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Abstract

Link prediction exercises may prove particularly challenging with noisy and incomplete networks, such as criminal
networks. Also, the link prediction effectiveness may vary across different relations within a social group. We address
these issues by assessing the performance of different link prediction algorithms on a mafia organization. The analysis
relies on an original dataset manually extracted from the judicial documents of operation “Montagna”, conducted by
the Italian law enforcement agencies against individuals affiliated with the Sicilian Mafia. To run our analysis, we
extracted two networks: one including meetings and one recording telephone calls among suspects, respectively. We
conducted two experiments on these networks. First, we applied several link prediction algorithms and observed
that link prediction algorithms leveraging the full graph topology (such as the Katz score) provide very accurate
results even on very sparse networks. Second, we carried out extensive simulations to investigate how the noisy
and incomplete nature of criminal networks may affect the accuracy of link prediction algorithms. The experimental
findings suggest the soundness of link predictions is relatively high provided that only a limited amount of knowledge
about connections is hidden or missing, and the unobserved edges follow some kind of generative law. The different
results on the meeting and telephone call networks indicate that the specific features of a network should be taken into
careful consideration.
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1. Introduction1

Methods from Social Network Analysis (in short, SNA) (Sparrow, 1991; Klerks, 2001; Xu & Chen, 2005; Van2

der Hulst, 2009; Agreste et al., 2016; Berlusconi et al., 2016) greatly contributed to intelligence and criminal in-3

vestigations: for example, SNA allows to identify, within a criminal network, the most central members in terms of4

connections or information flow (Calderoni & Superchi, 2019), the presence of different communities (Catanese et al.,5

2014; Calderoni et al., 2017), and the most efficient strategies for dismantling the network (Agreste et al., 2016).6

A crucial application of SNA methods to intelligence is the so-called link prediction problem (Liben-Nowell &7

Kleinberg, 2003; Pandey et al., 2019): given a graph G which describes interactions between pairs of criminals, we8

wish to predict which edges are more likely to appear in G in the near future. Algorithms to solve the link prediction9

problem may hugely impact police activities: in fact, if we would be able to accurately predict the formation of new10

links, we would be able to discover pairs of criminals who are likely to collaborate and, thus, we could early detect11

and prevent crimes.12
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Many link prediction methods have been designed and implemented in a broad range of domains (see the excellent13

reviews by Liben-Nowell & Kleinberg (2003) and Pandey et al. (2019)) and, more recently, Berlusconi et al. (2016)14

applied link prediction algorithms on a dataset derived from an Italian criminal case against a Mafia group.15

Almost all of the existing approaches to link prediction focus on maximizing the accuracy and they overlook16

fundamental aspects such as the robustness of predictions, namely the extent to which the incompleteness of informa-17

tion about relations may affect the quality of predictions. By construction, in fact, datasets associated with criminal18

networks are noisy and incomplete: on one hand, investigations often encounter individuals unrelated to the crimi-19

nal organization (e.g. friends, relatives, and other frequent contacts) and, on the other hand, some members of the20

organization actively attempt to avoid detection, e.g. by refraining from the use of telephone, using intermediaries,21

and coding messages. As a consequence, imprecise and incomplete information is a critical impediment to under-22

stand network boundaries and topology and, ultimately, it constitutes a main challenge for law enforcement agencies23

(hereafter LEAs) which plan to get reliable results from the application of link prediction algorithms.24

In this paper we tackle the problem of estimating the robustness of link prediction algorithm in criminal networks.25

To do so, we analysed judicial sources on operation “Montagna”, a long investigation on a large criminal organization26

belonging to Cosa Nostra (i.e., the Sicilian Mafia) (Paoli, 2004, 2008) active in the north of Sicily. We extracted two27

graphs (Ficara et al., 2020): the former (called Meeting Graph GM) maps meetings between person under investiga-28

tions and the latter (called Phone Call Graph GP) is built on the monitoring of phone communications (also known29

as wiretapping). Our dataset is unique and we believe it might represent a valuable resource for better understanding30

complex criminal phenomena from a quantitative standpoint.31

We applied many classical methods of link prediction (Liben-Nowell & Kleinberg, 2003) on both GM and GP such32

as the Common Neighbors (CN), the Jaccard Coefficient (JC), the Adamic Adar (AA) coefficient, the Preferential33

Attachment (PA), the Katz score, and more recent methods such as the Node2Vec (Grover & Leskovec, 2016) graph34

embedding algorithm and the Personalized PageRank (PPR) similarity score (Avrachenkov et al., 2019). We used35

the Area Under the Receiving Operating Curve (AUROC) (Fawcett, 2006) to assess the accuracy of a prediction36

algorithm. We recall that the AUROC ranges from 0 to 1 and the larger the AUROC, the more accurate a link37

prediction algorithm.38

Subsequently, we assumed that both GM and GP graphs are not completely known and introduced some generative39

models to study the incomplete information about connections among criminals that we define as uncertainty. Specif-40

ically, we considered GM (resp., GP) as a sample of a true graph G′M (resp., G′P) and we introduced a scoring function41

(called likelihood) to decide whether an edge non observed in GM (resp., GP) actually exists in G′M (resp., G′P). A42

core assumption of our method is that we know all nodes of the “real” networks, but we have an incomplete knowl-43

edge of the edges of the observed networks, namely of the interconnections among criminals. Our assumptions are44

backed on previous research results showing that LEAs may rarely miss important individuals in a well-built criminal45

investigation (Campana & Varese, 2012; Berlusconi, 2013) as well as on the length and relevance of the investigation46

pursued in “Montagna” operation. Conversely, LEAs often need to identify the relevant ties among thousands of47

communications and meetings and this process may be biased by lack of resources or by criminals’ strategies to pre-48

vent detection. We resort to simulation to create graphs G′M and G′P and, in our experimental analysis, we considered49

multiple likelihood functions. Our simulation method allowed also to specify the fraction p of non observed edges in50

G′M (resp., G′P) which are actually placed in G′M (resp., G′P).51

The main findings of our analysis are as follows:52

1. The Katz and PPR scores prove as the most successful method to predict missing edges and they achieve an53

AUROC larger than 0.95, thus signalling a high degree of accuracy. It is worth observing that the highest54

AUROC is achieved when only short paths are taken into account, which is consistent with the short-range55

structure of criminal networks.56

2. Graph topology significantly affects the accuracy of a link prediction algorithm: specifically, algorithms which57

are very accurate on GM performs badly on GP and vice versa. In detail, if a graph is poorly connected (i.e.,58

it displays a low edge density and a small clustering coefficient), then local methods (i.e., link prediction algo-59

rithms which rely only on the local knowledge of graph topology) are to be preferred to global ones (i.e., link60

prediction algorithms leveraging the knowledge of the full graph topology). Vice versa, global methods such61

as the Katz score achieve their best AUROC on graphs with greater levels of connectivity (i.e. in graph with62

higher edge density and clustering coefficients).63
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3. The knowledge LEAs have acquired about the Meeting Network GM is quite complete whereas the Phone64

Call Network GP is more susceptible to uncertainty, encoded in our study through the parameter p. We can65

generalize such a result: if the amount of uncertainty is relatively small and non-observed edges derive from a66

specified generative model we can hope for robust edge prediction. In the light of our studies, we recommend67

LEAs not only to build a detailed map of connections between criminals but also to investigate how such a map68

evolves over time: in this way we would be able to design sophisticated likelihood functions which fits fairly69

well experimental observations and help LEAs to early detect and prevent crimes.70

The rest of this paper is organized as follows: in Section 2 we present the related literature, whereas in Section71

3 we outline our research questions. In Section 4 we introduce some basic definitions from graph theory. In Section72

5 we introduce the operation “Montagna” and provide some details about the Meeting and Phone Call Graphs. In73

Sections 6 we compare the accuracy of some link prediction methods on our graphs. We then present our experiments74

aimed at modelling missing edges in Section 7. We draw our conclusions and highlight some possible future work in75

Section 8.76

2. Related Work77

Social Network Analysis (SNA) is increasingly used by law enforcement agencies (LEAs) to analyze criminal78

networks as well as to investigate on the relations among criminals based on calls, meetings and other events derived79

from investigations (Sparrow, 1991; Xu & Chen, 2005; Van der Hulst, 2009; Strang, 2014).80

Given the social embeddedness of organized crime and, in particular, of Mafia-like organizations, the analysis81

of the social structure of Sicilian Mafia syndicates generated a great scientific interest (Kleemans & Bunt, 1999;82

Kleemans & De Poot, 2008). For instance, Morselli (2003) studied the connections within a New York-based family83

(the Gambino family). The study focused on the career of one of its members, Saul Gravano. One of the main84

findings is that Gravano’s ability of building and extending over time his personal network of contacts was a key85

factor to climbing the Gambino’s family organization. Calderoni (2012) showed that high status Mafia members were86

able to indirectly manage illicit drug traffics leaving in more central and visible position middle-level criminals.87

SNA is not only a tool to describe the structure and functioning of a criminal organizations but it has been largely88

employed in the construction of crime prevention systems (Chen et al., 2004). For instance, Xu & Chen (2005) jointly89

applied SNA with hierarchical clustering algorithms. The proposed approach worked in two stages: first, a criminal90

network was partitioned into subgroups by means of a clustering algorithm. Then, block modelling techniques have91

been used to extract interaction patterns between these subgroups. Agreste et al. (2016) applied percolation theory to92

efficiently dismantle Mafia syndicates. Calderoni & Superchi (2019) showed that the node’s betweenness centrality93

in a meeting network is evidence of Mafia leadership, suggesting that this variable could be exploited by LEAs in94

selecting the most suitable targets for additional investigations and disruption. Duxbury & Haynie (2019) used an95

agent-based model to evaluate how criminal networks recover from disruption and identified which disruption strate-96

gies are most effective at damaging various criminal networks. Grassi et al. (2019) explored different betweenness97

centrality including the classic betweenness by Freeman (1979) and three inspired by the dual projection approach98

recently suggested by Everett & Borgatti (2013), which proved to be more successful than classic approaches in iden-99

tifying the criminal leaders. Bouchard (2020) used a network approach to specify and model collaboration among100

people involved in organized crime. His approach provides methodological guidelines for clarifying boundaries and101

helps solve four puzzles: social boundaries, boundaries of group membership, ethnic boundaries and recruitment.102

Overall, while the studies above provided insight into the social organization and possible countermeasures against103

criminal groups, the application of SNA to them nearly inevitably faces problems of noisy or incomplete information.104

Information on a criminal network is often likely to be missing or hidden, due to the covert and stealthy nature of105

criminal actions (Krebs, 2002; Xu & Chen, 2005). Consequently, the derived networks are incomplete, incorrect, and106

inconsistent, either due to deliberate deception on the part of criminals, or to limited resources or unintentional errors107

by LEAs (Calderoni, 2010; Campana & Varese, 2012; Catanese et al., 2014; Ferrara et al., 2014; Agreste et al., 2016).108

These limitations may bias the analysis and they cause problems of uncertain information, potentially jeopardizing109

the effectiveness of the investigations (Strang, 2014).110

In the analysis of criminal networks, missing data can refer to missing nodes and/or missing edges (Calderoni,111

2010). The problem of missing nodes has already received attention (Kim & Leskovec, 2011; Hric et al., 2016) but,112
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from our perspective, missing nodes in criminal networks are not particularly relevant, in that it is quite improbable113

that LEAs may disregard central criminals during such prolonged investigations. On the other hand, while it is possible114

to predict some missing edges among already detected criminals, it is impossible to detect missing criminals relying115

only on pre-trial detention orders. Missing edges refer to the lack of information on the relations between two known116

criminals. LEAs, in fact, may miss a lot of criminal activities such as meetings or phone calls, and therefore relevant117

plans of the criminal organization (Campana & Varese, 2012; Ferrara et al., 2014; Catanese et al., 2014; Agreste et al.,118

2016). For instance, criminals may use different telephone lines, according to the nature of the conversation and the119

interlocutor, and investigators may be able to identify only some of them. The frequent change of mobile phones and120

SIM cards and the use of particular lines to communicate with high-ranking affiliates may also prevent LEAs from121

identifying all conversations among suspects.122

Several recent contributions have addressed the problem of missing links with particular attention to criminal123

networks. Fan et al. (2017) proposed a combined link prediction index considering both the nodes’ types effects and124

nodes’ structural similarities, and demonstrated that it is remarkably superior to all the 25 existing similarity-based125

methods both in predicting missing links and identifying spurious links in a real military network data. This method is126

also suitable to many other social organizations, such as criminal networks. Marciani et al. (2017) proposed three new127

similarity social network metrics, specifically tailored for criminal link detection and prediction and evaluated them128

through a flexible data stream processing application observing that the new metrics could reach up to 83% accuracy129

in detection and 82% accuracy in prediction and be competitive with the state of the art metrics. Bahulkar et al. (2018)130

described a framework which predicts the missing links in the social network data and then algorithms are applied131

to the augmented data to detect the communities of a transnational criminal organization (TCO). Parisi et al. (2018)132

proposed an entropy-based method to predict a given percentage of missing links from an observed network structure,133

by identifying them with the most probable non-observed ones. Diviák (2019) tried and followed a systematic and134

general solution to deal with the problem of missing data. He proposed three potentially synergistic and combinable135

techniques for data collection for each stage of data collection – biographies for data extraction, graph databases136

for data storage, and checklists for data reporting. Lim et al. (2019) explored the application of deep reinforcement137

learning (DRL) in developing a criminal network hidden links prediction model from the reconstruction of a corrupted138

criminal network dataset. De Moor et al. (2020) also considered the problem of missing data in criminal networks.139

They compared the statistics on a reduced or incomplete network with those from a known network, integrating140

police data on known offenders with DNA data on unknown offenders and showing how networks with both known141

and unknown offenders are bigger but also have a different structure to networks with only known offenders.142

Despite the growing scholarly attention to missing links in criminal networks and the important consequences of143

missing relations, there is no previous research work aiming at modelling uncertainty in criminal networks and how144

such an uncertainty affects the analysis of a criminal network. Our work aims at filling this gap and, to the best of our145

knowledge, it represents the first step toward an objective assessment of the robustness of a link prediction algorithm146

in a criminal network.147

3. Research Questions148

We assume that multiple interactions can be observed among the members of a Mafia group: typical interactions149

are phone calls, meetings, interactions on Social Media platforms, financial transactions and so on. For each interac-150

tion, we represent a Mafia group as a graph in which a node identifies an individual who belongs (or is close) to the151

group and an edge indicates that an interaction occurred between two individuals represented by the nodes tied by that152

edge.153

If we assume that K type of interactions exist, we can understand a Mafia group as a collection of graphs G =154

{GA,GB, . . . ,GK}. We call each graph GD ∈ G as interaction graph. The topology of each interaction graph GD has a155

remarkable value for investigation purposes: for instance, we could use the topology of GD to: (i) infer collaboration156

between criminals, (ii) to identify individuals who intercept most of the information flow in the criminal organization157

and (iii) to design police operations to dismantle the underlying criminal organization.158

In this paper we will concentrate on task (i), and, more specifically, we seek an answer to the following question:159

Q1 Given an interaction graph GD ∈ G, can we design algorithms to accurately predict edges between160

pairs of criminals?161
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Our research question is strictly linked to a popular problem in Network Science, namely the link prediction prob-162

lem in networks (Liben-Nowell & Kleinberg, 2003). The link prediction problem has been extensively studied in a163

number of domains, such as e-commerce (Chen et al., 2005), homeland security (Hasan et al., 2006) and bioinfor-164

matics (Menon & Elkan, 2011). In the criminology the problem of predicting links is well known but there are few165

studies approaching it (Rhodes & Jones, 2009; Berlusconi et al., 2016).166

Given a link prediction algorithmA, one could ask if the accuracy ofA depends on the topological features of the167

interaction graph, say GD, on which we decide to runA. More formally, we are interested in answering the following168

question:169

Q2 Given a Mafia network G = {GA,GB, . . . ,GK} and a link prediction algorithm A, how does the170

topological features of a dimension graph GD ∈ G impact on the accuracy ofA?171

Finally, a fundamental issue of criminal networks is that they are incomplete and noisy and, thus, a key scientific172

challenge is about the robustness of the results that the algorithm A produces. In other words, we are interested in173

estimating how uncertainties in the topology of GD impact of the accuracy of A and such a reasoning leads us to174

formulate the following question:175

Q3 How sensitive is the link prediction algorithmA to uncertainty in GD? Can police forces get reliable176

outcomes when they apply the algorithmA on a specified dimension graph GD?177

In the next subsections we illustrate the outcomes of our study to answer Q1-Q3; our study builds upon a case178

study draw from “Montagna”, a law enforcement operation tackling Mafia gangs in the North of Sicily.179

4. Fundamentals of Graph Theory180

In this section we introduce some basic definitions from graph theory which will be largely used throughout the181

paper.182

Definition 1 (Graphs). A graph G = 〈N, E〉 is a pair in which N is the set of nodes and E ⊆ N × N is the set of183

edges. A graph is undirected if 〈i, j〉 ∈ E implies that 〈 j, i〉 ∈ E for each pair of nodes i and j, directed otherwise. The184

non-edge set T ⊆ N × N is the complement of E, i.e., T = {〈i, j〉 : i ∈ N, j ∈ N ∧ 〈i, j〉 < E}.185

Given a graph G = 〈N, E〉, we say that a graph G′ = 〈N′, E′〉 is a subgraph of G if N′ ⊆ N and E′ ⊆ E.186

In this paper we consider only undirected graphs. A graph G is associated with an adjacency matrix A, whose187

entries are defined as follows: Ai j = 1 if and only if 〈i, j〉 ∈ E, 0 otherwise. The order of a graph G is the number188

n = |N | of its nodes and the size of G is defined as the number m = |E| of its edges. A graph with n nodes may contain189

at most
(

n
2

)
edges and it is said complete. The ratio δ = m

(n
2)

is known as graph density: if δ is O(n−1) we say that the190

graph is sparse, dense otherwise. We define the neighbour-set N(i) of i as the set of nodes connected to i and the191

degree di of i as di = |N(i)|. The average degree d of a graph G is defined as d = 1
n
∑n

i=1 di. We also define the local192

clustering coefficient (Watts & Strogatz, 1998) of G as follows:193

Definition 2 (Clustering Coefficient). Let G be a graph with non-edge set T . Let i ∈ N be a node in G with194

neighbour-set N(i). Let us define the set S (i) = {〈 j, k〉 : j ∈ N(i), k ∈ N(i), 〈 j, k〉 ∈ E}, i.e., S (i) contains pairs of195

nodes j and k which are both connected to i and which are connected through an edge.196

The local clustering coefficient lc(i) of i is defined as follows:197

lc(i) =
|S (i)|(

di
2

) (1)

The average clustering coefficient ac is defined as:198

ac =
1
|N |

∑
i∈N

lc(i) (2)
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Parameter GM GP

Number of Nodes |N | 101 100
Number of Edges |E| 256 124
Average Degree d 5.07 2.48
Density δ 0.051 0.025
Average Clustering Coefficient ac 0.656 0.105

Table 1: Statistics of GM and GP graphs.

The clustering coefficient lc(i) quantifies to which extent the neighbours of the node i tend to form a tie. It is199

of crucial importance in the study of criminal networks because, due to previous criminological studies (Berlusconi,200

2013; Agreste et al., 2016), we expect that criminals form dense clusters, thus implying large values of clustering201

coefficients.202

For our research purposes we are also interested in more complex structures, such as walks and paths, which are203

specified below:204

Definition 3 (Walks and Paths). Let G be a graph. A walk of length r − 1 in G is a sequence i0, i1, . . . , ir of nodes205

such that 〈ix, ix+1〉 ∈ E for each x ∈ {0, 1, . . . , r}. A walk with no-repeated nodes is called path.206

5. The Montagna Police Operation207

Our case study concerns the anti-mafia operation called “Montagna” concluded in 2007 by the Public Prosecutor’s208

Office of Messina (Sicily) and conducted by the R.O.S. (Reparto Operativo Speciale, or Special Operations Group,209

a specialized anti-mafia police unit of the Italian Carabinieri). The investigation, one of the most important of the210

period, focused on the Cosa Nostra groups known as “Mistretta” family (hereafter, clan A) and the “clan Batanesi”211

(hereafter, clan B).212

From 2003 to 2007, these families had infiltrated several economic activities including the public works in the213

area, through a cartel of entrepreneurs close to Cosa Nostra. The groups engaged in extortion racketeering and214

provided illegal protection to achieve illegal profits from the public construction works, with dynamics similar to215

those described by Gambetta (1993) and Gambetta & Reuter (1995). Furthermore, the investigation showed that the216

“Mistretta” family had taken on the role of mediator between the Cosa Nostra families of Palermo and Catania and the217

other criminal organizations around Messina. Indeed both the Mistretta and Batanesi families had close connections218

with other Cosa Nostra families located in the province of Messina, namely the “Barcellona” family (hereafter clan219

C), and the “Caltagirone” family (hereafter clan D). The charges were upheld by several trials and the majority of the220

individuals have been sentenced to long prison terms.221

The main data source is the pre-trial detention order by the Court of Messina’s preliminary investigation judge222

issued on March 14, 2007 towards the end of the investigation. The order concerned a total of 52 suspects, all charged223

with the crime of participation in a Mafia clan (Article 416 bis of the Italian Criminal Code) as well as other crimes224

(e.g., theft, extortion, damaging followed by arson). According to the Italian Criminal code, the affiliation to a Mafia225

clan carries a penalty of between ten and fifteen years of imprisonment. The Court ordered the pre-trial detention for226

38 individuals and provided detailed motivations for the decision in a document of more than two hundred pages with227

an important amount of information about the suspects’ crimes, activities, meetings, and calls.228

Most of the information from judicial documents were about clan A and clan B. From the analysis of legal docu-229

ments we built two graphs: a) the Meeting Graph GM , in which nodes are uniquely associated with suspected criminals230

and edges specify meetings among individuals b) the Phone Call Graph GP, in which nodes are uniquely associated231

with suspected criminals and edges records phone calls between pairs of individuals (Ficara et al., 2020).232

The GM graph had 101 nodes and 256 edges while GP had 100 nodes and it contained only 124 edges. There were233

47 individuals who jointly belonged to GM and GP; some statistics about GM and GP are displayed in Table 1.234

Nodes in GM and GP can take active roles in the criminal organization: for instance, some nodes correspond to235

individuals who can be classified as “boss” (i.e., leaders of the criminal organization) while others are classified as236

“picciotti” (i.e., soldiers of the organization). Of course, some individuals can have regular contacts with members of237
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Figure 1: Left Panel. A graphical representation of the GM graph. In GM , nodes which represent the members of the “Mistretta” family and the
“Batanesi” family are highlighted in violet and orange, respectively. Circled nodes correspond to the subjects investigated for having promoted,
organized and directed the Mafia association (leaders). The red and yellow circled nodes refer to bosses of Mafia families of other districts. The
white knots represent the other subjects considered to be: i) close to the association and ii) not classifiable in any of the previous categories, but
nevertheless useful for the purposes of the Mafia-type association and the realization of its plans. Right Panel. A graphical representation of the
GM graph. The color of nodes has the same meaning as in the GM . In both GM and GP, the width of the edges is proportional to the number of
meetings (or phone calls) and the size of the nodes to their degree.

a criminal organization (due, for instance, to kinship relations) but they are not involved in any criminal activity. To238

guarantee anonymity, we used the symbol Nx (being x an integer) to identify an individual in both GP and GM .239

In Figure 1 we graphically report the GM graph (left panel) and the GP graph (right panel): here the width of240

a node is proportional to its degree, while the width of an edge is proportional to the total number of meetings (or241

telephone calls) recorded between the nodes that edge connects. Members of the “Mistretta” and “Batanesi” families242

are colored in orange and purple, respectively.243

6. Link Prediction in Montagna244

In this section we consider the problem of predicting links in the GM and GP graphs.245

The link prediction problem (Liben-Nowell & Kleinberg, 2003) is defined as follows:246

Definition 4. Let G = 〈N, E〉 be an undirected graph and let G′ = 〈N, E′〉 be a subgraph of G which contains all247

nodes in G and a subset E′ ⊆ E of its edges. The link prediction problem consists of printing a list of non-edges in G′248

which are edges in G.249

We will call the set E′ as the training set and the set E − E′ as the test set.250

In practice, algorithms to solve the link prediction problem build a matrixΩ in which the entryΩi j = σi j specifies251

the degree of similarity between the nodes i and j; all pair of non edges 〈i, j〉 in G are thus ranked in decreasing order252

of similarity and non-edges with the largest similarity scores are the most likely to exist (Liben-Nowell & Kleinberg,253

2003).254

We can define many similarity scores to compute the similarity degree of two nodes in G. In what follows we255

first illustrate some of these similarity metrics and, thus, we analyse their accuracy in predicting edges in GM and GP.256

Methods to compute node similarity can be classified into local and global methods257

6.1. Local Methods to calculate node similarity258

A first class of methods to calculate node similarity in graphs is known as local methods (Liben-Nowell & Klein-259

berg, 2003; Leicht et al., 2006). because they only require the knowledge of the neighbours of two nodes i and j.260

Some of the most popular local methods are as follows:261

7



1. Jaccard Coefficient (JC) (Jaccard, 1912; Liben-Nowell & Kleinberg, 2003):262

JC(i, j) =
|N(i) ∩ N( j)|
|N(i) ∪ N( j)|

(3)

2. Common Neighbors (CN) (Newman, 2001; Liben-Nowell & Kleinberg, 2003):263

CN(i, j) = |N(i) ∩ N( j)| (4)

3. Preferential Attachment (PA) (Newman, 2001; Liben-Nowell & Kleinberg, 2003):264

PA(i, j) = di × d j (5)

4. Adamic-Adar coefficient (AA) (Adamic & Adar, 2003; Liben-Nowell & Kleinberg, 2003):265

AA(i, j) =
∑

x∈N(i)∩N( j)

1
log |N(x)|

(6)

6.2. Global Methods to calculate node similarity266

Observe that both the GM and GP graphs are highly sparse and, thus, we expect that the task of predicting edges267

is hard if we would rely only on local information.268

However, both GM and GP display a very high clustering coefficient (see Table 1), which is much higher than that269

we observe in other type of real-life social networks of roughly equal size. A large clustering coefficient implies that270

if two nodes i and j share at least one neighbour, then there is a high chance that i and j will be linked by an edge271

too. Therefore, methods to calculate node similarity which leverage higher order structures (e.g., as walks or paths)272

or, more in general, the full knowledge of the graph topology, might be more accurate than local methods in predicting273

edges.274

We will call these methods as global methods and one of the most popular global methods is the so called Katz275

score (Katz, 1953).276

The Katz score κ(i, j) associated with a pair of nodes i and j considers the whole ensemble of walks connecting277

i and j and it assumes that each walk provides a contribution to determine the degree of similarity between i and j.278

A core assumption in the calculation of κ(i, j) is that long walks are to be penalized with respect to short ones, which279

implies that two nodes are highly similar if they are connected by many short walks in G. To formally encode such a280

principle, we introduce a discount factor α and we denote wk(i, j) as the number of walks of length k = 0, 1, . . . , from281

i to j. The Katz coefficient score is then computed as follows:282

κ(i, j) = w0(i, j) + αw1(i, j) + α2w2(i, j) + . . . + αkwk(i, j) + . . . =

∞∑
k=0

αkwk(i, j) (7)

Observe that w0(i, j) = 1 if and only if nodes i and j coincide, 0 otherwise. If we let A be the adjacency matrix of283

G and suppose that α is less than 1
λ1

, λ1 being the largest eigenvalue of A1, then the Katz score between any pair of284

nodes in G can be seen as a matrix Kα, which can be computed as follows:285

Kα = (I − αA)−1 − I (8)

Here I is the identity matrix.286

In our analysis we consider also Node2Vec (Grover & Leskovec, 2016), a recent but promising approach for287

embedding graphs onto vectors. More specifically, given a graph G = 〈N, E〉, Node2Vec seeks at finding out a288

function f : N → Rk where k is a fixed constant and Rk is the set of k-th dimensional arrays of real numbers. The289

main requirement we impose on f is that if two nodes i and j are “close”in G, then their representations f (i) and290

1The parameter λ1 is also known as the spectral radius of A.
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f ( j) should be close in Rk too. To detect pairs of close nodes, Node2Vec simulates a random walk on G which can291

be thought as an interpolation of two popular procedures to explore a graph, namely the Breadth First Search (BFS)292

and the Depth First Search (DFS). More specifically, such a random walk is regulated by two parameters, namely293

the return parameter p (which specifies the likelihood the random walk will immediately revisiting a node) and the294

in-out parameter q: if q > 1, the random walk acts as a BFS because it tends to visit nodes which are close to the295

currently visited node; vice versa, if q < 1, the walk tends to move to nodes that are farther away from the current,296

thus simulating a DFS.297

After applying the Node2Vec algorithm, each node i is associated with a vector vi and the similarity of two nodes i298

and j is defined as the cosine similarity of vectors vi and v j.299

A further method to compute node similarity is the Personalized PageRank similarity score (PPR) (Avrachenkov300

et al., 2019), which, in matrix form, is defined as follow:301

PPRα = (I − αP)−1 (9)

The matrix P is a row-stochastic matrix defined as P = D−1A: here D is a diagonal matrix storing the degrees of302

nodes in G and, A is the adjacency matrix of G. Therefore, the sum of the elements within each row of P is 1 and we303

can interpret P as the transition probability of a random walk over G in which the random walker, at any step, chooses304

uniformly at random one of its neighbors.305

6.3. Simulation setup306

As a first step of our analysis, we compare local and global methods. Specifically, let σmet(i, j) be the similarity307

score between a pair of nodes i and j calculated by means the method met, where met is one of the methods previously308

introduced. Similarity scores generated by each method were normalized to range from 0 to 1. We claim that i and309

j are connected if and only if σmet(i, j) is bigger than a threshold θ and we negate the existence of that edge if310

σmet(i, j) < θ. In this way, we were able to map continuous similarity scores onto discrete labels (i.e., 0 and 1 to311

claim/negate the existence of an edge).312

We used two metrics to evaluate the level of association between a particular measure of similarity and the ex-313

istence of an edge: (i) the True Positive Rate (TPR) and (ii) the True Negative Rate (TNR). The TPR measures the314

proportion between the number of edges that a similarity measure claims exist and the real number of edges. The TNR315

is the proportion between the number of node pairs that according to a particular similarity measure are not connected316

and the actual number of pairs of nodes not connected. Space limitations preclude us from reporting the TPR and TNR317

of local methods for a broad range of values of θ. However, it is instructive to comment the configuration θ = 0.5:318

here we observe that the TPR of all local methods was around 0 and their TNR were close to 1. Such a result implies319

that local methods almost always negate the existence of an edge and, thus, due to the sparsity of GM and GP, their320

guesses are almost always exact. Of course, local methods fail to identify edges actually existing. The Katz and PPR321

scores, instead, work much better than local methods. Because of space limitations, in Figure 2 we plot only the TPR322

and TNR for Katz score as function of α; similar results hold true for PPR as function of α.323

The main conclusions we drew from our analysis are as follows: (i) An increase of α yields a decrease in TPR. (ii)324

The TNR achieved by the Katz score in GM and GP is generally very large (bigger than 0.99) even if slightly smaller325

that achieved by local methods. Specifically, Figure 2 (Left Panel) indicates the presence of a turning point α (with326

a ' 0.52 in case of the GM graph and a ' 0.44 in case of the GP graph) beyond which the TPR quickly drops. The Katz327

score thus perfectly addresses issues we highlighted above and, with a suitable choice of α, all highly-scored pair of328

nodes are actually tied by an edge. Such a result agrees fairly well with our model about information flow in criminal329

networks: criminal often do not communicate directly each other but they prefer to make use of intermediaries to330

convey messages, both in face-to-face meetings and in case of phone calls; however, the chain of intermediaries is331

generally very short for security reasons.332

6.4. Accuracy of Link Prediction Methods in Montagna333

As a further step of our analysis, we analyse the accuracy of the methods to calculate node similarity.334

We applied 10-fold cross validation to quantify the predictive accuracy of each previous predictor. Cross-validation335

is a procedure used to assess the accuracy of a Machine Learning algorithm which, in the latest years, gained an336

astonishing popularity (Hastie et al., 2009). The main reasons explaining the popularity of k-fold cross validation337
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Figure 2: Left Panel. True Positive Rate (TPR) associated with the Katz score as function of α on GM and GP graphs. Right Panel. True Negative
Rate (TNR) associated with the Katz score as function of α on GM and GP graphs.

are its simplicity as well as its ability of producing less optimistic accuracy assessment than methods based on the338

(random) division of a dataset into a training and a test part. In short, in the k-fold cross validation we randomly339

shuffle a datasetD and divide it into k groups, say, G1, . . . ,Gk; common choices for k are k = 5 and k = 10. For each340

group Gi, we take Gi as test dataset and we use the remaining G1,G2, . . . ,Gk groups as training set: in other words341

we use all groups G j (but Gi) to fit our model; once our model has been fitted, we evaluate its accuracy on Gi. Such a342

procedure is repeated for each group Gi and, consequently, any sample in the original dataset is used k − 1 times for343

training purposes and one time for testing purposes. At the end of evaluation procedure we obtain k values of accuracy344

(one for each group used as test set); we thus take the average of the accuracy scores on each group Gi as the accuracy345

of the algorithm to evaluate.346

The prediction accuracy is evaluated by a standard metric, the Area Under the Receiving Operating Curve (AU-347

ROC) 2. We repeated the calculation of AUROC n = 50 times, thus generating a sample of the true AUROC scores.348

We then calculated the empirical mean m and the empirical standard deviation s of the sample above; if we denote as349

µ the true AUROC, it is well-known that the random variable t =
√

n(m−µ)
s follows a t-student distribution with n − 1350

degrees of freedom (Ross, 2017). We then calculated the value of A for which P(−A ≤ t ≤ A) = 0.95 and we take the351

interval
(
m − A s

√
n ,m + A s

√
n

)
as the 95% confidence interval associated with the true AUROC score.352

In Table 2 we report the confidence intervals (CI) associated with AUROC for AA, CN, PA, JC, Node2Vec, Katz353

and PPR methods on GM and GP graphs. We report the AUROC 95% confidence intervals for the Katz and PPR354

methods. Moreover, we considered some specified values of the parameter α (namely α = 0.1, 0.3, 0.5, 0.7 and 0.9)355

and we investigated how the α parameter affected the AUROC.356

In case of GM graph, the AUROC is generally very high for all methods under investigation and the worst-357

performing method is PA. The Katz score and the PPR score generally outperform but their AUROC tends to slightly358

decrease as α increases: for instance, if α > 0.7 the AUROC achieved by Katz score ranges from 0.893 to 0.918 while359

the AUROC measured for PPR ranges between 0.922 and 0.94. The JC, CN and AA methods achieve an AUROC360

which is slightly smaller than that of the Katz and the PPR score. In contrast, PA displays the worst performance and361

its AUROC is 17.51% less than that of AA and 17.25% smaller than that of JC.362

On the GP network, instead, the PA method achieves the highest AUROC and the performances of all other363

methods significantly deteriorate. For instance, the AA method achieves an AUROC ranging from 0.602 to 0.643,364

with a loss of more than 30% with respect to the GM graph.365

We are therefore able to answer research questions Q1 and Q2. As for Q1, we observe a few methods introduced366

in this paper are very and they achieve an AUROC, which, in some cases, is higher than 0.9.367

2The AUROC is understood as the probability that a randomly chosen edge in the test set gets a higher score than a randomly chosen non-edge.
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Method CI
Name α GM GP

JC (0.917, 0.938) (0.57, 0.623)
CN (0.938, 0.953) (0.595, 0.634)
PA (0.754, 0.789) (0.872, 0.913)
AA (0.939, 0.957) (0.602, 0.643)

Node2Vec (0.899, 0.919) (0.577, 0.646)

K

0.1 (0.946, 0.959) (0.706, 0.753)
0.3 (0.95, 0.965) (0.711, 0.772)
0.5 (0.939, 0.955) (0.701, 0.754)
0.7 (0.927, 0.946) (0.73, 0.778)
0.9 (0.927, 0.946) (0.696, 0.748)

PPR

0.1 (0.939, 0.956) (0.66, 0.724)
0.3 (0.954, 0.968) (0.696, 0.752)
0.5 (0.942, 0.958) (0.698, 0.747)
0.7 (0.939, 0.955) (0.687, 0.743)
0.9 (0.922, 0.94) (0.688, 0.75)

Table 2: AUROC Confidence Intervals for the AA, CN, PA, JC, Node2Vec, Katz Coefficient and PPR methods computed on the GM and GP graphs.

As for Q2, we report that graph topology actually plays an important role on the process of predicting edges:368

specifically, methods which are very accurate on GM performs badly on GP (and vice versa). In detail if a graph is369

poorly connected (with a low edge density and a small clustering coefficient) local methods are to be preferred to370

global ones. Vice versa, global methods as the Katz score achieve their best accuracy on graphs which display a better371

level of connectivity (i.e. in graph with larger edge density and clustering coefficients).372

7. Robustness of the Link Prediction algorithms373

In this section we aim at answering our research question Q3. We recall that both GM and GP are built upon the374

evidence collected by police forces and, therefore, they are an incomplete sample of true graphs G′M and G′P. An375

important discrepancy between GM and G′M (resp., GP and G′P) might significantly alter the conclusions we can draw376

from the analysis of GM (resp. GP) and, in particular, it might severely alter our ability of predicting edges between377

criminals.378

We run our analysis in parallel for the two networks GM and GP and rely on the methods achieving the highest379

prediction accuracy in the analysis of the previous section: for GM , we concentrate on the Katz score with different380

levels of parameter α; for GP, we focus on PA.3 Let us consider the GM graph and our aim is to quantify the difference381

between Kα(GM) and Kα(G′M) At an aggregate level, we introduce the parameter ρα(GM ,G′M) to quantify such a382

difference:383

ρα(GM ,G′M) =
||Kα(GM) − Kα(G′M)||2

||Kα(GM)||2
(10)

Equation 10 can be applied to graphs GP and G′P and method PA, which yielded the highest prediction accuracy in384

the telephone call network. However, the equation is unapplicable in practice because we do not know the true graphs385

G′M and G′P. We can overcome this issue by assuming that missing edges – i.e., those edges in G′M (resp., G′P) but not386

observed in GM (resp., GP) – have been generated using a suitable probabilistic model.387

Our probabilistic model assumes that non-observed edges in G′M (resp. G′P) are non-edges in GM (resp., GP); each388

non-edge in GM (resp., GP) is associated with a parameter `, called likelihood, such that the higher the likelihood, the389

3For GM , we have also run our analysis in the case of PPR score with similar results. Due to space limitations we report only results in case of
the Katz score.
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p CN JC Random
1.0 0.134 0.107 0.121
5.0 0.157 0.174 0.179
10.0 0.232 0.235 0.201
15.0 0.291 0.296 0.233

Table 3: ρ as function of p, percentage of added edges, in the GP graph.

more likely a non-edge in GM (resp., GP) will correspond to an edge in G′M (resp., G′P). If the likelihood ` is specified,390

we can select non-edges from GM (resp., GP) on the basis of their likelihood and we can incrementally insert them391

into GM (resp., GP) until a pre-defined stop condition is satisfied. At the end of this procedure we obtain G′M (resp.,392

G′P).393

We considered multiple strategies to model the likelihood `, namely: (i) Common Neighbors (see Equation 4),394

(ii) Jaccard’s Coefficient (see Equation 3), and (iii) a Random model, a baseline where ` is distributed as a uniform395

random variable in the interval [0, 1].396

The model above resemble network-growth models (Newman, 2010) which describe the creation/evolution of a397

network (for example, a mechanism similar to the preferential attachment is at the base of the generation of Barabasi-398

Albert networks). However, in network-growth models we assume that new nodes arrive and join the network and the399

last node can decide which other nodes to connect to. In contrast, in our model, there are no new nodes that can be400

added to the network: this is equivalent to the simplifying hypothesis that the network is perfectly observable about401

what concerns the subjects in it (that is, the investigation has not excluded any criminal subject) and the possible lack402

of information only concerns the relations observed by the investigators.403

Our experimental protocol consists of the following steps:404

405

Step 1 Let T be the list of non-edges in GM (resp., GP) sorted by decreasing likelihood scores. We took 50% of406

the top elements in T , i.e., we chose half of the non-edges that have the highest likelihood. This step is407

necessary to create a group of potential non-edges that is sufficiently large but, at the same time, which is408

reliable enough because non-edges with low values of likelihood are filtered out. We call C ⊆ T the set of the409

non-edges generated at the end of Step 1.410

Step 2 We randomly choose a sample of R(p) ⊆ C with size equal to p from C. In our experiments, we set p =411

{1%, 5%, 10%, 15%}. Of course, the larger p, the higher the number of missing edges.412

Step 3 We add elements in R(p) to GM (resp., GP), thus creating a new graph G′M(p) = 〈N, E∪R(p)〉 (resp., G′P(p) =413

〈N, E ∪ R(p)〉).414

Step 4 We calculate the relative variation ρ using Equation 10, where the graph G′M (resp., G′P) is replaced by G′M(p)415

(resp, G′P(p)) .416

417

Steps 2-4 have been repeated 30 times to avoid statistical fluctuations. The results are shown in Figure 3 for GM ,418

and in Table 3 and in Figure 4 for GP.419

As for the meeting network, the Random strategy clearly induces the highest values of ρ for any value of α and p.420

This is a largely predictable result: if the probability of the existence of a non-edge follows one of the other strategies421

(i.e., JC and CN), then the network structure is somehow able to predict the existence of missing edges. On the other422

hand, if edges were randomly placed, the network structure would not offer any insight to predict the existence of423

missing edges and, thus, the parameter ρ significantly grows: for instance, it suffices to set p = 5% and α = 0.2 to424

obtain ρ ' 1.425

The growth of α implies a growth of ρ for the Random strategy. For CN, ρ is relatively stable, only slightly426

increasing for higher values of α. A limit case happens when we decide to adopt JC as the likelihood function: in this427

case, the result is anti-intuitive because when α increases, a reduction of ρ occurs (with peaks up to 18%). In practice,428

if α → 1, the contribution of relatively long walks is not-negligible, and, thus, long walks are capable of contrasting429
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Figure 3: Variation of ρ as function of α in the GM graph for p = 1% (Top Left), 5% (Top Right), 10% (Bottom Left), 15% (Bottom Right).
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Figure 4: ρ as function of p, percentage of added edges, in the GP graph.

high level of uncertainty associated with larger values of p. For a fixed α, the parameter p plays a key role on the430

value of ρ and, obviously, the higher p, the higher ρ.431

We obtained totally different results in the GP graph. The Random and JC likelihood functions are the only432

strategies that generate the highest value of ρ and there is a crossover point α in the JC likelihood beyond which we433

observe a variation of ρ greater than that detected in the random generative model. The variations of ρ in the CN434

generative model become almost imperceptible if α gets larger than 0.1, and, thus, CN seems an unhappy choice to435

analyse telephone conversation flows. The trend of ρ is relatively little affected by p if p < 15%; however, if p > 15%436

the value of ρ in all the generative models analysed undergoes significant changes.437

We are now in the position of answer Q3: link prediction algorithms are sensitive not only to uncertainty in GM438

and GP (captured by the parameter p) but also on the type of graph they operate on. If the amount of uncertainty439

is relatively small and non-observed edges derive from a specified generative model, we can hope for robust edge440

prediction. This is confirmed by the results in GM , where both CN and JC generate lower values of ρ than the Random441

strategy for different combination of of p and α. Conversely, there is no clear indication from GP, suggesting that the442

network growth does not follow a specific strategy. We can thus conclude that the robustess of link prediction is not443

only dependent on the amount of uncertainty (i.e. p) but also on type of network and underlying relations. In the light444

of our studies, we recommend law enforcement agencies not only to build a detailed map of connections between445

criminals but also to investigate how such a map evolves over time: in this way we would be able to determine which446

of the likelihood functions described in this section better fit experimental observations and, if required, we could447

design more sophisticated likelihood functions to help law enforcement agencies to detect and prevent crimes.448

8. Conclusions and Future Works449

We presented a study of two criminal networks extracted from the outcome of an anti-mafia law enforcement oper-450

ation called “Montagna” against individuals charged for participating in a mafia association. This study is interesting451

per se as the pre-trial detention order from which the networks under study have been extracted, namely the network452

of meetings and phone calls, concerns the birth and growth of a branch of Sicilian Cosa Nostra in the North-Eastern453

part of Sicily, a territory historically under the control of the Palermo and Catania families.454

We first applied some of the most widely used similarity criteria to both networks in order to perform link predic-455

tion. The most accurate results were obtained by applying the Katz score, and our experimental finding confirm that456

the predictions heavily rely upon short-range interactions. This is consistent with the structure of Mafia families and457

the average clustering coefficient of the two networks under study.458

Next, we investigated on the robustness of link prediction algorithms in presence of network uncertainties. To this459

end, we carried out an experiment in which the observed networks were regarded as the starting point of a growing460
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mechanism during which some missing edges were added. The impact of non-observed edges was measured in terms461

of the difference of the Katz scores.462

Our experiment shows that the Meeting Graph GM slightly differs from graphs in which up to 15% of new edges463

were added. On the contrary, the Phone Call Graph GP exhibits strong differences between the observed and the new464

graphs. This may induce to ask whether the information relative to this network may actually be incomplete and may465

need some more edges which were neglected during the investigations.466

Even more interestingly, the experiments we carried out clearly show that metrics of accuracy, the most widely467

used measures able to assess the quality of a link prediction method, should be integrated with a new measure, the468

stability, which takes into account the extent with which the insertion of unobserved edges modifies the network.469

As for future work, we plan to apply network embedding methods to better analyse criminal networks. For our470

purposes, we need to resort to approaches capable of handling heterogeneous networks (Li & Tang, 2019), i.e. graphs471

in which nodes and edges carry specific information (e.g., nodes may be labelled with the role of an individual in a472

criminal group while edges specify the type of interaction between two criminals). We also plan to consider temporal473

information in the link prediction task, as described by Soares & Prudencio (2013).474
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