
No Free Lunch But A Cheaper Supper: A General Framework for
Streaming Anomaly Detection

Ece Calikus (Corresponding author)

Center for Applied Intelligent Systems Research
Halmstad University,Sweden

ece.calikus@hh.se

Sławomir Nowaczyk

Center for Applied Intelligent Systems Research
Halmstad University,Sweden

slawomir.nowaczyk@hh.se

Anita Sant’Anna

Center for Applied Intelligent Systems Research
Halmstad University,Sweden

anita.santanna@hh.se

Onur Dikmen

Center for Applied Intelligent Systems Research
Halmstad University,Sweden

onur.dikmen@hh.se

Abstract

In recent years, research interest in detecting anomalies in temporal streaming data has increased signifi-
cantly. A variety of algorithms are being developed in the data mining community. They can be broadly
divided into two categories, namely general-purpose and ad hoc ones. In most cases, general approaches
assume a one-size-fits-all solution model, and strive to design a single “optimal” anomaly detector which
can detect all anomalies in any domain. To date, there exists no universal method that has been shown to
outperform the others across different anomaly types, use cases and datasets. In this paper, we propose SA-
FARI, a framework created by abstracting and unifying the fundamental tasks within the streaming anomaly
detection. SAFARI provides a flexible and extensible anomaly detection procedure to overcome the limita-
tions of one-size-fits-all solutions. Such abstraction helps to facilitate more elaborate algorithm comparisons
by allowing us to isolate the effects of shared and unique characteristics of diverse algorithms on the perfor-
mance. Using the framework, we have identified a research gap that motivated us to propose a novel learning
strategy. We implemented twenty different anomaly detectors and conducted an extensive evaluation study,
comparing their performances using real-world benchmark datasets with different properties. The results in-
dicate that there is no single superior detector which works perfectly for every case, proving our hypothesis
that “there is no free lunch” in the streaming anomaly detection world. Finally, we discuss the benefits and
drawbacks of each method in-depth, drawing a set of conclusions and guidelines to guide future users of
SAFARI.

Preprint submitted to Elsevier

ar
X

iv
:1

90
9.

06
92

7v
4

 [
cs

.L
G

]
 1

8
A

pr
 2

02
0

1 Introduction

Anomaly detection is the problem of identifying data points, or patterns, that do not conform to the
expected behavior. Anomalies correspond to (often critical) actionable information in many real-world ap-
plications, including condition monitoring, intrusion detection, fault prevention, fraud detection, and so on,
across various domains such as production, finance, security, medicine, energy, and social media. In recent
years, technological advances have facilitated the ability to collect large volumes of data from streams that
are produced by various sensors over time. Therefore, detecting anomalies in such continuously changing
temporal data has received increasing attention from both the industry and the scientific community.

However, anomaly detection in data streams is a difficult task, since it combines both the challenges
associated with anomaly detection and those associated with learning from streaming data. For example, the
former requires defining the exact notion of normal behavior, while the latter includes the difficulty of learn-
ing the dynamic nature of such behavior when it evolves over time. Among the many approaches currently
proposed in the anomaly detection literature, one can distinguish two categories of methods: general or ad
hoc. The “general” approaches aspire to detect anomalies independently of the use case and propose a single
algorithm supposedly outperforming all previous ones in terms of detection accuracy. However, anomaly
detection is an inherently subjective task, in which the characteristics of data and the notion of anomaly vary
greatly across applications. One algorithm may perfectly capture the structure of normal behavior in one
dataset but may not work at all in another dataset. Several studies show that there is no single anomaly de-
tector that is ultimately superior in all cases (Aggarwal and Sathe, 2017; Campos et al., 2016; Emmott et al.,
2015). Clearly, there is no free lunch for anomaly detection. This fact motivates the need for developing a
collection of algorithms instead of seeking for the “one” that is suitable all the time.

Ad hoc approaches, on the other hand, are specifically tailored to their target application and are often
designed based on complex criteria that require deep domain expertise. Even within the same domain,
however, there are often different situations and circumstances where the requirements for a particular task
may change. For example, carefully crafted features may become irrelevant, or the current metric to measure
deviations in a specific use case may not be suitable in a new scenario. In such cases, making the necessary
adaptations to the existing algorithm often amounts to redoing most of the work from scratch.

In this paper, we propose SAFARI, a meta-framework that makes it easy to create different unsuper-
vised anomaly detectors adapted to a particular time-evolving streaming data. This framework provides a
generalized procedure for streaming anomaly detection, with separate components that address the funda-
mental tasks of this problem as separate concerns. The proposed framework is flexible and extensible, since
new methods can be easily integrated into existing framework components, to then be mixed and matched
for building specific anomaly detectors. Furthermore, the “loosely coupled”, modularized structure offers a
higher degree of freedom for algorithm adaptations, as the properties of each component can be modified
separately without the need for updating the other parts of the framework.

Additionally, the existing evaluation strategies do not provide thorough understanding and comparison
of proposed algorithms. Most published experiments evaluate their algorithms by reporting performance
scores on application-specific case studies or synthetic datasets. They attempt to assess the effectiveness of
algorithms without characterizing the nature of the anomalies in the datasets, nor other factors that influence
the performance, such as noise or concept drift. Often the methods to be compared share common properties,
but it is challenging to analyze their effects on performance because those properties are hidden in the design
of the algorithm and are not trivial to isolate. It is not obvious how to interpret whether an algorithm performs
better because of, for example, a specific distance function, the sampling strategy, or the features that it uses.
This makes it difficult to answer the question which anomaly detection algorithm should be chosen for a
specific scenario?

2

By unifying and separating key concepts in existing methods, our framework allows one to study com-
monalities and differences of the algorithms more thoroughly, leading to more elaborate algorithm compar-
isons. In this work, we integrate several different methods into the framework and evaluate their performance
under varying circumstances. We present how the performances of different combinations vary depending
on characteristics of datasets. We also discuss the advantages and drawbacks of each method separately, to
guide readers on how to effectively combine building blocks for specific scenarios. In the end, we compare
the performances of our framework to those of selected state-of-the-art methods.

Finally, the vast quantity and diversity of existing approaches, as well as difficulty in having an overview
of their actual properties, make it challenging to identify the gaps in the state-of-the-art. Our framework
helps decomposing many existing approaches in a uniform manner and discovering their essential character-
istics. By formalizing state-of-the-art anomaly detection methods within the SAFARI framework, we have
determined there is no existing general approach to learning data streams for the case of anomaly detection.
Therefore, we propose a novel learning strategy by generalizing the weighted reservoir-sampling schema
considering the constraints of the anomaly detection problem.

Our contributions can be summarized as follows:

• We conceptualize the four high-level fundamental tasks in streaming anomaly detection problem and
formulate a meta-framework that is built upon these essential concepts to provide general, flexible,
and adaptable detection procedure.

• By integrating different methods into the framework’s components, we implement 20 different anomaly
detectors, several of which are novel approaches that have not been tried before.

• With the help of the framework, we identify a gap in existing data stream learning strategies and
propose a novel anomaly-aware reservoir sampling scheme.

• We conduct an extensive comparison study on these approaches using two benchmarks (Numenta and
Yahoo) that contain various real-world and synthetic time-series datasets from different domains.

The remainder of this paper is organized as follows. In Section 2, we present fundamental concepts in
streaming anomaly detection and introduce our framework. We review existing work in Section 3 in the
light of concepts introduced in the previous section. In Section 4, we describe in detail the methods we have
integrated into the framework implementation. In Sections 5 and 6, we discuss our experiments and results,
respectively. We highlight the main observations and recommendations from the results in Section 7 and
conclude this study in Section 8.

2 Framework

In this section, we present our meta-framework SAFARI (Streaming Anomaly Detection Framework
using Reference Instances), which combines fundamental tasks abstracted from existing anomaly detection
algorithms into a united schema and provides a generic procedure for streaming anomaly detection. SAFARI
is essentially based on the concept of a reference group, which consists a set of instances that is assumed to
represent the current normal behavior of the data stream.

3

Fig. 1. An overview of the SAFARI framework that shows the flow of data and the modeling steps leading to the
generation of final anomaly scores. The framework comprises four components along with a decision process where tc
represents the current time and tp is the time at which the probationary period is ended.

2.1 Overview of SAFARI
SAFARI consists of four main components: data representation (DR), learning strategy (LS), noncon-

formity measure (NCM) and anomaly scoring (AS), as illustrated in Fig. 1. The first component, DR, is
concerned with automatically transforming raw input data into informative representations or features, so
that it can be effectively exploited in anomaly detection tasks. The second component, LS, deals with the
selection of the reference group from transformed data, aiming to extract a representative sample of normal
behavior from the stream over time. The third component, NCM, measures the nonconformity score of a
single observation, with the goal of quantifying the “strangeness” of this observation with respect to the
reference group. The last component, AS, aggregates these individual outcomes into a final anomaly score
for each observation, taking the global context into account. These four components are explained in more
detail in the next section.

4

Algorithm 1: General Procedure for Streaming Anomaly Detection
Input : Stream S = s1,s2, ... at time t = 1,2, ...;

Probationary period p;
Data representations D1,D2, ...;
Learning strategies L1,L2, ...;
nonconformity measures A1,A2, ...;
Anomaly scorings F1,F2, ...

Output : Final anomaly scores for every si in S, where i > p
R←{} ; . Reference group

Â←{} ; . nonconformity scores

F̂ ←{} ; . Final anomaly scores

Pick a data representation D, where D ∈D1,D2, ...;
Pick a learning strategy L, where L ∈ L1,L2, ...;
Pick a nonconformity measure A, where A ∈A1,A2, ...;
Pick an anomaly scoring F, where F ∈ F1,F2, ...;
while st for time t is received do

xt ←D(st);
if t<p then

R← L(xt ,R)
else

if Â = /0 then
for xi ∈ R do

Â← Â∪A(xi,R\ xi) . Compute the first set of nonconformity scores with

the reference group R by leave-one-out fashion

end for
else

Â← Â∪A(xt ,R) ; . Compute the nonconformity score of xt

F̂ ← F̂ ∪F(Â) ; . Compute final anomaly score of xt

Rnew← Li(xt ,R) ; . Update reference group with xt

Â←{};
for xi ∈ R do

Â← Â∪A(xi,Rnew \ xi) ; . Update the nonconformity scores with Rnew

end for
R← Rnew

end if
end if

end while
return Φ ;

5

An overview of the generalized procedure of SAFARI is shown in Alg. 1. It can be seen that the overall
procedure is implemented with single-pass constraint—that is, the observations in the data stream are pro-
cessed one at a time without being stored. Furthermore, we define a fixed probationary period (the time that
is required to initialize the framework), with the predictions starting afterwards.

The SAFARI framework is designed based on the “separation of concerns” concept, where compo-
nents are self-contained, cohesive building blocks that serve different purposes in anomaly detection of data
streams. This allows one to easily integrate new methods into any of the components or modify the existing
components without the need for altering the rest of the framework. Implemented building blocks can be
combined in various ways to obtain different and novel detectors, as instantiations of SAFARI.

This setup also provides a basis to conduct more elaborate evaluation experiments. SAFARI allows
us to demonstrate, in Section 5 of this paper, the contribution of each building block separately and to
conduct thorough algorithm comparisons by isolating effects of shared and unique characteristics of different
streaming anomaly detection algorithms. Even though some of the existing approaches may not include all
four components that we presented here or the reference group approach, most of the streaming anomaly
detection algorithms can be unified using SAFARI.

2.2 The fundamental tasks
Existing algorithms solve the anomaly detection problem using various approaches and based on dif-

ferent assumptions. However, since the overall goal is to find the instances that do not conform to normal
behavior in streaming environments, there are fundamental sub-tasks that are shared among many detectors.
We have identified four core concepts that play critical roles in the unsupervised streaming anomaly detec-
tion problem and can help in distinguishing the underlying principles of different approaches. Below we
present the high-level overviews of these general tasks, and in the next section, we review the state of the art
from the perspective of these tasks.

Data representation: Data representation, in general, is concerned with automatically transforming raw
input data into representations or features that can be effectively exploited in machine learning tasks. Useful
representations can capture important clues about the past and the current state of the stream as well as the
key characteristics of the object (e.g., the monitored system) that are relevant for anomaly detection. The
goal of this task is to provide a more vibrant representation of a stream of data consisting of one or more
time series that helps to better distinguish anomalies from normal data.

Definition 2.1. (Data representation) Let S = {s1,s2, ...,st} be an input stream where si ∈ Rd . A data
representation is a function D that takes an observation (or a set of observations) in the input stream and
transforms them into a feature vector xt = D(si, ...,st) such that si ∈ S, xt ∈ Rd .

Such features or representations can be obtained in many different ways, such as by extracting means,
averages, correlations, or distributions, or by using linear/nonlinear functional relationships, domain knowl-
edge, and so on. There are endless possible model families and hierarchies of models of increasing com-
plexity.

Learning strategy:
This task is concerned with how to effectively learn the reference group, making sure that it represents

the current normal behavior of the stream. A data stream has a continuous flow and the number of incoming
observations is unbounded. Unlike static anomaly detection, algorithms that need to learn normal behavior
in dynamic environments should have the ability to process new data and limit the number of data points
stored in the reference group. At the same time, the reference group should be continuously updated since
normal behavior changes over time in a dynamic environment. Therefore, the selection of this set is one of

6

the crucial tasks that differentiate anomaly detection in static and dynamic settings. We refer to the task of
maintaining and updating the reference group, where all the observations are not available at once and arrive
sequentially, as the “learning strategy.”

Definition 2.2. (Learning strategy) Given that R0 = /0, a learning strategy L is a function,

Rt = L(xt ,Rt−1),

where xt is the current observed feature, Rt−1 is the reference group before observing xt , and Rt is the new
reference group at time t.

Various general windowing techniques (e.g., sliding window, damp window) or sampling algorithms
(e.g., uniform sampling) can be given as different examples of learning strategies.

Nonconformity measure:
Essentially, identifying how well the samples conform to the normal behavior is a core step in all unsuper-

vised anomaly detection algorithms. In this task, the goal is to quantify how “strange” a single observation
is, using a measure which we refer to as “nonconformity measure”.

Definition 2.3. (Nonconformity measure) Given the reference group Rt and the sample xt , a nonconformity
measure A is a function,

at = A(xt ,Rt),

where at is the nonconformity score indicating how “strange” xt is with respect to Rt .

Various approaches with different “normality” assumptions can be used to measure nonconformity: for
example, measuring the average distances to nearest neighbors, the local density, the variance in the angles,
the goodness of fit to a generative model, or the difference between actual and predicted (i.e., expected)
values.

Anomaly scoring: The aim of most anomaly detectors is to output a score for each sample that indicates
how likely it is to be an anomaly. In some cases, the levels of “strangeness” that are measured in the
previous task do not directly correspond to the desired levels of “anomalousness.” The candidates with
the high nonconformity scores may not be statistically significant or semantically relevant for the particular
use-case. This stage is concerned with the post-processing of the nonconformity scores, which transforms
“strangeness” scores of individual observations into “anomaly” scores based on the global context.

Definition 2.4. (Anomaly scoring) Let A = {a1,a2, ...,at} be a set of nonconformity scores, an anomaly
scoring F is a function

ft = F(ai, ...,at),

such that ai ∈ A, that maps nonconformity scores to final anomaly scores.

For example, in some domains one is interested in collective anomalous behavior of the observations
rather than the individual level of “strangeness.” The final scoring task can aggregate the nonconformity
scores of the samples to produce anomaly scores at the collective level. In another approach, assuming
faults or anomalies do not occur suddenly and expecting a certain level of temporal “continuity” in the
detection, the anomaly scoring task can track nonconformity scores and give higher scores to deviations that
persist over time.

7

3 Related Work

To the best of our knowledge, our work is the first attempt to formalize the common tasks and properties
of streaming anomaly detection. One similar work was proposed by Schubert et al. (2014), who discussed
similarities and differences in local outlier detection methods, focusing on the notion of “locality” and pro-
posed an algorithmic structure that unifies the existing methods. Therefore we review the state of the art
related to each of the four core concepts that we introduced in the previous section.

3.1 Data Representation
A suitable choice of representation greatly affects the ease and efficiency of all data analysis tasks.

Therefore, there is a rich literature around this subject. In this study, we review the techniques that are
introduced primarily for temporal data but that are also suitable to be used in streaming fashion. The most
popular techniques widely used for time series representation include the discrete Fourier transform (DFT)
(Faloutsos et al., 1994), piecewise models (Geurts, 2001; Yi and Faloutsos, 2000), and singular value de-
composition (Keogh et al., 2001b). Many of these techniques have already been extended to be applied in
a streaming fashion. For example, Zhu and Shasha (2002) proposed a streaming version of DFT for real-
time monitoring of thousands of streams. Lazaridis and Mehrotra (2003) implemented an online version of
piecewise constant approximation with little loss of accuracy. Other methods also aim to summarize data
streams using simple statistics (e.g., mean, standard deviation or sum) (Cohen and Strauss, 2003), wavelets
(Cormode et al., 2006; Gilbert et al., 2003) or histograms (Fan et al., 2015). Bulut and Singh (2003) applied
wavelets to represent data streams in a way that is biased towards more recent values.

Linear models are also widely used in many works to represent single or multiple data streams (Kargupta
et al., 2004; D’Silva, 2008). Kargupta et al. (2006) and Kargupta et al. (2010) used linear correlations to
monitor correlations of on-board signals for vehicles. Other studies, by contrast, incorporated methods to
capture non-linear relationships such as neural gas models (Vachkov, 2006) and reservoir computing models
(Chen et al., 2013; Quevedo et al., 2014). Echo state networks were applied by Fan et al. (2015) to represent
air compressor sensor data.

There are also more recent techniques that use autoencoders (Li et al., 2015) or neural networks (Chen
et al., 2013). For example, Rögnvaldsson et al. (2018) has formalized the “interestingness” concept to find
useful data representation and include different autoencoders and histograms as representations.

3.2 Learning strategy
The large volume of data streams poses unique constraints on the computation process in terms of mem-

ory and computations. These challenges have led researchers to propose strategies to efficiently approximate
streams over time. While some of these methods are general, in that they can be applied to different data
mining tasks (e.g., classification or clustering), the rest are developed to be used in specific problems. The
common windowing techniques that are broadly applied for different tasks can be categorized into four
groups: landmark, sliding, damped and adaptive. For example, landmark windows were employed for clus-
tering in Birch (Zhang et al., 1996) and CluStream (Aggarwal et al., 2003) and for the frequent pattern
mining (Manku and Motwani, 2012; Jin and Agrawal, 2005; Li et al., 2015; Leung and Jiang, 2011). Sub-
ramaniam et al. (2006) and Angiulli and Fassetti (2007) used sliding windows for outlier detection, while
Yang et al. (2009) and Rögnvaldsson et al. (2018) applied them for condition monitoring. Other methods
(Cao et al., 2006; Leung and Jiang, 2011) have incorporated damped windows, in which older data points
in the window get lower weights than newer points. Adaptive windows are mostly concerned with change
detection where the goal is to adapt to the changes more quickly by changing the size of the window. Bifet

8

and Gavalda (2007) proposed ADWIN for maintaining a window of variable size, growing automatically
when the data is stationary and shrinking when change is taking place.

Different sampling algorithms have also been proposed or adopted for mining data streams. Many
streaming outlier detection methods exploit uniform sampling (Zimek et al., 2013; Liu et al., 2012; Sugiyama
and Borgwardt, 2013), which is a simple but effective technique. Some others proposed custom sampling
techniques that are tailored for specific tasks or algorithms. Kollios et al. (2003) proposed a density-biased
sampling approach for clustering and outlier detection, in which the probability that a point is included in the
sample is determined by the point’s local density. Similarly, Zhang et al. (2018) proposed another density-
biased sampling for local outlier detection. While sampling sparser regions at higher sampling rates, it also
sampled dense regions, at lower sampling rates, to strengthen “outlierness” contrast.

The effectiveness of most of the general methods—for example, uniform sampling—on anomaly detec-
tion have not been well recognized and studied in the literature. On the other hand, it is difficult to identify
the benefits of the custom sampling algorithms for anomaly detection, since they cannot be applied outside
of the specific settings that they were designed for. For example, the density-biased sampling algorithm of
Kollios et al. (2003) is only applicable with the methods that use density. We have not come across any
learning strategy that is designed to consider the properties of the anomaly detection problem and is also
general so that it can be combined with any anomaly detector.

3.3 Nonconformity measure
There are many ways to measure nonconformity in anomaly detection problem and there is a huge

body of literature on this subject. We suggest several surveys on this topic: Aggarwal (2015), Chandola
et al. (2009),Gupta et al. (2013) and Zimek et al. (2012). Here, we review some common approaches, i.e.,
probabilistic and statistical proximity-based and prediction-based models that are applied in the streaming
setting.

In statistical-based approaches, the aim is to learn a statistical model for a normal behavior of a dataset
and determine the nonconformity of new observations by measuring how well they fit into that model. Ya-
manishi and Takeuchi (2002) and Yamanishi et al. (2004) proposed SmartSifter, based on an online discount-
ing learning algorithm that incrementally learns the probabilistic mixture model and calculates deviation of
the incoming data from this model. Several other statistical methods (Kuncheva, 2011; Song et al., 2007)
use log-likelihood criteria in order to quantify nonconformity.

The idea in proximity-based methods is to measure nonconformity of data points based on their similarity
to or distance from the normal data. Angiulli and Fassetti (2007) and Kontaki et al. (2011) proposed efficient
computation of nearest neighbors and use sliding windows to detect global distance-based outliers in data
streams. Distance-based “local” outlier techniques that extend the local outlier factor (LOF) algorithm to the
case of streaming data have been discussed by Na et al. (2018), Pokrajac et al. (2007) and Salehi et al. (2016).
Many clustering-based methods use distance to the cluster centers as the measure of nonconformity, while
proposing varying algorithms to effectively cluster data streams. Cao et al. (2006) used the concept of micro-
clusters to distinguish between normal data and outliers based on the distance to the centers. AnyOut (Assent
et al., 2012), an anytime algorithm, applied a specific tree structure that is suitable for anytime clustering
and computes the nonconformity score using the distance to the nearest cluster centroid. Chenaghlou et al.
(2017) has proposed a hyper-ellipsoidal clustering approach to model the normal behavior of the system,
where nonconformity is determined based on the distance to the cluster boundaries.

Prediction-based methods mostly employ regression-based forecasting models, and nonconformity scores
are calculated on the basis of deviations between actual observations and their expected (or forecasted)
values. Some works used traditional regression methods such as autoregressive modeling, autoregressive
moving average, and autoregressive integrated moving average. Since the success of the prediction process

9

greatly affects the final accuracy, most of the prediction-based methods focused on the prediction model
rather than the anomaly detection itself. The work in Yahoo’s EGADS framework (Laptev et al., 2015) has
provided a set of regression methods that can be selected or integrated by the user. Another work by Ahmad
et al. (2017) used hierarchical temporal memory networks as their prediction model and detected anomalies
by tracking prediction error over-time. Hundman et al. (2018) and Malhotra et al. (2015) have shown that
recurrent neural networks achieve high prediction performance and perform effectively across a variety of
domains. Several methods have also been focused on speeding up the regression modeling in the context of
a large number of data streams and real-time data (Huang et al., 2007; Jiang et al., 2011; Yi et al., 2000).

3.4 Anomaly scoring
Final scoring has not been formalized as a stand-alone process in most of the methods, and therefore

it is much more difficult to abstract from the existing approaches. In some works, it appears as a global
normalization step—for example Schubert et al. (2014), which transfers nonconformity scores to anomaly
estimates to satisfy a clear gap between the scores of anomalies and normal samples. Kriegel et al. (2011)
and Gao and Tan (2006) proposed generic scoring functions that can convert any set of the nonconformity
scores into probability estimates.

Laptev et al. (2015) discussed that the prediction error (i.e., nonconformity scores) would not be suitable
for time-series anomaly detection and computed relative errors in final scoring. An anomaly likelihood
function was proposed by Ahmad et al. (2017) to define how anomalous the current sample is based on
the prediction history of the model. A sliding window was maintained on nonconformity scores and the
anomaly likelihood of each window was defined as the final anomaly score. Maurus and Plant (2017) and
Rögnvaldsson et al. (2018) applied statistical tests on the nonconformity scores to produce final anomaly
scores that capture only deviations that persist over time. A probabilistic approach was proposed by Olsson
and Holst (2015), aggregating point outliers into group (i.e., collective) anomalies. Several other methods
used martingales to convert nonconformity measures to change-point estimates (Ho, 2005; Ho and Wechsler,
2010; Volkhonskiy et al., 2017).

4 Methods

In this section, we present the details of the methods that we have implemented using SAFARI framework
1. Experimental evaluation of these methods is presented in the next section. In total, we integrate 12 separate
methods—namely, two data representations, five learning strategies, four nonconformity measures, and one
anomaly scoring method. These are selected so that, using various combinations, we can build 20 different
SAFARI anomaly detectors. Even though only one of these methods is new, many of the combinations
themselves produce novel anomaly detectors that have not been tried before.

It is important to note that in this study we mainly focus on two out of the four tasks defined in the previ-
ous section: learning strategy and nonconformity measure. In most of the existing solutions, the procedures
concerning these two essential tasks are entirely embedded in the overall solution, which makes it difficult
to study their individual contributions. Furthermore, no studies address the impacts of nonconformity mea-
sures and learning strategies separately, nor the impact of combining them into different anomaly detectors.
Data representation is heavily investigated in the literature, and we do not believe we can offer important
contributions in that area. Furthermore, we have decided to leave the analysis of anomaly scoring to another

1The code is available at https://github.com/caisr-hh

10

https://github.com/caisr-hh

work, considering that it would greatly increase the number of combinations. Ultimately, we present diverse
methods for the tasks of learning strategy and nonconformity measure to investigate their behaviors in depth,
while we only implement two data representation methods and one method for anomaly scoring.

4.1 Data representations
The first data representation implemented in the SAFARI framework is a simple approach using mean

and standard deviation of the last N observations to represent a feature (Rodrı́guez and Alonso, 2004):

µt =
∑

N−1
i=0 st−i

N
, (1)

σt =

√
∑

N−1
i=0 st−i−µt

N
, (2)

where st is the observation at time t and xt = {µt ,σt} is the feature at time t.
The second representation method is based on the SAX (symbolic aggregate approximation) (Lin et al.,

2003) approach: that is, the discretization of the original data stream into symbolic strings. SAX performs
this discretization by dividing a z-normalized subsequence into w equal-sized segments. For each segment,
it computes a mean value (i.e., piecewise aggregate approximation, PAA, Keogh et al. 2001a) and maps it to
symbols according to a user-defined set of breakpoints dividing the distribution space into α equi-probable
regions, where α is the alphabet size specified by the user.

In this work, we apply SAX on overlapping subsequences in a single-pass streaming fashion. Given
a data stream S = {s1,s2, ...,st}, we generate a SAX word xt , which is the feature at time t, based on a
subsequence ŝ that comprises the last n observations: ŝ = {st−n−1,st−n..,st}.

4.2 Learning strategies
Here, we present five different learning strategies that are integrated into the framework.
The first strategy, fixed reference group (FR), maintains a static set of instances as a reference group—that

is, it does not change over time. Clearly, this strategy is not suitable for many streaming scenarios, especially
ones with concept drift. However, we include it as a benchmark and to be able to compare static and dynamic
methods, showcasing how they perform under different combinations of the framework components.

The other three strategies (i.e., sliding window (SW), landmark window (LW), and uniform reservoir
sampling (URES)) are popular techniques that have been widely used in many streaming applications, in-
cluding classification and clustering tasks. However, a thorough analysis of these approaches in the anomaly
detection problem is still missing from the literature. By integrating them, we make it possible to study their
individual performances separately from the rest of the framework and identify their benefits or drawbacks
in various datasets.

Finally, we propose a new learning strategy, anomaly-aware sampling (ARES), which provides a generic
method that requires only anomaly scores as input and is specifically designed considering the research gap
in the anomaly detection problem.

11

4.2.1 Fixed reference group
The fixed reference group method maintains a window that collects the observations arriving in proba-

tionary period p. This learning strategy essentially provides a static reference group that does not change
over time after the probationary period is over (Fig. 2a).

Rt =

{
Rt−1, if t > p,
Rt−1 +{xt}, otherwise.

(3)

4.2.2 Landmark window
In this windowing technique, a fixed timestamp in the data stream is defined as a landmark, and process-

ing is done over data points between the landmark and the present time (Fig. 2c). Landmarks are usually
defined by the user where they can be chosen as the starting timestamp of the stream or a specific timestamp
such as the beginning of a year. In this study, we assume the landmark is the time when we observe the first
sample (t = 0).

The reference group at time t with landmark windowing is as follow:

Rt =

{
/0, if t ≤ l,
Rt−1 +{xt}, otherwise.

(4)

where l is the landmark time.
Note that learning continues by adding the new samples to the reference group unless either the query

is explicitly revoked or the stream is exhausted and no additional observations are entered into the system.
Therefore, the size of the reference group is not fixed over time.

4.2.3 Sliding window
In the sliding window approach, the oldest sample in the window is discarded whenever a new sample is

observed (Fig. 2b). Given a window size w and the new observed sample xt , the reference group at time t is
updated as below:

Rt =

{
Rt−1−{xt−w}+{xt}, if t > w,
Rt−1 +{xt}, otherwise.

(5)

Fig. 2. Illustrations of windowing techniques, where tc represents the current time and tp is the time where the proba-
tionary period is ended.

12

4.2.4 Uniform Reservoir
The reservoir sampling algorithm (Vitter, 1985) is a classic method of sampling without replacement

from a stream in a single pass when the stream is of indeterminate or unbounded length. Assume that the
size of the desired sample is w. The algorithm proceeds by retaining the first w items of the stream and then
sampling each subsequent element with probability f (w, t) = w

t , where t is the current time and also gives
the length of the stream so far.

Given reservoir size w, the reference group with landmark at time Rt is computed as follows:

Rt =

Rt−1 +{xt}, if t ≤ w,

Rt−1−{x∗}+{xt}, if t > w ∧U <
w
t
,

Rt−1 otherwise.

(6)

where x∗ is a uniformly chosen element from Rt−1.

4.2.5 Anomaly-aware reservoir
Most of the learning strategies in the literature focus on providing accurate approximation of the stream

while processing large volumes of data efficiently. However, these algorithms, including the other learning
strategies integrated into SAFARI, are not designed considering the constraints of the anomaly detection
problem and do not guarantee the maintenance of a representative sample of the normal behavior over time.
For example, the underlying assumption in uniform sampling, which is that all points are of equal impor-
tance, has a serious drawback when it is directly applied to a stream containing anomalies. Clearly, sampling
the anomalies and normal samples with equal probability can cause the contamination of the reference group
and leads to the phenomenon called “masking,” which results in the incoming anomalies passing undetected.

To deal with this problem, we propose the anomaly-aware reservoir sampling by generalizing the weighted
reservoir sampling schema for anomaly detection problem. In our method, we extend the online algorithm
proposed by Efraimidis and Spirakis (2006) for the case in which data has a different anomaly score dis-
tribution. The goal here is to ensure the samples in the reservoir are more biased toward the samples with
lower scores, i.e., samples more likely to be normal.

In a nutshell, the idea of the weighted sampling algorithm is to draw a sample of size k without replace-
ment where the probability of selecting each sample at time t is equal to the sample’s weight divided by
the total weights of samples that are not selected before time t. Similarly, our learning strategy generates
a weighted random sample in one pass over incoming streams and maintains a reservoir with a size N that
constitutes the reference group R.

The process starts with assigning a “priority” to each sample using a weight function w(). Let xt be the
sample at time t; we define the function w(xt) which assigns the weight of xt as follows:

w(xt) = exp(−λS(xt)). (7)

where λ is the decay factor and S(xt) is the anomaly score of xt . The choices for the decay factor are
suggested as 0.96≤ λ ≤ 0.98 by Haykin (1996), and we use λ = 0.96 in this study. Our method is generic
such that S(xt) can be produced by any method chosen for anomaly scoring, as defined in Section 2.2. Our
choice of a method for that task in the experiments is presented in Section 4.4.

The weight function is designed to give lower importance to instances with high anomaly scores, ensur-
ing that anomalous points have lower probability of being represented in the reference group. Therefore, the
strategy aims to avoid learning new abnormal instances while forgetting the ones that are already present.
This aspect is especially important when the initial reference group is highly contaminated by the anomalies.

13

The learning strategy generates the “priority” pt = u
1

w(xt) for the sample xt , where w(xt) is the weight and
u is drawn randomly from [0,1]. In the original implementation, the samples with the highest N priorities are
always kept in the reservoir. In each iteration, the sample with the smallest priority is taken as a threshold T
and then is replaced by sample xt if pt is larger than T .

However, in the presence of a nonstationary distribution, the learning strategy must incorporate some
form of forgetting past and outdated information. Therefore, instead of removing the item with the lowest
priority, we determine the set of candidate samples that have priorities lower than xt and remove the oldest
one among the candidates.

The goal here is to continuously update the reservoir in such a way that the older items are consistently
replaced while still maintaining normal samples in the reference group. The details of the overall procedure
are shown in Alg. 2

Algorithm 2: Anomaly-aware reservoir sampling
Input : Reference group R;

Reservoir size w;
New sample (xt , t)

Output : Reference group R
priorities← /0;
st ← Collect anomaly score of xt ;

pt ← u
1

e−λ st ;
if t < w then

priorities← priorities∪ (pt , t);
R← R∪ (xt , t);

else
candidates← Collect samples where priorities are smaller than pt ;
if |candidates|> 0 then

i← argmin(candidates);
priorities← priorities/(pi, i)∪ (pt , t);
R← R/(xi, i)∪ (xt , t);

end if
end if
return R ;

4.3 Nonconformity measures
The four nonconformity measures that are incorporated into the framework are as follows: (i) near-

est neighbors-based (NN), (ii) density-based (DEN), (iii) clustering-based (CC) and (iv) frequency-based
(FREQ). The first three approaches are based on the popular proximity-based models in which the noncon-
formity scores are determined by, respectively, the average k-nearest neighbor distance, local density value
and distance to closest cluster centroid. Even though these are very common approaches that have been
employed by many different anomaly detection algorithms, their streaming versions are not well-studied.

The fourth method is the frequency-based approach, which measures nonconformity by the number of
occurrences of the pattern, with low frequencies leading to higher nonconformity scores. We have integrated

14

this algorithm to increase the diversity in the framework and also to provide a choice that has a significantly
lower computational cost.

4.3.1 Nearest neighbors-based NCM
The average distances to the k-nearest neighbors (KNN) is used as a measure of nonconformity.

at =
∑

k
i=1 d(xt ,NNi(xt))

k
, (8)

where NNi(xt) ∈ Rt is ith nearest neighbour of xt .

4.3.2 Density-based NCM
This measure quantifies the nonconformity of the samples based on their local densities, under the as-

sumption that anomalies do not lie in dense regions. In this work, we use the LOF to estimate nonconformity
scores, since it adjusts for the variations in the local densities of different regions.

Given two points xi and x j ∈ R, the k-reachability distance of xi with respect to x j is

Rk(xi,x j) = max{d(xi,NNk(xi)),d(xi,x j)}, (9)

where d is the distance function and NNk(xi) is the kth neareast neighbor of xi.

Local reachability density, LRDk is given by

LRDk(xt) =

(
1
k

k

∑
i=1

Rk(xt ,NNi(xt))

)−1

, (10)

where NNk(xt) ∈ R is a set of the k-nearest neighbors of xt .
Finally, the nonconformity score of xt is equal to its local outlier factor, LOFk given by

at = LOFk(xt) =
1
k

k

∑
i=1

LRDk(xt)

LRDk(NNi(xt))
. (11)

In traditional LOF, the LOF scores of all data points should be updated whenever a new data point
is inserted or removed from the reference group Rt , which is computationally expensive. We use iLOF
(Pokrajac et al., 2007), which selectively updates the scores of only the instances affected by the change in
the reference group.

4.3.3 Clustering-based NCM
In clustering-based NCM, the distance from the nearest cluster centroid is used as a measure of non-

conformity. Let Rt be the reference group and xt be the sample at time t, the nonconformity score of xt is
computed as follows:

at = min(d(xt ,C(Rt)), (12)

where d is the distance function and C(Rt) denotes all the cluster centers computed on Rt .
Here, the clustering algorithm used for partitioning the reference group into disjoint sets can be chosen

freely. We use the incremental version of k-means by Ordonez (2003) to compute clusters and centroids
since it can be easily adopted in the streaming scenario. In this method, every new example is added to the

15

cluster with the nearest centroid, and in every r steps a recomputation phase occurs, which updates both the
assignment of points to clusters and the centroids. Ordonez (2003) chooses r to be the square root of the
number of points seen so far, aiming to balance accuracy and computation time. However, in our case, we
update the cluster centroids at each time step based on the learning strategy in which the old samples can be
removed from the clusters as the new ones are added. Therefore, we follow Bifet and Gavalda (2006) for the
recomputation phase, who suggests recomputing when an average point distance to centroids has changed
more than an ε factor, where the ε factor is user-specified.

4.3.4 Frequency-based NCM
This nonconformity measure is motivated by the assumption that anomalies are rare items in the be-

havior, and samples that form infrequent patterns are more likely to be anomalous. Therefore, measuring
nonconformity is directly related to measuring the surprisingness level of the sample, which is defined as the
frequency of its occurrence in normal behavior.

After applying the chosen data representation method, the frequency is measured by monitoring the
number of occurrences of patterns in the reference group, where a “pattern” is a subset of the feature space
at any time. Together with this nonconformity measure, we specifically use SAX representation, which has
been shown to be a very powerful method to capture meaningful patterns in a data stream (Keogh et al.,
2001b). Nonconformity scores of the samples are determined by their “term” frequencies—that is, the
number of times they occurred in the reference group.

To track term frequencies dynamically, we create a hash table using SAX words encountered in the
reference group as the keys and their number of occurrences as hashed values. Given a reference group Rt ,
a hash table H and the current sample xt that corresponds to a SAX word, the nonconformity score at of xt
is computed as

at =
|Rt |

f (xt)+1
. (13)

where |Rt | is the size of Rt , and f (xt) retrieves the frequency of xt from the hash table H. The hash table is
convenient data structure for this task since insert, update and lookup operations take O(1) and the space is
also bounded with O(N) where N is the size of the reference group Rt .

4.4 Anomaly scoring
In this work, we incorporate only one method for final scoring. It is based on the statistics that has been

used in conformal prediction (Vovk et al., 2005). The procedure of anomaly scoring can be seen in Alg.
3. To compute anomaly scores, we first estimate p-values for every new observations using nonconformity
scores where p-values correspond to confidence levels for each prediction:

pt =
|i = 1, ...,w : ai ≥ at |

w
. (14)

In this case, high p-values are consistent with the definition of an outlier by Hawkins (1980), where an
observation with a high p-value corresponds to the one that deviates so much from other observations as to
arouse suspicion that it was generated by a different mechanism. This definition considers an anomaly as an
extreme single point that occurs “individually” and “separately.”

In many streaming applications, the temporal continuity plays a critical role to the notion of abnormality,
since anomalies mostly occur as abnormal patterns rather than independent outlying observations, or they
lead to abrupt or gradual changes exhibiting a lack of continuity with their immediate or long-term history.

16

Furthermore, to be able to detect anomalies in the early stages, one cannot wait for the metric to be clearly
beyond the bounds (e.g., p-values) and the ability to detect subtle changes is needed.

We track p-values over time instead of reporting them directly as anomaly scores and apply statistical
hypothesis testing under the null hypothesis that the p-values should be uniformly distributed (based on
Theorem 1):

Theorem 4.1. (Vovk et al., 2005)
If the data samples {x1,x2, · · ·} satisfy the i.i.d. assumption, the p-values {p1, p2, · · ·} are independent

and uniformly distributed in [0,1].

Specifically, this hypothesis is tested using the Kolmogorov-Smirnov (K-S) one-sample test (Kolmogorov,
1933), where we compare the empirical cumulative distribution function of p-values with the cumulative dis-
tribution function of the uniform.

The empirical cumulative distribution function Ft(p) of the sequence of n p-values {pt−n+1, pt−n+2, · · · , pt}
is given by

Ft(p) =
1
n

t

∑
i=t−n+1

I(pi ≤ p), (15)

where I is an indicator function such that I equals 1 if pi ≤ p and 0 otherwise. Given F(p) is the cumulative
uniform distribution function, the one-sample Kolmogorov–Smirnov statistic for time t is

Dt(p) = supp|Ft(p)−F(p)|. (16)

where supp denotes the supremacy of the set of distances between the curves.
The probability of observing such a Dt under the null hypothesis is evaluated. We use the significance

levels obtained from the K-S tests (it should be noted that they are different than the p-values calculated in
Eq. 14) as an indicator for anomaly scores. The significance levels can not be directly interpreted as anomaly
scores since p-values will have very low values. Therefore, we apply a score unification step to convert these
values into probability estimates by regularization, normalization and scaling steps. Following Kriegel et al.
(2011), we use logarithmic inversion for regularization, a simple linear transformation for normalization and
Gaussian scaling to produce final scores. The advantages of the unification of the scores is that it allows the
comparison of different combinations of the framework and also makes it possible to create an ensemble of
them in the future.

5 Evaluation

In this section, we conduct in-depth evaluations for the anomaly detection algorithms within our frame-
work. We introduce the datasets and parameter configurations that we use in this study, and then report
our overall evaluation methodology and results. Finally, we summarize our findings and provide intuitive
recommendations on selecting appropriate settings for different scenarios.

5.1 Datasets
In the following, we describe the two real-world benchmark datasets—Numenta Anomaly Benchmark

(NAB) and Yahoo S5 Webscope Benchmark—that were used in this work.
NAB provides a set of real-world and artificial datasets that are designed for research in streaming

anomaly detection. It is composed of 58 datasets containing labeled anomalous periods of behavior. The

17

Algorithm 3: Anomaly Scoring
Input : Nonconformity scores of the reference group AR;

Nonconformity score of the current sample at ;
test period u

Require: Current p-values P;
if P = /0 then . Generate p-values of the first reference group

for ai ∈ AR do
pi←

| j=1,...,|AR\ai|:a j≥ai|
|AR\ai| ;

P← P∪ pi;
end for

end if
pt ←

| j=1,...,|AR|:a j≥at |
AR

; . Compute p-value of the test sample xi

P← P∪ pt ;
σ ← KST EST (P,u);
st ←UNIFICAT ION(σ);
return st ;
Output : Anomaly score st at time t;

majority of the NAB datasets are real-world from different domains and applications such as AWS server
metrics, Twitter volume, advertisement click metrics, real-time traffic data from Minnesota, temperature
sensor data, and so on. Each dataset exhibits different characteristics such as temporal noise, short and
long-term periodicities and concept drift.

Yahoo Webscope S5 benchmark is released by Yahoo Labs for the detection of unusual traffic on Yahoo
servers. It consists of 367 time-series datasets in four classes in which the ground truth anomaly information
is available for all time series. In this study, we use A1 class, which consists of real datasets from Yahoo’s
computational services, while other classes contain synthetically generated data. A1 datasets comprise 67
time series with various seasonality, distinct change patterns, and diverse types of anomalies that are based
on real measurements from various Yahoo cloud services, such as Yahoo Membership Login (YML).

5.2 Evaluation metrics
In our experiments, we adopt two metrics (i.e., ROC-AUC and NAB scoring) to evaluate the detection

performances of SAFARI detectors.
The first metric, ROC-AUC, is the most popular measure for the evaluating unsupervised anomaly detec-

tion methods. It summarizes the ROC curve score with a single value that ranges between 0 and 1. According
to Aggarwal (2015) given a scoring of a set of points in order of their propensity to be anomalies, the ROC
AUC is equal to the probability that a randomly selected anomaly-nominal pair (a,n) is scored in a correct
order where an anomaly appears before a nominal.

ROC−AUC = meanaεA,nεN

1, if Score(a)> Score(n),
1/2, if Score(a) = Score(n),
0 if Score(a)< Score(n).

(17)

ROC-AUC is a useful measure to understand whether a method exhibits a high ratio of correctly detected
anomalies (i.e., true positive rate, TPR) while providing few normal samples misidentified as anomalies (i.e.,

18

false positive rate, FPR). However, this metric only takes the ratio of detected anomalies to nominals into
account, ignoring the positions of the samples in the time series.

The second metric that we use in this study is NAB scoring which is a measure provided by Numenta
to assess the quality of streaming anomaly detection algorithms. The key aspect of NAB scoring is that it
is designed to reward early detection, which is a quite useful feature for many streaming applications. To
incorporate the knowledge of early or late detection into scoring, NAB Benchmark defines the concept of an
“anomaly window,” which consists of a sequence of data points centered on one (or more) true anomalies
in a dataset. In a nutshell, NAB scoring considers detection within a window as true positives (TP), which
gives positive values to the NAB score such that a TP detected at the beginning of the window has a higher
value. If there are multiple detections within a particular anomaly window, the scoring considers only the
earliest detection as a TP and ignores all (considered superfluous) detections that follow. This means that an
anomaly detector that detects only the first point in the window as an anomaly will receive a higher score
than a detector that detects as anomalies all the points in the window except the first one.

Furthermore, detections made outside the window are considered false positives (FP), and make negative
contributions to the NAB score. The position of the detection is also taken into account for FPs. If an FP
occurs close to a window, it gets a less negative value than if it occurs further away from the window. Missing
a window completely results in a false negative (FN) and makes a strong negative contribution to the score.
More details about the method can be found in (Lavin and Ahmad, 2015).

The maximum NAB score a detector can achieve in a dataset is equal to the number of anomaly windows
in that dataset. To be able to compare detection performances on different datasets, we normalize the NAB
scores using the number of windows such that the score of the perfect detector is 1, and the null detector is 0.
It is important to note that NAB scores are not lower-bounded, since the lowest score of a detector depends
on the number of FPs—that is, the number of normal samples in a dataset.

The most important drawback of the NAB scoring is defining anomaly windows efficiently. Selecting
larger windows allows the rewarding of earlier detection of anomalies, but it can lead to actual FPs be
counted as TPs, thus rewarding inaccurate detection. The authors of the Numenta benchmark (Lavin and
Ahmad, 2015) recommend choosing the window size to be 10% of the number of instances in a dataset,
divided by the number of true anomalies in the given dataset. We follow this suggestion when we generate
anomaly windows for each dataset in Yahoo Benchmark to be used for the evaluation with Numenta scoring.

Contrary to the ROC-AUC score, the NAB scoring requires a threshold value on anomaly scores to cutoff
between anomalies and normals. To limit the computational cost, we set a global threshold to 0.9 providing
a guaranteed bound of %10 false positive rate for SAFARI detectors for all datasets, instead of optimizing
the threshold for each dataset separately.

5.3 Experimental setup
In our experiments, all requisite parameters of the integrated methods of data representations (i.e., mean-

std and SAX), nonconformity measures (i.e., NN, DEN, CC, and FREQ) and anomaly scoring (i.e. CAD)
are tuned to select the best parameters for the given evaluation metric. Another parameter of SAFARI, the
probationary period, p, is chosen as the first 15% of the total time series for all the datasets as was suggested
by the Numenta Benchmark (Ahmad et al., 2017). Considering this, the window sizes, w, required by the
learning strategies—FR, SW, URES and ARES—are also set to w = p.

5.4 Evaluation on Benchmark Datasets
In this section, we first evaluate the average detection performances of different SAFARI methods, i.e.,

learning strategies and nonconformity measures across all the datasets. Then, we showcase how the best
performances vary among 20 SAFARI detectors (the details are described in Appendix A).

19

Table 1 presents, for each learning strategy, the NAB and ROC-AUC scores that are aggregated over all
datasets combining SAFARI detectors using the same method. More precisely, e.g., the ROC-AUC score
of SAFARI-SW indicates the performance of the sliding window method as the mean and the standard
deviation of the ROC-AUC results from four different SAFARI detectors that have SW as their learning
strategy (i.e., SAFARI-SW-NN, SAFARI-SW-DEN, SAFARI-SW-CC, and SAFARI-SW-FREQ) (see Table
A1). The results show that our proposed strategy, SAFARI-ARES, outperforms other methods in both ROC-
AUC and NAB scores. SAFARI-FR, as expected, results in the lowest performance.

Table 1: Detection performances of SAFARI’s learning strategies presented using three different metrics: ROC-AUC,
NAB and average rank. Results compare the average performances of each method reported as the mean and the standard
deviation of the scores taken from all datasets and detectors using that LS. The best average scores across each row of
strategies are shown in bold.

Performance SAFARI-FR SAFARI-LW SAFARI-SW SAFARI-URES SAFARI-ARES

ROC-AUC 0.781±0.15 0.810±0.13 0.828±0.12 0.790±0.14 0.835±0.12

NAB 0.390±0.37 0.637±0.31 0.629±0.30 0.559±0.34 0.660±0.28

Average Rank 3.71 2.85 2.70 3.16 2.56

Correspondingly, Table 2 shows the performance comparisons of different nonconformity measures (e.g.,
SAFARI-NN), averaged over all datasets and all SAFARI detectors with the same NCMs (e.g., SAFARI-
FR-NN, SAFARI-SW-NN, SAFARI-LW-NN, SAFARI-URES-NN and SAFARI-ARES-NN). It can be seen
that SAFARI-CC achieves the highest performance in ROC-AUC, while SAFARI-FREQ outperforms the
others in terms of NAB score. SAFARI-NN consistently leads to the lowest performance.

Table 2: Detection performances of SAFARI’s nonconformity measures presented using three different metrics: ROC-
AUC, NAB and average rank. Results compare the average performances of each method reported as the mean and the
standard deviation of the scores taken from all datasets and detectors using that NCM. The best average scores across
each row of SAFARI-NCMs are shown in bold.

Performance SAFARI-NN SAFARI-DEN SAFARI-CC SAFARI-FREQ

ROC-AUC 0.767±0.15 0.820±0.13 0.827±0.13 0.822±0.13

NAB 0.484±0.36 0.530±0.34 0.623±0.32 0.663±0.29

Average Rank 3.10 2.53 2.13 2.22

To determine whether there is a significant difference between the performances of the different learn-

20

Fig. 3. Critical difference diagram showing the streaming anomaly detection performances of the five learning strategies.
Methods that are not significantly different (at p ¡ 0.05) are connected with a bar.

Fig. 4. Critical difference diagram showing the streaming anomaly detection performances of the four nonconformity
measures. Methods that are not significantly different (at p ¡ 0.05) are connected with a bar.

ing strategies and nonconformity measures, we follow Demšar (2006). We first apply the Friedman test
(Friedman, 1937) using the average ranks of the methods in Table 1 and Table 2 where the null hypothesis
for this test assumes that there is no significant difference between the methods. The Friedman tests for
learning strategies and nonconformity measures returned p-values of 2.580007E−16 and 5.758827E−12,
respectively. Therefore, we reject the null hypothesis in both cases and proceed with the Nemenyi post-hoc
test (Nemenyi, 1963) to compare methods pairwise and to identify the ones that differ significantly. This
test identifies performances of two algorithms to be significantly different if their average ranks differ by at
least the “critical difference” (CD). Fig. 3 and 4 visually represent the results of the Nemenyi tests in critical
difference diagrams where methods that are not connected by a bar have significantly different performances.

For the case of learning strategies, comparing five methods combined with four nonconformity measures
on 125 datasets (i.e., 67 Yahoo, 58 Numenta) using two metrics (i.e., ROC-AUC and NAB) at significance
level α = 0.05, the critical difference diagram is shown in Fig. 3. It can be seen that SAFARI-FR performs
significantly worse than other learning strategies, demonstrating that a fixed reference group is not a suitable
for most of the streaming environments. Furthermore, SAFARI-ARES performs significantly better than
SAFARI-FR, SAFARI-LW and SAFARI-URES while the difference between SAFARI-ARES and SAFARI-
SW is not statistically significant.

Similarly, in Fig. 4 we can observe that SAFARI-NN performs significantly worse than the other meth-
ods, while there is no significant difference between SAFARI-CC and SAFARI-FREQ.

In the following, we present how the best performances vary between different SAFARI detectors. Ta-
ble 3 shows, for each combination, the number of datasets for which it gives the best result (in either of
the performance metrics). It can be seen that all the combinations achieve the highest performance for at
least one dataset, except for SAFARI-FR-NN. Another important observation is that the superiority of a
method can be different in terms of average detection performance and the number of best performances.
For example, although there is no significant difference among the average performances of SAFARI-CC
and SAFARI-FREQ (Fig. 4), the number of best performances that SAFARI-FREQ achieves is much higher.
In addition, the results show that even the detectors that use the worst methods of the two worlds according

21

to the previous results (i.e., SAFARI-NN as a nonconformity measure or SAFARI-FR as a learning strategy)
can achieve the best performances in multiple datasets.

Table 3: Comparison of the SAFARI detectors based on the number of datasets for which each detector is the win-
ner—that is, outperforms all other detectors. According to results, SAFARI-FREQ-ARES is the detector (combination)
with the most wins, with 31 cases. In total, SAFARI-FREQ and SAFARI-ARES are the methods with the highest number
of best performances; their results are shown in bold.

Combination SAFARI-NN SAFARI-DEN SAFARI-CC SAFARI-FREQ Total
SAFARI-FR 0 4 11 19 34
SAFARI-LW 4 11 5 25 45
SAFARI-SW 2 14 19 26 60

SAFARI-URES 2 7 12 12 33
SAFARI-ARES 2 11 17 31 61

Total 10 47 64 113 234

The common practice in the anomaly detection literature is comparing different methods based on their
“average” performances on particular datasets, which is similar to the former results shown in the first part
of this section. However, the latter results presented throughout this section show that none of the detectors
is able to consistently perform better than all the other detectors. This suggests that different combinations
are appropriate for different datasets or use cases, even though some of the methods work well more often
than others or achieve higher performance on average. In the next sections, we try to highlight which method
is likely to be successful under which circumstances.

5.5 Comparison based on dataset characteristics
In this section, we discuss and compare the behavior of algorithms across a wide range of datasets with

different characteristics. The datasets are delineated based on four properties—noise, concept drift, anomaly
type, and anomaly rate. We specifically analyze the individual performances of different nonconformity
measures and learning strategies with respect to these properties. The goal is to provide the future users
of SAFARI with insights into why combining particular methods may be beneficial or which component is
more important for obtaining better results under specific conditions.

We first start by characterizing the datasets and evaluation metrics that are used in this study based on
the collective performances of all SAFARI detectors. For this analysis, we examine the collective perfor-
mances of all 20 SAFARI detectors and measure their “difficulty” and “diversity” levels. Following Zimek
et al. (2012), we define the notion of “difficulty” as the average of the scores of all anomalies in the dataset
calculated, across all methods. Datasets with a low difficulty score contain anomalies that are relatively easy
to detect, while a high difficulty score indicates that the majority of methods have trouble finding the anoma-
lies. On the other hand, “diversity” reflects the (lack of) agreement among the detectors on an individual
dataset. We define the diversity score of a dataset as the standard deviations of the scores reported by all 20
combinations. A high diversity score indicates a large disagreement among the detection performances.

Figs. 5a and 5b show the difficulty–diversity plots using both evaluation metrics. Results from two
different benchmarks are represented with different shapes. It can be seen that difficulty and diversity levels
can vary greatly between datasets and evaluation metrics. Therefore, making fair comparisons of non-
equivalent groups of datasets is not straightforward. For example, suppose we would like to assess the
behavior of a method (e.g., sliding window) on a property (e.g., concept drift) by comparing the performance
of this method on two groups of datasets: the first group includes “drifting” datasets, while the second group

22

includes nondrifting ones. Directly comparing the absolute performances (i.e., the ROC-AUC and NAB
score) of the method on these two groups will not be a reliable way to analyze the impact of concept drift,
since there can be other factors affecting the performances; in particular, one of the groups is likely to be
inherently more difficult.

(a) NAB scores (b) ROC-AUC scores

Fig. 5. Diversity versus difficulty of the datasets based on two metrics: NAB and ROC-AUC. Numenta datasets are
represented with orange triangles while Yahoo datasets are shown with blue crosses.

In this case, we try to mimic controlled experiments, while our test group (e.g., drifting) and the control
group (e.g., non-drifting) have entirely different datasets and therefore, the number of independent variables
(factors that are different between two groups) is unknown. To achieve this, we introduce the concept of
“relative performance,” where the goal is to account for the impact of uncontrollable factors while comparing
algorithms performance on a specific property. The relative performance is computed by taking the average
difference between the absolute performance of the method and the absolute performances of all the other
methods.

It is assumed that the effects of uncontrollable factors also persist in the performance of the other meth-
ods, and computing the relative difference between two groups instead of the absolute difference will reduce
the effect of this bias.

More formally, given a dataset d, let S be the list of the actual scores of a method M, and Ŝ be the list of
actual scores of other methods. The relative performance score of M on d is

RelM
d =

1
|Sd | ∑

s∈Sd

∑ŝ∈Ŝd
s− ŝ

max(Sd ∪ Ŝd)−min(Sd ∪ Ŝd)
. (18)

Given two sets of datasets D1 (e.g., low-noise datasets) and D2 (e.g., high-noise datasets), the relative
performance difference of M between D1 and D2 is

∆
M =

∑di∈D1
RelM

di

|D1|
−

∑d j∈D2
RelM

d j

|D2|
. (19)

Table 4 reports relative performance scores of all SAFARI methods (i.e., five LS and four NCM) through-
out different dataset properties. Each column represents how a method behaves under certain properties, such

23

as noise, concept drift, and so on. The significant score differences are marked in bold. In the following text
we discuss in detail how different properties affect different SAFARI methods.

The noise effect: To compare the effect of noise in the data on the performances of different learning
strategies and nonconformity measures, we divide benchmark datasets into two groups: low-noise and high-
noise. However, the benchmarks do not provide information regarding the noise level of datasets. Therefore,
we have determined this classification through visual analysis of each univariate time series in both Yahoo
and Numenta datasets (see supplementary material).

The relative performance difference (∆) scores in this setting reflect how the performance of a method
changes from high-noise data to low-noise data, in comparison to other methods.

The first column in Table 4 shows these scores that are obtained by different SAFARI methods. It
can be seen that the impact of noise is not significant in any of the given learning strategies. This result
indicates that the choice of the learning strategies is not critical when the level of noise in a dataset is high.
On the other hand, the performances of some of the nonconformity measures exhibit significant change
under high noise. SAFARI-FREQ has the lowest (∆) score, which reveals that its performance is the most
negatively affected by the increase of noise. On the other hand SAFARI-NN and SAFARI-DEN do not show
significant performance decreases between noisy and non-noisy datasets. SAFARI-CC is the most noise
resilient method, achieving the highest ∆ score. Considering these finding, SAFARI-CC has clear advantage
when there is a clear sign of noise in a dataset, while SAFARI-FREQ should be avoided.

Drift effect: Similar to the previous case, the information about concept drift is missing, therefore we
determine it by visual analysis. Following (Gama et al., 2014), we consider a dataset as drifting qualitatively
if it has one of the drift types—that is, sudden, incremental, gradual, or reoccurring. The rest of the datasets
are considered as non-drifting (again, see supplementary material). In this setting, a ∆ score indicates how
the performance of a method changes from drifting data to non-drifting data in comparison to other methods.

According to Table 4, the drift effect is quite distinct among different learning strategies. ∆ scores show
that SAFARI-SW and SAFARI-ARES are better than other methods at dealing with concept drift. Both
of these methods have specific forgetting mechanisms, and clearly, forgetting past observations is essential
when dealing with drift. The presence of drift affects SAFARI-FR the most, which is expected, considering
that it is a static learning strategy that cannot adapt to changes over time.

According to Table 4, most of the nonconformity measures do not show significant performance change
between drifting and non-drifting datasets. SAFARI-CC is an exception, exhibiting a clear decrease in per-
formance when datasets are drifting. The explanation of this behavior might be our SAFARI-CC implemen-
tation. We use an incremental k-means algorithm that updates clusters over time according to the learning
strategy. However, it still assigns a fixed number of clusters (k), and if a new concept emerges suddenly,
the clustering structure may not adapt well enough to the new concept. This issue can be overcome using a
different streaming clustering algorithm to measure nonconformity, one that can also change the number of
clusters over time.

24

Table 4: Comparison of the SAFARI methods using relative performance scores across datasets with different charac-
teristics: noise level, concept drift, anomaly type and anomaly rate (contamination).

DETECTOR ∆noise ∆dri f t ∆type ∆contamination

SAFARI-FR 0.0169 −0.1815 −0.0081 0.01817

SAFARI-LW −0.01405 0.0178 0.0194 −0.0279

SAFARI-SW 0.0179 0.0977 −0.0189 −0.0184

SAFARI-URES −0.0221 0.0279 −0.0070 −0.0359

SAFARI-ARES 0.0012 0.0362 0.0176 0.0538

SAFARI-NN 0.0147 0.0129 0.0001 −0.0138

SAFARI-DEN 0.0172 0.0380 −0.0391 0.0176

SAFARI-CC 0.0216 −0.0624 −0.0237 0.0181

SAFARI-FREQ −0.0668 −0.0033 0.0570 −0.0219

Anomaly type effect: We study the effect of two types of anomalies: clustered (pattern) anomalies
and scattered anomalies (outliers). Clustered anomalies mostly occur when the same process generates
anomalies multiple times, while scattered anomalies are often generated by different processes. To assess the
clusteredness/scatteredness level of anomalies in each dataset, we use the normalized clusteredness measure
proposed by Emmott et al. (2013). The normalized clusteredness nc is defined as log

(
σ2

n
σ2

a

)
, where σ2

n is the

sample variance of the candidate normal points and σ2
a is the sample variance of the candidate anomalies.

Then, we consider the anomaly type of a dataset as “scattered” if nc≤ 0 and “clustered” if nc > 0.
As reported in the third column of Table 4, the performances of the learning strategies do not show any

significant difference when the type of the anomaly changes. However, the detection capabilities of different
nonconformity measures can be influenced by anomaly type, since they mostly rely on different assumptions
of the normality. The results support this argument by showing that most of the nonconformity measures
integrated into SAFARI perform significantly differently on scattered and clustered anomalies. For example,
the performances of SAFARI-DEN and SAFARI-CC deteriorate significantly when anomalies are clustered.
Both of these methods assume that anomalies are located far away from the dense regions, and clustered
anomalies can fool these methods by creating dense regions in the space. On the other hand, SAFARI-
FREQ is clearly much better than the rest of the methods in handling clustered anomalies because it looks
for the occurrence of the “rare” patterns rather than outlying individuals.

Anomaly rate effect: Anomaly rate reflects the contamination level of a dataset and is defined by the
fraction of observations that are ground-truth anomalies. We divide the datasets into two groups as high and
low contamination by considering the average contamination rate in all 112 datasets as a threshold. The
datasets with higher rates than the average are categorized as high, while the rest as low contamination.

It can be observed from Table 4 that the anomaly rate profoundly affects the behavior of most of the
learning strategies. The performances of SAFARI-LW, SAFARI-SW, and SAFARI-URES are significantly
worsened when the contamination is high. The likely reason is that these methods learn from data instances
without assessing whether they are actually normal observations. The greater the dataset contamination, the
more anomalous the behavior these strategies learn. However, our proposed strategy, SAFARI-ARES, is

25

designed to use relative probabilities in order not to learn from potentially anomalous samples. The results
show that it is clearly the best method to deal with datasets containing high anomaly rates.

SAFARI-FR also does not seem to be affected by the anomaly rate, which is understandable since it only
learns during the probationary periods, which are defined in each dataset to contain only normal instances
based on the ground truth. Still, we cannot recommend this strategy because the absolute performance scores
of SAFARI-FR are much lower than the rest of the methods in the case of both low and high anomaly rates
(see supplementary material).

Finally, no consistent performance change of nonconformity measures is observed between datasets with
low and high anomaly rates.

5.6 Comparison with the baseline algorithms
In this section, we compare SAFARI with the state-of-the algorithms that are reported by Numenta

benchmark. Table 5 summarizes the scores of benchmark algorithms across all application profiles (see
supplementary material), including the three NAB competition winners (Ahmad et al., 2017). In addition
to the various streaming anomaly detection algorithms, there are three control detectors in NAB. A “null”
detector runs through the dataset passively, making no detections, accumulating all false negatives. A “per-
fect” detector is an oracle that outputs detections that would maximize the NAB score; that is, it outputs only
true positives at the beginning of each window. The raw scores from these two detectors are used to scale
the score for all other algorithms between 0 and 100. The “random” detector outputs a random anomaly
probability for each data instance, which is then thresholded across the dataset for a range of random seeds.
The score from this detector offers some intuition for chance-level performance on NAB.

Table 5: Comparison of SAFARI with algorithms in NAB scoreboard

Detector Standard Profile Reward Low FP Reward Low FN
Perfect 100 100 100

SAFARI-Best 91.65 88.5 95.8
SAFARI-LW-CC 71.75 69.1 77.8
Numenta HTM 70.1 63.1 74.3

CAD-OSE 69.9 67 73.2
Numenta 64.6 58.8 69.6

KNN-CAD 58.0 43.4 64.8
SAFARI-Average 55.5 49.1 60.8
Relative Entropy 54.6 47.6 58.8

HTM PE 53.6 34.2 61.9
Random Cut Forest 51.7 38.4 59.7

Twitter ADVec 47.1 33.6 53.5
Etsy Skyline 35.7 27.1 44.5

Sliding Threshold 30.7 12.1 38.3
Bayesian Changepoint 17.7 3.2 32.2

EXPoSE 16.4 3.2 26.9
Random 11 1.2 19.5

Null 0 0 0

SAFARI-Best in Table 5 represents the best combination giving the highest NAB score in each dataset
while SAFARI-Average reports the average NAB score of all the combinations. We have also reported

26

the best SAFARI detector across all NAB datasets, SAFARI-LW-CC, which combines distance to cluster
centroids as a nonconformity measure and landmark window as a learning strategy.

Overall we can observe that SAFARI-Best and SAFARI-LW-CC outperform all other algorithms, while
SAFARI-Average delivers competitive results. Numenta HTM, CAD-OSE, Numenta and KNN-CAD are
the other detectors that perform well

6 Main Observations and Recommendations

According to the above comprehensive evaluations covering different aspects of anomaly detection, we
can conclude that each approach has its own merits and weaknesses. In the following, we provide a summary
of our findings and recommend for future SAFARI users potential ways to combine building blocks for
specific cases.

First of all, SAFARI-ARES and SAFARI-SW as learning strategies and SAFARI-CC and SAFARI-
FREQ as nonconformity measures outperform their competitors in terms of average performance across
all the datasets. SAFARI-FR is the significantly worst method, which confirms the prior assumption that
static learning is not suitable for streaming scenarios. On the other hand, it was unexpected to observe
that SAFARI-NN performed significantly worse than the other nonconformity measures, since the nearest
neighbor-based methods showed clear advantages in static datasets in the past (Aggarwal and Sathe, 2017).
It is important to note that our experiments do not reflect the parameter sensitivity of the methods. We
recommend users to refer to the studies by Aggarwal and Sathe (2017), Campos et al. (2016), and Goldstein
and Uchida (2016) if they would like to consider the stability of the algorithms across a wide range of
parameter choices.

From the perspective of different dataset properties, we observed that the choice of learning strategy is
particularly important if datasets include concept drift or high anomaly rate. These properties can influence
the performances of different learning strategies in different manners. While SAFARI-SW is the best method
under concept drift, which shows the importance of adapting to the newest behavior, SAFARI-ARES also
achieves competitive results. Furthermore, we recommend users choose SAFARI-ARES if the datasets are
highly contaminated with abnormal samples or if it is difficult to obtain normal samples to initialize the
model.

We have also found that the noise level and anomaly type of datasets have significant impacts on the
performances of nonconformity measures, while we did not observe much effect on learning strategies.
Specifically, SAFARI-CC is the most noise resilient method, while SAFARI-FREQ performs consistently
worst under high noise. Regarding different types of anomalies, we recommend users consider SAFARI-CC
and SAFARI-DEN for scattered anomalies and SAFARI-FREQ for anomalies that are more clustered.

7 Conclusion

In this paper, we introduced SAFARI, a framework for streaming anomaly detection based on building-
blocks derived from fundamental concepts of this problem. By combining SAFARI’s adaptive and extensible
components, we produced 20 different anomaly detectors, a number of which are novel variants that, to the
best of our knowledge, have never been tried before.

We have conducted comprehensive evaluation studies on these detectors using real-world benchmark
datasets. We have discussed their merits and drawbacks thoroughly and drawn a set of interesting take-away
conclusions. We have discovered that learning strategies should be chosen carefully for the cases where
datasets are suspected of having concept drift or a high level of contamination. SAFARI-SW and SAFARI-

27

ARES are safer methods under concept drift, and SAFARI-ARES is the best option for highly contaminated
datasets. Similarly, the selection of nonconformity measures is more critical if datasets include noise or
different types of anomalies. Based on a detailed performance analysis, SAFARI-CC is recommended when
the dataset has a high level of noise and anomalies are scattered, while SAFARI-FREQ is a better option for
clustered anomalies.

The results have shown that there is no single superior detector that works well for every case and
have proven our initial hypothesis that “there is no free lunch” in the streaming anomaly detection world.
Furthermore, we have also showcased how SAFARI could help to ease this problem by empowering us to
easily create use-case-specific detectors that are suitable for different scenarios instead of blindly relying on
a single method.

Finally, we have postulated the problem of generalization and abstraction of streaming anomaly detection
by considering similarities and differences in existing approaches. We believe that formally identifying core
tasks as building blocks will help in understanding existing or new methods from a unified perspective and
lead to identifying research gaps and unattended problems. With the help of SAFARI, we have discovered
such a gap and formulated a new learning strategy specifically designed to handle high contamination while
learning the normal group.

Acknowledgements

This research is supported by the Swedish Knowledge Foundation (KK-stiftelsen)
[
Grant No. 20160103

]
.

Appendix A

The details of how 20 SAFARI detectors that are used in our experiments are built as the combination of
12 SAFARI methods (i.e., 2 DR, 5 LS, 4 NCM, and 1 AS) can be found in Table A1. In this study, we mainly
focus on learning strategy and nonconformity measure, as explained in Section 4. Therefore, we integrate
different methods into the components of SAFARI dealing with these two tasks, while we implement only
two data representation methods and one method for anomaly scoring. Furthermore, each data representation
is combined with specific nonconformity measures in order to limit the number of combinations as 20. The
first data representation, mean-std, is used where nonconformity measure is one of the proximity-based
methods—nearest neighbors-based, density-based, and clustering-based, while SAX is found more suitable
for frequency-based NCM considering its usefulness in capturing subpatterns in time-series Keogh et al.
(2001b).

28

Table A1: The list of 20 SAFARI detectors as the combination of different SAFARI methods

Detectors Data Representation Learning Strategy Non-conformity Measure Anomaly Scoring
SAFARI-FR-NN Mean-Std Fixed reference group Nearest neighbors-based Final scoring

SAFARI-FR-DEN Mean-Std Fixed reference group Density-based Final scoring
SAFARI-FR-CC Mean-Std Fixed reference group Clustering-based Final scoring

SAFARI-FR-FREQ SAX Fixed reference group Frequency-based Final scoring
SAFARI-SW-NN Mean-Std Sliding Window Nearest neighbors-based Final scoring

SAFARI-SW-DEN Mean-Std Sliding Window Density-based Final scoring
SAFARI-SW-CC Mean-Std Sliding Window Clustering-based Final scoring

SAFARI-SW-FREQ SAX Sliding Window Frequency-based Final scoring
SAFARI-LW-NN Mean-Std Landmark Window Nearest neighbors-based Final scoring

SAFARI-LW-DEN Mean-Std Landmark Window Density-based Final scoring
SAFARI-LW-CC Mean-Std Landmark Window Clustering-based Final scoring

SAFARI-LW-FREQ SAX Landmark Window Frequency-based Final scoring
SAFARI-URES-NN Mean-Std Uniform Reservoir Nearest neighbors-based Final scoring

SAFARI-URES-DEN Mean-Std Uniform Reservoir Density-based Final scoring
SAFARI-URES-CC Mean-Std Uniform Reservoir Clustering-based Final scoring

SAFARI-URES-FREQ SAX Uniform Reservoir Frequency-based Final scoring
SAFARI-ARES-NN Mean-Std Anomaly-aware Reservoir Nearest neighbors-based Final scoring

SAFARI-ARES-DEN Mean-Std Anomaly-aware Reservoir Density-based Final scoring
SAFARI-ARES-CC Mean-Std Anomaly-aware Reservoir Clustering-based Final scoring

SAFARI-ARES-FREQ SAX Anomaly-aware Reservoir Frequency-based Final scoring

Appendix B

We empirically studied how runtime of SAFARI methods varies with the dataset size. All experiments
were performed on an OSX personal computer with 16GB memory. Runtimes were averaged over five
trials. To measure scalability with respect to the size of the dataset, we sampled the number of observations
between [4000, 20000] in equal intervals from a single large data file in NAB, consisting of 22,695 data
records. The scalability of different learning strategies and nonconformity measures can be seen in Fig. B1a
and Fig. B1b, respectively.

29

(a) Scalability of learning strategies (b) Scalability of nonconformity measures

Fig. B1. Scalability of different SAFARI methods: wall-clock time of (a) learning strategies (b) nonconformity measure
against number of observations in a dataset.

Furthermore, we analyzed latency times of each SAFARI detectors used in this study. Latency measures
the time taken to process a single data point for anomaly detection. Latency times of detectors are also
averaged over 5 runs on the same NAB dataset, consisting of 22,695 data records and shown in Fig. B2.

Fig. B2. Comparison of 20 SAFARI detectors based on latency (ms).

References

Aggarwal, C.C., 2015. Outlier analysis, in: Data mining, Springer. pp. 237–263.

Aggarwal, C.C., Han, J., Wang, J., Yu, P.S., 2003. A framework for clustering evolving data streams, in:

30

Proceedings of the 29th international conference on Very large data bases-Volume 29, VLDB Endowment.
pp. 81–92.

Aggarwal, C.C., Sathe, S., 2017. Outlier ensembles: An introduction. Springer.

Ahmad, S., Lavin, A., Purdy, S., Agha, Z., 2017. Unsupervised real-time anomaly detection for streaming
data. Neurocomputing 262, 134–147.

Angiulli, F., Fassetti, F., 2007. Detecting distance-based outliers in streams of data, in: Proceedings of
the sixteenth ACM conference on Conference on information and knowledge management, ACM. pp.
811–820.

Assent, I., Kranen, P., Baldauf, C., Seidl, T., 2012. Anyout: Anytime outlier detection on streaming data, in:
International Conference on Database Systems for Advanced Applications, Springer. pp. 228–242.

Bifet, A., Gavalda, R., 2006. Kalman filters and adaptive windows for learning in data streams, in: Interna-
tional Conference on Discovery Science, Springer. pp. 29–40.

Bifet, A., Gavalda, R., 2007. Learning from time-changing data with adaptive windowing, in: Proceedings
of the 2007 SIAM international conference on data mining, SIAM. pp. 443–448.

Bulut, A., Singh, A.K., 2003. Swat: Hierarchical stream summarization in large networks, in: Proceedings
19th International Conference on Data Engineering (Cat. No. 03CH37405), IEEE. pp. 303–314.

Campos, G.O., Zimek, A., Sander, J., Campello, R.J., Micenková, B., Schubert, E., Assent, I., Houle, M.E.,
2016. On the evaluation of unsupervised outlier detection: measures, datasets, and an empirical study.
Data Mining and Knowledge Discovery 30, 891–927.

Cao, F., Estert, M., Qian, W., Zhou, A., 2006. Density-based clustering over an evolving data stream with
noise, in: Proceedings of the 2006 SIAM international conference on data mining, SIAM. pp. 328–339.

Chandola, V., Banerjee, A., Kumar, V., 2009. Anomaly detection: A survey. ACM computing surveys
(CSUR) 41, 15.

Chen, H., Tiňo, P., Rodan, A., Yao, X., 2013. Learning in the model space for cognitive fault diagnosis.
IEEE transactions on neural networks and learning systems 25, 124–136.

Chenaghlou, M., Moshtaghi, M., Leckie, C., Salehi, M., 2017. An efficient method for anomaly detection
in non-stationary data streams, in: GLOBECOM 2017-2017 IEEE Global Communications Conference,
IEEE. pp. 1–6.

Cohen, E., Strauss, M., 2003. Maintaining time-decaying stream aggregates, in: Proceedings of the twenty-
second ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, ACM. pp. 223–
233.

Cormode, G., Garofalakis, M., Sacharidis, D., 2006. Fast approximate wavelet tracking on streams, in:
International Conference on Extending Database Technology, Springer. pp. 4–22.

Demšar, J., 2006. Statistical comparisons of classifiers over multiple data sets. Journal of Machine learning
research 7, 1–30.

31

D’Silva, S.H., 2008. Diagnostics based on the statistical correlation of sensors. SAE International Journal
of Passenger Cars-Electronic and Electrical Systems 1, 53–61.

Efraimidis, P.S., Spirakis, P.G., 2006. Weighted random sampling with a reservoir. Information Processing
Letters 97, 181–185.

Emmott, A., Das, S., Dietterich, T., Fern, A., Wong, W.K., 2015. A meta-analysis of the anomaly detection
problem. arXiv preprint arXiv:1503.01158 .

Emmott, A.F., Das, S., Dietterich, T., Fern, A., Wong, W.K., 2013. Systematic construction of anomaly
detection benchmarks from real data, in: Proceedings of the ACM SIGKDD workshop on outlier detection
and description, ACM. pp. 16–21.

Faloutsos, C., Ranganathan, M., Manolopoulos, Y., 1994. Fast subsequence matching in time-series
databases. volume 23. ACM.

Fan, Y., Nowaczyk, S., Rögnvaldsson, T., 2015. Evaluation of self-organized approach for predicting com-
pressor faults in a city bus fleet. Procedia Computer Science 53, 447–456.

Friedman, M., 1937. The use of ranks to avoid the assumption of normality implicit in the analysis of
variance. Journal of the american statistical association 32, 675–701.

Gama, J.a., Žliobaitė, I., Bifet, A., Pechenizkiy, M., Bouchachia, A., 2014. A survey on concept drift adap-
tation. ACM Comput. Surv. 46, 44:1–44:37. URL: http://doi.acm.org/10.1145/2523813,
doi:10.1145/2523813.

Gao, J., Tan, P.N., 2006. Converting output scores from outlier detection algorithms into probability esti-
mates, in: Sixth International Conference on Data Mining (ICDM’06), IEEE. pp. 212–221.

Geurts, P., 2001. Pattern extraction for time series classification, in: European Conference on Principles of
Data Mining and Knowledge Discovery, Springer. pp. 115–127.

Gilbert, A.C., Kotidis, Y., Muthukrishnan, S., Strauss, M.J., 2003. One-pass wavelet decompositions of data
streams. IEEE Transactions on knowledge and data engineering 15, 541–554.

Goldstein, M., Uchida, S., 2016. A comparative evaluation of unsupervised anomaly detection algorithms
for multivariate data. PloS one 11, e0152173.

Gupta, M., Gao, J., Aggarwal, C.C., Han, J., 2013. Outlier detection for temporal data: A survey. IEEE
Transactions on Knowledge and data Engineering 26, 2250–2267.

Hawkins, D.M., 1980. Identification of outliers. volume 11. Springer.

Haykin, S., 1996. Adaptive Filter Theory (3rd Ed.). Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

Ho, S.S., 2005. A martingale framework for concept change detection in time-varying data streams, in:
Proceedings of the 22nd international conference on Machine learning, ACM. pp. 321–327.

Ho, S.S., Wechsler, H., 2010. A martingale framework for detecting changes in data streams by testing
exchangeability. IEEE transactions on pattern analysis and machine intelligence 32, 2113–2127.

Huang, L., Nguyen, X., Garofalakis, M., Jordan, M.I., Joseph, A., Taft, N., 2007. In-network pca and
anomaly detection, in: Advances in Neural Information Processing Systems, pp. 617–624.

32

http://doi.acm.org/10.1145/2523813
http://dx.doi.org/10.1145/2523813

Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T., 2018. Detecting spacecraft anoma-
lies using lstms and nonparametric dynamic thresholding, in: Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, ACM. pp. 387–395.

Jiang, R., Fei, H., Huan, J., 2011. Anomaly localization for network data streams with graph joint sparse
pca, in: Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and
data mining, ACM. pp. 886–894.

Jin, R., Agrawal, G., 2005. An algorithm for in-core frequent itemset mining on streaming data, in: Fifth
IEEE International Conference on Data Mining (ICDM’05), IEEE. pp. 8–pp.

Kargupta, H., Bhargava, R., Liu, K., Powers, M., Blair, P., Bushra, S., Dull, J., Sarkar, K., Klein, M.,
Vasa, M., et al., 2004. Vedas: A mobile and distributed data stream mining system for real-time vehicle
monitoring, in: Proceedings of the 2004 SIAM International Conference on Data Mining, SIAM. pp.
300–311.

Kargupta, H., Gilligan, M., Puttagunta, V., Sarkar, K., Klein, M., Lenzi, N., Johnson, D., 2010. Minefleet:
The vehicle data stream mining system for ubiquitous environments, in: Ubiquitous knowledge discovery.
Springer, pp. 235–254.

Kargupta, H., Puttagunta, V., Klein, M., Sarkar, K., 2006. On-board vehicle data stream monitoring using
minefleet and fast resource constrained monitoring of correlation matrices. New Generation Computing
25, 5–32.

Keogh, E., Chakrabarti, K., Pazzani, M., Mehrotra, S., 2001a. Dimensionality reduction for fast similarity
search in large time series databases. Knowledge and information Systems 3, 263–286.

Keogh, E., Chakrabarti, K., Pazzani, M., Mehrotra, S., 2001b. Locally adaptive dimensionality reduction for
indexing large time series databases. ACM Sigmod Record 30, 151–162.

Kollios, G., Gunopulos, D., Koudas, N., Berchtold, S., 2003. Efficient biased sampling for approximate
clustering and outlier detection in large data sets. IEEE Transactions on Knowledge and Data Engineering
15, 1170–1187.

Kolmogorov, A.L., 1933. Sulla determinazione empirica di una legge di distribuzione. G. Ist. Ital. Attuari 4,
83–91. URL: https://ci.nii.ac.jp/naid/10030673552/en/.

Kontaki, M., Gounaris, A., Papadopoulos, A.N., Tsichlas, K., Manolopoulos, Y., 2011. Continuous moni-
toring of distance-based outliers over data streams, in: 2011 IEEE 27th International Conference on Data
Engineering, IEEE. pp. 135–146.

Kriegel, H.P., Kroger, P., Schubert, E., Zimek, A., 2011. Interpreting and unifying outlier scores, in: Pro-
ceedings of the 2011 SIAM International Conference on Data Mining, SIAM. pp. 13–24.

Kuncheva, L.I., 2011. Change detection in streaming multivariate data using likelihood detectors. IEEE
transactions on knowledge and data engineering 25, 1175–1180.

Laptev, N., Amizadeh, S., Flint, I., 2015. Generic and scalable framework for automated time-series anomaly
detection, in: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, ACM. pp. 1939–1947.

33

https://ci.nii.ac.jp/naid/10030673552/en/

Lavin, A., Ahmad, S., 2015. Evaluating real-time anomaly detection algorithms–the numenta anomaly
benchmark, in: 2015 IEEE 14th International Conference on Machine Learning and Applications
(ICMLA), IEEE. pp. 38–44.

Lazaridis, I., Mehrotra, S., 2003. Capturing sensor-generated time series with quality guarantees, in: Pro-
ceedings 19th International Conference on Data Engineering (Cat. No. 03CH37405), IEEE. pp. 429–440.

Leung, C.K.S., Jiang, F., 2011. Frequent pattern mining from time-fading streams of uncertain data, in:
International Conference on Data Warehousing and Knowledge Discovery, Springer. pp. 252–264.

Li, J., Struzik, Z., Zhang, L., Cichocki, A., 2015. Feature learning from incomplete eeg with denoising
autoencoder. Neurocomputing 165, 23–31.

Lin, J., Keogh, E., Lonardi, S., Chiu, B., 2003. A symbolic representation of time series, with implications
for streaming algorithms, in: Proceedings of the 8th ACM SIGMOD workshop on Research issues in data
mining and knowledge discovery, ACM. pp. 2–11.

Liu, F.T., Ting, K.M., Zhou, Z.H., 2012. Isolation-based anomaly detection. ACM Transactions on Knowl-
edge Discovery from Data (TKDD) 6, 3.

Malhotra, P., Vig, L., Shroff, G., Agarwal, P., 2015. Long short term memory networks for anomaly detection
in time series, in: Proceedings, Presses universitaires de Louvain. p. 89.

Manku, G.S., Motwani, R., 2012. Approximate frequency counts over data streams. Proceedings of the
VLDB Endowment 5, 1699–1699. doi:10.14778/2367502.2367508.

Maurus, S., Plant, C., 2017. Let’s see your digits: Anomalous-state detection using benford’s law, in:
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, ACM. pp. 977–986.

Na, G.S., Kim, D., Yu, H., 2018. Dilof: Effective and memory efficient local outlier detection in data
streams, in: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, ACM. pp. 1993–2002.

Nemenyi, P., 1963. Distribution-free Multiple Comparisons. Princeton University. URL: https://
books.google.com.tr/books?id=nhDMtgAACAAJ.

Olsson, T., Holst, A., 2015. A probabilistic approach to aggregating anomalies for unsupervised anomaly
detection with industrial applications, in: The Twenty-Eighth International Flairs Conference.

Ordonez, C., 2003. Clustering binary data streams with k-means, in: Proceedings of the 8th ACM SIGMOD
workshop on Research issues in data mining and knowledge discovery, ACM. pp. 12–19.

Pokrajac, D., Lazarevic, A., Latecki, L.J., 2007. Incremental local outlier detection for data streams, in:
2007 IEEE symposium on computational intelligence and data mining, IEEE. pp. 504–515.

Quevedo, J., Chen, H., Cugueró, M.À., Tino, P., Puig, V., Garciá, D., Sarrate, R., Yao, X., 2014. Combining
learning in model space fault diagnosis with data validation/reconstruction: Application to the barcelona
water network. Engineering Applications of Artificial Intelligence 30, 18–29.

34

http://dx.doi.org/10.14778/2367502.2367508
https://books.google.com.tr/books?id=nhDMtgAACAAJ
https://books.google.com.tr/books?id=nhDMtgAACAAJ

Rodrı́guez, J.J., Alonso, C.J., 2004. Support vector machines of interval-based features for time series classi-
fication, in: International Conference on Innovative Techniques and Applications of Artificial Intelligence,
Springer. pp. 244–257.

Rögnvaldsson, T., Nowaczyk, S., Byttner, S., Prytz, R., Svensson, M., 2018. Self-monitoring for mainte-
nance of vehicle fleets. Data mining and knowledge discovery 32, 344–384.

Salehi, M., Leckie, C., Bezdek, J.C., Vaithianathan, T., Zhang, X., 2016. Fast memory efficient local outlier
detection in data streams. IEEE Transactions on Knowledge and Data Engineering 28, 3246–3260.

Schubert, E., Zimek, A., Kriegel, H.P., 2014. Local outlier detection reconsidered: a generalized view on
locality with applications to spatial, video, and network outlier detection. Data Mining and Knowledge
Discovery 28, 190–237.

Song, X., Wu, M., Jermaine, C., Ranka, S., 2007. Statistical change detection for multi-dimensional data,
in: Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data
mining, ACM. pp. 667–676.

Subramaniam, S., Palpanas, T., Papadopoulos, D., Kalogeraki, V., Gunopulos, D., 2006. Online outlier de-
tection in sensor data using non-parametric models, in: Proceedings of the 32nd international conference
on Very large data bases, VLDB Endowment. pp. 187–198.

Sugiyama, M., Borgwardt, K., 2013. Rapid distance-based outlier detection via sampling, in: Advances in
Neural Information Processing Systems, pp. 467–475.

Vachkov, G., 2006. Intelligent data analysis for performance evaluation and fault diagnosis in complex
systems, in: 2006 IEEE International Conference on Fuzzy Systems, IEEE. pp. 1213–1220.

Vitter, J.S., 1985. Random sampling with a reservoir. ACM Transactions on Mathematical Software (TOMS)
11, 37–57.

Volkhonskiy, D., Nouretdinov, I., Gammerman, A., Vovk, V., Burnaev, E., 2017. Inductive conformal mar-
tingales for change-point detection. arXiv preprint arXiv:1706.03415 .

Vovk, V., Gammerman, A., Shafer, G., 2005. Algorithmic learning in a random world. Springer Science &
Business Media.

Yamanishi, K., Takeuchi, J.i., 2002. A unifying framework for detecting outliers and change points from
non-stationary time series data, in: Proceedings of the eighth ACM SIGKDD international conference on
Knowledge discovery and data mining, ACM. pp. 676–681.

Yamanishi, K., Takeuchi, J.I., Williams, G., Milne, P., 2004. On-line unsupervised outlier detection using
finite mixtures with discounting learning algorithms. Data Mining and Knowledge Discovery 8, 275–300.

Yang, W., Tavner, P.J., Crabtree, C.J., Wilkinson, M., 2009. Cost-effective condition monitoring for wind
turbines. IEEE Transactions on industrial electronics 57, 263–271.

Yi, B.K., Faloutsos, C., 2000. Fast time sequence indexing for arbitrary lp norms, in: VLDB, Citeseer. p. 99.

Yi, B.K., Sidiropoulos, N.D., Johnson, T., Jagadish, H., Faloutsos, C., Biliris, A., 2000. Online data mining
for co-evolving time sequences, in: Proceedings of 16th International Conference on Data Engineering
(Cat. No. 00CB37073), IEEE. pp. 13–22.

35

Zhang, T., Ramakrishnan, R., Livny, M., 1996. Birch: an efficient data clustering method for very large
databases, in: ACM Sigmod Record, ACM. pp. 103–114.

Zhang, X., Salehi, M., Leckie, C., Luo, Y., He, Q., Zhou, R., Kotagiri, R., 2018. Density biased sampling
with locality sensitive hashing for outlier detection, in: International Conference on Web Information
Systems Engineering, Springer. pp. 269–284.

Zhu, Y., Shasha, D., 2002. Statstream: Statistical monitoring of thousands of data streams in real time,
in: VLDB’02: Proceedings of the 28th International Conference on Very Large Databases, Elsevier. pp.
358–369.

Zimek, A., Gaudet, M., Campello, R.J., Sander, J., 2013. Subsampling for efficient and effective unsuper-
vised outlier detection ensembles, in: Proceedings of the 19th ACM SIGKDD international conference
on Knowledge discovery and data mining, ACM. pp. 428–436.

Zimek, A., Schubert, E., Kriegel, H.P., 2012. A survey on unsupervised outlier detection in high-dimensional
numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5, 363–387.

36

	1 Introduction
	2 Framework
	2.1 Overview of SAFARI
	2.2 The fundamental tasks

	3 Related Work
	3.1 Data Representation
	3.2 Learning strategy
	3.3 Nonconformity measure
	3.4 Anomaly scoring

	4 Methods
	4.1 Data representations
	4.2 Learning strategies
	4.2.1 Fixed reference group
	4.2.2 Landmark window
	4.2.3 Sliding window
	4.2.4 Uniform Reservoir
	4.2.5 Anomaly-aware reservoir

	4.3 Nonconformity measures
	4.3.1 Nearest neighbors-based NCM
	4.3.2 Density-based NCM
	4.3.3 Clustering-based NCM
	4.3.4 Frequency-based NCM

	4.4 Anomaly scoring

	5 Evaluation
	5.1 Datasets
	5.2 Evaluation metrics
	5.3 Experimental setup
	5.4 Evaluation on Benchmark Datasets
	5.5 Comparison based on dataset characteristics
	5.6 Comparison with the baseline algorithms

	6 Main Observations and Recommendations
	7 Conclusion

