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Abstract

This study constructs an integrated early warning system (EWS) that identifies and
predicts stock market turbulence. Based on switching ARCH (SWARCH) filtering prob-
abilities of the high volatility regime, the proposed EWS first classifies stock market crises
according to an indicator function with thresholds dynamically selected by the two-peak
method. An hybrid algorithm is then developed in the framework of a long short-term
memory (LSTM) network to make daily predictions that alert turmoils. In the empirical
evaluation based on ten-year Chinese stock data, the proposed EWS yields satisfying
results with the test-set accuracy of 96.6% and on average 2.4 days of forewarned period.
The model’s stability and practical value in the real-time decision-making are also proven
by the cross-validation and back-testing.

Keywords: Early warning system, LSTM, SWARCH, two-peak method, dynamic
prediction

1. Introduction

Due to the Subprime Mortgage crisis, the Shanghai Stock Exchange Composite
(SSEC) index experienced one of its greatest falls in the end of 2007. In mid-2015,
another Chinese stock market bubble crashed and led to extreme turbulence and insta-
bility in the domestic financial environment. As the lasting effect of stock market crises
is recognized as the cause of critical society stress and results in increasing financial loads
of the government, a systematic model that monitors the economic scenarios of finan-
cial markets, and generates early warning signals for potential extreme risks is in heavy
demand.

Financial early warning systems (EWSs) are designed to forecast crises via studying
pre-turmoil patterns, thus to allow market participants to take early actions to hedge
against vital risks. In practice, the target of early warning ranges from individual finan-
cial markets, such as the banking sector, the currency and stock markets, to the entire

∗Corresponding author
Email address: Lu.Zong@xjtlu.edu.cn (Lu Zong)

Preprint submitted to Elsevier December 2, 2019

ar
X

iv
:1

91
1.

12
59

6v
1 

 [
ec

on
.E

M
] 

 2
8 

N
ov

 2
01

9



economic system. The modeling of crises are then commonly formulated as a classifica-
tion problem based on the identified crisis indicators. To design an effective and reliable
EWS with true warnings and limited false alarms, two matters need to be delicately
addressed, that is the identification of crises and the mechanism of prediction.

In the previous studies, an EWS is primarily constructed by identifying crises on the
basis of either expert opinions or an indicator function describing the market crash. The
former approach is widely used in the early studies of EWS, especially those concern-
ing banking and debt crises (Kaminsky and Reinhart, 1999; Kaminsky, 2006; Reinhart
and Rogoff, 2011, 2013; Caprio and Klingebiel, 2002; Valencia and Laeven, 2008; Laeven
and Valencia, 2010, 2012; Detragiache and Spilimbergo, 2001; Yeyati and Panizza, 2011).
Despite that the expert-defined crises are considered to be reliable for long-term pre-
dictions (Oh et al., 2006), this paradigm fails to offer an efficient modeling solution as
the frequency of observation increases. On the other hand, indicator functions based on
a pre-specified threshold are more frequently used to define currency or stock market
crashes. Reinhart and Rogoff (2011) define a currency crisis as the excessive exchange
rate depreciation exceeds the threshold value of 15%. Alternatively, Eichengreen et al.
(1995) propose to use the Financial Pressure Index (FPI) to measure the gross foreign
exchange reserves of the Central Bank and the repo rate (Sevim et al., 2014). Currency
crises are thus identified as the FPI raises more than 1.5 (Kibritcioglu et al., 1999),
2 (Eichengreen et al., 1995; Bussiere and Fratzscher, 2006), 2.5 (Edison, 2003) or, 3
(Kaminsky and Reinhart, 1999; Berg and Pattillo, 1999; Duan and Bajona, 2008)) stan-
dard deviations from its long-term mean. In the context of stock EWS, market crashes
are indicated by the CMAX index falling below its mean by 2 (Coudert and Gex, 2008),
2.5 (Li et al., 2015), or 3 (Fu et al., 2019) standard deviations. In terms of expressing
crises as indicator functions, two major drawbacks emerge in the practical aspect. De-
spite that the paradigm of handling crises as crashes captures the associated acute loss,
it fails to consider the extreme risk that comes along with the volatility jump. Moreover,
the selection of crisis thresholds should be handled more delicately taking into account
the trade-off between missing crises and false alarms resulted from over-/under-estimated
thresholds (Babecký et al., 2014).

In terms of the predictive model, three types of methods are commonly applied to
generate early warning signals for currency, banking and debt crises, namely the logit-
probit regression (Frankel and Rose, 1996; Eichengreen and Rose, 1998; Demirg-Kunt
and Detragiache, 1998; Bussiere and Fratzscher, 2006; Beckmann, 2007) , the signaling
approach (Kaminsky and Reinhart, 1999; Kaminsky, 1998; Berg and Pattillo, 1999; Davis
and Karim, 2008) and machine learning-based models (Nag and Mitra, 1999; Kim et al.,
2004a; Celik and Karatepe, 2007; Yu et al., 2010; Giovanis, 2012; Sevim et al., 2014).
Among the limited studies on stock markets (Fu et al., 2019), Coudert and Gex (2008)
use logit and multi-logit models to predict stock and currency crises and find the leading
effect of risk aversion indicators for stock early warning. Li et al. (2015) shows the
significance of S&P 500 futures and options in predicting stock crashes basing on a logit
model. By combining the logit model and Ensemble Empirical Mode Decomposition, (Fu
et al., 2019) recently develop an EWS for daily stock crashes using investor sentiment
indicators and achieve good in-sample and test-set results. Due to the non-linear nature
of financial data, machine-learning algorithms are also recognized tools in the general
field of stock market prediction. In the literature of EWS, artificial neural networks
(Kim et al., 2004a; Oh et al., 2006; Kim et al., 2004b; Yu et al., 2010; Sevim et al., 2014;
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Celik and Karatepe, 2007), fuzzy inference (Lin and Khan, 2008; Nan and Zhou, 2012;
Giovanis, 2012; Fang, 2012) and support vector machines (SVM) (Hui and Wang; Hu and
Pang, 2008; Ahn et al., 2011) are proven accurate models for financial crisis prediction.
Despite the promising accuracy demonstrated by those studies, few investigates the test-
set early warning power of the model, that is the duration of forewarned period before
the crisis onset.

To fill in the gaps discussed above, the objectives of this study are threefold. First,
we attempt to develop a robust crisis classifier to precisely identify stock market tur-
bulence on daily basis. The crisis classifier consists of two key components, namely
the switching ARCH (SWARCH) model (Hamilton and Susmel, 1994) and two-peak (or
valley-of-two-peaks) method (Rosenfeld and De La Torre, 1983). Instead of focusing on
the return horizon, the proposed classifier tackles the problem from the perspective of the
volatility (Rodriguez, 2007; Kim, 2013; Fink et al., 2016; BenSäıda, 2018; BenMim and
BenSäıda, 2019). The switching ARCH (SWARCH) model is adopted to label crisis/non-
crisis episodes with high/low volatility regimes that imply market turbulence/tranquility
(Hamilton and Susmel, 1994; Hamilton and Gang, 1996; Ramchand and Susmel, 1998;
Edwards and Susmel, 2001). The model’s effectiveness in depicting Chinese stock crises
is explicitly examined in the authors’ previous study on the contagion effect among hous-
ing, stock, interest rate and currency markets in China and the U.S. (Wang and Zong,
2019). On the other hand, the two-peak method is an automatic thresholding approach
(Jain et al., 1995) which selects classification thresholds automatically based on pre-
determined principles in order to obtain more robust segmentation. To classify stock
turbulence, the two-peak method is performed on the histogram of SWARCH filtering
possibilities to determine the optimal crisis cut-off. Second, a dynamic early warning
system is developed integrating the crisis classifier and long short-term memory (LSTM)
neural network (Jordan, 1997) to alert crisis onsets. As for the predictive model, LSTM
is proven to be a state-of-art mechanism in the general field of financial forecasting (Chen
et al., 2015; Fischer and Krauss, 2018; Wu and Gao, 2018; Cao et al., 2019), including
volatility forecasting (Yu and Li, 2018; Kim and Won, 2018; Liu, 2019). To the best
of the authors’ knowledge, this study is the first that incorporates LSTM in an EWS.
Last, a comprehensive evaluation of the EWS is conducted by first examining the crisis
classifier and predictor separately. To be specific, we empirically study the precision
and robustness of the crisis classifier in comparison to the most widely used approach
which defines stock crises according to an indicator functions of CMAX. The LSTM crisis
predictor is then evaluated upon two baseline models, i.e. the back-propagation neural
network (BPNN) and support vector regression (SVR), regarding to the performance
metrics including the rand accuarcy, binary cross-entropy loss, receiver operating curve
(ROC), area under curve (AUC) and the SAR score. To evaluate the effectiveness and
stability of the EWS as a whole, the proposed algorithm is performed in not only the
test set but also cross-validation and back-testing. According to the evaluation, the in-
tegrated EWS achieves the state-of-art performance and warns stock turbulence in the
test set with 96.6% accuracy and on average 2.4 days ahead of crisis onsets.

The remaining part of this paper is organized as follows. Section 2 describes the data
included. Section 3 explicitly introduces the structure of the EWS and the algorithm
related to the dynamic prediction of stock turbulence. Section 4 evaluates the model
according to its performance, and Section 5 summarizes the conclusion.
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2. Data

Table 1: Data description.

Data Frequency Reflection Source

Close price, log returns
and realized volatilities
of the SSEC index

Daily Endogenous factors WIND database

S&P500 Stock Price In-
dex

Daily US stock market Yahoo finance

USD/CNY exchange
rate

Daily Currency US Federal Reserve Board

Gold Price
Daily Global economy

World Gold Council

Oil Price International Monetary Fund

Interest rate for
China(IMF published),
M1, M2, CPI

Monthly Domestic economy WIND database

In this study, the Shanghai Stock Exchange Composite (SSEC) index is hired to
reflect the Chinese stock market oscillation. Explanatory variables that are incorporated
to predict stock crises are described in Table 1 in terms of frequency, purpose and source.
Specifically, endogenous factors include the close price, log return and realized volatility1

of the SSEC index. The rest of the variables are exogenous factors of four genres reflecting
the U.S. stock market, currency level, global and domestic economies, respectively. The
samples span from Dec 27, 1998 to Oct 7, 2018 and are split into 70% training and 30%
test sets. Table 2 shows the full sample statistics of the explanatory variables.

3. An integrated early warning model

3.1. Crisis identification with SWARCH and two-peak method

3.1.1. High/low volatility regimes in the stock oscillation

Stock crashes are inevitable results of volatility jumps. To explain this phenomenon,
we propose to investigate the high/low volatility regime of the stock return based on
the SWARCH model (Hamilton and Susmel, 1994). The target is to provide a reliable
solution to crisis warning from the perspective of risk.

1The realized volatility at time t is defined as σrv =
√

1
Nt

∑Nt
t=1(pt − p̄t), where the Nt is the count

of days after time t, pt is the log return at t and p̄t is the average of log return til t.
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Table 2: Statistics of explanatory variables. St.Dev. is the standard deviation. ∗ ∗ ∗ and ∗∗ denote the
(null normal) hypothesis test at the 1% and 5% significance level. † denotes the unit of M1 and M2 is
1013 Chinese yuan.

Mean St.Dev. Skewness Kurtosis Jarque-Bera

SSEC Close Price 2766.65 560.77 0.68 1.01 291.46∗∗∗

SSEC log return 0.02 1.49 -0.78 4.86 2643.2∗∗∗

SSEC realized volatility 1.7 0.31 1.86 4.05 3069.1∗∗∗

S&P500 Index 1682.81 529.84 0.19 -1.04 124.03∗∗∗

USD/CNY exchange rate 6.49 0.27 0.06 -1.46 217.38∗∗∗

Gold Price 1296.08 231.33 0.24 -0.14 26.129∗∗∗

Oil Price 73.25 22.88 -0.12 -1.41 208.00∗∗∗

Interest rate for China 3.06 0.22 0.73 2.22 717.48∗∗

M1 3.38† 1.08† 0.47 -0.79 151.87∗∗∗

M2 1.10† 3.91† 0.12 -1.21 154.91∗∗∗

CPI 95.83 6.78 -0.4 -1.04 174.59∗∗∗

Following Hamilton and Susmel (1994), the log return of stock price with high/low
volatility regimes could be formulated as a AR(1)-SWARCH(2,1) process given by:

yt = u+ θ1yt−1 + εt, εt|It−1 ∼ N(0, ht); (1)

h2t
γst

= α0 + α1
ε2t−1
γst−1

, st = {1, 2}. (2)

Eq.(1) describes an AR(1) process with a normal error term εt of variance ht. The regime
switching structure of the residual variance ht is given by Eq.(2) where the α′s are non-
negative, the γ′s are scaling parameters that capture the change in each regime, st is the
state variable that st = 1 indicates the low volatility state, and st = 2 indicates the high
volatility state.

The probability law which results in the stock market switching between the high/low
volatility regimes is assumed to be the constant transition probabilities of a two-state
Markov chain,

pij = Prob(st = j|st−1 = i), i, j = {1, 2}. (3)

The classification of high/low volatility regimes can be implemented on the basis of
the filtering probability, which is a byproduct of the maximum likelihood estimation.
The filtering probability based on historical observations till time t, Yt, written as

P (st = i|Yt;θt) (4)

where θt is the vector of model parameters to be estimated. Given that st = 2 is the
state of high volatility, P (st = 2|Yt;θt) can be interpreted as the conditional probability
of crises based on the current information of time t. We thus define stock turbulence as
the following binary function.

Crisist =

{
1, P (st = 2|Yt; θ̂t) ≥ c
0, otherwise.

(5)
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where θ̂t is the estimated parameter vector and c is the crisis threshold/cutoff point.
In this way, stock crisis classification is structured through the mechanism that filter-

ing probabilities of the system being in the high volatility regimes tend to increase as the
stock price becomes more volatile, and there exists a threshold c which identifies crises
once it is exceeded. By Eq.5, c indicates the lowest-level likelihood of the high-volatility
state that could be considered as crises. Hence the determination of c plays a key role
in the EWS.

3.1.2. Crisis thresholding: two-peak method

To balance the trade-off between sensitivity and false alarms (Babecký et al., 2014),
this study adopts the two-peak method to automatically determine crisis thresholds. The
two-peak method is developed with the general purpose of finding the optimal threshold
in the context of binary classification, and is proven experimentally credible in solving
image processing-related classification problems 2. According to the two-peak method,
the optimal threshold of a binary system is the minimum value between the two peaks
of the frequency density histogram (Weszka, 1978). There are several alternative thresh-
olding mechanisms that are built on the histogram, such as the Otsu’s method (Ohtsu,
2007) that solves the multi-threshold problem by considering the pixel variance. In this
study, we use two-peak as it is the most straightforward of all, and the foundation of
other approaches thereafter.

Given that our crisis classifier has two state classes, i.e. crisis (1) and non-crisis (0),
the two-peak method is applied to determine the crisis cutoff based on the SWARCH
filtering probabilities of the high-volatility state P (st = 2|Yt; θ̂t). Specifically, we first
sketch the histogram of high-volatility filtering probabilities from time 0 to t. The valley
bottom between the two frequency peaks is then selected as the optimal cutoff point at
t. To further enhance the robustness of our system, the two-peak method is performed
on a recursive basis to obtain dynamic thresholds as the prediction moves forward (See
Algorithm 1 in the next section).

3.2. Crisis warning with long-short term memory neural network

The long-short term memory (LSTM) network (Jordan, 1997) belongs to the family of
recurrent neural networks (RNNs) (Hochreiter and Schmidhuber, 1997) and is designed
to learn both long- and short-term dependencies for sequential forecasting. As a deep
learning model, LSTM networks nowadays are widely used in the financial sector in a
variety of areas from stock prediction to risk management.

As an extension of classic RNNs, LSTM keeps its merit to allow the processing of
sequential data with arbitrary lengths via the hidden state vector, at the same time
enhances the learning power of long-distance dependency by introducing the so-called
memory cell. As it is displayed in Figure 1, the inputs of a LSTM cell at time t, namely
at−1 and Ct−1, are memories that contain historical information passed through from
the former cell in the form of activation and peephole functions. Γf , Γu, Γo are sigmoid

2Prewitt and Mendelsohn (1966) first introduce the two-peak method in the cell image analysis of
distinguishing the gray-level difference between the background and the object. The performance of the
method is further verified in Rosenfeld and De La Torre (1983) by analyzing the histogram’s concavity
structure.
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functions of the forget gate, the update gate and the output gate that determine the
information to be discarded, added and reproduced, respectively. C̃t is the new candidate
output created by the tanh layer, which is limited in the range [−1, 1]. Finally, three
outputs, ŷt+1, at and Ct, are produced for the current cell at time t, where at and Ct

are recurrently employed as the inputs of the next memory block3. Note that the last
sigmoid function in the upper right corner is only included in the last cell of the LSTM
network, and is used to produce the network output ŷt+1 in [0, 1].

Figure 1: The LSTM cell inner structure at time t.

For each cell of LSTM, the formulae of the three gates, Γf ,Γu,Γo and the new

candidate state C̃t can be written as:

Γf = σ(xtU
f + at−1W

f );

Γu = σ(xtU
u + at−1W

u);

Γo = σ(xtU
o + at−1W

o);

C̃t = tanh(xtU
g + at−1W

g)

where σ is the sigmoid function, xt is the input vector, at is the activation, U is the
weighted matrix connecting inputs to the current layer, W is the recurrent connection
between the previous and current layers. Therefore, Γf,u,o implies the level of information
that each gate processes after balancing between the previous activation and the current
input. The candidate state C̃t is computed based on the current input and the previous
hidden state, and later added to the next cell state Ct on the basis of Ct−1.

This study applies LSTM as the predictive model and infers stock market turmoils on
daily basis using historical information of a fixed window size l. As Figure 2 shows, each
prediction is made from a network of l LSTM memory blocks that sequentially process
the input of both the explanatory variables {xt−l+1, ...,xt} and the SWARCH filtering

3The initial values of C0 and a0 are both zero.
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Figure 2: LSTM with window size l. The LSTM cell structure in Fig. 1 is the last cell of the window.

probability {P [st−l+1 = 2|Yt−l+1; θ̂t−l+1],...,P [st = 2|Yt; θ̂t]} from time t− l+ 1 to t, for
t ≥ l. The output ŷt+1 is produced by a sigmoid function indicating the probability of
high-volatility at t + 1. Early warning signals are thus released for time t + 1 once the
value of ŷt+1 exceeds the two-peak threshold at t (See Section 3.1.2). The LSTM network
consists of 13 input layers (the number of the input variables), 32 LSTM layers and the
output layer, which brings 5921 parameters to be trained. The batch size and epoch
number are 20 and 100, respectively. Given the sample size of T days, T − l predictions
will be made from t = l + 1 onward.

Figure 3 structures the integrated EWS regarding to its three key components, i.e. the
crisis classifier, crisis predictor and warning generator. Specifically, the crisis classifier
identifies stock market turmoils according to Eq. 5 based on the SWARCH filtering
probability and the crisis cutoff determined by the two-peak method. The output of the
crisis classifier then becomes the target variable and is fed into the LSTM crisis predictor
together with other explanatory variables. Finally, early warning signals are generated
as the predicted output exceeds the crisis cutoff. To make robust daily predictions, the
system is performed on a dynamically-recursive basis. The procedure is described by
Algorithm 1 on the sample of size T .

4. System evaluation

In this section, a comprehensive evaluation is conducted by studying first the crisis
classifier and predictor (see Figure 2) separately, then the early warning system as a
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Figure 3: The structure of EWS with the crisis classifier, crisis predictor and the warning generator.

whole. In the view of the crisis classifier that jointly uses the SWARCH and two-peak
method, we intend to understand its precision and robustness with empirical evidences.
Next, the LSTM predictor is evaluated with two baselines, i.e. the back-propagation
neural network (BPNN) and support vector regression (SVR), according to the perfor-
mance metrics consisting of the rand accuracy (Rand, 1971), binary cross-entropy loss
(Shannon, 1948), receiver operating curve (ROC), area under curve (AUC)(Metz, 1978)
and the SAR score (Caruana and Niculescu-Mizil, 2004). Last, the early warning power
of the entire system is investigated according to its test-set performance, cross-validation
as well as back-testing.

4.1. Evaluating the crisis classifier

The credibility of an EWS is rooted in a precise and robust crisis classifier. According
to Figure 2 and Algorithm 1, stock crisis cutoffs are computed dynamically for each
prediction taking into account the current market condition as well as past information.
To validate the reliability of the proposed classification mechanism, we analyze the crisis
identification results in terms of its precision and robustness.

As crisis classification is a subjective topic heavily depending on the individual un-
derstanding of crisis, limited analysis could be done on quantitatively evaluating the
accuracy due to the lack of true crisis labels. Given the target of the proposed EWS is to
predict stock market turbulence, we investigate the precision of the crisis classifier with
emphasis on the empirical evidence related to volatility regimes. Figure 4 and Table 3
summarizes the turmoils classified in the Chinese stock market by performing Algorithm
1 on the full sample. In Figure 4, crisis periods are highlighted in both the log return
(grey in the upper panel) and filtering probability plots (red in the lower panel). As
Figure 4 suggests, the proposed hybrid algorithm captures all the recorded stock crises
that are also reflected by volatile log return and filtering probability jumps. Table 3
lists the starting and ending days of the detected turmoils with their associated critical
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Algorithm 1: Daily warning for Chinese stock turbulence

Initial inputs:
The SSEC index price Pt;
The explanatory variables xt excluding Pt;

Final output :
The predicted signals ŷt+1;

1 calculate log returns of SSEC index price, {logRt, t = 1, ..., T};
2 set up the window size l;
3 for t from l to T do
4 repeat
5 for i from 1 to t+ 1 do
6 input logRi into SWARCH;

7 output filtering probability P [si = 2|Yi; θ̂i];
8 end
9 two-peak method selects the optimal cutoff ct;

10 for i from 1 to t+ 1 do

11 if P [si = 2|Yi; θ̂i] ≥ ct then
12 Crisisi = 1;
13 end

14 end
15 for j from 1 to l do
16 input explanatory variable vector xt−l+j , filtering probability

P [st−l+j = 2|Yt−l+j ; θ̂t−l+j ] and identified crisis signals Crisist−l+j

into LSTM;

17 end
18 output the prediction ŷt+1;

19 until t=T;

20 end

events. The hybrid classifier identifies crises with promising results explaining not only
major global turmoils including the 2008 global financial crisis and 2010 European debt
crisis, but also local stock turbulence resulted from the industrial reformation in 2013,
the high-leveraging bubble collapse in 2015 and the economic slowdown since 2018.

The robustness of a model broadly refers to its error-resisting strength and resilience
in producing results as data changes. Therefore, robust crisis classifications are subject
to a dynamical thresholding mechanism to handle turbulence with limited influence from
sample variations. Table 4 summarizes the statistics of crisis cutoffs that are determined
in the full sample and test set by Algorithm 1. The number of cutoffs in a sample is
given by the difference between the number of observations T and the window size l.
With windows of size 5 (days), this study computes 2430 and 725 cutoffs in the full
sample and test set of lengths 2434 and 729 (days), respectively. As Table 4 displays, the
cutoff distributions of the full sample and test set are both right skewed given the greater
means (0.515, 0.429) than the medians (0.489, 0.396) and modes (0.483, 0.355). In other
words, the positive skewness indicates that cutoffs are more likely to take values below
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Figure 4: Log return of the SSEC stock index (upper panel) and the corresponding high-volatility filtering
probability (lower panel). Turmoil periods determined by Algorithm 1 are highlighted in grey and red.

Table 3: Turmoil periods that are identified by Algorithm 1 in the full sample and associated critical
events.

Event Identified Crisis Period

2008 Global financial crisis
2008/10/04 - 2009/11/06
2009/11/16 - 2010/03/28

2010 European debt crisis
2010/05/06 - 2010/09/16
2010/10/08 - 2011/03/17
2011/09/22 - 2012/02/17

2013 Industrial reformation 2013/03/04 - 2013/08/12

2015 Chinese stock crash
2014/12/02 - 2016/04/27
2016/05/09 - 2016/05/11

2018 Domestic economy slowdown

2018/02/09 - 2018/03/06
2018/07/02 - 2018/08/03
2018/08/06 - 2018/08/31
2018/09/04 - 2018/09/26

the mean and around the median/mode. Moreover, test-set cutoffs exhibit lower values
with mean, median and mode approximating to 0.4, whereas those in the full sample are
closer to 0.5. To explain this difference in the crisis cutoff distributions, Figure 5 shows
the smoothed histograms of SWARCH filtering probabilities in the full (upper panel)
and test (lower panel) sets. The optimal cutoffs determined at the end of Algorithm 1
for the last day observation are circled in blue. Although the test set exhibits a greater
proportion of tranquil days with a significantly higher right peak, the two-peak method
detects the true valley at 0.35 to threshold the crisis.

11



Table 4: Statistics of crisis cutoffs in the full sample and test set.

Count Mean St.Dev Median Mode Range

Cutofffull-sample 2430 0.515 0.128 0.489 0.483 1.00
Cutofftest-set 725 0.429 0.121 0.396 0.355 0.996

Figure 5: Cutoffs selected by the two-peak method in the full sample (upper panel) and test set (lower
panel).

Further with the argument that a robust classification model ought to produce stable
classification results regardless of the sampled information, Table 5 compares stock crises
identified by Algorithm 1 with those defined on the CMAX indicator4. Daily classifi-
cations are computed in both the full-sample and test set for each model. To examine
the level of consistency between crises identified on different samples, Table 5 lists the
number (Row 3) and percentage (Row 5) of days that the full-sample crises differ from
the test-set crises during the period from 2015/10/13 to 2018/09/28 (729 days in total)5.
With 16 days of deviation in a period of almost three years and a percentage of 2.19%6,
the integrated EWS produces the most robust crisis classification result in comparison
to the CMAX indicator on a range of parameters λ = 1, 1.5, 2, 2.5.

4The CMAX index is the most widely used crisis indicator in the literature concerning stock market
early warning (Coudert and Gex, 2008; Li et al., 2015; Fu et al., 2019). It defines stock crashes with an
indicator function 1CMAXt<µt−λσtCMAXt : 1, where µt and σt are the mean and standard deviation
of CMAXt, and λ is a market-dependent constant (Kaminsky and Reinhart, 1999). In this study, we
consider four cases when λ = 1, 1.5, 2, 2.5 as they give reasonable results for Chinese stock market crises.

5This is the period when full sample and test set intersect.
6We believe that the percentage deviation of 2.19% could be further reduced with a larger sample of

test set and cross validation. Relevant analyses on this aspect will be conducted in the future study.
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Table 5: Difference between crises identified on the full sample and test set during 2015/10/13 -
2018/09/28.

Integrated EWS CMAXλ=1 CMAXλ=1.5 CMAXλ=2 CMAXλ=2.5

No. of crises with full sample 191 203 148 3 0
No. of crises with test set 207 154 112 115 67
No. of non-matching days 16 49 36 112 67
Total no. of days 729 729 729 729 729
% of non-matching days 2.19 6.27 4.94 15.4 9.19

4.2. Evaluating the crisis predictor

We now evaluate the crisis predictor based on LSTM in comparison to two baselines
of BPNN and SVR. The associated performance metrics is discussed in Section 4.2.1.
And Section 4.2.2 presents the results.

4.2.1. Evaluation metrics

The evaluation metrics of the predictor include three classes of performance measures
that are designed for classification models, i.e. (I) the rand accuracy (Rand, 1971) and
binary cross-entropy loss (Shannon, 1948), (II) the receiver operating curve (ROC) and
area under curve (AUC) (Metz, 1978), and (III) the SAR score (Caruana and Niculescu-
Mizil, 2004). Prior to the performance evaluation, Table 6 lists the confusion matrix that
is used by the rand accuracy, ROC and SAR score.

Table 6: Confusion matrix for daily stock early warning.

Actual/Predicted 1: Crisis 0: Non-crisis
1: Crisis True positive (TP) False negative (FN)

0: Non-crisis False positive (FP) True negative (TN)

In general, true positive/negative corresponds to the true prediction of turmoil/tranquility,
whereas false positive/negative corresponds to the false prediction. Moreover, the true
positive rate (TPR) and false positive rate (FPR) are defined as the percentage of truly
predicted crisis signals over the total number of actual crises, and the percentage of
falsely predicted crisis signals over the total number of actual tranquility, respectively.

TPR =
TP

TP + FN
, FPR =

FP

FP + TN
. (6)

Evaluation Metric I: The rand accuracy is defined as the proportion of true results
over the total number of cases examined:

Accuracy =
TP + TN

TP + TN + FP + FN
. (7)

The binary cross-entropy loss measures the performance of classification models in
terms of the level that the predicted probability of getting 1 deviates from the true label
0 or 1, and is expressed as:
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Loss = −
∑n−l+1

i=1 (yilog(ŷi) + (1− yi)log(1− ŷi))
n− l + 1

, (8)

where yi and ŷi denote the true and predicted values, and n is the sample size. As
we set the label of crises to be True (= 1), an EWS model that warns all the crises
regardless the number of False alarms it creates, has zero loss indicating none of the
crisis is lost. According to Eq. (7) and (8), a greater level of predictive power comes
along with higher rand accuracy and lower binary cross-entropy loss.

Evaluation Metric II: As one of the most classic performance measures, ROC plots
the FPR (x-axis) against the TPR (y-axis) for each classifier. As a higher true positive
rate is always more preferable given the level of the false positive rate, models with the
ROC curve bending closer towards the upper-left corner are more preferable. To offer a
quantitative representation of the graphic information carried by ROC, AUC computes
the total area under the ROC curve and suggests the better model with the greater AUC
value.

Evaluation Metric III: Different from the widely-used F1-score, the SAR score (Caru-
ana and Niculescu-Mizil, 2004) is developed as a more holistic performance measure due
to the uncertainty of the correct evaluation metric. By taking into account three dis-
tinctive measures including the accuracy, AUC and root mean-squared error (RMSE),
models with higher SARs are regarded as better-performing as they produce overall high
accuracy/AUC and low RMSE.

SAR =
1

3
(Accuracy + AUC + (1− RMSE)). (9)

4.2.2. Test-set performance

To evaluate the predictive power of LSTM, BPNN and SVR, Table 7 preliminarily lists
the test-set rand accuracy and binary cross-entropy loss of the three models following
Algorithm 17. Three window sizes l = 22, 10, 5 are considered. As Table 7 suggests,
LSTM with window size l = 5 produces the optimal crisis prediction that yields the
highest accuracy 0.952 and lowest loss 0.27 among all cases examined. Among the three
predictive models, LSTM consistently demonstrates the strongest forecasting power of
stock crises given different window sizes. Moreover, it is observed that with the last five
days of information, all the three models achieve the best result (except the accuracy of
SVR) in comparison to the predictions made with 22 and 10 days information. Therefore,
the remaining of the evaluation is conducted with window size 5.

Figure 6 further shows the test-set ROC and SAR curves. In particular, Panel
(a) shows the ROC curves and AUC values generated from the test-set predictions.
As the ROC-oriented metric tells the model’s ability in classifying the binary states,
LSTM enhances BPNN and SVR with its outstanding capacity in distinguishing turbu-
lence/tranquility with the optimal ROC curve and AUC value of 0.997.

Panel (b-d) plot the SAR score against the crisis cutoff for the three predictive models.
According to Algorithm 1, the test-set score of each model is highlighted as the blue
point in each panel corresponding to the last day cutoff obtained from the dynamic crisis

7To obtain the baseline results, Algorithm 1 is implemented by replacing the LSTM in line 16 by
BPNN and SVR.
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Table 7: Test-set rand accuracy and binary cross-entropy loss based on LSTM, BPNN and SVR with
varying the window sizes

LSTM BPNN SVR
Window size l = 22

Accuracy 0.930 0.882 0.927
Binary cross-entropy loss 0.380 0.439 0.407

Window size l = 10

Accuracy 0.941 0.865 0.920
Binary cross-entropy loss 0.326 0.305 0.405

Window size l = 5

Accuracy 0.952 0.899 0.912
Binary cross-entropy loss 0.270 0.369 0.423

classifier, whereas the red point is the highest score obtained by the predictive model
regardless of the optimal cutoff. From the perspective of model scores, LSTM remains its
dominating state with the highest test-set score (blue) of 0.9, whereas BPNN and SVR
score 0.74 and 0.77, respectively. Moreover, LSTM appears to be the most insensitive
model to cutoff variations as the scores remain relatively high in a prolonged range shaped
as a flat peak in Panel (b). With a similar shape in Panel (c), BPNN produces a SAR
curve with reduced scores and a smaller peak, where the test-set score 0.74 exhibits a
large deviation from the best score of 0.86. Despite that SVR produces close scores as
BPNN, the sharp peak in Panel (d) suggests the model’s instability in predicting with
varying cutoffs.
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(a) ROC (b) LSTM

(c) BPNN (d) SVR

Figure 6: Test-set ROC (Panel a) and SAR (Panel b-d) curves of LSTM, BPNN and SVR.

4.3. Crisis early warning

In this section, we examine the integrated EWS in terms of its early warning power
with respect to the forewarned period ahead of the actual crisis onsets. By keeping BPNN
and SVR as baselines, test-set forecasting, cross-validation and back-testing are imple-
mented. In this way, we hope to gain a comprehensive understanding on the system’s
crisis forecasting capacity, stability as well as effectiveness.

4.3.1. Test-set performance

Figure 7 shows the predicted signals by the integrated EWS against their true crisis
labels (1 for crisis and 0 otherwise) by the SWARCH model. As Figure 7 displays, crisis
onsets in the test set mainly occur in 2016 as a result of the lasting effect from the 2015
stock market crash, and in 2018 due to the financial instability in China. Overall, the
proposed EWS with LSTM predictions depict the test-set set crises in a relatively precise
manner with the first alarms (red line) before the actual onsets (blue dashed line). As
the predictive model is replaced by BPNN, the EWS tends to delay in producing the first
crisis signal despite of its ability in capturing ongoing crises. In contrast to LSTM and
BPNN, SVR appears to suffer from both delayed warnings and false alarms in Figure 7.
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Figure 7: Test-set early warning signals

To support the preceding claims with evidence, Table 8 summarizes the numerical
results related to the test-set forecasting. The test set consists of 729 days with 207 crisis
days (Row 2, Table 8) and 6 crisis onsets (Row 6, Table 8). With respect to Table 8,
EWS with LSTM demonstrates a promising capability of warning stock turbulence that
is reflected by its dominating results in all aspects examined. In particular, LSTM-based
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EWS improves the baselines with 200 days of correct predictions which yield a rate of
96.6%. On average, the model alerts stock turbulence 2.4 days ahead of the actual crises
and successfully warns 83.3% of the onsets with 0% false alarm. It is worth-mentioning
that the missed onset occurs two days after its preceding crisis on July 25, 2018 and lasts
for one day only. In line with the observations made from Figure 7, the major weakness
of the BPNN-based EWS reveals due to its delay in generating crisis signals, which is
suggested by a relatively high rate of correct daily predictions 94.6% and a low rate of
successfully predicted onsets 33.3%. Beside the delays, the high percentage of 30% false
alarms makes SVR the least reliable model for the early warning task in comparison to
LSTM and BPNN.

Table 8: Summary of test-set forecasting. % of correct predictions is the percentage of correctly predicted
crisis signals, % of correct predicted onsets is the percentage of correctly forewarned onsets.

Model LSTM BPNN SVR

Total crises 207 207 207
Correct predictions 200 196 184

% of correct predictions 96.6 94.6 88.9

Total onsets 6 6 6
Predicted onsets 5 2 2

% of correct predicted onsets 83.3 33.3 33.3
% of false onset alarms 0.0 0.0 30.0
Avg. days-ahead onsets 2.4 1.5 2.0

4.3.2. Cross validation

To analyze the stability of the EWS, a k-fold cross validation is further conducted in
the test set with varying values k = 3, 5, 88. Rand accuracy and cross-entropy loss are
used as the performance measures.

The governing performance of the LSTM-based EWS is proven to be robust in the
cross validation. Given different k values, LSTM invariably produces the greatest ac-
curacy and lowest loss in comparison to the baselines. In particular, EWS with LSTM
achieves the best test-set accuracy of 95.1% in the 5-fold validation. And even with 3-fold
validation, LSTM obtains an accuracy of 91.9% and loss of 16.5% in the test set.

4.3.3. Back-testing

In the back-testing, a simple trading strategy is adopted to the SSEC stock index
with the aim to verify the effectiveness of the proposed EWS from a practical perspective.
Assuming symmetric information between the market and the investors with a fair level
of risk aversion, a market portfolio of SSEC index is constructed and held until the EWS
alerts crises, and repurchased as the EWS suggests tranquility. Table 10 summarizes
the expectation and standard deviation of returns together with Sharp ratios in the full

8Given the selection of k deals with the trade-off between bias and variance, the cross validation is
conducted up to 8 folds in order to ensure the size of the test set is large enough to offer statistically
representative of the model’s forecasting power.
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Table 9: Average test-set rand accuracy and binary cross-entropy loss from the k-fold cross validation

LSTM BPNN SVR
k = 3

Accuracy (avg.) 0.919 0.896 0.909
Binary cross-entropy loss (avg.) 0.165 0.314 0.658

k = 5

Accuracy (avg.) 0.951 0.911 0.923
Binary cross-entropy loss (avg.) 0.218 0.288 0.454

k = 8

Accuracy (avg.) 0.913 0.858 0.884
Binary cross-entropy loss (avg.) 0.168 0.476 0.389

sample and test set. In the absence of early warning mechanisms, the market portfolio
yields expected returns of 2.3% and −0.5% and standard deviations 1.48 and 1.156%
in the full sample and test set, respectively. The corresponding Sharp ratios are 1.6%
and −0.4%. By exiting the market position with respect to early warned turbulence, the
strategy significantly reduces the systematic risk (indicated by the σ), which naturally
results in a higher level of Sharp ratio, regardless of the predictive model.

More importantly, back-testing once more verifies that the LSTM-based EWS out-
performs the baselines and holds the greatest effectiveness and stability. Specifically, the
effectiveness of LSTM is proven by its dominating Sharp ratios which improve the mar-
ket portfolio by 3.8% and 2.4% in the full sample and test set, respectively. Meanwhile,
its stability is suggested by the monotonous positive impact on the market portfolio re-
garding to the three portfolio measures in the risk-return horizon. Albeit the moderate
improvements achieved by BPNN (Sharp ratios 4.6% and 0.2% in the full sample and
test set) and SVR (Sharp ratios −0.1% and 0.5%), the two models exhibit limitations
due to their weaker and fluctuating results.

5. Conclusions

In this study, a novel EWS with a dynamic architecture integrating the SWARCH
model, two-peak thresholding and LSTM is developed to identify and predict stock mar-
ket turbulence. According to the models’ performance on the ten-year sample of Shanghai
Stock Exchange Composite index, the following concluding remarks are emerged.

1. As one of the most powerful models handling sequential data, LSTM remains its
outstanding position in the daily prediction task of stock crises. To be specific, the
reliability of LSTM in this study is not only reflected by the high accuracy of 96.6%
and on average 2.4 days of forewarned period, but also its stability of outperforming
the baselines throughout the evaluation process in the test-set, cross-validation as
well as back-testing.
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Table 10: Back-testing in the full sample and test set. E[Rp] is the expected return rate, σp is the

standard deviation and SharpeRatio is given by SharpeRatio =
E[Rp]−Rf

σp
, where Rf denotes the risk

free interest rate and is set to zero in our study.

E[Rp] σp SharpeRatio
full-sample

market portfolio 0.023 1.480 0.016

EWS-LSTM 0.039 0.718 0.054
EWS-BPNN 0.045 0.983 0.046
EWS-SVR -0.001 0.687 -0.001

test set

market portfolio -0.005 1.156 -0.004

EWS-LSTM 0.012 0.610 0.020
EWS-BPNN 0.004 0.625 0.002
EWS-SVR 0.003 0.594 0.005

2. In addition to a high-performing predictive model, a precise and robust crisis iden-
tification mechanism also plays the central role in facilitating the effectiveness and
reliability of an EWS. By adopting the two-peak method to determine crisis cut-
offs, the proposed EWS suggests a constructive alternative to current existing ap-
proaches, and yields promising crisis classifications in the Chinese stock market in
comparison to the classic indicator function based on CMAX.

3. Stock market turbulence described by the SWARCH volatility regimes is proven
to be a good crisis indicator in both theory and practice, as the proposed EWS
depicts all the recorded major stock crises in the sample with significantly improved
back-testing results than the market portfolio.

For future study, we plan to further investigate the proposed EWS structure in terms
of other crisis thresholding and prediction mechanisms. At the same time, we are in-
terested in applying the integrated EWS to predict other types of financial crises, e.g.
currency or banking crises, in different frequency domains.
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