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Abstract

Over the last few years, machine learning over graph structures has manifested

a significant enhancement in text mining applications such as event detection,

opinion mining, and news recommendation. One of the primary challenges in

this regard is structuring a graph that encodes and encompasses the features of

textual data for the effective machine learning algorithm. Besides, exploration

and exploiting of semantic relations is regarded as a principal step in text min-

ing applications. However, most of the traditional text mining methods perform

somewhat poor in terms of employing such relations. In this paper, we propose

a sentence-level graph-based text representation which includes stop words to

consider semantic and term relations. Then, we employ a representation learn-

ing approach on the combined graphs of sentences to extract the latent and

continuous features of the documents. Eventually, the learned features of the

documents are fed into a deep neural network for the sentiment classification

task. The experimental results demonstrate that the proposed method substan-

tially outperforms the related sentiment analysis approaches based on several

benchmark datasets. Furthermore, our method can be generalized on different

datasets without any dependency on pre-trained word embeddings.
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1. Introduction

Text messages are very ubiquitous and they are transferred every day through-

out social media, blogs, wikis, news headlines, and other online collaborative

media. Accordingly, a prime step in text mining applications is to extract in-

teresting patterns and features from this supply of unstructured data. Feature

extraction can be considered as the core of social media mining tasks such

as sentiment analysis, event detection, and news recommendation (Aggarwal,

2018).

In the literature, sentiment analysis tends to be used to refer the task of

polarity classification for a piece of text at the document, sentence, feature, or

aspect level (Liu, 2012). There are various applications on a variety of domains

which use sentiment analysis. In this regard, one can mention applying the

sentiment analysis for political reviews to estimate the general viewpoint of

the parties (Tumasjan et al., 2010), predicting stock market prices based on

sentiment analysis by utilizing the different financial news data (Bollen et al.,

2011), and making use of the sentiment analysis to recognize the current medical

and psychological status for a community (Liu, 2012).

Machine learning algorithms and statistical learning techniques have been

rising in a variety of scientific fields (Detmer et al., 2018; Eshtay et al., 2018).

Several machine learning techniques have been proposed to perform sentiment

analysis. As one of the powerful sub-domains of machine learning in recent

years, deep learning models are emerging as a persuasive computational tool,

they have affected many research areas and can be traced in many applica-

tions. With respect to the deep learning, textual deep representation models

attempt to discover and present intricate syntactic and semantic representations

of texts, automatically from data without any handmade feature engineering.

Deep learning methods coupled with deep feature representation techniques have

improved the state-of-the-art models in various machine learning tasks such as
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sentiment analysis (Mikolov et al., 2013; Pennington et al., 2014) and text sum-

marization (Yousefi-Azar & Hamey, 2017).

Inspired by the recent advances in feature learning and deep learning meth-

ods, it is determined that inherent features can be learned from the raw struc-

ture of data using learning algorithms. This technique is called representation

learning which aids to promote and advance functionality of machine learning

methods. To put it differently, representation learning is able to map or con-

vert raw data into a set of features which are considerably more distinctive for

machine learning algorithms.

This research proposes a new approach that takes advantage of graph-based

representation of documents integrated with representation learning through

the Convolutional Neural Networks (CNN) (Schmidhuber, 2015). Graph rep-

resentation of documents reveals intrinsic and deep features compared to the

traditional feature representation methods alike bag-of-words (BOW) (Manning

et al., 1999). Although words alone play the most important role in determining

the sentence’s sentiment, their position in a document, as well as their vicinity,

can reveal hidden aspects of the sentiment (Violos et al., 2016a). Sometimes

the sentiment orientation changes drastically when considering word order. By

way of illustration, in the bag-of-words model, the general recommendation is to

exclude stop words from the texts. However, stop words can convey meaningful

and valuable features for sentiment analysis and their position in the sentence

can easily change the polarity of a sentence. With the intention of graph rep-

resentation, every individual word is depicted as a node in the graph and the

interactions between different nodes are modeled through undirected, directed,

or weighted edges.

In this work, a graph-based representation for text documents is proposed that

embodies the textual data at a sentence level. Afterward, a representation learn-

ing on the combined sentence graphs is applied based on a random walker al-

gorithm to fabricate an unsupervised features representation of the documents.

The well-known deep neural network architecture, CNN, is employed on the

learned features of sentiment polarity tasks.
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While conventional sentiment analysis methods usually ignore stop words, word

positions, and orders, our experimental results on benchmark data have justi-

fied the significant strength of comprising all of these meaningful elements in a

graph-based structure by demonstrating performance gains in sentiment classi-

fication.

The main contributions of our work are summarized below:

• We propose an integrated framework for sentiment classification by rep-

resenting the text document in a graph structure that considers all the

informative data.

• We apply a random walk based approach to learn continuous latent feature

representation from the combined graphs of sentences in an unsupervised

way.

• The convolutional neural network is then employed on the vectorized fea-

tures for sentiment polarity identification without the need for pre-trained

word vectors.

• We demonstrate the usefulness and strength of this integrated graph-

based representation learning approach for the sentiment classification

tasks based on several benchmark datasets.

The overall structure of this paper is as follows. Section 2 begins by re-

viewing the related works of sentiment analysis and presents the basic idea

behind the proposed approach. Section 3 discusses the methodology of the pro-

posed method and demonstrates how graph representation and feature learning

are used to perform sentiment analysis. A brief introduction of the standard

datasets and experimental results of the proposed approach versus some well-

known algorithms are given in Section 4. Section 5 ends the paper with a

conclusion and some insights for future works.
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2. Related Works and Basic Idea

2.1. Related Works

Over the last few years, broad research on sentiment analysis through su-

pervised (Oneto et al., 2016), semi-supervised (Hussain & Cambria, 2018), and

unsupervised (Garćıa-Pablos et al., 2018) machine learning techniques have been

done. Go et al. (Go et al., 2009) were among the firsts who applied distant super-

vision technique to train a machine learning algorithms based on emoticons for

sentiment classification. Researchers in the field of natural language processing

carried out a variety of new algorithms to perform sentiment analysis (Taboada

et al., 2011). Some distinguished works are further discussed in this section.

As a sub-domain of information retrieval and natural language processing,

sentiment analysis or opinion mining can be viewed from different levels of

granularity namely, sentence level, document level, and aspect level; from the

point of view of sentence level, Liu’s works can be mentioned as one of the

pioneers in this field (Hu & Liu, 2004). Works by Pan and Lee can also be

considered in which document level of sentiment analysis is examined (Pang

& Lee, 2004). Lately aspect level of sentiment analysis has attracted more

attention, research by Agarwal can be listed in this regard (Agarwal et al.,

2009).

Graph-based representation techniques for sentiment analysis have been used

in a variety of research works. Minkov & Cohen (2008) considered text corpus

as a labeled directed graph in which words represent nodes, and edges denote

syntactic relation between the words. They proposed a new path-constrained

graph walk method in which the graph walk process is guided by high-level

knowledge about essential edge sequences. They showed that the graph walk

algorithm results in better performance and is more scalable. In the same way,

Violos et al. (2016b) suggested the word-graph sentiment analysis approach. In

the model, they proposed a well-defined graph structure along with several graph

similarity methods, afterward, the model extracts feature vectors to be used in

polarity classification. Furthermore, Goldberg & Zhu (2006) proposed a graph-
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based semi-supervised algorithm to perform sentiment classification through

solving an optimization problem, their model suits situations in which data

labels are sparse.

Deep learning methods are operating properly on the field of sentiment anal-

ysis. A semi-supervised approach was introduced in Socher et al. (2011) based

on recursive autoencoders to foresee sentiment of a given sentence. The system

learns vector representation for phrases and exploits the recursive nature of sen-

tences. They have also proposed a matrix-vector recursive neural network model

for semantic compositionality. It can learn compositional vector representations

for expressions and sentences with discretionary length (Socher et al., 2012).

To clarify, the vector model catches the intrinsic significance of the component

parts of sentences, while the matrix takes the importance of neighboring words

and expressions into account. Recursive neural tensor network (RNTN) was

proposed to represent a phrase through word vectors and a parse tree (Socher

et al., 2013). Their model computes nodes vectors in a tree-based composition

function.

Other deep architectures have been applied for natural language processing

tasks (Chen et al., 2017). The semantic role labeling task is investigated by

employing convolutional neural networks (Collobert et al., 2011). In another

attempt, Collobert (2011) exploited a convolutional network with similar archi-

tecture that serves syntactic parsing. In addition, Poria et al. (2016) applied a

convolutional neural network to extract document features and then employed

multiple-kernel learning (MKL) for sentiment analysis. In another work, Poria

et al. (2017) a long short-term memory network was used to extract contextual

information from the surrounding sentences.

Unlike deep learning methods, which use neural networks to transform fea-

ture space into high dimensional vectors, general practices for sentiment analy-

sis take advantage of basic machine learning methods. Indeed, Tripathy et al.

(2016) ensembles a collection of machine learning techniques along with n-grams

to predict sentiment of a document. Additionally, evolutionary algorithms have

been utilized for several optimization problems (Bijari et al., 2018), ALGA (Ke-
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shavarz & Abadeh, 2017) makes use of evolutionary computation to determine

optimal sentiment lexicons which leads to a better performance.

2.2. Motivation

In natural language processing, bag-of-word representation is one of the most

common means to represent the features of a document. However, it is insuffi-

cient to describe the features of a given document due to several limitations such

as lacking word relations, scalability issues, and neglecting semantics (Gharavi

et al., 2016). To mitigate these shortcomings, some other representation tech-

niques are proposed to model textual documents (Tsivtsivadze et al., 2006).

These methods can take into account a variety of linguistic, semantic, and gram-

matical features of a document.

The decency of solutions that a machine learning algorithms provide for a

task such as classification, heavily depends on the way of features representation

in the solution area. Different feature representations techniques can entangle

(or neglect) some unique features behind the data. This is where feature selec-

tion and feature engineering methods come into play and seek to promote and

augment the functionality of machine learning algorithms (Zare & Niazi, 2016).

Feature engineering methods accompanying domain-specific expertise can be

used to modify basic representations and extract explanatory features for the

machine learning algorithms. On the other hand, new challenges in data pre-

sentation, advancements in artificial intelligence, and probabilistic models drive

the need for representation learning techniques and feature learning methods.

Feature learning can be defined as a transformation of raw data input to a

new representation that can be adequately exploited in different learning algo-

rithms (Bengio et al., 2013).

As indicated previously in the introduction, the main idea of the proposed

method is to shape sentences in a document as a graph, afterward analyze

the graphs utilizing network representation learning approaches. accordingly,

the proposed method entails three main phases namely, graph representation,

feature learning, and classification. A detailed description of the components of
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the proposed method is specified in Section 3.

3. Elements of the proposed method

The proposed method is comprised of three primary building blocks which

will be later explained. Initially, textual documents are pre-processed and then

transformed into word-graphs. Afterward, through a feature learning technique

(representation learning phase), inherent and intrinsic features of the word-

graphs are determined. In the end, a convolutional neural network is trained

based on the extracted features and employed to perform the sentiment classi-

fication task. Figure 1 illustrates the work-flow of the proposed method.

Phase I

Phase II

Phase III

Read & Pre-Process Documents

Represent Sentences via

a Graph-based Scheme

Combine Sentences Graphs

for the same Classes

Learn Features from Graphs

Build Vectorized Rep-

resentation of Nodes

Train convnet & Build a Model

for Sentiment Classification

Classify Sentences us-

ing the convnet Model

Graph Representation

Feature Learning

Classification

Figure 1: work-flow of the proposed sentiment classification approach
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3.1. Graph Representation

In the era of big data, text is one of the most ubiquitous forms of storing

data and metadata. Data representation is the vital step for the feature extrac-

tion phase in data mining. Hence, a proper text representation model which

can considerably picture inherent characteristics of textual data, is still an on-

going challenge. Because of simplicity and shortcomings of traditional models

such as the vector space model, offering new models is highly valued. Some

disadvantageous of classical models such as bag-of-words model can be listed as

follows (Gharavi et al., 2016):

• Meaning of words in the text and textual structure cannot be accurately

represented.

• Words in the text are considered independent from each other.

• Word’s sequences, co-occurring, and other relations in a corpus is ne-

glected.

Broadly speaking, words are organized into clauses, sentences, and para-

graphs in order to describe the meaning of a document. Moreover, their oc-

curring, ordering, and positioning, as well as the relationship between different

components of the document are necessary and valuable to understand the doc-

ument in detail.

Graph-based text representation can be acknowledged as one of the gen-

uine solutions for the aforementioned deficiencies. A text document can be

represented as a graph in many ways. In a graph, nodes denote features and

edges outline the relationship among different nodes. Although there exist var-

ious graph-based document representation models (Violos et al., 2016b), the

co-occurrence graph of words is an effective way to represent the relationship of

one term over the other in the social media contents such as Twitter or short

text messages. The co-occurrence graph is called word-graph in the rest of the

paper.
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Word-graph is defined as follows: given a sentence S, let W be the set of

all words in the sentence S. A Graph G(E,W ) is constructed such that any

wi, wj ∈W are connected by ek ∈ E, if ∃Rl s.t. Rl(wi, wj) ∈ R.

In other words, in the graph G any word in the sentence is considered as

a single vertex. Two vertices are connected by the edge ek, if there exists a

connection between them governed by the relation R. The relation R is satisfied

if, for instance, its corresponding lexical units co-occur within a window of

maximum N words, where N can be set to any integer (typically, 2 to 10 seems

to be fine based on different trials). The proposed method uses word graphs

with window of size 3. Figure 2 presents a graph of a sample sentence with

word-window of size 3. Relation R in this graph is satisfied when two nodes are

within a window with a maximum length of 3.

The battery life of camerathis

The battery life of this camera is too short!
1- The battery life
2- Battery life of
3- Life of this
4- Of this camera
5- This camera is
6- Camera is too
7- Is too short
8- Too short!

is too short !

Figure 2: A sample sentence graph with word-window 3, and sub-sentences which each window

give importance to.

3.2. Feature Learning

To perform well on a given learning task, any (un)supervised machine learn-

ing algorithm requires a set of informative, distinguishing, and independent

features. One typical solution is to feed the algorithms with hand-engineered

domain-specific features based on human ingenuity and expert knowledge. How-

ever, feature engineering designates algorithm’s lack of efficiency to entangle

and organize the discriminative features from the data. Moreover, feature en-

gineering not only requires tedious efforts and labor, but it is also designed for
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specific tasks and can not be efficiently generalized across other tasks (Grover &

Leskovec, 2016). Because of the broad scope and applicability of machine learn-

ing algorithms for different jobs, it would be much beneficial to make machine

learning algorithms less dependent on feature engineering techniques.

An alternative to feature engineering is to enable algorithms to learn fea-

tures of their given task based on learning techniques. As one of the new tools in

machine learning, representation learning and feature learning enables machines

and algorithms to learn features on their own directly from data. In this regard,

features are extracted by exploiting learning techniques and making transforma-

tion on raw data for the task. Feature learning allows a machine to learn specific

tasks as well as it features and obviates the use of feature engineering (Bengio

et al., 2013).

Node embedding is a vectorized representation of nodes for each graph. It is

trained via feature learning algorithms so that to pay more attention to the im-

portant nodes and relations while ignoring the unimportant ones. More specif-

ically, in the proposed method as a novel feature learning algorithm, node2vec,

is used to reveal the innate and essential information of a text graph (Grover

& Leskovec, 2016). Afterward, a convolutional neural network is used to learn

and classify text graphs.

Node2vec (Grover & Leskovec, 2016) together with Deepwalk (Perozzi et al.,

2014) and LINE Tang et al. (2015) are well-known algorithms for representation

learning on the graph structure. The main goal of such algorithms is to pay

more attention to the important nodes and relations while paying less to the

unimportant ones. In other words, a feature learning algorithm is used to reveal

the innate and essential information of a graph.

Node2vec is a semi-supervised algorithm which is intended for scalable fea-

ture learning in graph networks. The purpose of this algorithm is to optimize a

graph-based objective function through stochastic gradient descent. By making

use of a random walker to find a flexible notation of neighborhoods, node2vec

returns feature representations (embeddings) that maximize the likelihood of

maintaining the graph’s structure (neighborhoods) (Grover & Leskovec, 2016).
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In the proposed method representation learning is done based on the node2vec

framework by virtue of its scalability and effectiveness in exploring graph net-

works as compared to other algorithms. The work-flow of the feature learning

in the proposed algorithm is further discussed in the following paragraphs.

Feature learning in networks is formulated as a maximum likelihood opti-

mization problem. Let G = (V,E) be a given (un)directed word-graph. Let

f : v → Rd be the mapping function from nodes to feature representation which

is to be learned for a distinguished task. d is a parameter which designates

the number of dimensions of the feature to be represented. Equivalently, f is

a matrix of size |v| × d parameters. For every node in the graph u ∈ V , a

neighborhood NS(u) ⊂ V is defined.

The following optimization function which attempts to maximize the log-

probability of observing neighborhood NS(u) for node u, is defined as equa-

tion (1).

max
f

∑
u∈V

log(P (NS(u)|f(u))) (1)

To make sure that the equation (1) is tractable, two standard assumptions

need to be made.

• Conditional independence. Likelihood is factorized in such a way that the

likelihood of observing a neighborhood node is independent of observing

any other neighborhood. According to this assumption, P (NS(u)|f(u))

can be rewritten as equation (2).

P (NS(u)|f(u)) =
∏

ni∈NS(u)

P (ni|f(u)) (2)

• Symmetry in feature space. A source node and neighborhood node have a

symmetric impact on each other. Based upon this assumption P (ni|f(u))

is calculated using equation (3) in which conditional likelihood of ev-

ery source-neighborhood node pair can be modeled as a softmax unit
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parametrized by the dot product of their features.

P (ni|f(u)) =
exp(f(ni) · f(u))∑
v∈V exp(f(v) · f(u)

(3)

Based on these two assumptions, the objective function in equation (1) can

be simplified,

max
f

∑
u∈V

[
−log(Zu) +

∑
ni∈NS(U)

f(ni) · f(u)
]

(4)

where, per-node partition function, Zu =
∑
u∈V exp(f(u) ·f(v). Equation (4) is

then optimized using stochastic gradient ascent over model parameters defining

the features f .

The neighborhoodsNS(u) are not restricted to direct neighbors, but it is gen-

erated using sampling strategy S. There are many search strategies to generate

neighborhood NS(u) for a given node u, simple strategies include breadth-first

sampling which samples immediate neighbors, and depth-first sampling which

seeks to sample neighbors with the most distant from the source. For a better

exploration of the graph structure, a random walk manner is used as a sampling

strategy which smoothly interpolates between BFS (Breadth First Search) and

DFS (Depth First Search) strategies Manber (1989). In this regard, given a

source node u, a random walk of length l is simulated. Let ci be the i-th node

in the walk, starting with c0 = u. Other nodes in the walk, are generated using

the following equation (5).

P (ci = x|ci−1 = v) =


πvx

Z if (v, x) in E,

0 otherwise.

(5)

where πvx is the transition probability between given nodes v and x, and Z is

the normalizing constant.

Given W is (un)weighted adjacency matrix of the graph, v is the node that

random walk is resides at, and t to be the traversed edge. The transition

probability matrix π is defined as πvx = αpq(t, x)×Wvx. αpq is calculated using
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the following equation (6).

αpq(t, x) =


1
p if dtx = 0

1 if dtx = 1

1
q if dtx = 2

(6)

where dtx is the shortest path distance between nodes t and x and its value

should be one of {0, 1, 2}. Values p and q are control parameters that determine

how fast or slow the walk explores the neighborhood of the starting node u. They

allow the search procedure to interpolate between BFS and DFS to investigate

different notions of neighborhoods for a given node.

3.3. ConvNet Sentiment Classification

Adopted from neurons of the animal’s visual cortex, ConvNets or convolu-

tional neural networks is a biologically inspired variant of a feed-forward neural

network (Schmidhuber, 2015). ConvNets have shown to be highly effective

in many research areas such as image classification and pattern recognition

tasks (Sharif Razavian et al., 2014). They have also been successful in other

fields of research such as neuroscience (Güçlü & van Gerven, 2015) and bioin-

formatics (Ji et al., 2013).

Similar to the general architecture of neural networks, ConvNets are com-

prised of neurons, learning weights, and biases. Each neuron receives several

inputs, takes a weighted sum over them, passes it through an activation function

at its next layer and responds with an output. The whole network contains a

loss function to direct the network through its optimal goal, All settings that

will apply on the basic neural network (Goodfellow et al., 2016), is likewise

applicable to ConvNets.

Apart from computer vision or image classification, ConvNets are applicable

for sentiment and document classification. Inputs for the deep algorithms are

sentences or documents which are represented in the form of a matrix such that

each row of the matrix corresponds to one token or a word. Besides, each row

is a vectorized representation of the word and the whole matrix will represent
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a sentence or a document. In deep learning based approaches, these vectors

are low-dimensional word embedding resulted from algorithms and techniques

such as word2vec (Mikolov et al., 2013), GloVe (Pennington et al., 2014), or

FastText Joulin et al. (2016)

In the proposed method, a slight variant of ConvNet architecture of Kim (Kim,

2014) and Collobert (Collobert et al., 2011) is used for sentiment classification

of sentences. Let ni ∈ Rd the d-dimensional node embedding corresponding to

i-th node in a word-graph of a given document. It should be noted that sen-

tences are padded beforehand to make sure that all documents have the same

length.

For convolution operation, a filter w ∈ Rxd is applied on nodes to produce

a new feature, ci in equation (7), form a set of x nodes.

ci = f(w · ni:i+x−1 + b) (7)

Where b is bias term and f is a non-linear function such as hyperbolic tan-

gent. This filter is applied to any possible nodes in the graph {g1, g2, g3, · · · , gx}

to create the feature map c in equation (8).

c = [c1, c2, c3, · · · , cx] (8)

Afterwards, a max-over-time pooling operation (Collobert et al., 2011) is

performed over the feature map and takes maximum value, ĉ = max{c}, as a

feature corresponding to this particular filter. This idea is to capture and keep

the most important features for each estimated map. Furthermore, this max-

pooling deals with the documents with an uncertain length of sentences which

were padded previously.

The above description was a procedure in which a feature is extracted from

a single filter. The ConvNet model utilizes multiple features each with varying

window-sizes to extract diverse features. Eventually, these features fabricate

next to the last layer and are passed into a fully connected softmax layer which

yields the likelihood probability over the sentiment labels. Figure 3 reveals the
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Pos Pos Neg Pos Neg

Word-Graph

Word-Graph

Word-Graph

Word-Graph

Word-Graph

Positive Negative

Documents

Graph representation 
of documents

Feature learning

Convolution and 
pooling layers

Fully connected 
layers

Binary classification

Train

Figure 3: The model architecture of a multi-channel CNN network for sample documents.

First, documents are converted into word-graphs. Then, using a feature learning algorithm,

node2vec, structure of the graph is transformed into a set of meaningful features. After-

ward, via convolution and max-pooling layers, CNN learns the distinguishing features of each

document, and a fully connected softmax layer performs the sentiment classification.

architecture of the proposed method accompanying its different parts.
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4. Experimental Results

This section is devoted to the experimental results of the proposed method

on a set of public benchmark datasets for sentiment classification. First, an

introduction to the benchmark datasets and some statistics is given. Then, the

performance of the proposed method would be evaluated compared to some

well-known machine learning techniques.

4.1. Datasets

An essential part of examining a sentiment analysis algorithm is to have a

comprehensive dataset or corpus to learn from, and a test dataset to make sure

that the accuracy of your algorithm meets the expected standards. The pro-

posed method was investigated on different datasets which are taken from Twit-

ter and other well-known social networking sites. These datasets are “HCR”,“

Stanford”, “Michigan”, “SemEval”, and “IMDB”. These datasets are briefly

introduced in the following.

4.1.1. Health-care reform (HCR)

The tweets of this dataset are collected using the hash-tag “#hcr” in March

2010 (Speriosu et al., 2011). In this corpus, only the tweets labeled as negative

or positive are considered. This dataset consists of 1286 tweets, from which 369

are positive and 917 are negative.

4.1.2. Stanford

The Stanford Twitter dataset was originally collected by Go et al. (Go et al.,

2009) this test dataset contains 177 negative and 182 positive tweets.

4.1.3. Michigan

This data set was collected for a contest in university of Michigan. In this

corpus each document is a sentence extracted from social media or blogs, sen-

tences are labeled as positive or negative. The Michigan sentiment analysis

corpus contains totally 7086 sentences which 3091 samples are negative and

3995 positive samples.
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4.1.4. SemEval

The SemEval-2016 corpus (Nakov et al., 2016) was built for Twitter senti-

ment analysis task in the Semantic Evaluation of Systems challenge (SemEval-

2016). 14247 tweets were retrieved for this dataset, of which 4094 tweets are

negative and the rest 10153 tweets categorized as positive.

4.1.5. IMDB

10,000 positive, 10,000 negative full text movie reviews. Sampled from orig-

inal Internet movie review database of movies reviews. Table 1 briefly summa-

rizes the datasets which are being used for evaluation of the proposed method.

Table 1: Distribution of negative, positive samples in the given datasets, which will be used

for evaluation.

Dataset HCR Stanford Michigan SemEval IMDB

Positive 369 182 3995 10153 10,000

Negative 917 177 3091 4094 10,000

Total 1286 359 7086 14247 20,000

4.2. Evaluation Metrics

Sentiment analysis can be viewed as a classification problem. Therefore,

the well-known information retrieval (IR) metrics can be used to evaluate the

results of the sentiment analysis algorithms. Most of the evaluation metrics are

based on the calculation of the values such as TP, TN, FP, and FN which can be

used to form the confusion matrix to describe the performance of a classification

model, see Manning et al. (2008) for further details.

Table 2 describes accuracy, precision, recall, and F1 score which are applied

to assess and evaluate classification algorithms.

4.3. Compared Algorithms

The proposed method is challenged against well-known classification algo-

rithms that is discussed in the following.
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Table 2: Evaluation metrics for classification algorithms

Evaluation metric Mathematical definition

Accuracy TP+TN
TP+TN+FP+FN

Precision TP
TP+FP

Recall TP
TP+FN

F1 2×precision×recall
precision+recall

Support vector machine (SVM) is a supervised machine learning algorithm

which performs a non-linear classification using kernel idea to implicitly trans-

form the data into a higher dimension. Data is then inspected for the optimal

separation boundaries, between classes. In SVMs, boundaries are referred to as

hyperplanes, which are identified by locating support vectors or the instances

that define the classes. Margins, lines parallel to the hyperplane, are defined by

the shortest distance between a hyperplane and its support vectors. Thereupon,

SVMs can classify both linear and nonlinear data. In general terms, SVMs are

very beneficial when there is a huge number of features in cases such as text

classification or image processing. The grand idea with SVMs is, with enough

number of dimensions, a hyperplane separating a particular class from all oth-

ers can always be found. Essentially, SVMs looks not just for any separating

hyperplane but the maximum-margin hyperplane which remains at the equal

distance from respective class support vectors Michalski et al. (2013). Due to

high dimensionality, sparsity, and linearly separability in the feature space of

textual documents linear kernel is a decent choice for text classification with

SVMs Leopold & Kindermann (2002). Besides, it is shown that the choice of

kernel function does not affect text classification performance much Joachims

(1998). In this paper, we used SVM with linear (C=1.00) and RBF (C=100,

γ=0.1) kernels, the implementations for this purpose are taken from sklearn

package written in python 2.7 Pedregosa et al. (2011).

Naive Bayes classifiers are probabilistic classifiers that are known to be sim-

ple and yet highly efficient. The probabilistic model of naive Bayes classifiers is
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based on Bayes theorem, and the adjective naive alludes the assumption that

features in a dataset are mutually independent. in practical terms, the indepen-

dence assumption is often violated, however, naive Bayes classifiers still perform

adequately and can outperform the other compelling alternatives. Here we use

term frequency-inverse document frequency (Tf-idf) with Naive Bayes for senti-

ment classification. The Tf-idf is a technique for characterizing text documents.

It can be interpreted as a weighted term frequency, it assumes that the im-

portance of a word is inversely proportional to how often it occurs across all

documents. Although Tf-idf is most commonly employed to rank documents

by relevance in different text mining tasks such as page ranking, it can also be

utilized to text classification through naive Bayes Liu et al. (2017).

Convolutional neural network is employed on the experiments to compare

with the proposed approach. This network typically includes two operations,

which can be considered of as feature extractors, convolution and pooling. CNN

performs a sequence of operations on the data in its training phase and the

output of this sequence is then typically connected to a fully connected layer

which is in principle the same as the traditional multi-layer perceptron neural

network. More detail about this type of network is given in section 3.3. Other

hyperparameters for the CNN model as well as the one which is used in the

proposed method are shown in the 3.

Table 3: Hyperparameters of the CNN algorithms

Parameter Value

Sequence length 2633

Embedding dimensions 20

Filter size (3, 4)

Number of filters 150

Dropout probability 0.25

Hidden dimensions 150

Recursive neural tensor networks (RNTNs) are neural networks useful for
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natural language processing tasks, they have a tree structure with a neural net-

work at each node. RNTNs can be used for boundary segmentation to determine

which word groups are positive and which are not, this can be leveraged to sen-

tences as a whole to identify its polarity. RNTNs need external components

like Word2vec, vectors are used as features and serve as the basis of sequential

classification. They are then grouped into sub-phrases, and the sub-phrases

are combined into a sentence that can be classified by sentiment Socher et al.

(2013).

4.4. Results

We compare performance of the proposed method to support vector ma-

chine and convolutional neural network for short sentences by using pre-trained

Google word embeddings (Kim, 2014). Table 4 presents the results of the dif-

ferent methods and indicates the superiority of the proposed method over its

counterparts in most of the cases. It is important to note how well an algorithm

is performing on different classes in a dataset, for example, SVM is not showing

good performance on positive samples of Stanford dataset which is probably due

to the sample size and therefore the model is biased toward the negative class.

On the other hand, F1 scores of the proposed method for both positive and

negative classes show how efficiently the algorithm can extract features from

different classes and do not get biased toward one of them.

With the intention to show the priority of the graph representation pro-

cedure over word2vec, we have extracted the word embeddings only on the

IMDB dataset to demonstrate the effect of graph representation on text docu-

ments. The obtained results in Table 5 designate that CNN trained on features

extracted from limited corpus, performs weaker than the graph-based features

and globally trained word embeddings. This shows the superiority of the graphs

in extracting features from the text materials even if the corpus size is limited.

It is worth mentioning that the word graphs are made only out of the available

corpus and are not dependent on any external features.
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Table 4: Experimental results on given datasets

Method
Negative class (%) Positive class (%) Overall (%)

precision recall F1 precision recall F1 accuracy F1

HCR

Proposed method(CNN+Graph) 89.11 88.60 81.31 85.17 84.32 84.20 85.71 82.12

SVM(linear) 80.21 91.40 85.01 67.12 45.23 54.24 76.01 76.74

SVM(RBF) 77.87 99.46 87.35 95.65 29.73 45.36 79.45 45.36

NB(tf-idf) 74.04 88.00 80.42 58.00 34.94 43.61 70.93 43.60

Kim(CNN+w2v) 75.39 78.69 77.71 40.91 36.49 38.52 66.53 65.94

RNTN(Socher et al. (2013)) 88.64 85.71 87.15 68.29 73.68 70.89 82.17 70.88

Stanford

Proposed method(CNN+Graph) 86.38 90.37 91.29 77.46 56.45 65.52 83.71 78.72

SVM(linear) 79.21 100.0 88.40 00.00 00.00 00.00 79.20 70.04

SVM(RBF) 63.64 85.37 72.92 64.71 35.48 45.83 63.88 45.83

NB(tf-idf) 61.29 54.29 57.58 60.98 67.57 64.10 61.11 64.10

Kim(CNN+w2v) 79.96 99.59 88.70 22.22 0.56 0.95 79.72 71.10

RNTN(Socher et al. (2013)) 64.29 61.36 62.79 71.33 73.82 72.55 68.04 72.54

Michigan

Proposed method(CNN+Graph) 98.89 98.75 98.41 98.82 98.14 98.26 98.41 98.73

SVM(linear) 99.51 91.51 97.50 98.56 98.14 99.62 98.73 98.72

SVM(RBF) 76.02 73.67 74.83 66.40 69.13 67.74 71.72 67.73

NB(tf-idf) 76.92 74.07 75.47 84.78 86.67 85.71 81.94 85.71

Kim(CNN+w2v) 95.64 93.43 94.58 95.12 96.73 95.46 95.31 95.34

RNTN(Socher et al. (2013)) 93.19 95.61 94.38 96.57 94.65 95.60 95.06 95.59

SemEval

Proposed method(CNN+Graph) 90.80 80.35 84.81 87.32 92.24 90.76 87.69 87.78

SVM(linear) 77.91 61.97 69.06 85.74 92.89 89.17 83.95 83.36

SVM(RBF) 24.21 30.67 27.06 72.63 65.71 69.00 56.49 69.00

NB(tf-idf) 28.57 23.53 25.81 77.59 81.82 79.65 68.05 79.64

Kim(CNN+w2v) 57.87 42.26 46.97 78.85 85.13 81.87 72.50 71.98

RNTN(Socher et al. (2013)) 55.56 45.45 50.00 77.78 84.00 80.77 72.22 80.76

IMDB

Proposed method(CNN+Graph) 87.42 90.85 88.31 86.25 86.80 86.60 86.07 87.27

SVM(linear) 77.37 76.01 76.69 75.70 77.07 76.38 76.53 76.54

SVM(RBF) 65.85 58.70 62.07 67.80 74.07 70.80 67.00 70.79

NB(tf-idf) 74.72 73.41 74.06 73.84 75.14 74.49 74.27 74.48

Kim(CNN+w2v) 81.84 82.35 81.29 82.31 82.32 81.01 79.97 81.11

RNTN(Socher et al. (2013)) 80.98 80.21 80.59 80.38 81.14 80.76 80.67 80.75

Table 5: Comparison of graph-based learning vs. word2vec

Method
Negative class (%) Positive class (%) Overall (%)

precision recall F1 precision recall F1 accuracy F1

IMDB

Graph 87.42 90.85 88.31 86.25 86.80 86.60 86.07 87.27

w2v 74.34 73.37 75.20 71.41 70.82 71.32 70.14 72.71
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4.5. Sensitivity Analysis

The convolutional neural network offered for sentence classification can ben-

efit from four models in terms of using the word vectors, namely, CNN-rand,

CNN-static, CNN-non-static, and CNN-multichannel. In CNN-rand, all the

word vectors are randomly initialized and then optimized through the training

phase. CNN-static uses pre-trained word vectors, and for those without a vec-

tor (new or unknown words) the vector is randomly initialized. All the vectors

are kept static and only the other parameters of the model are learned in the

training phase. CNN-non-static is the same as CNN-static, but word vectors

are optimized and fine-tuned. Finally, the CNN-multichannel model uses two

sets of word vectors each treated as a channel. In one channel, the word vectors

(embeddings) are updated, in the latter they remain static.

We demonstrate the performance of the above described models on the sam-

pled data from all available datasets (250 negative and 250 positive documents

divided into train and test on 80-20 ratio) to figure out which model is the best

choice to be coupled with graph embeddings. Table 6 presents the performance

of different models on the sample data. The results reveal that the CNN-static

model is close and at some levels is better than CNN-non-static. Moreover, this

indicates that the feature set extracted from the graphs are rich enough and

don’t require optimization and fine-tuning.

Table 6: Comparison of different CNN models on the sampled data with graph embeddings

Method
Negative class (%) Positive class (%) Overall (%)

precision recall F1 precision recall F1 accuracy F1

Sampled data

CNN-rand 51.79 60.42 55.77 56.82 48.08 52.08 54.00 52.08

CNN-static 64.29 52.94 58.06 58.62 69.39 63.55 61.00 63.55

CNN-non-static 54.55 62.50 58.25 60.00 51.92 55.67 57.00 55.67

CNN-multichannel 52.17 51.06 51.61 57.41 58.49 57.94 55.00 57.94

Four types of graph can be used in the proposed method, directed weighted,

23



undirected weighted, directed unweighted, and undirected unweighted. Each of

these graphs has its own specific features and can show different characteris-

tics of a text. As an example, the directed graph can represent the order of

words in a sentence, while weights in a graph can represent how often words

appear together in the text. Figure 4 displays the model sensitivity to various

graphs. As it is shown in Figure 4, the directed weighted graph results in better

performance and that’s why it is used for the experiment.

(D, W) (D, W) (D, W) (D, W)
Graph

60.0

60.5

61.0

61.5

62.0

62.5

63.0

63.5

64.0

F1
 sc

or
e

Directed
Weighted
UnDirected
UnWeighted

Figure 4: Sensitivity of the proposed model to different graphs (directed, undirected, weighted,

unweighted) in the proposed method.

The proposed method relies on two main parameters for graph exploration, p

and q. We examine how the different choices of parameters affect its performance

(F1) the sampled data. As can be seen from Figure 5, the performance is high

for low values of p and q. While a low q encourages outward exploration of the

graph, it is balanced by a low value of p which ensures the random walk not to

go enormously far from the starting node.

In the process of graph formation from the given documents, the window

size highly impacts the performance of the algorithm. Based on a variety of

experiments, a window size of 2 to 10 seems to be relevant to make the word
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Figure 5: Sensitivity analysis for the p and q values of the proposed algorithm over sampled

data from all of the datasets.

graphs. However, high values result in a very dense graph which takes a lot

of processing time to be transformed into features and low values result in a

low-quality feature set. Our analysis, Figure 6, shows that a word window of

size 3 is an appropriate choice in terms of runtime and accuracy.
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Figure 6: Performance analysis of the proposed algorithm for different window sizes over the

sampled dataset.

5. Conclusion and Future Work

In this paper, we proposed a new graph representation learning approach

for textual data. By incorporating different hidden aspects in a graph-based

text representation, the proposed framework succeeded to incorporate most of

the features in documents for the polarity identification task. The unsupervised

graph representation learning was applied to extract the continuous and latent

features to employ them in learning schema. The experimental results affirmed

the superiority of the proposed method versus its competitors. Furthermore,

deep learning architectures were employed to demonstrate the strength of the

proposed method on the sentiment classification. The graph structure enabled

the proposed framework to incorporate the stop words, word positions, and

more importantly word orders as opposed to the traditional techniques. The

obtained results on standard datasets have verified the usefulness of graph-based

representation aligned with deep learning based on the performance improve-

ments in the sentiment classification task. This ongoing field of research has

several directions that could be followed for the future practice, including, but
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not limited to, employing other graph-based representation methods to extract

hidden characteristics of a network, exploiting preprocessing methods to enrich

the initial features of the network, and employing other innate features and

informations in the social media to enhance sentiment analysis techniques.
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