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Abstract 

In dealing with big data, we need effective algorithms; effectiveness that depends, among others, on the 

ability to remove outliers from the data set, especially when dealing with classification problems. To this 

aim, support vector finder algorithms have been created to save just the most important data in the data 

pool. Nevertheless, existing classification algorithms, such as Fuzzy C-Means (FCM), suffer from the 

drawback of setting the initial cluster centers imprecisely. In this paper, we avoid existing shortcomings 

and aim to find and remove unnecessary data in order to speed up the final classification task without 

losing vital samples and without harming final accuracy; in this sense, we present a unique approach for 

finding support vectors, named evolutionary pentagon support vector (PSV) finder method. The 

originality of the current research lies in using geometrical computations and evolutionary algorithms to 

make a more effective system, which has the advantage of higher accuracy in some data sets. The 

proposed method is subsequently tested with seven benchmark data sets and the results are compared to 

those obtained from performing classification on the original data (classification before and after PSV) 

under the same conditions. The testing returned promising results. 

Keywords: Big data; data mining; support vector; Artificial Bee Colony (ABC); evolutionary clustering; 

Fuzzy C means (FCM); Pentagon Support Vector finder (PSV). 

 

 
1. Introduction 

The big data era has brought many challenges with it (e.g., Charles & Emrouznejad, 2018), which deemed 

the traditional data processing applications too weak to deal with them. Among these challenges, we can 

mention networking, capturing data, data storage and analysis, search, sharing, transfer, visualization, 

querying, updating, and information privacy (Charles & Gherman, 2018; Charles, Tavana, & Gherman, 

2015). In light of the above, big data is essentially about the complexities of the data that we attempt to 

unpack (Charles & Gherman, 2013) and in this sense, accuracy and speed in computation are two very 

important aspects to consider when processing these large amounts of data. But when we are dealing with 

classification tasks, most of the data may turn out to be outliers and, thus, represent unnecessary data 

points. Detecting outliers, or in other words, those data points that do not conform to expected behaviour, 

has attracted a lot of attention due to its applicability in a wide variety of domains (Rekha, Abdulla, & 

Asharaf, 2017). 

In order to deal with such problems, techniques called support vector finders have been developed to 

identify and remove outlier data. These techniques help to decrease the classification computation speed 

significantly. Also, with inspiration from natural phenomena, it is possible to make much more robust 

algorithms and methods, improving their performance and helping to understand the dynamics in the data 

better. Support vector finders are very important in data mining and big data. It is beyond the purposes of 

the present paper to explore such territory, but just for the purposes of highlighting the practical 
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relevance, here are some of the fields which benefit from these methodological advances: data mining has 

application in a variety of settings, such as industry (Piatetsky-Shapiro, 1999), healthcare (Koh & Tan, 

2011), security (Lee & Stolfo, 1998), and medicine (Bellazzi & Zupan, 2008), among others; and big data 

has application in fields such as biomedical research and health care (Luo, Wu, Gopukumar, & Zhao, 

2016), international development (Global Pulse, 2012), manufacturing (Lee et al., 2014), internet of 

things (Morris, 2014), and so on. For a comprehensive discussion regarding more societal benefits and 

current uses of big data, the interested reader is referred to the recent work by Emrouznejad & Charles 

(2018). 

When dealing with data mining, researchers have been met with the outlier issue in classification 

problems, especially when the data points are very close to each other. Let us imagine we would like to 

classify the cat species based on tail size. The sizes of the cats’ tails are different, but in many cases, they 

are also similar; hence, misclassification can occur. This problem emerges when the borders between 

classes are very narrow or when some samples of classes are mixed. Indeed, some classification 

algorithms could extract these mixed samples; nevertheless, the far samples or outliers will affect the 

calculations for that specific algorithm. To fix this problem, researchers have had to remove some data or 

use clustering techniques to get rid of outliers, both of which, however, have shortcomings. On the one 

hand, removing outliers may cause the removal of some samples from other classes, which are not 

outliers for that particular class. On the other hand, clustering techniques change the real position of the 

samples in the space. Clustering algorithms are optimized to find clusters rather than outliers and a set of 

many abnormal data objects that are similar to each other would rather be recognized as a cluster than as 

outliers; furthermore, the accuracy of outlier detection depends on how well the clustering algorithm 

captures the structure of the clusters. Our proposed approach avoids such shortcomings and leads to the 

preservation of the real data without outliers. 

 
Detecting the position of these outliers in the data space and removing them for better processing 

demands the use of intelligent algorithms. Also, as these data (in view of their position in the data space) 

are statistical data, the output of a support vector finder system could be used as an expert system  

(without human interaction) for faster and automated processing and free from any error in the 

classification task. 

 
In the present paper, we aim to contribute to this research strand (i.e., eliminating outliers) by introducing 

a unique approach for finding support vectors, which consists of four steps: (1) reducing the amount of 

data using evolutionary clustering (Artificial Bee Colony together with the Fuzzy C Means-Manhattan 

method), (2) labelling the remaining data using the K-nearest neighbourhood classifier, (3) removing 

outliers based on a specific threshold, and (4) calculating the area of the pentagon and the angle between 

samples of existing classes to determine the position of the final support vectors. The originality of the 

current research lies in the use of geometrical computations and evolutionary algorithms to make a more 

effective system. Furthermore, our approach has the advantage of high accuracy in the data sets. 

 
The remainder of the paper unfolds as follows: Section II provides a description of some basic definitions 

and concepts and section III explores existing research on the topic. Subsequently, Section IV introduces 

the proposed support vector finder method and related process in detail. Then, the proposed method is 

applied to few benchmark data sets for validation purposes and the results are presented in Section V. 

Section VI concludes the paper with relevant discussions and suggestions for future lines of research on 

the topic. 
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2. Main definitions 

2.1 Evolutionary Computation (EC) 

Evolutionary Computation (EC) is a well-established branch of computer science, in which highly 

efficient optimization techniques are inspired by nature and biological evolution (Spirov & Holloway, 

2013). As such, this kind of computations are inspired by evolutionary principles for automated and 

parallel problem-solving (Bäck, Fogel, & Michaelewicz, 1997; Eiben & Smith, 2003; De Jong, 2006) to 

solve a broad range of complicated mathematical problems that are challenging for traditional 

computational methods. There is evidence that many practical problems can be solved efficiently using 

EC (Zhu, Bastern, Geilen, & Stuijk, 2012). 

To do this, EC processes start with a pre-defined number of populations in different number of 

generations to do mutation and recombination during a pre-defined number of iterations. The goal is to 

achieve the highest fitness function or the lowest cost function, depending on the need. During 

generations, individuals with a better cost or fitness function are saved and the less desirable solutions are 

eliminated. This process continues to evolve and acquire more optimized individuals, which are the best 

final solutions of the mathematical problems (Bäck, Fogel, & Michalewicz, 1997). EC is a much 

advantageous approach, as it requires only a suitable coding structure which can modify the solutions 

during reproduction and a system for assessing the quality of individual solutions (Yagain & 

Vijayakrishna, 2015). At the same time, however, it does not need any prior knowledge of solution search 

space (Parhi, 2007). 

An algorithm which uses EC to solve a problem is called an Evolutionary Algorithm (EA). Some 

examples of EAs are the Genetic Algorithm (GA) (Mitchell, 1998) (which is considered to be the most 

biologically accurate EC model, as well as the most popular EC instance due to its intuitive usage and 

ease of implementation (Drugan, 2018)), ant colony optimization (ACO) (Dorigo, 1992), particle swarm 

optimization (PSO) (Kennedy, 2017; Kennedy & Eberhart, 1995; Mavrovouniotis, Li, & Yang, 2017), 

differential evolution (DE) (Storn & Price, 1997; Das, Mullick, & Suganthan, 2016), Cuckoo search 

(Yang & Deb, 2009), and Big Bang-Big Crunch algorithm (BBBC) (Erol & Eksin, 2006), among others. 

In general, these algorithms have gained increasing popularity overall thanks to their ease of 

implementation and exemption from the obstacle of derivative (Liang, Hu, Zhu, & Zhu, 2017). 

Furthermore, these algorithms have applicability in a wide range of domains, such as city planning 

(Balling & Wilson, 2001), robotics (Yu, Jinhai, Guochang, Rubo, & Haiyan, 2002), industry (Takagi, 

2001), games (Gillespie, Gonzalez, & Schrum, 2017; Justesen & Risi, 2017), control (Parker & Nitschke, 

2017; Reed, Hadka, Herman, Kasprzyk, & Kollat, 2013), and more (Fogel, 2000). For further 

information, the interested reader is referred to the studies by De Jong, Fogel, and Schwefel (1997) and 

Bäck, Fogel, & Michaelewicz (1997) for a history on the beginnings of EC and to Kallel, Naudts, and 

Rogers (2001) for a discussion on theoretical aspects of EC. 

 
2.2 Artificial Bee Colony (ABC) 

 
Artificial Bee Colony (ABC) evolutionary algorithm is a relatively new optimization method proposed by 

Dervis Karaboga in 2005 (Karaboga, 2005) and inspired from the intelligent foraging behavior and 

information sharing capability of the honey bee swarm (Karaboga, Gorkemli, Ozturk, & Karaboga, 2014; 

Bansal, Sharma, & Jadon, 2013). Developed initially for continuous optimization problems, it was later 

modified to solve discrete optimization problems, as well (Kashan, Nahavandi, & Kashan, 2012; Kiran, 

2015) and has since given birth to various ABC algorithm variants (Alatas, 2010; Akbari, Hedayatzadeh, 

Ziarati, & Hassanizadeh, 2012; Karaboga & Akay, 2011; Duan, Xu, & Xing, 2010). This algorithm is one 
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of the most novel and robust algorithms, among other famous evolutionary algorithms, and converges 

with good speed in global maxima (based on input parameter and problem type). It has proven its 

applicability in areas such as neural networks (Kumbhar & Khrishnan, 2011), forecasting stock markets 

(Hsieh, Hsiao, & Yeh, 2011), image processing (Draa & Bouaziz, 2014), assignment problems (Metlicka 

& Davendra, 2015), structural engineering (Ding, Huang, & Lu, 2016), and more recently network 

topology design (Saad, Khan, & Mahmood, 2018), among others. 

According to Karaboga (2005), the ABC algorithm involves three types of bees that cooperate with each 

other in performing different tasks (known as division of labour): employed bees, onlookers, and scouts. 

Employed bees are associated with a particular food source that they are currently exploiting and 

exchange information about this particular source with its neighbours. The number of employed bees in 

the colony is equal to the number of food sources around the hive. Furthermore, the number of employed 

bees and onlooker bees are equal. Once a food source is abandoned by its employed bee, the employed 

bee turns into a scout and searches for new food sources. Onlookers wait in the nest and watch the dances 

of the employed bees (called waggle dances), which they use to then choose the food sources on the basis 

of the information shared by employed bees with regards to the quality of the food sources. 

The ABC algorithm generates a randomly distributed initial population of SN solutions (food sources), 

wherein SN denotes the swarm size. 𝑋𝑖 = {𝑥𝑖,1, 𝑥𝑖,2, … , 𝑥𝑖,𝑛} represents the ith solution in the  swarm,  

where n is the dimension size. Each employed bee Xi generates a new candidate solution Vi in the 

neighbourhood of its present position, as indicated in the equation (1) below: 
 

𝑉𝑖𝑘 
= 𝑋𝑖𝑘 

+ Φ𝑖𝑘 
× (𝑋𝑖𝑘 

− 𝑋𝑗𝑘 
) (1) 

When 𝑋𝑗 is a randomly selected candidate solution (𝑖 ≠ 𝑗), k is a random dimension index selected from 

the set {1, 2, …, n} and Φ𝑖𝑘 
is a random number within the interval [-1, 1]. Once the new candidate 

solution Vi is generated, a greedy selection is used. If the fitness value of Vi is better than that of its parent 

Xi, then we proceed to update Xi with Vi. Otherwise, we keep Xi unchanged. After all employed bees 

complete the search process, they share the information of their food sources with the onlooker bees 

through waggle dances. An onlooker bee evaluates the nectar amount information taken from all 

employed bees and chooses a food source with a probability related to its nectar amount. The probabilistic 

selection is a roulette wheel selection mechanism (Fogel, 1997). If a position cannot be improved over a 

predefined number (called limit) of cycles, then the food source is abandoned. Let us assume that the 

abandoned source is Xi and then the scout bee discovers a new food source to be replaced with jth as in the 

equation (2) below: 

𝑋𝑖𝑘 
= 𝑙𝑏𝑗 + 𝑟𝑎𝑛𝑑(0,1) × (𝑢𝑏𝑗 − 𝑙𝑏𝑗), (2) 

where rand (0, 1) is a random number within the interval [0, 1] based on normal distribution, and lb and 

ub are the lower and upper bounds of the ith dimension, respectively. Figure 1 shows the process of the 

ABC algorithm in a flowchart form. 



5  

 

 
 

Figure 1. The ABC evolutionary algorithm procedure flowchart. 

 

 
2.3 Support vectors 

The concept of “support vector machine” (SVM) was first mentioned by Vapnik in 1995, and in time it 

has become one of the most well-known and commonly used optimal technique for data classification 

(Vapnik, 1995) due to its good mathematical formulation accompanied by numerous empirical results 

(Czarnecki & Tabor, 2014). For more thorough descriptions, the interested reader is referred to the studies 

by Burges (1998), Theodoridis and Koutroumbas (2003), Hsu, Chang, and Lin (2003). 

In data mining and classification, support vectors are the samples which separate classes or categories 

from each other based on labels and they are mostly used in supervised learning. In other words, support 

vectors are the border line between categories and finding them helps in identifying outliers and less 

desirable samples. To decrease computation time and ease the computation process, the outliers will be 

eliminated for the rest of the process, and after performing the classification based on the remaining data 

(support vectors), they will return just for the end user analysis. So, outliers are removed temporarily just 

for the purposes of finding support vectors and for the classification process, but data will be intact at the 

end of the entire process. Figure 2 presents the position of the support vectors in two dimensions for three 

classes, which should be found. Samples with black circles around them are support vectors. 
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Figure 2. The position of the support vectors in the data. 

 

 
3. Literature review 

One of the best and most powerful support vector finder method was proposed by Cortes and Vapnik in 

1995 (Cortes & Vapnik, 1995) under the title of “support vector network”; this has become a powerful 

tool in many fields, such as classification, pattern recognition, detection, gene selection, and so on (Qi, 

Yang, Hu, & Yang, 2019). In time, many research studies have been carried out based on it; also, efforts 

have been made to develop variants of it. Nowadays, the method is known under the name of “Support 

Vector Machine” (SVM), and it is still a very powerful classification tool. Despite this, however, SVM is 

bit slow in the test phase. Below we proceed to offer an overview of the existing literature on the topic. 

 
In 1996, Burges (1996) proposed a method to compute an approximation to the decision rule in terms of a 

reduced set of vectors. These reduced set vectors are not support vectors and can in some cases be 

computed analytically. Burges actually decreased the computation complexity for SVM with no loss in 

the generalization performance. Another noteworthy research study dedicated to decreasing the SVM 

runtime is that by Burges and Schölkopf, published in 1996 (Burges & Schölkopf, 1996). On the one 

hand, the authors improved the accuracy by incorporating knowledge about invariances of the problem at 

hand, and on the other hand, they improved the classification speed by reducing the complexity of the 

decision function representation. 

 
In 1999, Syed, Huan, Kah, and Sung (1999) presented an approach for incremental learning with Support 

Vector Machines. Their approach could effectively deal with the changes in the target concept that are the 

result of the incremental learning setting. In the same year, Platt (1999) further proposed a method to 

change the SVM learning process, called Sequential Minimal Optimization, or SMO. In fact, he broke 

down the SVM Quadratic Programming (QP) optimizations into series of smallest possible QP problems 

using the SMO. 

In 2000, Schölkopf, Smola, Williamson, and Bartlett (2000) proposed a new class of support vector 

algorithms for regression and classification, using different parameters to control the number of support 

vectors, based on research carried out on existing methods. In 2001, Downs, Gates, and Masters (2001) 

proposed statistical changes in the SVM structure as follows. They proposed an algorithm to detect and 

eliminate the unnecessary linearly dependent support vectors, and they tested their method on some 

benchmark data sets for classification and regression task using different kernels and different parameters. 

Another noteworthy research study in this area belongs to Keerthi, Chapelle, and DeCoste (2006), who in 

2006 introduced a method to improve the speed of the SVM in big data processing. The method works as 

follows: First, it separates the idea of basis functions from the concept of support vectors. Second, the 
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system greedily finds a set of kernel basis functions of a specified maximum size to approximate the  

SVM primal cost function well; and in their system, the number of basis functions required to achieve an 

accuracy close to the SVM accuracy is usually far less than the number of SVM support vectors. Another 

research study that decreases the SVM speed belongs to Nguyen and Ho (2006). Their method consisted 

in simply replacing a new point for each two points or samples from the same class. 

More recently, in 2017, Mousavi, MiriNezhad, and Mirmoini (2017) proposed a system to find support 

vectors based on K-means clustering and triangular calculations and tested their method with least squares 

and SVM classification algorithms on Fisher’s Iris (Fisher, 1936) and Wine data sets (Aeberhard, 

Coomans, & De Vel, 1992). 

Another method to remove unnecessary data and speed up the calculation was proposed by Mirinezhad, 

Dezfoulian, Mosleh, and Mousavi (2017). The authors used the Multi Class Instance Selection (MCIS) 

algorithm by Chen, Zhang, Xue, and Liu (2013) to obtain the most valuable data from each class and 

speed up the Widrow-Hoff classification algorithm by Steinbuch and Widrow (1965). A similar method is 

presented in Dezfoulian, MiriNezhad, Mousavi, Mosleh, and Shalchi (2016). In this case, the authors used 

MCIS in the first step and the Ho-Kashyap algorithm by Ho and Kashyap (1965) in the classification step. 

Each of the above-mentioned methods have their pros and cons. Some of them are good in dealing with 

big data and some other in dealing with specific types of data sets. In a nutshell, Cortes and Vapnic  

(1995) introduced the traditional form of SVM and Burges (1996) decreased the computation complexity 

of the same. Burges and Schölkopf (1996) further improved the accuracy of SVM. Platt (1999) changed 

the learning process of SVM with SMO. Downs, Gates, and Masters (2001) proposed an algorithm to 

detect and eliminate the unnecessary linearly dependent support vectors. Also, Keerthi, Chapelle, and 

DeCoste (2006) improved the speed of SVM. Mousavi, MiriNezhad, and Mirmoini (2017) proposed a 

system using K-means clustering and triangular calculations to find support vectors. Mirinezhad, 

Dezfoulian, Mosleh, and Mousavi (2016) combined MCIS clustering and Widrow-Hoff classification 

algorithms to obtain the closest samples from each class and speed up the classification process. Table 1 

provides a summary of the strengths and weaknesses of our proposed approach versus these other 

approaches. 

 

 
Table 1. Proposed approach versus existing approaches. 

 
Studies Strengths Weaknesses 

Cortes and Vapnik (1995) Traditional form of SVM. SVM is slow in the test phase. 

Burges and Schölkopf (1996) Improved the accuracy of SVM. Speed like SVM. 

Platt (1999) Breaks down the SVM Quadratic 

Programming (QP) optimisations 

into a series of smallest possible 

QP problems using the 

Sequential Minimal Optimisation 
(SMO). 

Good only for QP problems. 

Downs, Gates, and Masters 

(2001) 

Proposed an algorithm that 

detects and eliminates the 

unnecessary linearly dependent 
support vectors. 

Low speed. 

Keerthi, Chapelle, and DeCoste Improved the speed of SVM. Less accuracy. 
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  labeling  

(2006)   

Dezfoulian, MiriNezhad, 

Mousavi, Mosleh, and Shalchi 

(2016). 

Combined MCIS clustering and 

Widrow-Hoff classification 

algorithms to obtain the closest 

samples from each class and 

speed up the classification 
process. 

Very low accuracy. 

Mousavi, MiriNezhad, and 

Mirmoini (2017) 

Proposed a system to find 

support vectors based on K- 

means clustering and triangular 
calculations. 

Medium speed and accuracy. 

Proposed 

Approach: PSV Finder Method 

Nature-inspired outlier removal 

system. 
Good accuracy and speed in most 
data sets. 

When the number of samples 

increases, the approach performs 

slower than traditional methods 
(but still, with good accuracy). 

 

4. Proposed evolutionary pentagon support vector finder method 

In order to find support vectors, the first phase is to reduce the data using evolutionary clustering, which 

is performed by means of the proposed modified Artificial Bee Colony together with the Fuzzy C Means- 

Manhattan method (ABC+FCMM). The second phase is to classify and label the remaining clusters based 

on the previous labels. The third phase is to remove the outliers based on a threshold α. The last phase 

involves calculating the pentagon area and the angle for each ith current sample from the jth class and the 4 

samples from the other kth class. In this last phase, if the area and angle thresholds (η and θ) are satisfied, 

then the sample from the ith class is a support vector, otherwise it is not. All these support vectors will 

further be used in the classification process. Figure 3 shows the flowchart of the proposed evolutionary 

pentagon support vector finder method. The proposed method is called evolutionary Pentagon Support 

Vector finder or PSV. 
 

 
Figure 3. Proposed Evolutionary Pentagon Support Vector (PSV) Finder flowchart. 

 

 
4.1 Artificial Bee Colony (ABC) + Fuzzy C Means-Manhattan (FCMM) clustering 

 
Clustering and classification are two powerful tools in data mining for dividing data into categories. The 

difference between them consists in whether the data have a predefined label or not. If group labels are 

known beforehand, then we are dealing with supervised learning and the problem is a classification 
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problem, and if group labels are not predefined, then we are dealing with unsupervised learning and the 

problem is a clustering or automatic classification problem that needs to be solved. Now, if in clustering 

the number of clusters is unknown, then it is called automatic clustering. The goal of clustering here is to 

reduce the data for further processing purposes, which needs heavy computations, especially when 

dealing with big data. 

K-means or Lloyd’s clustering algorithm (Lloyd, 1982) is a metaheuristic clustering method with high 

calculation speed, but with an important shortcoming. The efficiency and performance of the K-means 

algorithm is greatly affected by the initial cluster centers, as different initial cluster centers often lead to 

different clustering. Therefore, the problem with using the K-means lies in determining the initial cluster 

centers, which are random and can lead to very poor and unstable clustering results. Fuzzy C-means 

(FCM) (Dunn, 1973) is the fuzzy model of the K-means and suffers from a similar issue. In non-fuzzy or 

hard clustering, data is divided into distinct clusters, wherein each data point can only belong to exactly 

one cluster. In fuzzy clustering, on the other hand, the data points can potentially belong to multiple 

clusters. It is possible to fix the problem of the initial cluster center in hard clustering or fuzzy clustering 

by solving it using intelligent evolutionary algorithms, such as Genetic Algorithm (Mitchell, 1998), 

Harmony Search (Geem, Kim, & Loganathan, 2001), Artificial Bee Colony (ABC) (Karaboga, 2005), 

among others. 

In this paper, we combine the ABC EA with the FCM clustering algorithm so as to determine the proper 

initial centers of the clusters, based on the paper by Karaboga and Ozturk (2010) and with a small change 

in distance calculation. We used city block or Manhattan distance instead of the Euclidean distance, 

which leads to better results. Also, the paper by Karaboga and Ozturk (2010) employed ABC + Fuzzy 

Clustering (FC), whereas here we used ABC+FCM. So, our modified clustering method is called 

Artificial Bee Colony + Fuzzy C Means with Manhattan distance clustering or ABC+FCMM clustering. 

FCM clustering algorithms gain the membership values between 0 and 1, which indicates the degree of 

membership of each sample to each cluster. The proposed ABC+FCMM clustering problem is defined as 

follows: 

 

 

𝜇𝑖𝑗 [0, 1], 𝑖 = 1,2, … . 𝑛 ; 𝑗 = 1,2, … 𝑛 

𝑐 

∑ 𝜇𝑖𝑗 = 1 𝑖 = 1,2, … , 𝑛 
𝑗=1 

(3) 
 

(4) 

𝑛 

0 < ∑ 𝜇𝑖𝑗 < 𝑛 𝑗 = 1,2, … 𝑐 
𝑖=1 

 
 

(5) 

Here, μ is a fuzzy matrix with n rows and c columns, wherein furthermore, n is the number of samples  

and c is the number of clusters. μij is the element in the ith row and jth column in μ and represents the degree 

of membership function of the ith sample to the jth cluster. Also, the FCMM objective function is to 

minimize the following expression: 

𝑐 𝑛 

∑ ∑ 𝜇𝑚||𝑥 − 𝑐 || (6) 

 
 

where: 

𝑖𝑗 𝑖 𝑗 

𝑗=1 𝑖=1 

 
 

(7) 
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𝜇 = 

𝑖 |𝑘 

 
Generating the initial population Xi, i=1…SN from EQ. (2) 

Evaluating the population 
Cycle=1 

Do 

For each employee bee 

Produce new solution Vi from EQ. (1) 

Calculating the fitness function value 
Greedy selection (first) 

For each onlooker bee 

Choose a solution 

Produce new solution Vi 

Calculating the fitness function value 
Greedy selection (second) 

If there is an abandoned solution, 

Then 

Replace the solution with a new random one 

Scout solution using EQ. (2) 
Memorizing the best solution ever yet 

Cycle = Cycle + 1 
Until cycle = Maximum Cycle Number (MCN) (SOMETIMES IT TAKES 2000 CYCLES FOR CLUSTERS TO SET) 

𝑚 1 
𝑖𝑗 

𝑐 
𝑘=1 

||𝑥𝑖 − 𝑐𝑗|| 
(
||𝑥 − 𝑐 | 

) 𝑚 − 1
 

 

Here, x is the number of samples, c is the number of clusters, and m is the related fuzzy index. The 

equation is changed based on the Manhattan distance. Here, we imagine bees as samples and the strongest 

bee as the cluster center during cycles so as to determine the best initial cluster center. Table 2 shows the 

pseudo code for the proposed ABC+FCMM clustering method. 

 
Table 2. Proposed ABC+FCMM pseudo code. 

 

Figure 4 shows 2 classes of samples (random) in 2 dimensions, with 14 samples per each class, which are 

clustered using the proposed ABC+FCMM clustering method into 5 clusters for each class. 
 

Figure 4. An example of application of the proposed modified ABC+FCMM clustering method on random 

data. 

∑ 
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  belongs to class 1  

4.2 K-Nearest Neighbourhood (K-NN) 

 
After reducing the data using the proposed modified ABC+FCMM clustering method, it is time to label 

the clusters using previous data labels and assign them to categories. To this aim, the K-Nearest 

Neighbourhood (K-NN) classifier (Altman, 1992) is employed. Due to its fast calculations and for the 

present purposes, using K-NN here is enough. Imagine that there are three classes of samples in four 

dimensions, and each class has 100 samples. Suppose we use ABC+FCMM with 20 clusters for each 

class, which will change the data from 300 samples to 60. At this stage, data are unlabeled, which is not 

desirable for further support vector finding and final classification. So, all 60 samples should be assigned 

to the closest class or category, using previous data labels, which are saved for this stage. For that, and for 

each sample, a window with K size (in diameter) in the space will be determined, and the class that has a 

higher number of samples in the window will claim the current sample. Then, the clusters will be labeled 

as classes just like in the previous clustering process, but with fewer data points. As it is clear, K must be 

an odd number and this threshold is different depending on each data set; but the lower the threshold, the 

better the classification result. K-NN is a simple classification algorithm and we did not change the 

structure of it, but instead used the original structure. It starts with K (odd number) window size and 

calculates the Euclidean distance between the current sample and the samples inside the window, and 

further assigns the sample to the class with more samples inside the window. For more information about 

this algorithm, the interested reader is referred to the study by Altman (1992). Here, we first train the data 

with the original data set and then use the clusters as the test data. Figure 5 exemplifies the use of the K- 

NN classifier with k = 3 to classify each cluster into the closest samples. Other clusters calculate the same 

as the example. 

 
 

Figure 5. Using the K-NN classifier with k = 3 to classify each cluster into the closest samples. 

 

 
4.3 First step in outlier removal 

 
After labelling the clusters, it is time to eliminate some of the far outlier data. For that, a Parzen window 

(Parzen, 1962) just like K-NN will be used. If there are no samples beyond the threshold α and also there 

are no samples from other classes, then that sample is an outlier and must be removed. The value of the 

threshold α varies and it depends on the upper and lower bound values of the variables in the data set. 

Figure 6 exemplifies this concept for two samples. In light of the above comments, one sample is an 

outlier and the other one is not. Also, this process further takes place for all the samples. 
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Figure 6. An example of application of the proposed first step in outlier removal on random data. 

 

 
4.4 Pentagon area and angle 

 
After removing the outlier samples in the first step, it is time to calculate the position of the final support 

vectors. To that effect, the pentagon area and angle are considered, which are based on 1 sample from the 

current class and 4 samples from the other classes. The regular pentagon area is calculated as 5/2 * (size 

of one side * apothem length), as can be seen in Figure 7, but it is not always like that. In fact, it is not 

like that in 99% of the calculations, wherein we need to calculate the irregular polygon (here pentagon 

shape) area instead. To calculate the irregular polygon area, the following equation (8) is used, when the 

coordinates are known. 

 
 

 
Figure 7. Regular pentagon area calculation. 

𝐼𝑟𝑟𝑖𝑔𝑢𝑙𝑎𝑟 𝑝𝑜𝑙𝑦𝑔𝑜𝑛𝑒 (𝑝𝑒𝑛𝑡𝑎𝑔𝑜𝑛) 𝑎𝑟𝑒𝑎 = | 
(𝑥1𝑦2  − 𝑦1𝑥2) + (𝑥2𝑦3  − 𝑦2𝑥3) … … + (𝑥𝑛𝑦1  − 𝑦𝑛𝑥1) 

| 
2 

(8) 

where x1 is the x coordinate of vertex 1 and yn is the y coordinate of the nth vertex and so on (see Figure 

8a). Also, the sum of the inside angles of a pentagon is equal to 540 degrees or equal to three triangles’ 

degrees, which is 180 + 180 + 180, as can be observed from Figure 8b. There is a general rule of (n- 

2)*180 to calculate the sum of the angles for any type of polygon, such as pentagons, hexagons, octagons, 

and so on, wherein n is the number of vertices. For example, this value for the pentagon is (5-2)*180 = 

540 degrees and for the octagon is (8-2)*180 = 1080 degrees. Also, for calculating the interior angles of 

the irregular polygon, Matlab software is employed. 
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Figure 8. Pentagon sum of angles (left, figure 8a), Pentagon division into three triangles (right, figure 8b). 

 

 
So, there are two conditions to satisfy here. First, the area value of the polygon should not be more than 

the threshold η and each angle degree should be less than the threshold θ, as Figure 9 shows. If both 

conditions are satisfied, then that sample is a support vector; if not, then it is an outlier sample and must 

be eliminated. Figure 9 shows two examples of conditions not being satisfied for area and angle. Now, the 

remaining data which are support vectors will be used in the classification task. 

 

 

 
 

Figure 9. Two examples of conditions not being satisfied for area (left, figure 9a) and angle (right, figure 

9b) 
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The proposed method’s misclassified 
samples are 5 and SVM’s misclassified 

samples are 5. So, the proposed method 
works in a promissory manner. 

Figure 10 shows the application of the proposed support vector finder procedure, step by step and in 

visual form, to Fisher’s Iris data set (Fisher, 1936) (variables 3-4, classes 2-3). As it is clear from Figures 

10g and 10h, the proposed method using the simple least squares classification works just as well as the 

SVM classification with 5 misclassified samples. 

 

 
 

Figure 10. The proposed support vector finder procedure, step by step, in visual form, applied to Fisher’s 

Iris data set (variables 3-4, classes 2-3). 
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5. Validations and results 

As it is clear from applying our method, after finding the support vectors, the position of the samples is 

changed due to the clustering process in the first step. So, after the classification task, the acquired 

separating lines or hyper planes will be used on the real, unchanged data to determine the error percentage 

based on the positions of the real samples. Validations are performed on 7 different classification 

benchmark data sets. As validation is going to be performed with classification algorithms, data should be 

labeled and supervised, and clustering and regression data sets are useless here. Data sets used in this 

research are Fisher’s Iris (Fisher, 1936), User Knowledge Modelling (Kahraman, Sagiroglu, & Colak, 

2013), Blood Transfusion Service Center (Yeh, Yang, & Ting, 2009), Haberman's Survival (Haberman, 

1976), Wine (Aeberhard, Coomans, & De Vel, 1992), Ionosphere (Sigillito, Wing, Hutton, & Baker, 

1989), and EEG Eye State (Rösler & Suendermann, 2013). 

Also, we use the SVM (Cortes & Vapnik, 1995), K-NN (Altman, 1992), and Artificial Neural Network 

(LeCun, Bengio, & Hinton, 2015) classifiers on the original data in these data sets for classification 

purposes; furthermore, we also use them after applying the proposed method on the original data in order 

to compare the results obtained and evaluate the performance of the proposed method. As mentioned 

before, the proposed method is called evolutionary Pentagon Support Vector finder or PSV. 

 
5.1 Data sets 

 
As mentioned before, seven classification data sets are employed for the evaluation of the proposed 

method. The information of the data sets is described in detail in Table 3. We have tried to incorporate 

data sets with different number of attributes, classes, and instances, so as to cover all types of numeric 

classification circumstances, for a more robust validation. 

 
Table 3. The seven data sets used in our evaluation. 

 

Name Fisher’s 

Iris 

EEG Eye 

State 

Wine Haberman 

’s 
Survival 

User 

Knowledge 
Modelling 

Ionosphere Blood 

Transfusion 

Reference Fisher 

(1936) 

Rösler and 

Suendermann 

(2013) 

Forina et 

al. (1988) 

Haberman 

(1976) 

Kahraman, 

Sagiroglu, and 

Colak (2013) 

 
Sigillito et al. 

(1989) 

Yeh, Yang, 

and Ting 

(2009) 

Characteristics Multivari 

ate 

Multivariate, 

Sequential, 
Time-Series 

Multivaria 

te 

Multivaria 

te 

Multivariate Multivariate Multivariate 

Number of 

Instances 

150 14980 178 306 403 351 748 

Number of 
Attributes 

4 15 13 3 5 34 5 

Attribute 

Characteristics 

Real Integer, Real Integer, 
Real 

Integer Integer Integer, Real Real 

Number of 

Categories 

3 2 3 2 4 2 2 

Associated 
Task(s) 

Classifica 
tion 

Classification Classificat 
ion 

Classificat 
ion 

Classification, 
Clustering 

Classification Classification 

Area Life Life Physical Life Computer Physical Business 

Year of 

Creation 

1936 2013 1990 1976 2009 1989 2008 

Number of 

Citations until 
2018 

14442 29 135 102 52 297 168 
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5.2 Classifiers 

 
For validation purposes of the proposed method, the three classifiers mentioned above are used on the 

original data, so as to see under which circumstances (based on the structure of the data sets) the proposed 

method is efficient or not when compared to the classification performed by the three classifiers on the 

original data. The classifiers used are K-NN (Altman, 1992), SVM (Cortes & Vapnik, 1995), and 

Artificial NN (LeCun, Bengio, & Hinton, 2015). K-NN is working based on the samples (neighbours) 

closest to each other and the number of K nearest neighbours in the space. Also, this algorithm is an 

instance-based learning algorithm and one of the simplest algorithms in machine learning. SVM, on the 

other hand, is one of the most famous algorithms in machine learning and pattern recognition for different 

tasks. It is possible to use this network-type algorithm for more than just a classification task, for 

example, for regression, in which case it is called Support Vector Regression (SVR); in clustering, it is 

called Support Vector Clustering (SVC). Finally, the Artificial Neural Network is the computer version of 

the brain structure and it is inspired by nature. All the learning structure in NN (LeCun, Bengio, & 

Hinton, 2015) is based on transmitting data between three interconnected layers: input, hidden (which 

may include more than one layer), and output. We are using them in the classification task here. 

 
5.3 Classification results 

 
Tables 4, 5, and 6 show the classification and runtime speed results for the seven data sets, with different 

kernels and parameters, respectively, with classifiers applied on both original data and on data on which 

we have first applied our proposed PSV finder method. As it can be observed from these tables, in some 

cases, the proposed method performs better when compared to existing methods. The runtime speed of  

the proposed method in all tests is higher than the runtime speed of tests on original data, which shows 

higher computation in our approach. The SVs in the fourth column of the tables indicate the number of 

support vectors that remain after applying PSV. The support vectors that remain are used for the 

classification task with classification algorithms. For example, in the EEG Eye State data set and for 

classification using SVM, there is 4.68% accuracy improvement by using the proposed method. 

Nonetheless, for Haberman’s data set and for classification using Artificial NN, there is -2.29% weakness 

in our method when compared to using Artificial NN on the original data. In summary, there are both 

improvements and weaknesses in using the proposed PSV finder method on different data sets with 

different classifiers, with estimation of ± 3% recognition accuracy, which shows the good performance of 

our method in dealing with different conditions, such as the number of instances and attributes. 

 
 

Table 4. SVM on seven data sets using different kernels. 

Data set Parameter On original data-runtime Selected SVs After PSV-runtime 

Fisher’s Iris Cubic 94.4% ± 1 % - 0.2 s 39 95.7% ± 1% - 0.48 s 

EEG Eye State Fine Gaussian 81.3% - 23.14 s 2588 85.98% - 32.81 s 

Wine Coarse Gaussian 98.9% - 0.73 s 12 98.71% - 2.45 s 

Haberman’s Survival Quadratic 74.4% ± 1 % - 4.11 s 40 77.37% ± 2% - 7.12 s 

User Knowledge 
Modelling 

Quadratic 94.6% - 1.20 s 76 94.0% ± 2% - 1.81 s 

Ionosphere Medium Gaussian 95.9% ± 2 % - 1.18 s 52 97% - 3.97 s 

Blood Transfusion Fine Gaussian 78.2% - 0.72 s 112 81.27% - 0.96 s 
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Table 5. K-NN on seven data sets using different kernels. 
 

Data set Parameter On original data Selected SVs After PSV 

Fisher’s Iris Fine 94.7% ± 1 % - 1.3 s 39 93.7% ± 1% - 3.5 s 

EEG Eye State Weighted and 

Ensemble subspace 

86.1% ± 2 % - 5.14 s 

96.6% - 12.27 s 

2588 80.12% ± 3% - 9.9 s 

95.3% ± 1% - 16.81 s 

Wine Weighted 96.2% - 0.68 s 12 97.8% - 3.3 s 

Haberman’s Survival Coarse 73.5% - 0.73 s 40 75.61% - 2.3 s 

User Knowledge Modelling Ensemble subspace 85.6% ± 1% - 2.19 s 76 87.6% ± 1% - 3.26 s 

Ionosphere Ensemble subspace 92.3% -2.83 s 52 91.5% - 6.33 s 

Blood Transfusion Cubic 77.7% - 1.22 s 112 75.0% - 1.57 s 

 

Table 6. Artificial NN on seven data sets using different parameters. 
 

Data set Parameters On original data Selected 

SVs 

After PSV 

Fisher’s Iris Sigmoid hidden layers (10) - Soft-max output 
Back-propagation learning 

98.2% ± 1 % - 0.1 s 39 97.8% ± 1% - 0.47 s 

EEG Eye State Sigmoid hidden layers (1000) - Soft-max output 

Back-propagation learning 

62.42% - 5.52 s 2588 60.8% - 11.28 s 

Wine Sigmoid hidden layers (5) - Soft-max output 
Back-propagation learning 

100% - 0.35 s 12 100% - 0.94 s 

Haberman’s 
Survival 

Sigmoid hidden layers (100) - Soft-max output 
Back-propagation learning 

84.11% - 0.1 s 40 81.82% - 0.3 s 

User 

Knowledge 

Modelling 

Sigmoid hidden layers (20) - Soft-max output 

Back-propagation learning 

96.2% - 0.25 s 76 97.0% - 0.69 s 

Ionosphere Sigmoid hidden layers (2) - Soft-max output 
Back-propagation learning 

94.7% ± 3 % - 0.31 s 52 96.1% ± 1% - 0.68 s 

Blood 
Transfusion 

Sigmoid hidden layers (14) - Soft-max output 
Back-propagation learning 

83.30% - 0.5 s 112 80.4% - 0.91 s 

 

Figure 11 shows the Receiver Operating Characteristic (ROC) curve (Hanley & McNeil, 1982) for SVM 

after applying the proposed PSV finder method on Fisher’s Iris and for each class. The ROC curve is 

created by plotting the true positive rate (recall or probability of detection) against the false positive rate 

(fall-out or probability of false alarm) at various threshold settings. Also, Figure 12 represents the 

confusion matrix for the User Knowledge Modelling and Ionosphere data sets, from left to right, using the 

K-NN classifier after applying the proposed PSV finder method. The confusion matrix shows the 

percentage of classification for each class in the diagonal cells in the table, and the misclassification 

percentage in relation to each class is shown in the rows of the respective classes. Figure 13 shows the 

Blood transfusion data set’s Performance, Training state, Error histogram, and Test confusion matrix plot 

using the Artificial NN classifier. Finally, Figure 14 presents the proposed PSV finder method’s error 

percentage for the seven data sets using the SVM, K-NN, and Artificial NN classifiers. 
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Figure 11. The Receiver Operating Characteristic (ROC) curve for SVM after applying the proposed PSV 

finder method on Fisher’s Iris for each class. 
 

Figure 12. Confusion matrix for User Knowledge Modelling and Ionosphere data sets from left to right 

using the K-NN classifier after applying the proposed PSV finder method. 
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Figure 13. Blood transfusion data set’s Performance, Training state, Error histogram and Test confusion 

matrix plot using the NN classifier. 

 

 
 

 

Figure 14. The proposed PSV finder method’s error percentage for the seven data sets using the SVM, K- 

NN, and NN classifiers. 
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6. Conclusions 

In the present paper, we proposed a method called evolutionary Pentagon Support Vector finder (PSV) for 

finding support vectors based on evolutionary clustering and pentagon geometrical computations. The 

algorithm starts with the Artificial Bee Colony evolutionary clustering for locating the position of the 

initial cluster centers, while also reducing a significant number of data points for both normal and big data 

analytics. Each cluster is representative of the closest samples’ class based on the K-Nearest 

Neighbourhood classification algorithm and they will be labelled based on that to change the cluster 

samples (unsupervised) to being classified (supervised). To remove outliers (first step in outlier removal), 

we apply a method based on variable-size window. After reducing the data and removing the outliers, we 

calculate the pentagon area and angle to determine the final support vectors for each class. The selection 

of samples (support vectors) is based on calculating the pentagon area and angle for each one sample  

from the present class and four samples from the other classes, which gives five samples for pentagon 

calculations. If the pentagon area and the angle are in the threshold range, then that sample is recognized 

as a support vector; otherwise, the algorithm proceeds with the second step in outlier removal. At the end 

and for validation purposes, we performed few classifications with K-NN, Support Vector Machine 

(SVM), and Artificial Neural Network classifiers to separate the classes’ support vectors. Finally, the 

method was tested with benchmark data sets and compared with classification algorithms applied on both 

original data and on data on which we have first applied our proposed PSV finder method. 

 
The results returned are promising. Findings show that using evolutionary clustering could help not only 

to reduce the number of data points in big data, but it could also fix the problem of setting the initial 

cluster centers that is present in many of the traditional clustering methods. Also, in this approach, final 

accuracy is not only unharmed, but it also increases in the case of some data sets. In terms of limitations, 

it is to be noted that when the number of samples increases, our method will perform slightly slower than 

traditional methods; despite this, however, the accuracy is still good and, as mentioned, it even improves 

in some cases. 

 
For future research, it would thus be interesting to use other evolutionary clustering methods, such as the 

Imperialist Competitive Algorithm (ICA) (Atashpaz-Gargari & Lucas, 2007), BAT algorithm (Yang, 

2010), Galaxy Gravity Optimization (GGO) (Mousavi, MiriNezhad, & Dezfoulian, 2017), or even 

Harmony search (Geem, Kim, & Loganathan, 2001) to set the initial cluster centers and compare the 

results. Changing the pairwise distance method could further be helpful. Also, changing the geometrical 

shape to a hexagon or octagon to find final support vectors could be considered, although it will increase 

runtime speed and will need to eliminate more outliers in the first step of the outlier removal process. We 

hope that these types of combined methods and computations will open avenues to find better and more 

robust methods in machine learning. With better technology, solving complex problems gets easier in 

terms of computation speed, but accuracy is still a challenging area, which nonetheless is possible to 

tackle using such combined methods. Our paper represents a contribution to this strand of research. 

 
From a methodological perspective, our proposed method is superior when compared to existing 

approaches in view of the use of geometrical calculations and evolutionary algorithms to make a more 

effective system. The contribution of the present paper resides in the introduction of a unique approach to 

eliminating outliers, which consists of four steps: (1) reducing the amount of data using evolutionary 

clustering (Artificial Bee Colony together with the Fuzzy C Means-Manhattan method), (2) labelling the 

remaining data using the K-nearest neighbourhood classifier, (3) removing outliers based on a specific 
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threshold, and (4) calculating the area of the pentagon and the angle between samples of existing classes 

to determine the position of the final support vectors. 

 
From a practical perspective, the present work is important because we were able to validate the system 

on real life acquired data sets, such as Fisher’s Iris, EEG Eye State, Wine, Haberman’s Survival, User 

Knowledge Modelling, Ionosphere, and Blood Transfusion; hence, the proposed approach could be 

extended to practical problems. 
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Highlights: 

1. Detecting outliers is vital in data mining and classification algorithms. 

2. In this sense, we propose an evolutionary Pentagon Support Vector finder method. 

3. We use geometrical calculations and evolutionary clustering to make a more effective 

system. 

4. Our proposed approach successfully removes outliers from all datasets. 

5. We do not lose vital samples and do not harm final accuracy. 


