean-variance model 266 

Mean-variance (MV) model proposed by Markowitz (1952) in order to solve optimal portfolio 267 

selection issue, which initiates the foundation of Modern Portfolio Theory (MPT). In this model, 268 

investment return and risk are quantified by expected return and variance, respectively. Santos and 269 



Tessari (2012) hold the view that the core of the portfolio selection for investors is to decide which 270 

portfolio is the best on the basis of risk and expected returns. Hereby, rational investors always 271 

prefer the lower risk portfolios with constant expected returns or the higher expected return 272 

portfolios with constant risk level. To solve this issue, a set of optimal solutions is generated, named 273 

an efficient investment frontier. The model can be described by the following formulas: 274 

𝑀𝑖𝑛
𝑤𝑖 , … , 𝑤𝑛

∑ ∑ 𝑤𝑖
𝑛
𝑗=1

𝑛
𝑖=1 𝑤𝑗𝛿𝑖𝑗                                                       (7) 275 

𝑀𝑎𝑥
𝑤𝑖 , … , 𝑤𝑛

∑ 𝑤𝑖𝜇𝑖
𝑛
𝑖=1                                                                (8) 276 

Subject⁡to: {
∑ 𝑤𝑖 = 1𝑛
𝑖=1

0 ≤ 𝑤𝑖 ≤ 1, ∀⁡𝑖 = 1,… , 𝑛
                                                (9) 277 

Where 𝑤𝑖⁡𝑎𝑛𝑑⁡𝑤𝑗⁡ represent the initial value invested in the portfolio or asset⁡𝑖⁡and asset⁡𝑗. 278 

𝛿𝑖𝑗 specifies covariance between assets⁡𝑖⁡and asset⁡𝑗. 𝜇𝑖 is expected return on asset ⁡𝑖. Following 279 

Paiva et al. (2019), a variable 𝜆 called risk aversion coefficient is integrated into the model to 280 

depict investors’ behavior corresponding to the risk investment choices. A mono-objective 281 

formulation is as following: 282 

𝑀𝑖𝑛
𝑤𝑖 , … , 𝑤𝑛

𝜆[∑ ∑ 𝑤𝑖
𝑛
𝑗=1

𝑛
𝑖=1 𝑤𝑗𝛿𝑖𝑗] − (1 − 𝜆)[∑ 𝑤𝑖𝜇𝑖

𝑛
𝑖=1 ]                                   (10)                       283 

 Subject⁡to: {
∑ 𝑤𝑖 = 1𝑛
𝑖=1

0 ≤ 𝑤𝑖 ≤ 1, ∀⁡𝑖 = 1,… , 𝑛
                                              (11) 284 

As a result, a group of optimal portfolios constitute an effective frontier can be derived and 285 

introduced to the investor. So, the investor could select the point among these possible solutions 286 

according to his or her risk preference.  287 

3.4 Proposed model: LSTM+MV 288 

Many researches always ignore the fact that the purpose of forecasting financial market is not 289 

to show off the accuracy of a model but to apply these good results into the real market so as to 290 

give investors more practical and meaningful guidance. During the investment decision-making 291 



process, high-quality asset input would be very helpful for the optimal portfolio formation. Given 292 

the important role that MV method plays in portfolio management area, we will continue to adopt 293 

this classical model, moreover, we will study deeply the preliminary selection of assets in order to 294 

provide MV model with better asset inputs. In this regard, this study puts forward a mixed method 295 

named LSTM+MV combining the advantages of deep learning LSTM method in time-series 296 

forecasting with the effectiveness of MV model in portfolio optimisation, aiming to improve the 297 

investment decision-making process.  298 

There are two stages in our proposed model. In the first stage, LSTM method is applied to 299 

predict the return of the sample stocks in the next period. All the predicted results will be sorted in 300 

descending order and the top stocks will enter into the next phase. In the second stage, the 301 

Markowitz’s MV model will be used to obtain the capital allocation proportion for each stock that 302 

has been entered. 303 

3.4.1 Input variable selection 304 

The selection of input variables is extremely necessary for time-series prediction tasks. In the 305 

light of previous literatures, technical indicators are effective features to describe and reflect the 306 

real market situation. For instance, Chen and Hao (2018) suggest that Exponential Moving 307 

Average (EMA), Relative Strength Index (RSI) and Momentum Index (MoM) are correlated with 308 

changes in stock market. Kara et al (2011) select ten technical indicators as input feature subsets. 309 

Also, financial time-series forecasting is always explained by the lagged observations. For example, 310 

Fischer and Krauss (2018) use a return time sequence length of 240 for training. Paiva et al. (2019) 311 

use several lagged variables of return as inputs to predict the future return of stocks. Hereby, after 312 

referring to the views of domain papers, we make feature selection by recursive feature elimination 313 



(RFE). To be specific, RFE works by recursively removing features and building a model on those 314 

features that remain. It uses the model accuracy to identify which features contribute the most to 315 

predicting the target feature (return in 𝑡 + 1 period). We use RFE with the logistic regression 316 

algorithm to select the features with a ratio greater than 0.3. Fig. 2 shows the results of feature 317 

selection using RFE. We finally choose twenty important indicators as input variables, including 318 

five technical indicators and fifteen lagged observations about return. The values of all technical 319 

indicators are standardized in the range of (-1, +1), in order to avoid the errors caused by different 320 

indicators of different numerical ranges. Table 2 summarises the selected input variables. Among 321 

the variables are return measures based on open, close, high, low prices, and volume. A brief 322 

explanation of each indicator is as following. 323 

 324 
Fig. 2. Feature selection results 325 

 326 

Table 2 Input features summary 327 

Attribute Details Attribute Details 

1 𝑟1 = ln⁡(
𝑐𝑙𝑜𝑠𝑒⁡𝑝𝑟𝑖𝑐𝑒𝑖

𝑐𝑙𝑜𝑠𝑒⁡𝑝𝑟𝑖𝑐𝑒𝑖−1
) 11 𝑟11 = ln⁡(

ℎ𝑖𝑔ℎ⁡𝑝𝑟𝑖𝑐𝑒𝑖−3

𝑜𝑝𝑒𝑛⁡𝑝𝑟𝑖𝑐𝑒𝑖−3
) 

2 𝑟2 = ln⁡(
𝑐𝑙𝑜𝑠𝑒⁡𝑝𝑟𝑖𝑐𝑒𝑖−1

𝑐𝑙𝑜𝑠𝑒⁡𝑝𝑟𝑖𝑐𝑒𝑖−2
) 12 𝑟12 = ln⁡(

𝑙𝑜𝑤⁡𝑝𝑟𝑖𝑐𝑒𝑖

𝑜𝑝𝑒𝑛⁡𝑝𝑟𝑖𝑐𝑒𝑖
) 

3 𝑟3 = ln⁡(
𝑐𝑙𝑜𝑠𝑒⁡𝑝𝑟𝑖𝑐𝑒𝑖−2

𝑐𝑙𝑜𝑠𝑒⁡𝑝𝑟𝑖𝑐𝑒𝑖−3
) 13 𝑟13 = ln⁡(

𝑙𝑜𝑤⁡𝑝𝑟𝑖𝑐𝑒𝑖−1

𝑜𝑝𝑒𝑛⁡𝑝𝑟𝑖𝑐𝑒𝑖−1
) 

4 𝑟4 = ln⁡(
𝑐𝑙𝑜𝑠𝑒⁡𝑝𝑟𝑖𝑐𝑒𝑖−3

𝑐𝑙𝑜𝑠𝑒⁡𝑝𝑟𝑖𝑐𝑒𝑖−4
) 14 𝑟14 = ln⁡(

𝑙𝑜𝑤⁡𝑝𝑟𝑖𝑐𝑒𝑖−2

𝑜𝑝𝑒𝑛⁡𝑝𝑟𝑖𝑐𝑒𝑖−2
) 

5 𝑟5 = ln⁡(
ℎ𝑖𝑔ℎ⁡𝑝𝑟𝑖𝑐𝑒𝑖

𝑜𝑝𝑒𝑛⁡𝑝𝑟𝑖𝑐𝑒𝑖
) 15 𝑟15 = ln⁡(

𝑙𝑜𝑤⁡𝑝𝑟𝑖𝑐𝑒𝑖−3

𝑜𝑝𝑒𝑛⁡𝑝𝑟𝑖𝑐𝑒𝑖−3
) 

6 𝑟6 = ln⁡(
ℎ𝑖𝑔ℎ⁡𝑝𝑟𝑖𝑐𝑒𝑖

𝑜𝑝𝑒𝑛⁡𝑝𝑟𝑖𝑐𝑒𝑖−1
) 16 Relative Strength Index 

(close price, period =14) 

7 𝑟7 = ln⁡(
ℎ𝑖𝑔ℎ⁡𝑝𝑟𝑖𝑐𝑒𝑖

𝑜𝑝𝑒𝑛⁡𝑝𝑟𝑖𝑐𝑒𝑖−2
) 17 Momentum Index (close 

price, period =10) 

8 𝑟8 = ln⁡(
ℎ𝑖𝑔ℎ⁡𝑝𝑟𝑖𝑐𝑒𝑖

𝑜𝑝𝑒𝑛⁡𝑝𝑟𝑖𝑐𝑒𝑖−3
) 18 True range (high, low, and 



close price) 

9 𝑟9 = ln⁡(
ℎ𝑖𝑔ℎ⁡𝑝𝑟𝑖𝑐𝑒𝑖−1

𝑜𝑝𝑒𝑛⁡𝑝𝑟𝑖𝑐𝑒𝑖−1
) 19 Average true range (high, 

low and close price, 

period = 14)) 

10 𝑟10 = ln⁡(
ℎ𝑖𝑔ℎ⁡𝑝𝑟𝑖𝑐𝑒𝑖−2

𝑜𝑝𝑒𝑛⁡𝑝𝑟𝑖𝑐𝑒𝑖−2
) 20 Parabolic SAR (high and 

low price, acceleration = 

0.02, maximum = 0) 

 328 

1) Simple return 329 

Set 𝑃𝑡
𝑖⁡as the price process of stock 𝑖 at time 𝑡, with 𝑖𝜖{1,2… , 𝑛}⁡and 𝑅𝑡

𝑚,𝑖
 as the simple 330 

return for a stock 𝑖 over 𝑡 periods, i.e., 𝑅𝑡
𝑚,𝑖 =

𝑃𝑡
𝑖

𝑃𝑡−𝑚
𝑖 . 331 

2) Relative Strength Index (RSI) 332 

RSI, a momentum indicator, is able to measure the magnitude of the rise and fall in prices 333 

recently. It is very effective in assessing the overbought/oversold condition of an asset. According 334 

to the parameters of this indicator in existing researches (Paiva et al., 2019; Chen and Hao, 2018; 335 

Patel et al., 2015), this paper set the period as 14. 336 

3) Momentum Index (MoM) 337 

MoM is an extremely popular indicator measuring a security’s rate-of-change, which refers to 338 

the force or speed of movement. Following existing researches (Paiva et al., 2019; Chen and Hao, 339 

2018; Patel et al., 2015), in this paper, the period is set to 10. 340 

4) True range (TR) 341 

TR is the maximum change in the price of the day compared to the previous day. 342 

5) Average true range (ATR) 343 

ATR is a technical analysis indicator that reflects market volatility through decomposing the 344 

entire range of an asset price for a period. 345 

6) Parabolic SAR 346 



The parabolic SAR is used to determine the direction in which asset prices rise or fall, besides, 347 

it will remind us when the direction of the price changes, in another words, it will adjust as prices 348 

change so as to attract investors’ attention. 349 

3.4.2 Generation of training and testing sets 350 

Since the continuity of time-series data, we consider each training-testing set as a “study 351 

period”, involving a training period of 750 days and a testing period of 250 days (Fischer and 352 

Krauss, 2018). We divide our sample data from March 1994 until March 2019 into twenty-two 353 

study periods with overlapping training-testing sets. In each study period, the data in the first 750 354 

days is used for training with rolling windows, the rest data fully out-of-sample in the last 250 days 355 

is performed for testing based on the trained parameters. Then, the entire network will roll forward 356 

250 days, leading to twenty-two non-overlapping testing sets. Details can be seen in Fig. 3. The 357 

blue area represents the whole span of our sample, from March 1994 until March 2019. The yellow 358 

area indicates the training set, 750 days. The red area is the testing set, 250 days. The red and yellow 359 

areas together form our “study period”, 1000 days. 360 

 361 

Fig. 3. overlapping training-testing sets 362 



3.4.3 Process of optimal portfolio formation 363 

The proposed model LSTM+MV in this paper is on the basis of technical analysis as well as 364 

the historical asset prices identification. On this account, we follow the assumption of Fama (1965) 365 

who holds the view that history behaviour trend of the price change in individual assets are inclined 366 

to repeat in the future. The primary objective of the LSTM method here is to forecast the relative 367 

return rate of each stock in⁡𝑡 + 1 trading day on the basis of information before time 𝑡. In LSTM 368 

networks of our proposed model, some sequences of input features are required for training, that is, 369 

the values of input features at points in consecutive time. With regards to the training of the LSTM 370 

networks, three advanced methods are applied through Keras. First, Adam (Kingma and Ba, 2014) 371 

is used as the optimiser to improve the neural network. This selection is inspired from some existing 372 

researches (Kingma and Ba, 2014; Reimers and Gurevych; 2017; Kraus and Feuerriegel, 2017), as 373 

they testify that Adam is appropriate for deep LSTM networks and has a better performance in 374 

optimising the neural network. Second, referring to Srivastava et al. (2014), we make use of dropout 375 

regularization technique on the hidden layer. In this case, randomly selected neurons are dropped 376 

during training times, along with corresponding input and output connections, which is able to 377 

reduce overfitting efficiently (Srivastava et al., 2014; Fischer and Krauss, 2018). In the case of 378 

Adam optimiser, we also carry an initial experiment using a part of the sample, the result shows 379 

that the model performance decreases as the dropout rate increases, hence, we set the dropout rate 380 

relatively low as 0.1. Third, we perform random search method to dynamically find a good 381 

combination of hyperparameters based on the above settings. Many empirical evidences have 382 

shown the effectiveness of random search in optimising the parameters (Bergstra and Bengio, 2012; 383 

Greff et al., 2017). The random search samples the following hyperparameters: (1) the sequence 384 



length, ranging from 30 to 250; (2) the number of epochs, ranging from 10 to 100, (3) neuron 385 

activation function; (4) the number of neurons per hidden layer, ranging from 2 to 200. Finally, the 386 

specified topology of the LSTM network is confirmed. We set 20 features and 72 timesteps in input 387 

layer. And in LSTM layer, we set 60 hidden neurons and 0.1 for dropout rate. In dense layer, we 388 

apply 16 neurons and relu activation function. Also, we set one neuron and sigmoid activation 389 

function in output layer, which is a standard configuration (Fischer and Krauss, 2018). Since the 390 

optimal sequence length is 72, approximately covering the data of three testing months. Thus, 391 

overlapping sequences of 72 consecutives are generated. In total, 22 study period contain about 392 

429,000 of those sequences, in which approximately 321,750 are utilized for in-sample training, 393 

and 107,250 are utilized for out-of-sample predictions. For each study period, there are about 394 

19,500 of those sequences. Suppose that we would like to find whether an asset has the potential 395 

to reach higher return in⁡𝑡 + 1. Then, we will collect all data of that asset before the trading session 396 

at 𝑡0 in order to achieve this goal. According to LSTM principles, the data series from previous 397 

days would be put into the model to implement experiment.  398 

Once all the assets are predicted, one by one, we will rank all stocks for each period 𝑡 + 1 in 399 

descending order of this predicted return. Only the top 𝑘 of the ranking with the higher return 400 

assets that are considered to qualify to enter into the next phase. The purpose of the second stage is 401 

to obtain the capital allocation proportion for each asset. And the Markowitz’s MV model will be 402 

used to carry on this stage. It is worth clarifying that the proposed model does not take into account 403 

investors’ risk preference and risk-free assets, thus, the portfolios exclusively compose of risky 404 

assets. According to the way of Malkiel (2007) letting a blindfolded monkey throw darts at a 405 

newspaper’s financial pages, we also create a function in python to randomly generate 50,000 406 



portfolios. From a statistical perspective, 50,000 random portfolios basically cover most possible 407 

portfolios with different weights and can be regarded representative enough (Fischer and Krauss, 408 

2018). Furthermore, all these 50,000 portfolios will be screened in accordance with MV 409 

optimisation rules so that better portfolio can be find. In the end, the available resources will be 410 

allocated to the portfolio with the lowest variance. As such, when the assets and the respective 411 

investment proportions are confirmed, the next step is to allocate capital at the opening of the next 412 

trading day. We will go long the top 𝑘 assets during the investment day. The detailed process of 413 

the proposed method is shown in Fig. 4. 414 

 415 
Fig. 4. The scheme of proposed model 416 

3.4.4 Benchmark models for prediction: SVM, RAF, DNN and ARIMA 417 

In order to benchmark the LSTM, three representative machine learning models, support 418 

vector machine, random forest, deep neural network, as well as a traditional statistical model named 419 

Autoregressive Integrated Moving Average that is often applied for time-series prediction. We will 420 

introduce the principles of each model in the following paragraphs. 421 

Support Vector Machine: This technique aims to solve issues related to classification, 422 

regression estimation, pattern recognition and time series (Paiva et al., 2019). Support vector 423 



regression (SVR), proposed by Drucker et al. (1997), is a version of support vector machine (SVM) 424 

for regression. SVR is able to deal with continuous values and find the best regression hyperplanes 425 

in order to estimate the dependent variable value (Loureiro et al., 2018). 426 

Random Forest: The algorism derives from the decision trees and is developed to improve the 427 

accuracy of decision trees and overcome the high sensitivity to small changes in data. It is generally 428 

accepted that it is an advanced machine learning model that usually gets good results and seldom 429 

needs tuning (Fischer and Krauss, 2018). 430 

Deep neural network: DNN is consisted of multiple hidden layers, one input and one output 431 

layer (Loureiro et al., 2018). To be specific, this paper applies a feedforward neural network with 432 

20 input neurons and the activation with relu (Li and Yuan, 2017), 30 neurons in the first hidden 433 

layer, 3 neurons in the second hidden layer (Fischer and Krauss, 2018), and one neuron in the output 434 

layer. Dropout is set to 0.2.  435 

Autoregressive Integrated Moving Average model: ARIMA is a classical econometrics model, 436 

fitted to predict time-series data in future, and ARIMAX extends ARIMA model by including 437 

exogenous variables (Pektas and Cigizoglu, 2013). This paper uses ARIMAX model as one of 438 

baseline models. 439 

3.4.5 Baseline strategies for portfolio formation 440 

In reality, except for MV model, equal-weighted portfolio and Black-Litterman (BL) model 441 

are also popular. It is worth noting that we originally used the BL model as one of the baselines, 442 

but in the end, we found that we could not get a prominent and consistent result to explain. Maybe 443 

the parameters of different models need to be adjusted or due to some other reasons we have not 444 

figured out. Therefore, we decide not to discuss BL model in this paper. These following baseline 445 



strategies are based on the LSTM+MV model proposed in the prior section and used to compare 446 

with this model’s changes and performance. 447 

(1) Alternative model: Machine learning + MV 448 

This kind of model’s design is similar with the logical structure of the LSTM+MV model. The 449 

main objective is to find out whether different prediction results of asset return will have an impact 450 

on the formation of the final optimal portfolio. To be specific, assets returns in 𝑡 + 1⁡ will be 451 

predicted by one machine learning method with better forecasting performance in the in the first 452 

stage, and assets with higher return in the future will be chosen into the second stage. Notice that 453 

the number of assets selected must be as same as the number defined in the LSTM+MV model. 454 

The second stage, portfolio optimisation, applying the Markowitz’s MV method is maintained. 455 

(2) Alternative model: Machine learning + 1/N 456 

The objective of this baseline strategy is to examine the portfolio optimisation effect between 457 

MV and 1/N (equal-weighted), in the case of the same initial selection of assets. Specifically, one 458 

machine learning method with better forecasting performance in the first stage will be used to 459 

predict assets returns in 𝑡 + 1⁡, and then rank these assets according to the predicted results. Finally, 460 

the top 𝑘 assets will enter into the second stage and receive the same proportion of investment. 461 

Notice that 𝑘 should be consistent with the number defined in the LSTM+MV model. 462 

(3) Alternative model: Random+ MV or 1/N 463 

This kind of baseline strategy differs from the previous baselines in terms of the asset 464 

preselection phase. The asset preselection is randomly undertaken without relying on any 465 

predictions, but the number of assets should be same as the number defined by the other models. 466 

To be specific, we will randomly select a certain number of assets from all our samples and then 467 



apply Markowitz’s MV method or 1/N optimisation separately to optimise the portfolio. The 468 

objective of this kind of baseline strategy is to examine the necessity of asset preselection using 469 

machine learning.  470 

4. Experiments and Results 471 

4.1 Results analysis in the first stage: prediction 472 

In this section, we use five criterions to evaluate predictive accuracy, mean square error (MSE), 473 

root-mean-square error (RMSE), mean absolute percentage error (MAPE), mean absolute error 474 

(MAE) and coefficient of determination (𝑅2). Tables 3 to 5 summarise the best results achieved for 475 

each model applied according to the different evaluation metrics employed. As can be seen from 476 

three tables, the majority of indicators corresponding to LSTM model perform better than the index 477 

value of other models, but several exceptions also exist. For example, the MAE and MAPE 478 

indicator of stock SSE where the prediction result of LSTM is larger than that of SVM and DNN 479 

respectively. Another example is that the 𝑅2 of 3 stocks (BP, JM, SG) predicting by SVM are 480 

higher than that of LSTM, and the 𝑅2 of 2 stocks (BAT, PEA) using RAF are higher than that of 481 

LSTM too. 482 

Table 3 Comparison of prediction performance 483 

 LSTM  SVM  

Stock  MSE RMSE MAPE MAE R2 MSE RMSE MAPE MAE R2 

TES 0.0031 0.0557 67.99 0.0364 0.4209  0.0042  0.0651  167.92  0.0427  0.3108 

AST 0.0032 0.0568 165.53  0.0324 0.2806  0.0089  0.0942  190.68  0.0512  0.1856 

BAR 0.0007 0.0265 6.63  0.0159 0.2631  0.0050  0.0608  22.47  0.0335  0.1200 

BP 0.0053 0.0727 123.00  0.0413 0.1121  0.0054  0.0732  114.88  0.0450  0.1379  

BAT 0.0019 0.0439 7.76  0.0296 0.1259  0.0064  0.0731  25.50  0.0404  0.0862  

HAL 0.0050 0.0709 266.49  0.0378 0.2288  0.0054  0.0735  221.27  0.0397  0.1359  

HH 0.0015 0.0390 25.10  0.0214 0.2395  0.0024  0.0484  55.71  0.0290  0.1349  

JM 0.0063 0.0797 221.26  0.0495 0.1327  0.0099  0.0997  226.03  0.0431  0.1718  

LG 0.0009 0.0293 17.42  0.0155 0.1585  0.0010  0.0317  18.71 0.0176  0.1210  

MSG 0.0029 0.0540 17.06  0.0301 0.2630  0.0040  0.0629  19.62  0.0390  0.2141  

PEA 0.0018 0.0426 9.06  0.0227 0.1100  0.0026  0.0513  10.95  0.0323  0.1816  

REL 0.0028 0.0532 35.08  0.0267 0.1557  0.0029  0.0539  37.78  0.0297  0.1145  



RB 0.0002 0.0146 1.98  0.0094 0.4578  0.0003  0.0162  2.22 0.0104  0.3768  

RDSB 0.0068 0.0825 158.40  0.0417 0.2960  0.0062  0.0785  154.90  0.0417  0.1093  

SG 0.0039 0.0622 74.90  0.0302 0.2545  0.0047  0.0684  71.50  0.0367  0.3592  

SJ 0.0028 0.0525 16.29  0.0258 0.6139  0.0031  0.0552  17.00  0.0279  0.1218  

SCH 0.0011 0.0329 265.81  0.0189 0.1638  0.0014  0.0368  232.70  0.0224  0.1553  

ST 0.0046 0.0680 43.34  0.0388 0.1441  0.0070  0.0837  77.83  0.0450  0.1454  

SG 0.0052 0.0726 61.96  0.0394 0.2809  0.0077  0.0876  94.77  0.0510  0.2001  

SSE 0.0041 0.0642 196.59  0.0346 0.4572  0.0042  0.0645  245.40  0.0335  0.2977  

VG 0.0045 0.0672  138.70  0.0385 0.3448 0.0071  0.0844  237.70  0.0469  0.2810  

 484 

Table 4 Comparison of prediction performance 485 

 DNN  RAF   

Stock  MSE RMSE MAPE MAE R2 MSE RMSE MAPE MAE MSE R2 

TES 0.0130  0.1160  317.26  0.0590  0.1300  0.0058  0.0758  189.56  0.0526  0.0058  0.3593  

AST 0.0100  0.1010  194.48  0.0480  0.1410  0.0046  0.0676  162.97  0.0409  0.0046  0.2119  

BAR 0.0020  0.0450  10.04  0.0220  0.0800  0.0056  0.0643  23.25  0.0370  0.0056  0.1563  

BP 0.0150  0.1210  484.08  0.0590  0.1020  0.0213  0.1402  653.1  0.0817  0.0213  0.1261  

BAT 0.0040  0.0630  10.44  0.0340  0.1770  0.0025  0.0495  8.87  0.0285  0.0025  0.2855  

HAL 0.0080  0.0900  273.28  0.0460  0.1120  0.0062  0.0787  234.59  0.0413  0.0062  0.2100  

HH 0.0060  0.0750  89.25  0.0380  0.1340  0.0069  0.0832  49.11  0.0472  0.0069  0.2047  

JM 0.0150  0.1220  495.23  0.0660  0.1210  0.0256  0.1503  296.76  0.0847  0.0256  0.1026  

LG 0.0030  0.0540  34.60  0.0230  0.6890  0.0023  0.0475  24.14  0.0282  0.0023  0.3095  

MSG 0.0060  0.0760  35.77  0.0390  0.1630  0.0045  0.0674  31.37  0.0362  0.0045  0.2057  

PEA 0.0060  0.0780  17.88  0.0340  0.0360  0.0020  0.0442  9.69  0.0265  0.0020  0.2403  

REL 0.0047  0.0684  53.22  0.0407  0.1130  0.0046  0.0678  43.69  0.0404  0.0046  0.1153  

RB 0.0010  0.0300  3.71  0.0150  0.1530  0.0002  0.0140  1.91  0.0085  0.0002  0.3735  

RDSB 0.0170  0.1310  221.60 0.0670  0.1030  0.0095  0.0972  155.13  0.0666  0.0095  0.1051  

SG 0.0060  0.0790  95.74  0.0380  0.1293  0.0045  0.0672  81.20  0.0470  0.0045  0.1064  

SJ 0.0090  0.0950  38.24  0.0450  0.1407  0.0037  0.0607  19.67  0.0363  0.0037  0.2391  

SCH 0.0030  0.0550  270.87  0.0260  0.0840  0.0014  0.0368  291.32  0.0244  0.0014  0.1528  

ST 0.0090  0.0930  122.99  0.0500  0.0826  0.0064  0.0797  48.82  0.0474  0.0064  0.1515  

SG 0.0120  0.1080  196.68  0.0600  0.1973  0.0062  0.0784  64.88  0.0460  0.0062  0.1032  

SSE 0.0090  0.0940  191.07  0.0460  0.2891  0.0050  0.0703  312.05  0.0407  0.0050  0.1439  

VG 0.0090  0.0950  236.85  0.0490  0.0100 0.0060  0.0771  186.13  0.0450  0.0060  0.2093  

 486 

Table 5 Comparison of prediction performance 487 

 ARIMA  

Stock  MSE RMSE MAPE MAE R2 

TES 32.22  5.68  8618.9 5.89  0.2427  

AST 171.13  13.08  1222.3  10.37  0.1717  

BAR 7.90  2.81  389.45  2.56  0.1399  

BP 14.83  3.85  7780.1  3.94  0.1038  

BAT 1.67  1.29  200.90  0.80  0.0444  

HAL 50.50  7.11  19703 5.79  0.0805  



HH 3.89  1.97  888.75  1.36  0.0772  

JM 2.63  1.62  2701.7 1.05  0.0176  

LG 3.08  1.75  518.96  1.53  0.1103  

MSG 8.75  2.96  639.18  1.72  0.1648  

PEA 7.25  2.69  416.42  2.43  0.1239  

REL 67.52  2.60  1065.3 2.14  0.1534  

RB 2.25  1.50  214.61  1.56  0.2945  

RDSB 11.52  3.39  2297.2 1.99  0.0678  

SG 3.50  1.87  884.67  1.66  0.0570  

SJ 11.70  3.42  795.99  3.54  0.1286  

SCH 39.27  6.27  34652 5.74  0.1363  

ST 40.70  6.38  3414.5 6.49  0.3774  

SG 51.26  7.16  5028.2 4.07  0.2443  

SSE 2.66  1.63  6030.1 1.53  0.0299  

VG 1.26  1.12  3880.9 0.86  0.0137  

Mean square error (MSE): It is an indicator measuring the average squared difference between 488 

the observed values and predicted values. From Table 3, Table 4 and Table 5, we find the following 489 

average MSE result: 0.0033 for LSTM model, 0.0047 for SVM model, 0.008 for DNN model, 0.64 490 

for RAF model and 25.49 for ARIMA model. 491 

Root-mean-square error (RMSE): It is another effective indicator measuring differences 492 

between the observed values and predicted values. As can be seen from Tables 3 to 5, LSTM 493 

exhibits favourable mean RMSE 0.0543, followed by SVM (0.0649), then the indicator for DNN 494 

and RAF equals to 0.0852 and 0.0723, but 3.817 for ARIMA model. 495 

Mean absolute percentage error (MAPE): It measures the prediction deviation proportion in 496 

terms of the true value. After comparing different models in terms of MAPE, we can get the average 497 

results: 91.44 for LSTM model, 106.93 for SVM model, 161.58 for DNN model, 137.53 for RAF 498 

model and 2560 for ARIMA model. 499 

Mean absolute error (MAE): It is a measure of accuracy of a forecasting method. We see that 500 

the LSTM has the lowest mean MAE of 0.0303, followed by SVM (0.0361), 0.0431 for DNN 501 

model, 0.0432 for RAF model and 3.1913 for ARIMA model. 502 



Coefficient of determination (𝑅2): This is a measure of how well the model can be explained. 503 

The 𝑅2 of RAF, SVM and DNN is a little higher than that of LSTM in terms of several stocks, 504 

but on average, the LSTM model has the highest 𝑅2 of 0.2621, followed by RAF (0.1958) and 505 

SVM (0.1886), 0.1518 for DNN model and 0.0699 for ARIMA model. We can see that 𝑅2 of 506 

LSTM ranges from 0.1100 to 0.6139, similar to several existing financial researches (Gatev et al., 507 

2006; Fischer and Krauss, 2018). To be specific, the main purpose of the preselection phase is to 508 

forecast the return of assets and select assets with higher potential returns. Unlike researches on 509 

explanatory modelling aiming to explain causal relationships and the importance of each indicator, 510 

predictive modelling is primarily concerned with accuracy and error in order to predict future 511 

observations (Shmueli, 2010; Gandhmal and Kumar, 2019). In this case, the effectiveness of this 512 

kind of model is primarily determined by accuracy measures, such as RMSE and MSE, rather than 513 

the value of 𝑅2 (Alexander et al., 2015; Gandhmal and Kumar, 2019). 514 

With regard to stock market prediction, MSE, RMSE, MAPE, and MAE are generally 515 

regarded as popular performance metrics since they can clearly present the average model 516 

prediction error (Kao et al., 2013; Weng et al., 2018; Gandhmal and Kumar, 2019). For several 517 

other works, it is difficult to evaluate these metrics through direct comparison due to the difference 518 

of datasets. But we can compare the results with widely used methods in related researches. From 519 

Tables 3 to 5, the average values of MSE, RMSE, MAE for LSTM model are 0.0033, 0.0543 and 520 

0.0303 respectively, which have showed superior performance in forecasting stock returns against 521 

existing works (Ticknor, 2013; Sadaei et al., 2016; Weng et al., 2018; Gandhmal and Kumar, 2019).  522 

In conclusion, the LSTM model predictions are superior to other baseline methods in both 523 

accuracy and direction. And the predicted performance of SVM and RAF is second only to LSTM, 524 



but far better than DNN and ARIMA model. Besides, traditional statistics model ARIMA performs 525 

worst. For example, for stock TES, the MSE in ARIMA equals to 32.21, which is 5000 times bigger 526 

than MSE (0.0031) in LSTM. 527 

4.2 Results analysis in the second stage: optimal portfolio formation 528 

4.2.1 Determination of the portfolio size 529 

Firstly, we analyse the characteristics of portfolios consisting of 𝑘 assets. Most of researches 530 

corresponding to portfolio formation for individual investors focus on only fewer than 10 assets 531 

(Kocuk and Cornuéjols, 2018; Tanaka et al., 2000; Almahdi and Yang, 2017), because holding too 532 

many different stocks is hard for an individual investor to manage. Ranguelova (2001) indicate that 533 

individual investors usually hold three or four stocks in their account on average. Paiva et al., (2019) 534 

discover that the portfolio with seven assets performs better than others with different numbers of 535 

assets. Hereby, assuming an individual investor holding less than or equal to 10 assets is realistic. 536 

Based on the above discussion, we choose ⁡𝑘 ∈ {4, 5, 6, 7, 8, 9, 10} , and then compare the 537 

performance of the model LSTM+MV with the other baseline strategies according to the 538 

dimensions annualised standard deviation, annualised mean return, annualised Sharpe ratio, and 539 

Sortino ratio before transaction costs.  540 

As can be seen from Fig. 5, there are four subgraphs. Specifically, the Y-axis of four sub-541 

graphs represents mean return, standard deviation, Sharpe ratio and Sortino ratio, the X-axis of four 542 

subgraphs represents the same meaning, that is, different models with different portfolio sizes. 543 

From Fig. 5, it is clear that irrespective of the portfolio size⁡⁡𝑘, the LSTM+MV shows greater 544 

performance than the other strategies in three dimensions of annualised mean return, Sharpe ratio 545 

and Sortino ratio. To be specific, annualised returns prior to transaction costs are at 0.16, compared 546 



to 0.09 for the LSTM+1/N, 0.11 for the SVM+MV, 0.07 for the SVM+1/N, 0.09 for the RAF+MV 547 

and 0.06 for RAF+1/N for 𝑘⁡ = ⁡8. For other portfolio sizes, like 𝑘⁡ = 10, the LSTM+MV also 548 

achieves the highest mean returns per year. In regard to annualised standard deviation, a risk metric, 549 

differences among models are not obvious, the LSTM +MV is on a similar level as the other models, 550 

with slightly higher values for 𝑘⁡ = ⁡6, 7, 8, thus we could not distinguish which models are good 551 

or bad on this metric easily. In this study, we set risk-free ratio as 0.0125, according to the British 552 

treasuring bill rate in recent 10 years. With respect to Sharpe ratio, return per unit of risk, is highest 553 

for the LSTM+MV. For example, when 𝑘⁡ = 9 , Sharpe ratio before transaction cost is 0.58, 554 

compared to 0.40 for the LSTM+1/N, 0.46 for the SVM+MV, 0.36 for the SVM+1/N, 0.38 for the 555 

RAF+MV, 0.28 for RAF+1/N. Sortino ratio, measuring the risk-adjusted return of an investment 556 

portfolio. A clear advantage of the LSTM+MV can be seen for portfolios of each size. From the 557 

perspective of different portfolio sizes, it is easy to find that the four indicators perform better 558 

overall in each model when 𝑘⁡ = 10 than other sizes. Specifically, in model LSTM+MV, the 559 

portfolio with 𝑘⁡ = 10 not only has a high mean return 0.136, Sharpe ratio 0.58 and Sortino ratio 560 

13.7, but also has a lower standard deviation 0.21. And the same is true for the analysis of other 561 

models. From the above analysis, we focus the portfolio with 𝑘⁡ = 10 in our subsequent analyses, 562 

which is also consistent with the research of Fischer and Krauss (2018). 563 

 564 

 565 



 566 
Fig. 5. Annualised performance characteristics for portfolios of different sizes 567 

4.2.2 Details on financial performance 568 

It is worth clarifying that this paper only considers brokerage cost as transaction cost because 569 

the investor is able to control brokerage cost directly (Paiva et al., 2019). According to Brooks et 570 

al. (2001), brokerage costs for purchasing and selling the stocks of FTSE 100 index is from 0.00bps 571 

to 0.30 bps. Referring to the parameters of several empirical research (Almahdi and Yang, 2016; 572 

Guerard Jr et al., 2015; Paiva et al., 2019), we decide to simulate transaction costs as 0.10 bps, 573 

0.05 bps to present the results finally. Tables 6 to 8 provide insights of the financial performance 574 

of the LSTM+MV, compared to the baselines, without transaction cost, including transaction cost 575 

(0.1bps, 0.05bps) separately. Hence, Panel A, B and C depict daily return characteristics, daily risk 576 

characteristics and annualised risk-return metrics respectively.  577 

Table 6 Performance characteristics for portfolios without transaction cost 578 

  LSTM+MV LSTM+1/N SVM+MV SVM+1/N RAF+MV RAF+1/N 

A Mean return 0.0005  0.0004  0.0004  0.0003  0.0004  0.0003  

Standard deviation 0.0134  0.0121  0.0124  0.0116  0.0137  0.0118  

Maximum 0.1003  0.1100  0.0953  0.0965  0.1241  0.1052  

Minimum -0.0748  -0.0953  -0.0744  -0.1014  -0.0749  -0.1005  

B 1-percent VaR 0.0330  0.0337  0.0336  0.0327  0.0385  0.0328  

1-percent CVaR 0.0439  0.0446  0.0451  0.0427  0.0514  0.0443  



5-percent VaR 0.0207  0.0189  0.0188  0.0178  0.0207  0.0188  

5-percent CVaR 0.0306  0.0282  0.0285  0.0271  0.0318  0.0277  

Maximum drawdown 2.5277  2.4182  2.9685  2.2441  2.5612  2.1990  

C Mean return 0.1367  0.0913  0.1022  0.0743  0.0963  0.0676  

Standard deviation 0.2125  0.1919  0.1963  0.1844  0.2176  0.1878  

Sharpe ratio 0.5845  0.4105  0.4569  0.3354  0.3852  0.2932  

Sortino ratio 13.7078  9.3844  10.4918  7.6352  8.8549  6.6693  

 579 

Table 7 Performance characteristics for portfolios including transaction cost (0.05bps) 580 

  LSTM+MV LSTM+1/N SVM+MV SVM+1/N RAF+MV RAF+1/N 

A Mean return 0.0003  0.0003  0.0003  0.0003  0.0003  0.0003  

Standard deviation 0.0125  0.0139  0.0155  0.0125  0.0139  0.0134  

Maximum 0.1152  0.1397  0.1535  0.1031  0.1186  0.1302  

Minimum -0.1027  -0.1746  -0.2575  -0.1322  -0.1387  -0.1698  

B 1-percent VaR 0.0341  0.0368  0.0408  0.0337  0.0384  0.0365  

1-percent CVaR 0.0472  0.2119  0.0598  0.1897  0.0529  0.2047  

5-percent VaR 0.0196  0.0210  0.0232  0.0196  0.0209  0.0202  

5-percent CVaR 0.0293  0.0424  0.0352  0.0379  0.0321  0.0409  

Maximum drawdown 2.3442  2.5068  2.7753  2.9920  3.6550  2.3043  

C Mean return 0.0765  0.0789  0.0792  0.0780  0.0691  0.0630  

Standard deviation 0.1988  0.2203  0.2462  0.1988  0.2207  0.2129  

Sharpe ratio 0.3218  0.2978  0.2710  0.3294  0.2567  0.2374  

Sortino ratio 0.0906  0.0834  0.0753  0.0926  0.0720  0.0667  

 581 

Table 8 Performance characteristics for portfolios including transaction cost (0.1bps) 582 

  LSTM+MV LSTM+1/N SVM+MV SVM+1/N RAF+MV RAF+1/N 

A Mean return 0.0003  0.0003  0.0003  0.0003  0.0002  0.0003  

Standard deviation 0.0149  0.0140  0.0153  0.0126  0.0155  0.0135  

Maximum 0.1524  0.1411  0.1445  0.1041  0.1658  0.1314  

Minimum -0.2124  -0.1762  -0.2340  -0.1334  -0.2541  -0.1714  

B 1-percent VaR 0.0388 0.0372 0.0405 0.0340 0.0408 0.0368 

1-percent CVaR 0.0582 0.0212 0.0600 0.1915 0.0612 0.2066 

5-percent VaR 0.0222 0.2140 0.0228 0.0198 0.0229 0.0204 

5-percent CVaR 0.0344 0.0428 0.0352 0.0383 0.0356 0.0413 

Maximum drawdown 2.7861 2.5068 3.0653 2.9920 2.5326 2.3043 

C Mean return 0.0763 0.0787 0.0705 0.0787 0.0616 0.0636 

Standard deviation 0.2366 0.2224 0.2434 0.2007 0.2468 0.2149 

Sharpe ratio 0.2697 0.2975 0.2384 0.3300 0.1990 0.2379 

Sortino ratio 0.0752 0.0833 0.0662 0.0924 0.0553 0.0665 

Return characteristics: In panel A of Table 6, we can see that the LSTM+MV exhibits 583 



favourable daily mean return 0.0005, and the SVM+MV has the lowest standard deviation as 584 

0.0116. After including transaction cost 0.05 bps, in panel A of Table 6, we can find that all the 585 

models have almost same daily return 0.0003, the LSTM+MV model and SVM+1/N model have 586 

the lowest standard deviation. After including transaction cost 0.1 bps, in panel A of Table 7, 587 

SVM+1/N model has a better risk level, daily standard deviation equals to 0.0126. 588 

Risk characteristics: In panel B of Table 6, Table 7 and Table 8, we can see a mixed picture 589 

corresponding to risk characteristics. Before transaction cost, SVM+1/N achieved the best place 590 

with a 1-percent VaR of 0.0327, 5-percent VaR of 0.0178, 1-percent CVaR of 0.0427 and 5-percent 591 

CVaR of 0.0271. After including transaction cost 0.05 bps, the LSTM+MV performs better, with 592 

1-percent CVaR of 0.0472, 5-percent VaR of 0.0196 and 5-percent CVaR of 0.0293. After including 593 

transaction cost 0.1 bps, in terms of 1-percent VaR, SVM+1/N model has the lowest value. 594 

LSTM+1/N achieves the lowest 1-percent VaR, SVM+1/N performs best for 5-percent VaR. 595 

Annualised risk-return metrics: In panel C of Table 6, Table 7 and Table 8, we discuss risk-596 

return metrics on an annualised basis. It is clear that the LSTM+MV achieves the highest annualised 597 

returns of 0.1367 without transaction costs, followed by the SVM+MV (0.1022). SVM+MV and 598 

SVM+1/N perform best in terms of annualised mean returns with transaction cost 0.05 bps and 0.1 599 

bps. The Sharpe ratio measures excess return using standard deviation and can be explained as the 600 

return per unit of risk. We find that the LSTM+MV achieves the highest level of 0.5845, with the 601 

SVM+MV coming in second with 0.4569. After transaction cost 0.1 bps and 0.05 bps, SVM+1/N 602 

gets the highest Sharpe ratio at 0.3294 and 0.3300 respectively. In addition, SVM+1/N achieves 603 

the first place in terms of standard deviation and Sortino ratio, followed by LSTM+MV (0.05 bps) 604 

and LSTM+1/N (0.1 bps) respectively. 605 



From a financial perspective, we can find that the LSTM+MV, SVM+MV, LSTM+1/N and 606 

SVM+1/N outperform the RAF+MV and RAF+1/N in terms of the return, risk or risk-return 607 

metrics. In order to compare these models further, we are thus able to choose these four more 608 

competitive strategies to visualize performance over time, i.e., from March 1994 to March 2019. 609 

4.2.3 Visualization on financial performance 610 

In this section, we select 4 models, LSTM+MV, SVM+MV, LSTM+1/N and SVM+1/N, that 611 

perform better in the previous section to display their performance for further comparisons. Besides, 612 

we also consider Random+MV and Random+1/N as comparison models to examine the necessity 613 

of using machine learning for asset pre-selection and further verify whether our proposed method 614 

is effective comparing with other portfolio data sets. Fig. 6 presents the cumulative return for each 615 

model without transaction cost. The LSTM+MV model has an obviously higher result and achieves 616 

cumulative return of 15.9 approximately. The profitability of the LSTM+1/N model follows, with 617 

5.7, and then the SVM+MV, with 5.5. And the Random+MV and the SVM+1/N keep similar at 618 

about 3.3, the Random+1/N is the lowest, with 2.5. Furthermore, we should also figure out how the 619 

LSTM+MV and other models behave at different levels of transaction costs. 620 

 621 

Fig. 6. cumulative return without transaction cost 622 

Figures 7 and 8 depicts the simulations of the cumulative returns considering transaction costs 623 



of 0.05bps and 0.10 bps, respectively, and the accumulated returns are strongly decreased. But in 624 

general, the LSTM+MV model still maintains a better accumulated return. The cumulative return 625 

with a transaction cost of 0.05 bps is about 4.6, while for a transaction cost of 0.10 bps it is 4.5.  626 

 627 

Fig. 7. cumulative return including transaction cost (0.05 bps) 628 

 629 

 630 

Fig. 8. cumulative return including transaction cost (0.1 bps) 631 

From the comparison of the cumulative returns between the LSTM+MV model and the other 632 

baseline strategies, we can discover that LSTM+MV performs much better than other baselines in 633 

terms of return metrics. Another idea which is inspired from this is that we would like to see the 634 

results when integrating risks and whether the good performance only occurs during a certain 635 

period of time. As shown in Fig. 9, we use the Sharpe ratio performance of each model every three 636 



years. We can observe that, of the eight surveyed triennia, six of them show that the Sharpe ratio 637 

of the LSTM+MV model has a better result than other models during the corresponding periods. 638 

Figures 10 and 11 present the Sharpe ratio per triennium with transaction costs. The LSTM+MV 639 

model, with transaction costs of 0.05 bps, behaves better. Specifically, among the eight surveyed 640 

triennia, five of them have a higher Sharpe ratio in LSTM+MV model than other models. After 641 

including transaction cost 0.1 bps, only half of the surveyed period shows a greater result of the 642 

LSTM+MV model. 643 

 644 

Fig. 9. Sharpe ratio of each triennium without transaction costs 645 

 646 

Fig. 10. Sharpe ratio of each triennium including transaction costs (0.05 bps) 647 

 648 



 649 
Fig. 11. Sharpe ratio of each triennium including transaction costs (0.1 bps) 650 

Fig. 12 depicts the result of average return to the risk per month of each triennium per model 651 

without transaction costs. Apparently, the LSTM+MV model obtains a remarkable performance for 652 

the return-risk ratio during most study period. We also discover the average results as followings: 653 

0.2670 for the LSTM+MV model, 0.1966 for the LSTM+1/N model, 0.1808 for the SVM+MV, 654 

0.1581 for the SVM+1/N model, 0.1593 for the Random+MV, and 0.1458 for the Random+1/N 655 

model. The LSTM+MV model stops having the highest value during period 2006-2008, and this 656 

result coincides with the financial crisis and troubled political. 657 

 658 
Fig. 12. Average return to the risk per month of each triennium without transaction costs 659 

5. Discussion and Conclusions 660 

5.1 Discussion for key findings 661 

This paper puts forward an investment decision model entitled LSTM+MV. Based on the 662 



LSTM method, predict and select assets with a higher daily return of gain, then integrate this 663 

prediction with the MV diversification method to compose the optimal portfolio. Our study results 664 

in several important findings.   665 

First of all, LSTM networks are applied to achieve the financial time-series prediction 666 

empirical application on big data volume. Specifically, we create an appropriate prediction task, 667 

divide whole sample data set into 22 overlapping training-testing sets, normalize the input features 668 

in order to facilitate model training, find an appropriate LSTM architecture for forecasting. After 669 

comparing the outcomes of the LSTM against SVM, RAF, DNN as well as ARIMA, we discover 670 

the LSTM networks are appropriate for financial time-series forecasting, to beat the other early 671 

machine learning models and the statistics model by a very clear margin. 672 

Secondly, for individual investors, holding 10 assets is realistic and helps them maintain better 673 

returns with the same level of risk. In this case, the LSTM+MV, SVM+MV, LSTM+1/N and 674 

SVM+1/N outperform the Random+MV and Random+1/N in terms of the return, risk or risk-return 675 

metrics. Among these results, we further display their performance in accordance cumulative return 676 

per year, Sharpe ratio per triennium as well as average return to the risk per month of each triennium.   677 

Finally, for cumulative return performance without transaction costs, the LSTM+MV model 678 

is significantly better than the other baseline models. A three-year Sharpe ratio experiment also 679 

confirms the better performance of the LSTM+MV model. After including transaction costs, the 680 

LSTM+MV model still outperforms the other models with a better outcome. In that case, the 681 

applicability of the model’s implementation may depend on the amount of money invested by 682 

investors. 683 



5.2 Theoretical implications 684 

This research enriches the theoretical literature on the stock return prediction and portfolio 685 

management. First of all, the portfolio formation method proposed in this paper is able to capture 686 

the long-term dependences of financial time-series data fluctuation, which fills the gap in 687 

corresponding portfolio optimisation researches paying insufficient attention to the continuity and 688 

memory characteristics of financial time-series data. To be specific, this paper compares the 689 

forecasting outcomes of the LSTM with SVM, RAF, DNN as well as ARIMA to demonstrate the 690 

accuracy and feasibility of LSTM networks in predicting financial time-series more convincingly.  691 

Second, the preselection process of assets is incorporated into the optimal portfolio formation. 692 

Instead changing and improving the Markowitz’ MV model, this paper puts effort into the 693 

preliminary phase of portfolio construction to ensure that the portfolio is composed of assets with 694 

high-return in the beginning. Specifically, our study demonstrates that the proposed model 695 

LSTM+MV is able to help individual investors obtain remarkable outcomes for the cumulative 696 

returns as well as risk-adjusted return for majority of periods. The merger of the return forecasting 697 

and portfolio optimisation processes may provide a new perspective for research in fintech area. 698 

5.3 Practical implications 699 

The study also provides several practical implications. For portfolio managers, this paper puts 700 

forwards a practical method for optimal portfolio selection that can help improve day investments. 701 

Following this model, managers can pick assets with higher return based on the predicting results 702 

in real market, and then apply MV model to reduce risk level so that keep investments safe and 703 

beneficial. For individual investors, this method is able to systematically help them to make 704 

decisions for investing. In another words, tell them which assets they should hold and how much 705 

to invest in each asset to achieve the goal of maximal potential return with minimal risk.  706 



5.4 Limitations and future work 707 

Although this research provides useful insights, there are some limitations in this study, which 708 

provide opportunities for further research. First, five technical indicators and fifteen lagged 709 

variables are used as input features to predict the return in the future, however, there are some other 710 

external environment factors, such as government policies, interest rates, public events and so forth 711 

that have an impact on financial market can also be considered as the input indicators to the models 712 

(Christou et al., 2017). In addition, the study uses the asset data in only one country of UK. Due 713 

to the different political environment and economic backgrounds, we cannot ensure whether the 714 

proposed method is suitable for the stock markets from other countries. Thus, in future research, 715 

asset data from more countries should be used for experiments and comparisons to further testify 716 

the applicability and establish the boundaries of the proposed model.  717 
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