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A review of fuzzy AHP methods for decision-making with subjective 

judgements 

Abstract: Analytic Hierarchy Process (AHP) is a broadly applied multi-criteria decision-

making method to determine the weights of criteria and priorities of alternatives in a structured 

manner based on pairwise comparison. As subjective judgments during comparison might be 

imprecise, fuzzy sets have been combined with AHP. This is referred to as fuzzy AHP or 

FAHP. An increasing amount of papers are published which describe different ways to 

derive the weights/priorities from a fuzzy comparison matrix, but seldomly set out the relative 

benefits of each approach so that the choice of the approach seems arbitrary. A review of 

various fuzzy AHP techniques is required to guide both academic and industrial experts to 

choose suitable techniques for a specific practical context. This paper reviews the literature 

published since 2008 where fuzzy AHP is applied to decision-making problems in industry, 

particularly the various selection problems. The techniques are categorised by the four aspects 

of developing a fuzzy AHP model: (i) representation of the relative importance for pairwise 

comparison, (ii) aggregation of fuzzy sets for group decisions and weights/priorities, (iii) 

defuzzification of a fuzzy set to a crisp value for final comparison, and (iv) consistency 

measurement of the judgements. These techniques are discussed in terms of their 

underlying principles, origins, strengths and weakness. Summary tables and specification 

charts are provided to guide the selection of suitable techniques. Tips for building a fuzzy 

AHP model are also included and six open questions are posed for future work.  

Keywords: fuzzy Analytic Hierarchy Process; fuzzy set; multi-criteria decision-making; 

subjective judgement; selection problem 

Glossary 

AHP Analytic Hierarchy Process 

ANP Analytic Network Process  

CFCS Converting the Fuzzy data into Crisp Scores 

COA Centre of Area 

COG Centre of Gravity 

CI Consistency Index 

CR Consistency Ratio 

DEA Data Envelopment Analysis 

EAM Extent Analysis Method 

ELECTRE  ELimination Et Choix Traduisant la REalité 

FAHP Fuzzy Analytic Hierarchy Process 
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FP Fuzzy Programming 

GA Genetic Algorithm 

GCI Geometric Consistency Index 

GP Goal programming 

IFWA  Intuitionistic Fuzzy Weighted Averaging 

LP Linear programming 

MCDM Multi-Criteria Decision-Making 

MOORA Multi-Objective Optimisation by Ratio Analysis 

MP Mathematical Programming 

PROMETHEE Preference Ranking Organization METHod for Enrichment of 

Evaluations 

RI Radom Index 

TFN Triangular Fuzzy Number 

TraFN Trapezoidal Fuzzy Number 

TOPSIS Technique for Order of Preference by Similarity to Ideal Solution 

1. Introduction

In many professional situations, experts are confronted with a given set of alternatives that they 

need to choose from, for example when selecting a supplier or a technology. This type of 

decision-making problem is intuitive when considering a single criterion, since experts can 

choose the alternative of the highest preference. It becomes complicated when there are 

multiple criteria. These criteria are often not of equal importance and the alternatives have very 

varied performance. Formal methods are needed to ensure a structured means of making 

decisions. Many methods are available such as Analytic Hierarchy Process (AHP), Technique 

for Order of Preference by Similarity to Ideal Solution (TOPSIS) and Data Envelopment 

Analysis (DEA) (see Chai et al. (2013), Karsak and Dursun (2016) and Zimmer et al. (2016) 

for an overview of available decision-making methods). Among them, AHP proposed by Saaty 

(1980) has been applied extensively to evaluate complex multi-criteria alternatives in a number 

of fields (Subramanian & Ramanathan, 2012; Emrouznejad & Marra, 2017). It outperforms by 

ease of use, structuring problems systematically and calculating both criteria weights and 

alternative priorities. As a popular methodology for handling imprecision, fuzzy sets proposed 

by Zadeh (1965) are combined with AHP, namely fuzzy AHP or FAHP. This integrated method 

maintains the advantage of AHP and has been widely applied (Mardani et al., 2015). The 

procedure of building a fuzzy AHP model follows establishing the comparison matrix, 

aggregating multiple judgements, measuring the consistency and defuzzifying the fuzzy 

weights. Various techniques exist for each aspect. However, Little research has examined fuzzy 
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AHP in terms of these aspects and set out the relative benefits of the techniques. This paper 

reviews the techniques regarding these four aspects, aiming to guide both academics and 

industrial experts to choose suitable techniques according to their practical context. 

AHP structures a problem in a hierarchical way, descending from a goal to criteria, sub-

criteria and alternatives in successive levels (Saaty, 1990). The hierarchy provides the experts 

with an overall view of the complex relationships inherent in the context; and helps them 

to assess whether the elements of the same level are comparable. Elements are then pairwise 

compared according to 9 level-scales to derive their weights. However, pairwise comparison, 

the essence of AHP, introduces imprecision because it requires the judgements of experts. In 

practical cases, experts might not be able to assign exact numerical values to their preferences 

due to limited information or capability (Chan & Kumar, 2007; Xu & Liao, 2014).  

To handle the imprecision in AHP, exact numbers are replaced with fuzzy numbers 

representing the linguistic expressions in fuzzy AHP. This tolerates the vague judgements by 

assigning membership degrees to exact numbers to describe to what extent these numbers 

belong to an expression. However, introducing fuzzy sets to AHP makes the calculation 

process less straightforward because different fuzzy sets exist and the associated operations 

are complex. The techniques for AHP such as eigenvector method and geometric mean 

cannot directly be used to derive the weights/priorities from a fuzzy comparison matrix. 

Many techniques for building a fuzzy AHP model have been proposed. They vary in terms of 

essential features, strengths and weakness. To the best of our knowledge, limited research has 

reviewed fuzzy AHP except Kubler et al. (2016) who discuss the application areas. 

The earliest reference that we have found dates from 1983 (Van Laarhoven & Pedrycz, 1983). 

Now, fuzzy AHP has become a popular fuzzy multi-criteria decision-making (MCDM) 

method (Kubler et al., 2016). It is applied in various industries, for example airline retail 

(Rezaei et al., 2014), agriculture (Hashemian et al., 2014; Liu et al., 2019), automobile 

(Büyüközkan & Güleryüz, 2016; Zimmer et al., 2017), logistics (Yayla et al., 2015), 

manufacturing (Kar, 2014; Ayhan & Kilic, 2015), maritime (Celik & Akyuz, 2018), pharmacy 

(Alinezad et al., 2013) and service (Khorasani, 2018), and to solve various problems, for 

example location selection (Erbas et al., 2018; Singh et al., 2018), machine selection (Nguyen 

et al., 2015; Parameshwaran et al., 2015), supplier selection (Akkaya et al., 2015; 

Shakourloo et al., 2016; Kumar et al., 2017; Awasthi et al., 2018), technique selection 

(Budak & Ustundag, 2015; Naderzadeh et al., 2017; Balusa & Gorai, 2018), sustainability 

management (Calabrese et al., 2016; 2019), business 
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impacts assessment (Lee et al., 2015), risk analysis (Mangla et al., 2015), intellectual capital 

assets management (Calabrese et al., 2013) and teaching performance evaluation (Chen et al., 

2015). These decision problems all deal with the assessment and prioritisation of the 

alternatives which could be physical entities (e.g. machines, suppliers and locations) or 

abstract items (e.g. business impact indicators and risk factors). The results are used for 

selection if a preferred solution is required. The fuzzy AHP models built for the assessment 

problem in one field are applicable to other fields. This review paper is based on a 

systematic search of literature published since 2008 where fuzzy AHP is applied to the 

decision-making problems in industry. Our research originates from supplier selection and 

then branches out to other topics such as machine selection, location selection, ERP system 

selection, project selection and technology selection. 

The rest of paper is organised as follows. Section 2 explains the principle of fuzzy AHP method. 

Section 3 shows the research methodology of this study. There are four important aspects to 

develop a fuzzy AHP model, which are explained in Sections 4 to 7. 

⚫ Section 4 explains how different fuzzy numbers, as a special type of fuzzy set, can be

defined for judgement representations when establishing the comparison matrix.

⚫ Section 5 discusses how these fuzzy numbers are aggregated for group decisions and

for deriving the weights.

⚫ Section 6 identifies the defuzzification method to obtain a crisp value from a fuzzy

value for intuitive comparison.

⚫ Section 7 examines the consistency measurement which is an important way to ensure

valid pairwise judgements.

To help readers extract quick information, the reviewed techniques are summarised in 

graphical and tabular forms. Discussions and insights are provided at the end of each section 

for choosing appropriate techniques. We also point out mistakes in few papers and indicate 

possible corrections, along with the review. Section 8 concludes this study with open 

questions for future research and a general guidance for building a fuzzy AHP model.  

2. Principle of fuzzy AHP

The development of a fuzzy AHP model overall follows the process to develop an AHP 

model as illustrated in Figure 1. The white and the light grey boxes show the common steps 

between AHP and fuzzy AHP but different techniques are applied in the steps of light grey 

boxes. The 
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dark grey box is the step in fuzzy AHP but not in AHP.  We illustrate the process with supplier 

selection using a special type of fuzzy set, triangular fuzzy number. 

Figure 1. The calculation process of fuzzy AHP using triangular fuzzy numbers 

Structure the problem: The problem is decomposed in a hierarchy, which includes goal 

(‘select best suppliers’ in Figure 1), criteria/sub-criteria (Criterion 1 to Criterion 3) and 

alternatives (Supplier 1 to Supplier 3). 

Establish the fuzzy pairwise comparison matrix: Let


=F cij[ ]n n be the matrix for n criteria 

against the goal. ijc  is a fuzzy set representing the relative importance of criterion i over j. Its 

reciprocal, 1/ ijc , is equal to the relative importance of criterion j over i, jic . For example, the 

triangular fuzzy number (2,3,4) in the judgement table of expert 1 is the relative importance of 

criterion 1 over criterion 2 and thus (1/4,1/3,1/2) is that of criterion 2 over criterion 1. Replacing 

crisp values with fuzzy sets is the fundamental difference between fuzzy AHP and AHP. It 

results in that the techniques to derive weights/priorities in AHP cannot directly be used. 

Several fuzzy sets are applicable to establish the comparison matrix as explained in section 4.  
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Synthesise the judgements: if there are multiple experts, their opinions will be aggregated. 

As illustrated in Figure 1, it takes place either before or after calculating the fuzzy weights, 

i.e. synthesising the pairwise comparisons (as labelled by ① in Figure 1) or the fuzzy weights 

(as labelled by ②). In the example, the relative importance of criterion 1 over criterion 2 

from the two experts are different, i.e. (2, 3, 4) and (1, 2, 3). They are aggregated first. The 

techniques are examined in section 5. 

Calculate the fuzzy weights of the criteria: This step aggregates multiple fuzzy sets in the 

matrix into a single fuzzy set. Some aggregation methods in the previous step are applicable. 

Specialised methods are presented in section 5.    

Defuzzify the fuzzy weights: This is an extra step compared with AHP which maps a fuzzy 

set (i.e. fuzzy weight) to a crisp value (i.e. crisp weight) for further comparison. Fuzzy sets 

are difficult to compare directly because they are partially ordered rather than the linear or 

strictly ordered crisp values. Section 6 identifies the most prevalent defuzzification methods. 

Check the consistency: Without this step, weights can still be obtained, and thus it is 

overlooked by some research. However, it is necessary to measure the fuzzy 

pairwise comparison matrix for the consistency. Suppose that criterion 1 is more important 

than criterion 2 and much more important than criterion 3. Logically, criterion 2 is more 

important than criterion 3. If the expert judges criterion 2 less important than criterion 3, then 

the judgements between criteria 1, 2 and 3 are in conflict. This step takes place after the 

comparison matrix is established (either the one from an individual expert or the 

aggregated one from multiple experts). The matrix is considered consistent if the 

contradictions among the pairwise comparisons are within a predefined threshold, 

namely consistency ratio. Otherwise, the experts need to re-compare the criteria. The 

discussion is in section 7. 

The calculations of the sub-criteria weights and the alternative priorities follow the 

same process as described above. The calculated weights of sub-criteria are ‘local weights’, 

which are transformed to ‘global weights’ by multiplying with the weight of their parent 

criterion. For ease of explanation, we use ‘weight’ for ‘global weight’. The overall priority of 

alternative Si is the aggregation of its priorities under all the criteria/sub-criteria. wj is 

the weight of criterion/sub-criterion j; pj
Si is the priority of Si under criterion j; n is the 

number of criteria/sub-criteria. 

1

Priority
n

Si

Si j j

j

w p
=

=  (1)
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The overall calculation process in Figure 1 reveals the four important aspects in developing a 

fuzzy AHP model: (1) representation of judgements for pairwise comparison to establish the 

matrix, (2) aggregation of fuzzy sets for group decisions and criteria weights, (3) 

defuzzification of a fuzzy set for further comparison and (4) consistency measurement 

for limited contradiction, which will be addressed in turn. 

3. Research methodology

This research was carried out in two stages as shown in Figure 2. In the first stage, we chose 

‘supplier selection’ as the primary investigation topic. Fuzzy AHP is a generic decision-

making method, applicable to most problems. Supplier selection is a typical and 

representative decision-making problem, involving prioritisation, assessment and ranking. It 

has a mixture of subjective and objective criteria and brings out many situations for 

which fuzzy AHP is required. As listed in Table A.9, it has been applied in a number of 

industries. Therefore, supplier selection is a potential target for many of the techniques. It is 

also a topic where fuzzy AHP has been most commonly used, according to the numbers of 

the reviewed articles. This corresponds to the survey result of Kubler et al. (2016). We 

selected 57 articles to analyse the methodological development of fuzzy AHP in terms of the 

four aspects. Under each aspect, the identified techniques were further categorised 

according to their properties (cf. fishbone diagram in Figure 2).  Each part of the fishbone 

diagram is presented in details in the following sections (cf. Figure 4, Figure 12, Figure 15 

and Figure 18).  

In the second stage, the study branched out to other domains to cover more techniques under 

the categorisations defined in the first stage, and included literature on machine 

selection, location selection, ERP system selection, project selection and technology 

selection. The topics were selected according to the number of articles using fuzzy AHP in 

the review paper by Kubler et al. (2016) and complemented by other important topics 

in industry including evaluation, management and diagnosis. Compared with supplier 

selection, fewer articles apply fuzzy AHP to rank the alternatives. Almost all the techniques 

in the selected 52 articles are covered by the review results of the first stage except the 

defuzzificaiton method proposed by Opricovic and Tzeng (2003), which is problematic as 

discussed in section 6.1.3. In addition, Mirhedayatian et al. (2013) propose a different 

fuzzy programming model to calculate the weights and measure the consistency for 

selecting the best tunnel ventilation system. 
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Figure 2. Research framework 

The study targeted journals in four main library databases, i.e. ScienceDirect, Springer, 

Taylor & Francis and EBSCOhost. Some of the journals cited in this review are Applied 

Mathematical Modelling, Applied soft computing, Computers & Industrial Engineering, 

Energy, European Journal of Operational Research, Expert Systems with Applications, 

International Journal of Production Economics, International Journal of Production Research 

and Journal of Intelligent & Fuzzy Systems. Articles were searched with keywords ‘FAHP/

Fuzzy AHP/Fuzzy Analytic Hierarchy Process’. They were screened according to three 

criteria: 
⚫ it was published after 2008;

⚫ fuzzy AHP is used partially (for criteria weights) or completely (for both criteria

weights and alternative priorities) in the evaluation process;

⚫ it presents clearly how fuzzy AHP is developed or applied.

In total, 109 articles were selected. Figure 3 shows the distribution of these articles across the 

journals (the number of the selected articles is presented after the journal name). During the 

review, the original papers and highly cited papers were also looked back. 
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( )x

Figure 3. Journal distribution 

Table A.9 and Table A.10 in the appendix summarise the literature on supplier selection and 

the other topics respectively. The column of ‘With methods’ shows the methods fuzzy AHP 

is combined with, if there are any. The rest of the tables follows the structure of this paper. 

‘-’ means ‘not applicable’. 

4. Representation for pairwise comparison

It is the fundamental step of building a fuzzy AHP model to establish the pairwise 

comparison matrix with the expert’s judgement. Linguistic terms describe the relative 

importance of a criterion or an alternative over another (e.g. ‘equally preferred’, ‘fairly 

strongly preferred’ and ‘absolutely preferred’). In fuzzy AHP, such a term is represented by a 

fuzzy set which consists of two components, a set of elements x and an associated 

membership function  (Klir & Yuan, 1995). The membership function assigns to each 

element a value between 0 and 1 as its membership degree to the set. The mappings between 

the fuzzy set and the linguistic term must conform to a scale so that the same judgement 

produces the same measurable value. Such a scale is called fuzzy scale. Figure 4 outlines 

the structure of this section. Different types of fuzzy sets are explained by referring to the 

application context.  
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2

2

A ( , , )l m h

Figure 4.  Categorisation of the judgement representations 

4.1 Type-1 fuzzy set 

The fuzzy set described by a set of elements and crisp values as their membership degrees is 

called type-1 fuzzy set. A crisp number can be fuzzified. For example, 2 is definitely close to 

itself, so its membership degree to ‘approximate 2’ is 1. If 1.5 is considered neither close nor 

far to 2, 0.5 can be assigned as its membership degree to ‘approximate 2’. A series of such 

numbers with their membership degrees compose a fuzzy set ‘approximate 2’, denoted as . 

Let 2 describe ‘moderate importance’ of one criterion over another in AHP. In fuzzy AHP  

replaces 2. Including a series of numbers addresses the problems that experts in some cases 

are unable to assign an exact number to the judgement. Their memberships indicate to what 

extent the experts are sure about the numbers to be used for the judgemnt. Mathematically, a 

fuzzy number is a convex normalised fuzzy set of the real line such that its associate 

membership function is piecewise continuous (Zimmermann, 2001). Because complicated 

fuzzy numbers may cause important difficulties in data processing such as hard to define 

arithmetic operations, several simple and representative fuzzy numbers have been 

proposed (Yeh, 2008; Ban & Coroianu, 2012; Yeh, 2017). Triangular fuzzy number 

(TFN) and trapezoidal fuzzy number (TraFN) are two kinds of such fuzzy numbers that have 

been well studied.  

TFN is the mostly popular means of judgement representation in the reviewed articles (99 out 

of the 109 articles, i.e. 91%). A TFN can be expressed as a triple  where l and h 

are the smallest and the largest values with the smallest membership respectively and m is the 

value 
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with the largest membership. The membership function of a TFN is defined as follows and 

illustrated in Figure 5 (a). 

( ) ( ),  
( )

( ) ( ),  m

x l m l l x m
x

h x h m x h


− −  
= 

− −  
(2) 

Figure 5. (a) A TFN, A ; (b) α-cut of a TFN, A

The α-cut set of a fuzzy set A , denoted as A , is a crisp value set containing all the elements 

with membership degrees greater than or equal to the specified value of α: 

{ | ( ) }A x x  =  (3) 

The α-cut set of a TFN can be represented as an interval, i.e. [ ( ) , ( ) ]A l m l h h m  = + − − −  

shown in Figure 5 (b). It helps defuzzify a TFN. 

TFN is useful when the expert is definitive about a single point representing the total 

belongingness. For example, if 30℃ is considered as a definitely high temperature, slightly 

below it is hot but not so hot and above it is also hot but too hot, then TFN describes this 

judgement (i.e. m = 30℃). But if the expert is certain within an interval, such as any 

temperature between 28 to 32 ℃ is considered as a definitely high temperature while below 

28 ℃ is hot but not so hot and above 32 ℃ is also hot but too hot, then TraFN is needed. It is 

characterised by a quadruple (l, ml, mh, h) as shown in Figure 6. In the example, ml = 28℃ and 

mh = 32℃. When ml = mh, a TraFN reduces to a TFN. Sometimes, there is a mixed use of TFN 

and TraFN, for example, Aydin and Kahraman (2010). 

Figure 6. A trapezoidal fuzzy number 
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4.2 Type-2 fuzzy set 

The membership space of type-1 fuzzy set is assumed to be the space of real numbers. A natural 

extension is the definition of type-2 fuzzy set whose membership values are type-1 fuzzy sets 

rather than real numbers (Zimmermann, 2001). Type-2 fuzzy set captures more imprecision 

because it expresses the imprecision on both the elements and their memberships. It helps when 

the expert is not sure about the membership of an element to a set. A type-2 fuzzy set A  in the 

universe set X is defined as follows (Mendel & John, 2002):  

( ) ( , ), ( , ) | , [0,1],0 ( , ) 1xA x u x u x X u J x u =        (4) 

where x is the element, u is a primary membership degree of x and Jx is the value set of u under 

x. ( , )x u is called the secondary membership function, which is a type-1 fuzzy set. Figure 7 

depicts ( , )x u for x and u where X =  (1, 2, 3, 4, 5) and U = {0, 0.2, 0.4, 0.6, 0.8}. Each of the 

rods represents ( , )x u  at a specific pair (x, u). For example, the length of the rod for (2, 0) is 

0.5 in Figure 7, which means μ(2, 0) = 0. J1 = J2 =J4 =J5 = {0, 0.2, 0.4, 0.6, 0.8} and J3 = 

{0.6, 0.8}. An example of the secondary membership function at x = 2 is: 

(2, ) {(2,0),0.5;(2,0.2),0.35;(2,0.4),0.35;(2,0.6),0.2;(2,0.8),0.5}u =   

The union of the five secondary membership functions at x = 1, 2, 3, 4, 5 is ( , )x u of the set. 

Figure 7. Example of a type-2 membership function, adapted from (Mendel & John, 2002) 

In the above example, the complexity of operations is acceptable because it is a small discrete 

set where the elements are finite. For a continuous set, the computation becomes extremely 

difficult and even its literal description is problematic. Take for example the continuous type-

2 fuzzy set defined on [1, 5] in Figure 8 (a). The shadow illustrates the membership function 

μ(x,u) which is hardly described in formulas. But in the case of all μ(x,u) = 1, this 3-dimensional 

set becomes a 2-dimensional set on axes x and u as shown in Figure 8 (b), the complexity of 
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which reduces greatly. This special type-2 fuzzy set is called interval type-2 fuzzy set. It is the 

most widely used type-2 fuzzy set because this special kind is relative simple and it is also very 

difficult to justify the use of any other kind (Mendel & John, 2002). 

Figure 8. Example of continuous type-2 fuzzy set with: (a) ( , ) 1x u   and (b) all μ(x,u) = 1 

The interval type-2 fuzzy set can be further distinguished by the shapes of the membership 

functions, such as triangular and trapezoidal. The adoption of trapezoidal interval type-2 fuzzy 

set has been found in the reviewed articles of Görener et al. (2017) and Celik and Akyuz (2018). 

As shown in Figure 9, a trapezoidal interval type-2 fuzzy set can be characterised by the 

reference points and the heights of its upper and the lower membership functions. The reference 

points are the elements whose membership degrees can be used to define the shape of 

membership functions. The trapezoidal ring in Figure 9 is the analogue of the U shape plane in 

Figure 8 (b). A trapezoidal interval type-2 fuzzy set is defined as: 

( )1 2 3 4 1 2 1 2 3 4 1 2( , ) ( , , , ; ( ), ( )),( , , , ; ( ), ( ))U L U U U U U U L L L L L LA A A a a a a H A H A a a a a H A H A= = (5) 

UA and
LA are type-1 fuzzy sets; a1

U, a2
U, a3

U, a4
U, a1

L, a2
L, a3

L and a4
L are the reference

points; ( )U

iH A  is the membership degree of element 1

U

ia + in the upper trapezoidal membership 

function 
UA ; ( )L

iH A  is the membership degree of element 1

L

ia + in the lower trapezoidal 

membership function 
LA ; 1 2i  , ( ) [0,1]U

iH A  , ( ) [0,1]L

iH A  . 

Figure 9. A trapezoidal interval type-2 fuzzy set 
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4.3 Intuitionistic fuzzy set 

The membership degree in a type-1 fuzzy set indicates to what extent an element belongs to 

the set. There could correspondingly be a value for the extent that the element does not belong 

to this set. The belongingness and non-belongingness do not necessarily complement each 

other because of the imprecision of judgement or the possibility of this element belonging to 

another set. Intuitionistic fuzzy set proposed by Atanassov (1986) is characterised by two such 

functions expressing the degree of belongingness and the degree of non-belongingness 

respectively. Intuitionistic fuzzy set deals with the situation that the membership or the non-

membership cannot be determined to the expert’s satisfaction and an indeterministic part 

remains (De et al., 2000; Grzegorzewski & Mrówka, 2005). An intuitionistic fuzzy set A in the 

universe of discourse X is a set of ordered triples (Atanassov, 2012): 

{( , ( ), ( )) | }A x x v x x X=  (6) 

where μ(x) and v(x): X→ [0,1] are the membership function and non-membership function 

respectively; 0 ( ) ( ) 1x v x +  . For each A, there is another parameter π(x), called the degree

of non-determinacy of the membership of x to the set A; π(x) = 1 - μ(x) - v(x). In intuitionistic

fuzzy AHP, (μ(x), v(x), π(x)) is used to describe the preference degree of one 

criterion/alternative over another. Büyüközkan and Güleryüz (2016) choose intuitionistic fuzzy 

sets to express the linguistics terms. 

Cuong (2014) introduces the concept of a picture fuzzy set that extends the intuitionistic fuzzy 

set by adding a degree of neutral belongingness. A picture fuzzy set A in the universe of 

discourse X is defined as:  

{( , ( ), ( ), ( )) | }A x x x v x x X =  (7) 

where μ(x), ( )x and v(x): X→ [0,1] are degree of positive membership, degree of neutral 

membership and degree of negative membership respectively. They satisfy the condition: 

0 ( ) ( ) ( ) 1.x x v x  + +  ( ) 1 ( ) ( ) ( )x x x v x  = − − −  is the degree of refusal membership. 

Models based on picture fuzzy sets can be applied in the situation when experts have opinions 

involving more answers such as yes, abstain, no and refusal. An example is voting that the 

voters may be divided into four groups of those who vote for, abstain, vote against and refusal 

of the voting (invalid voting or not taking the vote) (Cuong, 2014; Son, 2015).  However, due 

to the lack of mathematical discussions with its aggregation and defuzzification, picture fuzzy 

sets are hardly applied in constructing pairwise comparison decision matrix. For example, Ju 
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1 2 3 4 5 6 7 8 9

et al. (2018) apply picture fuzzy sets for site ranking but still use TFNs to construct 

the comparison matrix in fuzzy AHP.  

4.4 Fuzzy scales 

A fuzzy set describes a particular linguistic term. A fuzzy scale defined by a series of 

fuzzy sets depicts the levels of linguistic terms, which links the verbal and numerical 

expressions. 9-level and 5-level fuzzy scales for relative importance are commonly 

adopted (34 and 43 out of the 109 articles respectively) as illustrated in Figure 10 (a) and 

Figure 10 (b). We take TFNs as example to discuss how literature defines these scales 

because TFNs are largely applied. 

The literature uses different linguistic terms when describing the same scale. For 

example, Ayhan and Kilic (2015) use ‘equally important’, ‘equally to weakly 

important’, ‘weakly important’, ‘weakly to fairly important’, ‘fairly important’, ‘fairly 

to strongly important’, ‘strongly important’, ‘strongly to absolutely important’ and 

‘absolutely important’ to describe 

the 9 levels that correspond to TFNs , , , ,  , , ,  and . Pitchipoo et al. 

(2013) map those TFNS with ‘equally preferred’, ‘equally to moderately preferred’, 

‘moderately preferred’, ‘moderately to strongly preferred’, ‘strongly preferred’, ‘strongly 

to very strongly preferred’, ‘very strongly to extremely preferred’ and ‘extremely 

preferred’.  

Figure 10. fuzzy scale of: (a) 9-level and (b) 5-level 
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Most researchers define the scales in the way as shown in Figure 10. Slight differences exist in 

defining TFNs. The TFN 9  could also be interpreted as (7,9,11) (e.g. Viswanadham and 

Samvedi (2013) ), (8, 9, 10) (e.g. Beikkhakhian et al. (2015), (9, 9, 9) (e.g. Kannan et al. (2013)) 

and (9,9,10) (e.g. Taylan et al. (2014)). 1  could also be defined as (0,1,1) (e.g. Taylan et al. 

(2014)). Some researchers take totally different TFNs. For example, Zimmer et al. (2017) use 

1 , 1.5 , 2.5 , 3.5  and 4.5  for the 5 levels. Other scales are also applied, including 6-level and 

7-level fuzzy scales. The number after ‘TFN’ in the column of ‘Pairwise’ in Table A.9 and

Table A.10 indicates the scale used by the article. 

4.5 Short discussion 

When type-1 fuzzy set uses one value to deal with the imprecision of an element belonging to 

a set, type-2 fuzzy set expresses the imprecision of this imprecision (i.e. the imprecision of the 

membership degree), and intuitionistic fuzzy set complements this imprecision by adding a 

non-membership. Type-2 fuzzy set and intuitionistic fuzzy set are considered more capable to 

capture imprecision. However, their arithmetic operations needed in calculations are more 

complicated due to the introduction of more parameters in their definitions.  

There are no specific choice rules as to which type of fuzzy set should be used. A general 

guidance is suggested as a tree diagram in Figure 11. 

Figure 11. Fuzzy set specification chart 
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The proper fuzzy set(s) emerge(s) by answering the subsequent questions. The choice should 

also consider the properties of the fuzzy sets, as concluded in Table 1. The table shows ‘when’ 

the fuzzy set is applicable, ‘what’ it describes, ‘how’ it is defined and the complexity of its 

arithmetic operations. 

Table 1. Summary of the fuzzy sets applied in fuzzy AHP 

Fuzzy set When What How Complexity 

TFN The opinions 

involve answers: 

partly yes and 

partly no. 

Describe the 

imprecision of a crisp 

number with precise 

membership. 

Define the upper and 

lower boundaries and 

the middle point. 

Simple 

TraFN Define the upper and 

lower boundaries and 

the two middle 

points. 

Simple 

Trapezoidal 

interval type-

2 fuzzy set 

The opinions 

involve quite 

unsure answers. 

Describe the 

imprecision of a crisp 

number with 

imprecision 

membership. 

Define the upper and 

lower boundaries and 

the two middle 

points of the upper 

and lower trapezoidal 

fuzzy numbers 

respectively. 

Very 

complicated 

Intuitionistic 

fuzzy set 

The opinions 

involve answers: 

yes, no and not 

sure. 

Describe the 

imprecision of a crisp 

number with precise 

membership and 

precise non-

membership. 

Define the degrees of 

belongingness and 

non-belongingness. 

Complicated 

5. Aggregation method

The main purpose of aggregation is to produce appropriate results from the pairwise 

comparison matrix. This involves methods for: (1) synthesising the decisions of multiple 

experts and (2) deriving the fuzzy weights of criteria and priorities of alternatives. The 

methods are further categorised according to the types of fuzzy set as discussed in the 

previous section. Figure 12 shows the categorisation of the identified methods 

annotated by their main characteristics. The strength and weakness of each method is 

discussed at the end of this section. 
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Figure 12. Categorisation of the aggregation methods 

5.1 Aggregation for group decision 

One challenge of using subjective values is that the judgements of different experts could vary. 

Their opinions need to be aggregated to produce a final result. Let (DM1, DM2, …, DMq) be 

the q experts and (C1, C2,…, Cn) be the n performance criteria. This subsection starts with three 

techniques for type-1 fuzzy set (mainly for TFN) and then discusses the aggregation for type-

2 fuzzy set and intuitionistic fuzzy set.  

5.1.1 Mean method 

Mean methods for fuzzy numbers are based on the mean methods for crisp values. They 

emphasis ‘average’ among all the judgements. Their underlying principle and operations are 

simple. Geometric mean and arithmetic mean are two popular ones (25 and 16 respectively 

out of 44 papers that have considered group decision and applied type-1 fuzzy sets).  

Let ( ) ( ) ( ) ( )( , , )t t t t

ij ij ij ijC l m h=  be a TFN representing the relative importance of Ci over Cj judged by 

DMt, ( , , )ij ij ij ijC l m h= be the aggregated relative importance of Ci over Cj and iw be the fuzzy 

weight of Ci. Some research applies geometric mean, for example, Yang et al. (2008), Chen 

and Yang (2011), Kannan et al. (2013) and Zimmer et al. (2017).

1 1 1 1 1

( ) (1) (2) ( ) ( ) ( ) ( )

1 1 1 1

( , , ) ( ) (C C C ) (( ) ,( ) ,( ) )
q q q q

t q t t tq q q q q

ij ij ij ij ij ij ij ij ij ij ij

t t t t

C l m h C l m h
= = = =

= = =    =    (8)
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An extension to geometric mean is weighted geometric mean that accommodates the weights 

of experts. Let (α1, α2, …, αq) be the exponential weighting vector of the q experts. Weighted 

geometric mean for the collective relative importance of Ci over Cj or weight of Ci is as 

equation 9, where 
( )q

iW  is the weight of Ci judged by DMq. 

1 2

1 2

(1) (2) ( )

(1) (2) ( )

(C ) (C ) (C )  or

( ) ( ) ( )

q

q

q

ij ij ij ij

q

i i i i

C

W W W W

 

 

=   

=   
(9) 

With equation 9, Ertay et al. (2011) aggregate the pairwise comparison matrices while Kar 

(2014; 2015) aggregate the weights calculated from the pairwise comparison matrix of each 

expert. 

Similarly, arithmetic mean (Viswanadham & Samvedi, 2013; Ayhan & Kilic, 2015) and its 

weighted extension (Büyüközkan, 2012) are as equations 10 and 11 respectively. (α1, α2, …, 

αq) is the normalised weighting vector. 

1 2 ( )

1

1 1
( )

q
q t

ij ij ij ij ij

t

C C C C C
q q =

=    =  (10) 

( )

1

q
t

ij t ij

t

C C
=

= (11) 

The two mean methods can also be applied to aggregate TraFNs where the operations are on 

the quadruples instead of the triples. For example, equation 8 is changed to the following form 

for TraFNs. 

1 1

( ) (1) (2) ( )

1 2

1

1 1 1 1

( ) ( ) ( ) ( )

1 2

1 1 1 1

( , , , ) ( ) (C C C )

 = (( ) ,( ) ,( ) ,( ) )

q
t qq q

ij ij ij ij ij ij ij ij ij

t

q q q q
t t t tq q q q

ij ij ij ij

t t t t

C l m m h C

l m m h

=

= = = =

= = =   

   

(12) 

5.1.2 Max-min method 

Compared to the mean methods using an average solution, max-min methods extend the 

aggregated value range by including the ‘worst’ and the ‘best’ judgements. Max and min, as 

two aggregation operators, choose the largest and smallest values respectively. They decide the 

upper and lower bounds of the aggregated TFN (h and l in Figure 5). The middle value m is 

calculated by geometric mean or arithmetic mean (Awasthi et al., 2018; Prakash & Barua, 

2016a). The aggregated TFN ( , , )ij ij ij ijC l m h=  by max-min with geometric mean is: 
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1

( )

1,2,...,

( )

1

( )

1,2,...,

max ( )

( )

min ( )

q

t

ij ij
t q

q
t

ij ij

t

ij ij
t q

h h

m m

l l

=

=

=

=

=

 (13) 

The aggregated TFN ( , , )ij ij ij ijC l m h=   by max-min with arithmetic mean is: 

( )

1,2,...,

( )

1

( )

1,2,...,

max ( )

1

min ( )

t

ij ij
t q

q
t

ij ij

t

t

ij ij
t q

h h

m m
q

l l

=

=

=

=

=

=

 (14) 

Chen et al. (2010) combine multiple crisp values of judgements to a TFN as the aggregated 

relative importance of Ci over Cj. Let crisp value e(t) be the judgement of expert DMt. The 

aggregated result ( , , )ij ij ij ijC l m h= is computed as: 

1
2

( )

1,2,...,

( )

1,2,...,

( )

1

max ( )

min ( )

1
( ) q

t

ij
t q

t

ij
t q

q
t

ij

tij ij

h e

l e

m e
h l

−

=

=

=

=

=

=



(15) 

The article on this method referred to by Chen et al. (2010) (i.e. Kuo et al. (2002)) computes 

the middle value with geometric mean rather than with equation 15. 

5.1.3 Method based on consensus degree 

A method based on consensus degree is proposed by Chen (1998) to handle trapezoidal fuzzy 

number (TraFN). Its aggregation principle is similar to weighted arithmetic mean. This method 

introduces a variable of ‘consensus degree coefficient’ for each expert and multiplies it with 

the individual judgement instead of weight of expert in weighted arithmetic mean. This variable 

is a compromise between the weight of expert and the difference of its opinion from the 

opinions of all the others. The process is as follows.  

Step 1: Translate the judgement given by expert DMt into a standardised TraFN characterised 

by a quadruple ( ) ( ) ( ) ( ) ( )

1 2( , , , )t t t t tC l m m h= ,  where 
( ) ( ) ( )

1 20 1t t tl m m    . 

Step 2: Calculate the degree of agreement ( ) ( )( , )t jS C C of the opinions between each pair of 

experts DMt and DMj, where ( ) ( )( , ) [0,1]t jS C C  , 1 ,  1 ,t q j q    and t j . The degree is 
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calculated by equation 16. The larger value of ( ) ( )( , )t jS C C , the greater the similarity between 

the two standardised TraFNs. 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) 1 1 2 2| | | | | | | |

( , ) 1
4

t j t j t j t j
t j l l m m m m h h

S C C
− + − + − + −

= − (16) 

Step 3: Calculate the average degree of agreement A(DMt) of expert DMt (t = 1, 2, …, n) with 

all the others. 

( ) ( )

1,

1
( ) ( , )

1

q
t j

t

j j t

A DM S C C
q = 

=
−

 (17) 

Step 4: Calculate the relative degree of agreement RA(DMt) of expert DMt (t = 1, 2, …, n). 

1

( )
( )

( )

t
t q

tt

A DM
RA DM

A DM
=

=


(18) 

Step 5: Calculate the consensus degree coefficient C(DMt) of expert DMt (t = 1, 2, …, n). 

1 2

1 2 1 2

( ) ( )
tt DM t

y y
C DM w RA DM

y y y y
=  + 

+ +
(19) 

wDMt is the weight of expert DMt; y1 and y2 are the weight of the importance of experts and the 

weight of the relative degree of agreement of experts.  

Step 6: Aggregate the fuzzy judgements. The result aggC is: 

(1) (2) ( )

1 2( ) ( ) ( ) q

agg qC C DM C C DM C C DM C=       (20) 

Büyüközkan et al. (2017) employ this method directly to TFNs without adaptation. They 

calculate the similarity of two TFNs based on equation 16 in the following way. 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) | | | | | |

( , ) 1
4

t j t j t j
t j l l m m h h

S C C
− + − + −

= − (21) 

For TFNs, equation 16 should be revised as equation 22 (Chen & Chen, 2001) rather than 

equation 21. 

( ) ( ) ( ) ( ) ( ) ( )| | | | | |
( , ) 1

3

t j t j t j
t j l l m m h h

S C C
− + − + −

= − (22) 

5.1.4 Fuzzy interval geometric mean 

Geometric mean is also applied to type-2 fuzzy set but the calculation process is different from 

type-1 fuzzy set due to the different arithmetic operations defined on these sets. It seems to be 

the only aggregation operation defined for trapezoidal interval type-2 fuzzy set and does not 
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involve much calculation effort. Görener et al. (2017) use geometric mean to aggregate the 

multiple interval type-2 fuzzy sets as the multiple judgements. Let 
( )

( ) ( )( , )
t

U t L tC A A= = ( ( )

1( ,U ta

)( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2 3 4 1 2 1 2 3 4 1 2, , ; ( ), ( )),( , , , ; ( ), ( ))U t U t U t U t U t L t L t L t L t L t L ta a a H A H A a a a a H A H A  be the judgement 

of expert DMt. The aggregation result aggC  is: 

1
(1) (2) (q) q

aggC C C C
 

=    
 

(23) 

Where 

((

( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 2 2 3 3 4 4

( ) ( ) ( ) ( )

1 1 2 2

( ) ( ) ( ) ( ) ( ) (

1 1 2 2 3 3

, , , ;

min ( ), ( ) ,min ( , ( ) ,

, ,

t j
U t U j U t U j U t U j U t U j

U t U j U t U j

L t L j L t L j L t L j

C C a a a a a a a a

H A H A H A H A

a a a a a a

 =    

  (

( ) ( ))

) ( ) ( )

4 4

( ) ( ) ( ) ( )

1 1 2 2

, ;

min ( ), ( ) ,min ( , ( )

L t L j

L t L j L t L j

a a

H A H A H A H A


(24) 

(

)

( )
( ) ( ) ( ) ( ) ( ) ( )

1 2 3 4 1 2

( ) ( ) ( ) ( ) ( ) ( )

1 2 3 4 1 2

( , , , ; ( ), ( )),

( , , , ; ( ), ( ))

tq
U t U t U t U t U t U tq q qq

L t L t L t L t L t L tq q qq

C a a a a H A H A

a a a a H A H A

=
(25) 

5.1.5 Intuitionistic fuzzy weighted averaging 

Intuitionistic fuzzy weighted averaging (IFWA) includes weighted arithmetic and geometric 

averaging operators (Xu, 2007). If the weights of experts are equal, the two operators reduce 

to intuitionistic fuzzy arithmetic and geometric averaging operators. Büyüközkan and Güleryüz 

(2016) and Büyüközkana et al. (2019) apply intuitionistic fuzzy weighted arithmetic averaging 

operator. Let Ct = (μt, vt, πt) be the judgement of expert DMt and v = (α1, α2, …, αq) be the 

weight vector of the experts. The aggregation result is Cagg, where 

(1) (2) ( )

1 2

(t) (t) (t) (t)

1 1

1 (1 ) , ( ) , (1 ) ( )t t t t

q

agg q

q q

t t

C C C C

v v
   

  

 
= =

=   

 
= − − − − 
 

   
(26) 

5.2 Aggregation for fuzzy weights/priorities 

Aggregation of judgements on a single criterion are usually done as a mean or an average value. 

By contrast, the methods for the weights of criteria are more varied in that they deal with the 

judgements on different criteria from the fuzzy pairwise comparison matrix. This section starts 

with four techniques for the matrix of type-1 fuzzy sets. Let [ ]ij n nF C =  be a fuzzy pairwise 
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comparison matrix and (C1, C2,…, Cn) be the n performance criteria. 
ijC is the relative

importance of Ci over Cj. We describe the methods with notations related to criteria. The 

calculation of the alternative priorities is the same. 

5.2.1 Mean method 

Geometric mean is a valid means of synthesising different perspectives and also an 

approximation to eigenvalues of a matrix. It has been widely used to calculate fuzzy weights, 

e.g. Yang et al. (2008), Sun (2010), Yu et al. (2012), Kar (2014) and Görener et al. (2017). It 

is immune to the problem of rank reversal and independent on order of operations (Barzilai, 

1997). The ‘mean’ value by geometric operation is then normalised to generate the fuzzy 

weight of a criterion, as shown in equation 27.  

1

1 2

1

( )n
i i i in

i
i n

jj

C C C C

C
W

C
=

=   

=



(27) 

Rezaei and Ortt (2013) and Chen et al. (2010) apply arithmetic mean as equation 28. It is also 

utilised in Extent Analysis Method (EAM) to get the fuzzy weights. Some research obtains 

the weights by applying row sums and then normalising the sums instead of averaging, which 

is also a simple and convenient methods,  for example, Calabrese et al. (2016; 2019).  

1 2

1

1
( )i i i in

i
i n

jj

C C C C
n

C
W

C
=

=   

=



(28) 

Another method in this group is fuzzy logarithmic least-squares method proposed by Van 

Laarhoven and Pedrycz (1983). It is grouped in mean methods because geometric mean is 

considered by researchers for example, Büyüközkan (2012), as one optimal solution to this 

programming problem. However, the weights estimated by logarithmic least-squares might not 

be valid fuzzy numbers (Csutora & Buckley, 2001). In other words, it can produce fuzzy weight 

( , , )W l m h=  with h < l. cij is the entry of the pairwise comparison matrix and wi is the weight 

of criteria i. The method is: 

 2

1 1

min (ln (ln ln ))
n n

ij i j
w

i j

c w w
= =

− − (29) 

Subject to 

1

1,   0,   1
n

i i

i

w w i n
=

=   
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With regards to the capability of processing size of the matrix, fuzzification level and 

inconsistency, fuzzy logarithmic least-squares has the best overall performance, followed by 

geometric mean and then arithmetic mean (Ahmed & Kilic, 2018). 

5.2.2 Lambda-max method 

The lambda-max method proposed by Csutora and Buckley (2001) transforms the fuzzy 

comparison matrix into three crisp comparison matrices through the α-cut of a TFN, and then 

calculates the fuzzy weights. This method directly fuzzifies Saaty’s λmax method (eigenvector 

method) and reduces the fuzziness in the final fuzzy weights. It can also handle any type-1 

fuzzy number used for pairwise comparison. Compared with mean method, it is complicated 

due to the multiple steps involving calculating eigenvalues, minimising the fuzziness, adjusting 

the boundaries of the weights. Wang et al. (2009) apply this method in their fuzzy AHP model. 

It has the following steps. As introduced in section 4.1, the α-cut of a TFN ( , , )ij ij ij ijC l m h=  can 

be represented as [ ( ) , ( ) ]ij ij ij ij ij ij ijC l m l h h m  = + − − − .  

Step 1: Set α =1. The middle value of each entry of the fuzzy pairwise comparison matrix is

[ ]ij n nF C = , i.e. 1ijC = = mij. The corresponding crisp comparison matrix is Fm = [mij]n×n. The 

middle value of the fuzzy weight of criterion Ci, wim, is calculated by solving equation 30. λmax 

is the largest eigenvalue of Fm. wm is the weight vector, wm = (w1m, w2m, …, wnm)T. 

maxm m mF w w=  (30) 

Step 2: Set α =0. This calculates the lower and upper bounds of the fuzzy weight of criterion 

Ci, wil and wih. The two crisp comparison matrices are Fl =  [lij]n×n and Fh = [hij]n×n. wl and wh 

are the weight vectors generated from Fl and Fu respectively. The calculation procedure is the 

same with that of wm by equation 30. 

Step 3: Find constants Kl and Kh. They are used to minimise the fuzziness of the weights, which 

refers to the lengths of the α-cuts.  

min{ |1 }

max{ |1 }

im
l

il

im
h

ih

w
K i n

w

w
K i n

w

=  

=  

 (31) 

Step 4: Use the two constants to adjust the lower and upper bounds of the fuzzy weight of 

criterion Ci obtained in step 2. The adjusted bounds are wil
* and wih

*. 
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*

*

il l il

ih h ih

w K w

w K w

=

=
(32) 

The fuzzy weight of criterion Ci is as 
* *( , , )i il im ihW w w w= . 

5.2.3 Eigenvector based on index of optimism 

Calculating the eigenvector is the original method to derive weights from the matrix in AHP. 

This method can be adapted to fuzzy AHP but requires transforming fuzzy values to crisp 

values. In other words, the fuzzy comparison matrix needs to be transformed to crisp 

comparison matrix. One common method for this transformation uses α-cut and an index of 

optimism. Different from Lambda-max method that solely uses α-cut for several crisp matrices, 

the weights obtained in this manner are crisp values rather than fuzzy numbers. Let cijαU and 

cijαL denote the upper and lower bounds of α-cut set 
ijC 

, i.e. 
ijC   = [cijαL, cijαU]. cijαU indicates 

an optimistic expert’s point of view towards the priority of criterion Ci over Cj while cijαL is a 

pessimistic view (Kim & Park, 1990). An expert’s attitude may not be purely optimistic or 

pessimistic, but somewhere in between. Therefore, they are combined with an index of 

optimism μ as: 

(1 ) ,     [0,1]ij ij U ij Lc c c   = + −  (33) 

The larger the value of μ is, the higher the degree of optimism is. cij is also named as degree of 

satisfaction. The fuzzy comparison matrix is transformed into a crisp matrix F = [cij]n×n by 

equation 33. By setting the values of α and μ (usually set as 0.5 and 0.5), weight calculation 

turns to finding the eigenvector by Saaty’s λmax method. The application can be found in Soroor 

et al. (2012), Büyüközkan et al. (2017) and Beikkhakhian et al. (2015). 

Awasthi et al. (2018) calculate the weights in a similar way that the fuzzy matrix is defuzzified 

first by equation 34 and then the eigenvector is computed. cij is the defuzzified value from TFN. 

1
( 4 )

6
ij ij ij ijc l m h= +  + (34) 

Pitchipoo et al. (2013) also calculate weights by converting fuzzy numbers into crisp values. 

They apply centroid method for defuzzification, given in equation 35. 

1

1

1

Weights (Crisp value) ,  where 

k
i i

p n
ii

i p lik
i i
p

i

D o

W D m

D

−

=

=



= =





(35)
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k is the number of rules. Oi is the class generated by rule i (from 0, 1, …, L-1). L is the number 

of classes, n is the number of inputs, and mli is the membership grade of feature l in the fuzzy 

regions that occupy the ith rule. However, it is not clear how the method in Pitchipoo et al. 

(2013) actually works without a further explanation on ‘rules’, ‘class’ and ‘inputs’ as well as 

their mapping with criteria, alternatives and TFNs. 

The main principle of the methods based on eigenvector is to transform the fuzzy matrix to a 

crisp matrix first, so all the defuzzification methods introduced later can be applied here. With 

the crisp matrix, researchers can also choose geometric mean or arithmetic mean instead of 

eigenvector to calculate the crisp weights, for example, Balusa and Gorai (2018). However, 

Csutora and Buckley (2001) argue that this kind of method is not about fuzzy AHP since there 

are no fuzzy weights. 

5.2.4 Fuzzy programming method 

Fuzzy programming methods are iterative algorithms that search every possible value and 

gradually achieve a solution to a prescribed accuracy (Luenberger & Ye, 2008). The advantage 

of programming methods is producing a consistency index while computing the weights. But 

they require more computational effort than other aggregation methods. Mathematical models 

have to be established first, and assistant tools like Excel solver are needed to solve the models. 

Rezaei et al. (2013; 2014) use a fuzzy non-linear programming method to derive crisp weights 

from a fuzzy comparison matrix, which saves the efforts to defuzzify. This method first 

distinguishes TFNs from their reciprocals and then defines the non-linear model as equation 

36 where wi is the weight and λ is a variable that measures the degree of membership of the 

fuzzy feasible area (i.e. the height of the intersection region of the fuzzy judgements). 

1

max  

. .

( ) 0,
for TFNs

( ) 0

( ) 0,
for reciprocals

( ) 0

1,  0,  

1,..., 1,  2,... ,  ,  1,...,

ij ij j i ij j

ij ij j i ij j

ji ji i j ji i

ji ji i j ji i

n

k k

k

s t

m l w w l w

u m w w u w

m l w w l w

u m w w u w

w w

i n j n j i k n











=

− − +  


− + −  

− − +  


− + −  

= 

= − =  =



(36) 

Solving the problem described in equation 36 results in the optimal crisp weight vector W* and 

λ*. λ* > 0 indicates that all solution ratios approximately satisfy the fuzzy judgement, i.e. 
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* *( / )ij i j ijl w w u  . It means that the pairwise comparisons are approximately consistent. λ* as a 

fuzzy consistency index will be discussed in section 7.2.1. Equation 36 is an extension to the 

programming method proposed by Mikhailov and Tsvetinov (2004) in equation 62.  

Mirhedayatian et al. (2013) develop a programming model based on Data Envelopment 

Analysis to calculate the fuzzy weight ( , , )i il im ihW w w w=  as follows: 

1

1

1

1

1

max   

. .  : ,

: ,

: ,

1, 1,... ,

, 1,...,

n

il ij j

j

n

im ij j

j

n

ih ij j

j

n

ij j

j

n

j ij j ij

j

t

s t w l u t

w m u t

w h u t

m u r n

u m u nm j n

=

=

=

=

=







 =

 =











(37) 

5.2.5 Fuzzy interval geometric mean and IFWA 

Fuzzy interval geometric mean as equations 20 and 21 also calculates the weights from the 

pairwise comparison matrix of interval type-2 fuzzy sets, for example Celik and Akyuz (2018) 

and Görener et al. (2017).  

Similarly, IFWA operators, introduced in aggregation for group decisions, are also applied to 

calculate the weights from the matrix of intuitionistic fuzzy sets. The calculation procedure 

shown in equation 22 is used by Büyüközkana et al. (2019). 

5.3 Short discussion 

Various methods are available to aggregate TFNs while few methods exist for interval type-2 

and intuitionistic fuzzy sets, which indicates a potential research topic of exploring more 

applicable aggregation means for the latter two types of fuzzy sets. There are no specific choice 

rules as to which method should be used for group decisions. Different methods are introduced 

for different situations. A general guidance is suggested as shown in Figure 13. The appropriate 

method(s) emerge(s) by answering the subsequent questions. These methods are also 

summarised in Table 2 in terms of their characteristics, complexity of the computation and 

extension (how they can be extended) to help the choice. 
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Figure 13. Specification chart of aggregation methods for group decisions 

Table 2. Summary of the aggregation methods for group decisions 

Method Characteristic Complexity Extension 

Arithmetic 

mean 

Emphasis ‘average’. There 

should be no extreme value 

due to its sensitivity. 

Very simple, only 

involving arithmetic 

addition and 

division.  

(1) Weighted arithmetic mean

by incorporating the weights of 

experts; (2) intuitionistic fuzzy 

weighted arithmetic averaging 

for intuitionistic fuzz sets by 

adding the weights of experts. 

Geometric 

mean 

Emphasis ‘average’. It is less 

affected by extreme value 

and more suitable to average 

normalised values. There 

should be no negative value.  

Very simple, only 

involving arithmetic 

multiplication and 

rooting. 

(1) Weighted geometric mean

by incorporating the weights of 

experts; (2) fuzzy interval 

geometric mean for interval 

type-2 fuzzy sets; (3) 

intuitionistic fuzzy weighted 

geometric averaging for 
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intuitionistic fuzz sets by 

adding the weights of experts. 

Max-min 

method 

with 

arithmetic 

mean 

Include the ‘worst’ and the 

‘best’ judgements but 

introduce more fuzziness 

due to the enlarged value 

range. There should be no 

extreme value. 

Simple, involving 

arithmetic addition 

and division, max 

and min operations. 

- 

Max-min 

method 

with 

geometric 

mean 

Include the ‘worst’ and the 

‘best’ judgements but 

introduce more fuzziness 

due to the enlarged value 

range. 

Simple, involving 

arithmetic 

multiplication and 

rooting, max and min 

operations. 

Produce a TFN as the 

aggregated judgement by 

combining crisp values of the 

experts’ judgements. 

Method 

based on 

Consensus 

degree 

Consider the distances 

between the opinions of the 

experts but assume the 

weight of the importance of 

expert and the weight of the 

relative degree of agreement 

are known. 

Complicated due to 

the calculation of 

degree of agreement. 

- 

It can be seen from Table 2 that the mean methods have wider application because they are 

easier to implement and produce valid results. The arithmetic mean has been adapted to 

intuitionistic fuzzy sets and the geometric mean has been adapted to interval type-2 fuzzy sets 

and intuitionistic fuzzy sets. Arithmetic mean should also be applicable to aggregate interval 

type-2 fuzzy sets since geometric mean can be expressed as the exponential of the arithmetic 

mean of logarithms. Max-min method with geometric mean has been used to aggregate crisp 

values into a TFN while max-min with arithmetic mean should also work. It is worth studying 

whether and how the mean methods can be extended to other types of fuzzy sets. 

The choice as to which method is used for weights/priorities also first depends on the chosen 

type of fuzzy set. A general guidance is presented in Figure 14. These methods are summarised 

in Table 3 in terms of the underlying principle, the complexity of the computation and the pros 

and cons. 



31 

Figure 14. Specification chart of the aggregation methods for weights 

Table 3. Summary of the aggregation methods for weights/priorities 

Method Principle Complexity Pros and Cons 

Arithmetic 

mean 

Row sum divided by n (the 

number of criteria), which 

is then normalised. 

Very simple, only 

involving arithmetic 

addition and division. 

Perform least in the 

mean group. 

Geometric 

mean 

Nth-root of row 

multiplication, which is 

then normalised. 

Very simple, only 

involving arithmetic 

multiplication and rooting. 

Produce the same 

weights as Saaty’s 

eigenvector method, if 

the matrix is consistent. 

Perform better than 

arithmetic mean.  

Logarithmic 

least-squares 

A mathematical 

programming method 

Complicated because it is 

indeed a programming 

method but the objective 

and constraint functions 

are simple. 

May produce fuzzy 

weights that are not 

fuzzy numbers, which 

could lead to 

inconsistency. It could 

generate multiple 

results as the weight. 
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Perform best in the 

mean group. 

Lambda-max 

method 

Transform the fuzzy 

matrix into multiple crisp 

matrices by α-cut, and then 

calculates the fuzzy 

weights by generating and 

adjusting the eigenvectors 

of the crisp matrices. 

A little complicated due to 

the multiple steps 

involving calculating 

eigenvalues, minimising 

the fuzziness, adjusting the 

boundaries of the weights. 

Reduce certain 

fuzziness in the final 

results; can be applied 

to all other fuzzy 

numbers. 

Eigenvector 

method 

Transform the fuzzy 

matrix into a crisp matrix 

and then calculate the crisp 

weights from the crisp 

matrix. 

A little complicated, 

involving defuzzifying the 

fuzzy matrix and 

calculating eigenvalue. 

It is worth considering 

how much this kind of 

method is about fuzzy 

AHP since there are no 

fuzzy weights. 

Fuzzy 

programming 

methods 

Iterative algorithms that 

search every possible 

value and gradually 

achieve a solution to a 

prescribed accuracy. 

Very complicated due to 

the iterative search and the 

need of assistant tools to 

solve the model. The 

constraint functions are 

complicated. 

Produce a consistency 

index while computing 

the weights. 

6. Defuzzification method

Defuzzification converts the fuzzy results produced by aggregation methods into crisp values. 

Compared with a fuzzy value, a crisp value is more intuitive and easier for the final comparison 

because fuzzy sets have partial ordering. As shown in Figure 15, this section discusses the 

defuzzification methods for type-1 fuzzy set and then for type-2 and intuitionistic fuzzy sets. 

Figure 15. Categorisation of the defuzzification methods 
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6.1 Defuzzification method for type-1 fuzzy set 

There are two dominant defuzzification methods applied by researchers, i.e. centroid method 

and extent analysis method. 33 papers apply the centroid method and 50 paper use the extent 

analysis method. 

6.1.1 Centroid method for type-1 fuzzy set 

The centroid method, also called as centre of area (COA) or centre of gravity (COG), is the 

most prevalent defuzzification method (Ross, 2004). The underlying principle is as equation 

38 where x* is the defuzzified value, x indicates the element, and μ(x) is its associated 

membership function. 

*
( ) d

( )d

x x x
x

x x




=



(38) 

( , , )C l m h=

The centroid method can be translated into different forms when defuzzifying a TFN 

. For example, equation 39 is applied by Sun (2010), Yu et al. (2012), Pitchipoo et al. (2013), 

Rezaei and Ortt (2013), Ayhan and Kilic (2015), Yayla et al. (2015) and Calabrese et al. 

(2016; 2019).  

*

3

l m h
x

+ +
= (39) 

Kar (2014; 2015) uses equation 40. Awasthi et al. (2018) utilise equation 41. 

* 2

4

l m h
x

+ +
= (40) 

* 4

6

l m h
x

+ +
= (41) 

Büyüközkan (2012) defuzzify a TFN by taking α-cut set, C , as shown by equation 42. 

1
*

0

1
(inf sup )d

2
x C C  = + (42) 

With the α-cut set [ ( ) , ( ) ]C l m l h h m  = + − − − , equation 42 can be further transformed as: 

1
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0

1

0

1
( ( ) ( ) )d
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1
     = (2 ) d

2 2

2
     =

4

x l m l h h m

l h
m l h

l m h

  

 

= + + + − −

+
+ − −

+ +



 (43)
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Equation 43 corresponds to Yager’s approach (Yager, 1981) that analyses the mean of the 

elements within an interval. It has been proved by Facchinetti et al. (1998) that this way takes 

into consideration both the worst and best results arising from a fuzzy number. 

6.1.2 The extent analysis method 

The extent analysis method (EAM), proposed by Chang (1996), aims to calculate the weights 

and translate TFNs into crisp values in the fuzzy pairwise comparison matrix. Let [ ]ij n nF C =

be a fuzzy pairwise comparison matrix. The fuzzy weight of element i is: 

1

1 1 1

[ ]
m n m

i ij ij

j i j

W C C −

= = =

=   (48) 

Equation 48 is actually the fuzzy arithmetic mean as in equation 28. The crisp weight of i is 

determined as the minimal degree of possibility of its fuzzy weight iw being greater than the 

fuzzy weights of the others. Given two TFNs 1 1 1 1( , , )A l m h= and 2 2 2 2( , , )A l m h= as shown in 

Figure 16, The degree of possibility of 1 2A A is defined as:

1 2 1 2

2 1 1 2 1 2 2 2 1 1

( ) 1  

( ) ( ) ( ) (( ) ( ))

V A A iff m m

V A A hgt A A l h m h m l

 = 

 =  = − − − −
(49) 

Figure 16. Fuzzy Triangular Number of 1A and 2A

The crisp weight of i is then defined by equation 50. 

1 2

1 2

( , ,..., )

[( )  ( )  ...  ( )]

min  ( ),  1,2,.., ,

i i n

i i i n

i k

w V A A A A

V A A and A A and and A A

V A A k n k i

= 

=   

=  = 

(50) 

EAM is simple to implement but does not produce proper weights. There is a zero assigned 

when there is no intersection of the two TFNs. Also, the way of calculating is incorrect because 

it neglects the role of l2 and h1 in determining the relative importance. This leads to a big 

inconsistency between the results and the original judgments. Considering EAM is widely 

applied, we explain how EAM is problematic in details in the short discussion section. 
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6.1.3 Other methods 

Opricovic and Tzeng (2003) propose a defuzzification method, namely Converting the Fuzzy 

data into Crisp Scores (CFCS), which is applied by Sarfaraz et al. (2012) to rank ERP 

implementation solutions. Let [ ]ij n nF C =  be a fuzzy pairwise comparison matrix and (C1, 

C2,…, Cn) be the n performance criteria. ( , , ), 1,2,...,ij ij ij ijC l m h j n= = is the pairwise comparison 

of Ci over Cj. The crisp value for each TFN is computed by the following four steps. 

Step 1: Normalisation. 

max min max max min

minmax , min ,j ij j ij j j
ii

h h l l h l= =  = − (51) 

Normalise the matrix. Let [ ]ij n nF X = be the normalised result; ( , , )ij ij ij ijX xl xm xh= . 

min max

min

min max

min

min max

min

( ) /

( ) /

( ) /

ij ij j

ij ij j

ij ij j

xl l l

xm m l

xh h l

= − 

= − 

= − 

(52) 

Step 2: Compute left (ls) and right (hs) normalised values for i = 1, 2, … n. j = 1, 2, …, n. 

/ (1 )

/ (1 )

ls

ij ij ij ij

hs

ij ij ij ij

x xm xm xl

x xh xh xm

= + −

= + −
(53) 

Step 3: Compute total normalised crisp value. 

[ (1 ) ] / (1 )crisp ls ls hs hs ls hs

ij ij ij ij ij ij ijx x x x x x x= − + − + (54) 

Step 4: Compute crisp values. Let aij be the crisp value correspondent to 
ijC . 

min max

min

crisp

ij j ija l x= +  (55) 

A major problem of CFCS we have noticed is that it produces varied crisp values for a 

particular TFN. This is due to the normalisation in step 1. Consider one scenario with 2 criteria 

and another with 3 criteria. Table 4 shows their comparisons against C1. The crisp values for 

TFN (5, 7, 9) are different in the two scenarios.  

Table 4. Defuzzification results by CFCS 

Scenario 1: 2 criteria 

Criterion TFNs Normalised fuzzy value Crisp value 

C1 (1, 1, 1) (0, 0, 0) 1 

C2 (5, 7, 9) (1/2, 3/4, 1) 6.867 

Scenario 2: 3 criteria 
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C1 (1, 1, 1) (0, 0, 0) 1 

C2 (5, 7, 9) (4/9, 6/9, 8/9) 6.916 

C3 (6, 8, 10) (5/9, 7/9, 1) 7.86 

Mathematically, defuzzifying a fuzzy set is the process of rounding it off from its location to 

the nearest vertex, which reduces the set into the most typical or representative value (Ross, 

2004). However, CFCS contradicts this principle because the defuzzification result changes as 

the number of criteria/alternatives changes and also depends on the values of the other TFNs 

in the comparison matrix. It seems not a suitable defuzzification method. 

Mean of limits of a TFN is another method. Alaqeel and Suryanarayanan (2018) apply the 

geometric mean to the upper and lower limits (i.e. l and h) for a crisp value. This way of 

defuzzification ignores the middle value of a TFN, which might lead to improper weight. 

Index of optimism is also used to defuzzify the fuzzy numbers through their α-cut sets, which 

has been introduced in section 5.2.3, for example, Jung (2011), Soroor et al. (2012), 

Beikkhakhian et al. (2015) and Büyüközkan et al. (2017). 

Other applicable defuzzification methods are max membership principle, weighted average and 

mean of maxima (Ross, 2004) but they are rarely applied in the selection literature. 

6.2 Centroid method for type-2 fuzzy set 

The centroid of an interval type-2 fuzzy set is the union of the centroids of all its embedded 

type-1 fuzzy sets. Based on this principle, Kahraman et al. (2014) propose equations 56 and 

(57) to defuzzify triangular and trapezoidal interval type-2 fuzzy set.

3 1 2 1 3 1 2 1( ) ( ) ( ) ( )

* 1 13 3
( )

2

U U U U L L L La a a a a a a aU L

TFN

a a
x


− + − − + −

+ + +
= (56) 

4 1 1 2 1 2 3 1 4 1 1 2 1 2 3 1( ) ( ( ) ) ( ( ) ) ( ) ( ( ) ) ( ( ) )

* 1 14 4

2

U U U U U U U U L L L L L L L La a H A a a H A a a a a H A a a H A a aU L

TraFN

a a
x

− + − + − − + − + −
+ + +

= (57) 

In equation 56, α is the maximum membership degree of the lower membership function; a3
U 

and a1
U are the largest and least possible value of the upper membership function respectively; 

a2
U is the most possible (middle) value of the upper membership function; a3

L and a1
L are the 

largest and least possible value of the lower membership function; a2
L is the middle value of 

the lower membership function. 

In equation 57, H1 and H2 are the two maximum membership degrees; a4
U, a3

U a2
U and a1

U are 

the largest, the two middle and least possible values of the upper membership function 
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respectively; a4
L, a3

L a2
L and a1

L are the largest, the two middle and least possible values of the 

lower membership function respectively. Celik and Akyuz (2018) and Ayodele et al. (2018) 

use this equation in their fuzzy AHP model. 

6.3 Intuitionistic fuzzy entropy for defuzzification 

The defuzzification methods for type-1 and type-2 fuzzy sets transform fuzzy values to 

representative crisp values. Fuzzy entropy also generates crisp values but measures the 

fuzziness of the set. Whether it can be considered as a weight is worth considering. 

Büyüközkana et al. (2019) treats the intuitionistic fuzzy entropy iw  as the crisp weight value. 

Let { , , }i i i iw v = be intuitionistic fuzzy weight. Equation 58 is used to calculate iw . 

1
[ ln ln (1 )ln(1 ) ln 2]

ln 2
i i i i i i i iw v v

n
    = − + − − − − (58) 

Büyüközkana et al. (2019) have not provided the reference or proof for this equation. Based on 

the format of the equation, it might be an extension of Shannon’s function as equation 59, 

which is used to measure the fuzziness of type-1 fuzzy set (Zimmermann, 2001). 

( ) ln (1 ) ln(1 )S     = − − − − (59) 

6.4 Short discussion 

EAM is applied by a large proportion of articles (50 out of the total 109 papers, 46%), which 

corresponds to the survey results (i.e. 109 out of the 190 papers) by Kubler et al. (2016). 

However it has been criticised by many researchers for its significant shortcomings in deriving 

the weights/priorities. Zhu et al. (1999) notice that EAM cannot deal with the comparison if 

there is no intersection between two fuzzy numbers. This problem is solved by assigning a 

value of 0 in the case of no intersection and equation 49 is extended as: 

1 2 1 2

1 2 2 2 1 1 1 2

2 1

( ) 1  

( ) (( ) ( )),   
( )

0,  .

V A A iff m m

l h m h m l if l h
V A A

otherwise

 = 

− − − − 
 = 



(60) 

Introducing this zero weight leads to some criteria or alternatives being ignored in the analysis 

and results in a wrong decision (Wang et al., 2008).  

EAM is still inappropriate to attain the relative importance even if every two fuzzy numbers 

have intersection. Let 1 1 1 1( , , )A l m h= and 2 2 2 2( , , )A l m h= be two TFNs. Consider the scenario in 
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Figure 17 (a) that m1 = m2 but l2 < l1 and h2 < h1. 1A should have a priority above 2A , but

according to equation 49, when m1 = m2, 1 2 2 1( ) ( ) 1V A A V A A =  = that the two TNFs are of 

the same priortity. Consider another case as Figure 17 (b). m2 = m1 + ε where ε is a very small 

positive number close to 0. h2 = m2 + ε, l1 = m1 – ε, l2 = m2 + α, h1 = m1 + α, where α is a large 

positive number. According to equation 49, 2 1 1 2( ) 1 ( )V A A V A A =    which indicates 2A has

a higher priority. However, it is apparent that 1A should be preferred over 2A . The ordinate of 

the highest intersection in EAM cannot represent the degree of possibility of 2 1A A or their 

relative weights, because it only depends on the two lines defined by m2, h2 and l1, m1 

respectively. Values l2 and h1 should also play a role to determine the relative importance and 

neglecting them leads to improper weights. EAM has the advantage of ease of use and simple 

logic, which might be the reason why it is still widely applied.  

Figure 17.  Two example cases:(a) m1 = m2; (b) m2 >m1 but m1 , m2, l1 , h2 are very close to each other 

It seems that centroid method is the most suitable choice for type-1 and type-2 fuzzy sets as 

concluded in Table 5.   

Table 5. Summary of defuzzification methods 

Method Principle Complexity Pros and cons 

Centroid 

method 

Calculate the centre of 

the area defined by the 

fuzzy number. 

Very simple (single 

equation), involving 

arithmetic addition and 

division  

Have various forms but 

equation 40 has been well 

proved. Its application has 

been extended to type-2 

fuzzy set.  

EAM Calculate the smallest 

possibility of one TFN 

bigger than another as 

the defuzzified result. 

Simple, involving 

arithmetic and min 

operations but having few 

steps to follow. 

Cannot derive proper crisp 

weights. 
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CFCS Calculate the crisp 

value based on the 

normalised fuzzy 

numbers. 

A little complicated, 

involving arithmetic, 

min/max, and 

normalisation operations 

and having several steps to 

follow. 

Produce varied crisp values 

for a particular TFN. It 

seems not a proper 

defuzzification method. 

Mean of 

limits 

Calculate the geometric 

mean of the upper and 

lower limits of a TFN. 

Very simple (single 

equation), involving 

arithmetic multiplication 

and rooting. 

Might result in improper 

results due to ignoring the 

middle value of a TFN. 

Index of 

optimism 

Calculate the crisp 

value based on the α-

cut of a TFN and the 

index of optimism μ. 

Very simple (single 

equation), involving 

arithmetic operations. 

The experts need to set 

values for the two 

parameters α and μ. But it 

seems little literature 

discusses how to set proper 

values. 

Fuzzy 

entropy 

Calculate the fuzziness 

of the fuzzy set. 

Simple (single equation), 

involving arithmetic and 

logarithm operations. 

Be used to defuzzify 

intuitionistic fuzzy set. But 

fuzzy entropy is used to 

measure the fuzziness. 

7. Consistency measurement

Consistency measurement ensures that there are limited contradictions among the pairwise 

comparisons in the matrix. It is a necessary step because a big inconsistency may indicate 

a lack of understanding of the problem. There are two ways of measuring the consistency of 

the fuzzy pairwise comparison matrix. ‘Crisp consistency’ is computed by translating the 

fuzzy matrix to a representative crisp one. ‘Fuzzy consistency’ calculates a consistency index 

directly from a fuzzy matrix. Figure 18 outlines the methods. 

Figure 18. Categorisation of the consistency measurement methods 
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7.1 Crisp consistency 

The principle of crisp consistency is to defuzzify the fuzzy matrix first and then use Saaty’s 

consistency ratio (CR) (see Jung (2011), Kilincci and Onal (2011), Büyüközkan 

(2012), Pitchipoo et al. (2013), Calabrese et al. (2016; 2019), Büyüközkan et al. (2017) and 

Ayodele et al. (2018)). The implementation would be different in defuzzification as there 

are various defuzzification methods as introduced in section 6. The defuzzified matrix with a 

CR less than 0.1 is considered as adequately consistent. 

max( n) (n 1)

CR CI RI

CI 

=

= − −
(61) 

CI is consistency index; λmax is the max eigenvalue of the comparison matrix; RI is the random 

index. The value of RI depends on the size of the matrix that can be looked up in Saaty (2008). 

Büyüközkana et al. (2019) check the intuitionistic fuzzy matrix by Saaty’s method, but 

calculate the consistency ratio in the following way: 

( 1)
ij

CR RI n
n

 
= − −  
 

 (62) 

where n is the number of the elements and πij is the degree of non-determinacy of the 

membership. The value of RI is taken from Saaty’s method. CR is considered acceptable if less 

than or equal to 0.1. However, they did not explain why the ratio from equation 62 works to 

measure the consistency. It seems that mathematical proof is needed.  

7.2 Fuzzy consistency 

This way of measuring consistency usually requires establishing and solving fuzzy 

programming models. The consistency index is derived along with the weights of criteria from 

the models. This section first introduces various programming models starting from the 

explanation of their origin and then presents a different fuzzy consistency method. 

7.2.1 Fuzzy programming method 

According to Buckley (1985), the fuzzy comparison matrix [ ]ij n nF A =  is consistent if and only 

if: 

ik kj ijA A A  (63)
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The approximate equal ‘  ’ between two fuzzy numbers 1A and 2A whose membership

functions are µA1(x) and µA2(x) is defined as: 

1 2 2 1min( ( ), ( ))v A A v A A    (64) 

Where 
1 2 1 2( ) sup(min( ( ), ( )))A A

x y

v A A x y 


 =  and  is a fixed positive fraction less than or equal 

to 1. Literally speaking, 1A and 2A are approximately equal if 1A is not greater than 2A and 2A

is not greater than 1A . 

Based on equation 63, Arbel (1989) further proves that a fuzzy comparison matrix can be 

considered as consistent when the ratio of the weight wi of criterion Ci to the weight wj of 

criterion Cj is within the upper and lower bounds of the corresponding TFN ( , , )ij ij ij ijA l m h= , 

i.e.

( / )ij i j ijl w w h  (65) 

This equation is the base of the following non-linear programming model (Mikhailov & 

Tsvetinov, 2004). The outcomes of fuzzy programming method provide the optimal crisp 

weight vector and a consistency index λ.   

1

max  

. .

( ) 0

( ) 0

1,  0,  

1,..., 1,  2,... ,  ,  1,...,

ij ij j i ij j

ij ij j i ij j

n

k k

k

s t

m l w w l w

h m w w h w

w w

i n j n j i k n







=

− − + 

− + − 

= 

= − =  =



(66) 

That the optimal value λ* > 0 means that all solution ratios completely satisfy the fuzzy 

judgements. A negative value indicates that the judgements are inconsistent. 

As discussed by Mikhailov (2004), in inconsistent cases, there does not exist a weight vector 

that satisfies all inequalities in equation 65 simultaneously. But it is reasonable to try to find a 

vector satisfying all inequalities as well as possible, which introduces ‘approximately less than 

or equal to’, i.e. ‘  ’ , to equation 65. 

( / )ij i j ijl w w h  (67) 

The following non-linear programming model is then proposed, which adds a tolerance 

parameter pij. This parameter extends the feasible region by extending the lower and upper 

bounds. 
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1

max  

. .

( ) 0

( ) 0

1,  0,  

1,..., 1,  2,... ,  ,  1,...,

ij j ij ij j i

ij j ij ij j i

n

k k

k

s t

p w l p w w

p w h p w w

w w

i n j n j i k n







=

+ − − 

− + + 

= 

= − =  =



(68) 

That the optimal value λ*   1 indicates consistent fuzzy judgements. For a weak consistency 

but the solution ratio is within the extended bounds, λ* is a value between 1 and 0, depending 

on the degree of inconsistency and the values of the tolerance parameters. Chen and Yang 

(2011) use Mikhailov (2004)’s method to examine the consistency. In the first example of Chen 

and Yang’s paper (i.e. Example 1), a consistency index value 0.7602 is obtained so they 

consider the comparison matrix consistent. But according to Mikhailov (2004), a value within 

[0, 1] should be weakly inconsistent. 

7.2.2 Geometric consistency index 

Kar (2014; 2015) apply Geometric consistency index (GCI) to the fuzzy matrix [ ]ij n nF A = as 

equation 69: 

22
( ) (log (log log ) )

( 1)( 2)

n

ij i j

j i

GCI F A w w
n n 

= − −
− −

 (69) 

If ( )GCI F GCI , the matrix is consistent. GCI are fixed values that GCI = 0.31 for n = 3, 

GCI = 0.35 for n=4 and GCI = 0.37 for n > 4. 

This consistency measure is proposed by Crawford and Williams (1985) for crisp matrix. The 

thresholds of CGI are determined by Aguarón and Moreno-Jiménez (2003) who provide an 

interpretation of GCI analogous to the consistency index in AHP proposed by Saaty. It checks 

the consistency only after the weights of alternatives are obtained. Considering that row 

geometric mean instead of right eigenvector is used for the prioritisation, the computation 

efforts do not increase compared with Saaty’s method. The problem when applying this 

measure to the fuzzy matrix is how to calculate the logarithm of a fuzzy number. Kar (2014; 

2015) do not explain this and it seems that crisp values are used though the equation presents 

fuzzy numbers. There is also a mistake in their used equation (i.e. equation 69) that the square 

should be placed in the outer bracket as shown in equation 70.   

22
( ) (log (log log ))

( 1)( 2)

n

ij i j

j i

GCI F A w w
n n 

= − −
− −

 (70)
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7.3 Short discussion 

Crisp consistency based on Saaty’s method is mostly used and suitable for all types of fuzzy 

sets. Mahmoudzadeh and Bafandeh (2013) explain why a crisp consistency can represent the 

consistency of the fuzzy matrix. In the case of calculating a fuzzy inconsistency ratio, they 

have proved that if the comparison matrix obtained from an α = 1 cut set of A  is consistent, 

then the original fuzzy comparison matrix is consistent. For a TFN A  = (l, m, n), its α = 1 cut 

set reduces to a crisp number, i.e. Aα = m. The consistency check of the fuzzy matrix [ ]ij n nF A =

becomes the check of the crisp matrix Fα=1 = [mij]n×n. Saaty’s consistency ratio then can be 

used.  

Table 6 summarises the methods to measure the consistency in terms of the underlying 

principle, the complexity of the computation and the pros and cons. 

Table 6. Summary of the methods for consistency measurement 

Method Principle Complexity Pros and cons 

Saaty’s 

method 

Check the consistency of the 

defuzzified fuzzy matrix by 

Saaty’s consistency ratio. 

Simple (simple 

equations), involving 

arithmetic operations 

and calculation of max 

eigenvalue of the 

matrix. 

The choice of 

defuzzification methods 

may influence the results 

since different 

defuzzification methods 

could produce different 

crisp matrices. It is 

extended to type-2 and 

intuitionistic fuzzy sets. 

Fuzzy 

programming 

method 

Establish the objective and 

constraint functions based 

on that the weight ratio of a 

criterion to another is 

bounded by the lower and 

upper limits of the TFN 

representing their pairwise 

comparison. 

Very complicated due 

to the iterative search 

and the need of 

assistant tools to solve 

the model. 

It generates the 

consistency ratio while 

producing the weights. 

Geometric 

consistency 

index 

Calculate the consistency 

ratio based on the distance 

between pairwise 

Simple (simple 

equations), involving 

It is hard to apply the 

equation to fuzzy set 

because little research has 
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comparison and the weight 

ratio which are taken the 

logarithm first. 

arithmetic and 

logarithm operations. 

been done for logarithm 

calculation on fuzzy sets. 

It checks the consistency 

after the weights are 

obtained. 

8. Conclusion and future research

How the expert’s judgements are represented by fuzzy sets is fundamental to the development 

of fuzzy AHP. The choice of the fuzzy sets determines the overall calculation complexity of 

the model. Among the three types of fuzzy sets, type-1 fuzzy set requires the least effort, 

followed by intuitionistic fuzzy set and interval type-2 fuzzy set. This is because the operations 

on fuzzy sets are defined via the elements and their memberships, as compared in Table 7.  

Table 7. Operation comparisons between fuzzy sets 

Fuzzy set Operation on Membership value 

Type-1 fuzzy set Element, membership Crisp values 

Intuitionistic fuzzy 

set 

Element, membership, 

non-membership 
Crisp values 

Type-2 fuzzy set Element, membership Type-1 fuzzy sets 

Aggregation is the key operation to produce the weights/priorities. Different techniques may 

produce different results and have distinct performance. According to the experimental analysis 

of Ahmed and Kilic (2018), the logarithmic least-squares method outperforms the fuzzy 

geometric mean and the fuzzy geometric mean outperforms the fuzzy arithmetic mean. To the 

best of our knowledge, no comparison has been done between these mean methods and other 

methods such as lambda-max, which could be a future research topic.  

Defuzzification assists the comparison of the results because crisp values are more intuitive 

than fuzzy values. It also simplifies the calculation if the matrix is defuzzified before 

computing the weights, which translates a fuzzy matrix into a crisp matrix. The consistency 

check ensures that the results are produced based on effective judgments since inconsistency 

may indicate a lack of understanding of the problem. 

As indicated in Figure 1, there is no fixed execution sequence of synthesising multiple 

judgments, checking consistency, calculating weights/priorities and defuzzifying the fuzzy 
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values. However, the sequence along with the chosen techniques influences the effect of the 

fuzzy AHP model. 

8.1 Suggestion on the choice of sequence and technique 

This review concludes the techniques used to develop a fuzzy AHP model in the literature. 

Except the problematic ones (i.e. EAM and CFCS), it is hard to identify which one is the best 

because each has its advantages and varies in their underlying principles as discussed in the 

previous sections. Experts could determine according to their practical context. As discussed 

in section 4.5, if they are relatively confident in their judgement, then type-1 fuzzy set can be 

chosen. If preferring a simple but practical tool, they can use geometric mean for aggregation, 

centroid method for defuzzification and Saaty’s method for consistency measurement. If the 

experts have good mathematical background and look for more optimal solutions, fuzzy 

programming method is a nice option. But the following should be avoided when building the 

fuzzy AHP model. 

8.1.1 Using fuzzy arithmetic mean for aggregation and centroid method for defuzzifying when 

symmetrical TFNs are used for judgement representation.  

For a symmetrical TFN ( , , )i i i iC l m h= , there is 
i i i i im l h m− = − =  . Symmetrical TFNs are 

commonly used to define the fuzzy scales as seen in section 4.4. Applying fuzzy arithmetic 

mean as equation 10 to such TFNs for aggregation also produces a symmetrical TFN C : 

1

1 1 1

1 1 1
( , , ) ( ( ), , (m )

n n n

i i i i

i i i

C l m h m m
n n n= = =

= = −  +   

where 
1

1 n

i

i

m l h m
n =

− = − =  , n is the number of the TFNs. 

Defuzzifying a symmetrical TFN ( , , )C l m h=  by the centroid method as equations 39, 40 or 41, 

a crisp value equal to m is obtained. 

In this case, if the model is built in the sequence where the TFNs of the pairwise judgements 

is defuzzified before calculating the weights, the problem of solving a fuzzy AHP model 

[ ] [( , , )]ij n n ij ij ij n nF C l m h = =  reduces to solving an AHP model [ ]ij n nF m = . The use of a fuzzy 

scale does not make any sense because it is equal to the use of crisp scale with the same level. 
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If the sequence of steps is used where the weights are calculated and then defuzzified, the 

method will produce the same unnormalised weight vector W with AHP model that calculates 

the weights by arithmetic mean.  

1 2

1 1 1

{ , ,... }
n n n

j j nj

j j j

W m m m
= = =

=   

8.1.2 Checking the consistency after multiple judgements synthesis. 

The inconsistent judgement from an individual expert might be overlooked if checking the 

consistency after synthesising the multiple judgements. Consider the following two fuzzy 

comparison matrices 1F  and 2F  from two experts and their synthesised matrix 
aggF . 

1 1 1 1 1 1
1 24 3 2 9 8 7

1 1 1 1 1 1 1
6 5 4 3 2 3 2

(1,1,1) (2,3,4) (4,5,6) (1,1,1) (7,8,9) (1,2,3)

( , , ) (1,1,1) (1,2,3)     ( , , ) (1,1,1) (1,1,1)

( , , ) ( , ,1) (1,1,1) ( , ,1) (1,1,1) (1,1,1)

(1,1,1) (3.74,4.90,6) (2

 agg

F F

F

   
   

= =   
   
   

=

,3.16,4.24)

(0.17,0.20,0.27) (1,1,1) (1,1.41,1.73)

(0.24,0.32,0.5) (0.58,0.71,1) (1,1,1)

 
 
 
 
 

After defuzzifying the matrices by the centroid method (equation 39), the consistency is 

checked using Saaty’s method. The consistency ratios of the three matrices are 0.0036, 0.209 

and 0.066 respectively. If the consistency is measured after synthesis, the judgements are 

considered consistent (
aggF

CR = 0.066 < 0.1) and the weights are calculated based on actually 

inconsistent judgement from expert 2 (
2F

CR = 0.209 > 0.1). The almost perfect consistency

from expert 1 (
1F

CR = 0.0036) compensates the big inconsistency from expert 2 via aggregation. 

8.2 Future work 

This section presents some open questions that arise from the review and the discussion of the 

techniques. We hope these questions could inspire researchers for future work. 

8.2.1 Open questions on fuzzy scale 

There are 5, 6, 7 and 9-level scales that have been applied to describe the relative importance 

between every two criteria/alternatives. There seems no explanation on the choice of the scale 

in the research that have applied the fuzzy scale. 
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Saaty (2008) discusses that psychologically people are able to distinguish between high, 

medium and low at one level and for each in a second level below to also distinguish between 

high, medium and low. This produces nine different categories, where the smallest is (low, low) 

and the highest is (high, high). This is the principle that AHP has a 9-level scale for the top of 

pairwise comparisons as compared with the lowest value on the scale. A scale provides a 

reference for comparison. It is reasonable that other scales exist as long as they cover the 

spectrum of possibilities and discriminate the alternatives in their application context. Small 

changes in judgement lead to small changes in the derived weights/priorities (Wilkinson, 1965). 

When two or more scales are applicable to one problem, for example, supplier selection where 

the four types of fuzzy scales can be used. Several questions arise: 

Q1: Do different scales have different impacts on the final result in terms of accuracy and 

reliability? 

To define a particular expression in the scale, various types of fuzzy sets are used such as type-

1 and type-2 fuzzy sets. If using the same type, the choices of the fuzzy numbers by the 

researchers can also be different. For example, Zimmer et al. (2017) specify ‘moderately 

important’ with 1.5  while most research adopts 2  in the 5 level scale. The same fuzzy number 

may also be defined differently. As discussed in section 4.4, 9  is interpreted as (9, 9, 9) or (8, 

9, 10). This leads to the concern: 

Q2: What are the impacts on the results if using different fuzzy sets regarding the types, the 

chosen fuzzy numbers and the definitions on the same scale? 

8.2.2 Open questions on aggregation 

Some aggregation methods accommodate the weights of the experts, which are assumed as 

known. Experts may have different capabilities since they come from different functional 

departments, such as purchasing, financing, engineering and quality assurance. People from 

purchasing have better knowledge to compare the cost related criteria while those from quality 

assurance are more reliable to analyse the quality related criteria. It is hard to judge which 

expert overall is more important than another. Two questions arise. 

Q3: When experts judge the relative importance between criteria, who judges their importance? 

Q4: When people have distinctive expertise, how is their importance judged?  
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One possible solution is that the experts evaluate the criteria within their capabilities, and those 

of the same capability are weighted by their experience such as the working years, reputation 

and position in the department. This brings a new research topic in decision-making. 

8.2.3 Open questions on consistency 

When research focuses on the consistency measurement problem, it seems little attention has 

been paid to dealing with inconsistency. If the matrix is consistent, then the process continues. 

Otherwise, the experts need re-compare the criteria/alternatives until the consistency ratio is 

within the acceptable range. This is the usual solution to adjust the matrix. However, this is 

still insufficient because it is not clear that:  

Q5: Which part of matrix needs adjustment? 

Q6: How can the inconsistent part be adjusted to meet the condition? 

To re-compare the whole matrix consumes effort, especially when the number of 

criteria/alternatives is large. In addition, re-comparison cannot guarantee the consistency of the 

judgements if the experts have no idea about the adjustment. The answers to the above two 

questions might help make decision making more efficient. 

8.3 Concluding remarks 

Fuzzy set theory has been proposed as a valid means of dealing with imprecision and vagueness. 

However, as discussed in Kubler et al. (2016), the extent of benefits brought by introducing 

this fuzzy paradigm to AHP is not clear, especially given that Saaty (2006) argued that the 

pairwise judgements are fuzzy enough. Using fuzzy numbers is not only for fuzziness (certain 

inconsistency among the judgements) but also for ‘uncertainty’ or ‘hesitation’ of the experts 

towards their judgements. Different types of fuzzy numbers provide choices to express ‘not 

sure’ to different extents. Although the extent to which fuzzy AHP solves the problem of 

uncertainty is disputed, it is a simple and useful decision-making method that has been widely 

applied. It retains the advantages of AHP, i.e. structuring the problems, calculating both 

weights and priorities and well-proved mathematical properties. This paper provided guidance 

on how to choose appropriate techniques for building fuzzy AHP models in term of 

representation, aggregation, defuzzification and consistency. In offering the guidance, this 

research traced the origin of the methods and matched the context to the techniques. The 

methods are also analysed regarding their characteristics, complexity and extension.  
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TFN stands out from other types of fuzzy set, because of its simplicity in representing 

the judgements. It seems able to deal with uncertainty in most cases (applied by 91% of 

reviewed articles in various fields), but is limited because the degree of membership is 

expressed as real numbers. In the cases where the decision makers find it difficult to 

determine the memberships, trapezoidal interval type-2 or intuitionistic fuzzy sets can help. 

Mean methods are mostly used in aggregating group decisions and deriving weights, for the 

three reviewed types of fuzzy sets. In particular geometric mean has proved a valid approach 

of approximating the eigenvalues of a matrix. The fuzzy programming methods are also 

efficient ways of computing the weights because they also generate a consistency index. 

But they require more computational effort. Centroid methods are valid means of 

defuzzifying fuzzy sets, which come in several forms. The one of equation 40 is a nice 

choice, because it considers both the worst and best results arising from a fuzzy number. 

This equation can also be inferred from Yager’s approach and has been proved by 

Facchinetti et al. (1998). It is worth mentioning that the EAM is problematic as 

shown in the discussion but still widely applied because of its ease of use in obtaining the 

weights and crisp values. This indicates that ‘a simple but practical’ method is what the 

decision makers need.  

Therefore, the reviewed techniques are summarised according to their complexity as listed in 

Table 8. More properties can be found in Tables 2-3 and Tables 5-6. It is also noticed that 

more than half of articles (61 out of 109 articles) do not check the consistency of the 

pairwise comparison matrix. Consistency measurement is necessary to reduce the 

contradictions among different decision makers. 

Table 8. Summary of the techniques 

Simple Complicated Very complicated 

Representation for 

pairwise comparison 

Trapezoidal 

interval type-2 

fuzzy set 
Aggregation 

for 

group 

decision 

TFN, TraFN 

Arithmetic mean, 

Geometric mean, Max-

min method with 

arithmetic mean, Max-min 

method with geometric 

mean 

Intuitionistic 

fuzzy set 

Method based on 

Consensus degree 



50 

weights/ 

priorities 

Arithmetic 

mean, Geometric 

mean, 

Fuzzy 

programming 

method 

Defuzzification 

Logarithmic 

least-squares, 

Lambda-max 

method, 

Eigenvector 

method 

CFCS 

Consistency 

Centroid method, EAM, 

Mean of limits, Index of 

optimism, Fuzzy entropy 

Saaty’s method, 

Geometric consistency 

index 

Fuzzy 

programming 

method 

Figure 19 presents the paths with simple and commonly used techniques in the four important 

aspects of a fuzzy AHP model, starting with the types of fuzzy sets. Figures 11, 13 and 14 

explains which fuzzy set and aggregation methods should be chosen. The appropriate 

techniques(s) emerge(s) by answering the subsequent questions. 

Figure 19. Paths of building fuzzy AHP models 

This research has adopted a two-stage approach to examine the fuzzy AHP models used 

in different decision-making topics in industry. Although many techniques have been 

reviewed, 
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there may still be ones that have been overlooked. The guidance of this paper could help to 

categorise and analyse the techniques by reflecting what they describe, when they are 

applicable, how they are defined and the complexity of the computation. 
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Appendix 

It is noted that the number after the types of fuzzy sets in the column ‘Pairwise’ indicates the levels of the fuzzy scales. For example, ‘TFN 9’ 

means this paper takes a 9-level scale based on TFNs. 

Table A.9 Supplier selection articles with the techniques in their fuzzy AHP models 

Authors Industry 
With 

method(s) 

Representation Aggregation Defuzzifi

cation 

Consis

tency Pairwise Performance Weight/Priority Multi-experts 

1 Chan et al. (2008) 
Manufactur

ing 
- 

TFN 9 
- EAM - EAM - 

2 
Büyüközkan et al. 

(2008) 
e-logistics TOPSIS 

TFN 5 TFN 
EAM - EAM - 

3 Yang et al. (2008) - 

Non-

additive 

fuzzy 

measure 

TFN 9 TFN Geometric mean Geometric mean COA - 

4 Celik et al. (2009) Maritime - TFN 5 - EAM - EAM - 

5 Lee (2009) 
Manufactur

ing 
- TFN 9 - EAM Geometric mean EAM - 

6 
Wang et al. 

(2009) 
- TOPSIS TFN 5 TFN Lambda-max Geometric mean - Saaty

7 
Aydin and 

Kahraman (2010) 

Manufactur

ing 
- TraFN - 

Arithmetic mean 

(defuzzify first) 

Weighted 

arithmetic mean 
COA - 

8 Chen et al. (2010) 
Manufactur

ing 
- TFN 7 - Arithmetic mean

Max-min for TFN 

construction 

& Arithmetic mean 

COA - 

9 
Chen and Hung 

(2010) 

Pharmaceut

ical 
TOPSIS TFN 6 TFN Geometric mean 

Arithmetic 

(alternative)& 
- Saaty
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 Authors Industry 
With 

method(s) 

Representation Aggregation Defuzzifi

cation 

Consis

tency Pairwise Performance Weight/Priority Multi-experts 

Geometric mean 

(criteria) 

10 Kuo et al. (2010) 
Manufactur

ing 
DEA TFN 5  Lambda-max 

Average but not 

specified 
- Saaty 

11 Şen et al. (2010) Electronic Max-min TFN 9 
Crisp (criteria 

weights) 
EAM - EAM - 

12 Sun (2010) - TOPSIS TFN 9 TFN Geometric mean - 

COA (but 

fuzzy 

values are 

used) 

- 

13 
Chen and Yang 

(2011) 
- TOPSIS TFN 6 TFN Modified EAM Geometric mean EAM FP 

14 
Chiouy et al. 

(2011) 
Electronic - TFN 9 - Lambda-max Geometric mean 

-(not 

specified) 
Saaty 

15 Ertay et al. (2011) 
Pharmaceut

ical 

ELECTRE 

III 
TFN 9 Crisp EAM 

Weighted 

Geometric mean 
EAM - 

16 Jung (2011) 
Manufactur

ing 

GP for 

allocation 
TFN 5  - Geometric mean - 

Index of 

optimism 
Saaty 

17 
Kilincci and Onal 

(2011) 

Manufactur

ing 
- TFN 5 - EAM - EAM Saaty 

18 
Zeydan et al. 

(2011) 
Automobile TOPSIS TFN 9 TFN 7 EAM 

Arithmetic mean 

(for performance, 

no for criteria) 

- 

Y no 

metho

d 

19 
Yücenur et al. 

(2011) 
Logistics - 

TFN –(not 

mention) 
- EAM - EAM - 

20 
Büyüközkan 

(2012) 
Automotive TOPSIS TFN 11 TFN Geometric mean 

Weighted 

arithmetic mean 
COA Saaty 
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 Authors Industry 
With 

method(s) 

Representation Aggregation Defuzzifi

cation 

Consis

tency Pairwise Performance Weight/Priority Multi-experts 

21 
Kubat and Yuce 

(2012) 
- GA TFN 9 - EAM - EAM - 

22 Shaw et al. (2012) 
Manufactur

ing 

LP for 

allocation 
TFN 9 -  EAM Geometric mean EAM - 

23 
Soroor et al. 

(2012) 
- - TFN 9 - 

Eigenvector based 

on index of 

optimism 

 
Index of 

optimism 
Saaty 

24 Yu et al. (2012) 
Manufactur

ing 
MP TFN - - Geometric mean - COA - 

25 
Zouggari and 

Benyoucef (2012) 
- TOPSIS TFN 5 TFN EAM Max-min EAM Saaty 

26 
Alinezad et al. 

(2013) 

Pharmaceut

ical 
- TFN 4 - EAM - EAM - 

27 
Ghorbani et al. 

(2013) 

agricultural 

machinery  

TOPSIS 

 
TFN 5 TFN EAM - EAM - 

28 
Kannan et al. 

(2013) 
Automobile 

TOPSIS 

MP for 

allocation 

TFN 9 TFN 9 EAM Geometric mean EAM Saaty 

29 
Pitchipoo et al. 

(2013) 

electroplati

ng 
GRA TFN 9 - 

Crisp weights by 

defuzzifying first 
- COA Saaty 

30 
(Rezaei & Ortt, 

2013) 
food - TFN 7 TFN 7 Arithmetic mean - COA - 

31 
Roshandel et al. 

(2013) 
material TOPSIS TFN 5 TFN Arithmetic mean Arithmetic mean - - 

32 

Viswanadham 

and Samvedi 

(2013) 

- TOPSIS TFN 5 TFN EAM 
Arithmetic mean 

(in performance) 
EAM - 
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Authors Industry 
With 

method(s) 

Representation Aggregation Defuzzifi

cation 

Consis

tency Pairwise Performance Weight/Priority Multi-experts 

33 
Hashemian et al. 

(2014) 
Diary 

PROMETHE

E 
TFN 5 TFN EAM Geometric mean EAM - 

34 Kar (2014) 
Manufactur

ing 
MP TFN 5 - Geometric mean

Weighted 

geometric mean 
COA GCI 

35 
Rezaei et al. 

(2014) 

Airline 

retail 
- TFN 9 - FP (non-linear) - FP FP 

36 Shad et al. (2014) LP TFN 5 TFN Geometric mean - - - 

37 
Ayhan and Kilic 

(2015) 
Manuf 

MILP for 

allocation 
TFN 9 Crisp values Geometric mean

Arithmetic 

mean 
COA - 

38 
Beikkhakhian et 

al. (2015) 
- TOPSIS TFN 9 TFN 5 

Eigenvector based

on index of 

optimism 

Geometric mean 
Index of 

optimism 
Saaty 

39 Kar (2015) 
Manufactur

ing 

NN for 

classificatio

n 

TFN 5 crisp Geometric mean 
Weighted 

geometric mean 
COA GCI 

40 
Sultana et al. 

(2015) 

Manufactur

ing 

Delphi, 

TOPSIS 
TFN 5 TFN EAM Geometric mean COA Saaty 

41 
Uyguna et al. 

(2015) 

Communic

ation 

ANP, 

DEMATEL 
TFN 5 TFN EAM Arithmetic mean EAM - 

42 
Yayla et al. 

(2015) 
Logistics TOPSIS TFN 5 TFN Geometric mean - 

COA for 

BNP 
- 

43 
Büyüközkan and 

Güleryüz (2016) 
Automotive TOPSIS 

Intuitionistic 

fuzzy sets 

Intuitionistic 

fuzzy sets 

Weight of a 

criterion from an 

individual DM is 

supposed as being 

given 

IFWA - Saaty,

44 
Prakash and 

Barua (2016b) 
Electronic VIKOR TFN 7 crisp EAM - EAM -
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Authors Industry 
With 

method(s) 

Representation Aggregation Defuzzifi

cation 

Consis

tency Pairwise Performance Weight/Priority Multi-experts 

45 
Prakash and 

Barua (2016a) 
Logistics TOPSIS TFN 7 TFN EAM Max-min EAM - 

46 

PrasannaVenkates

an and Goh 

(2016) 

- 
PROMETH

EE 
TFN 5 TFN EAM - EAM Saaty 

47 
Shakourloo et al. 

(2016) 

Manufactur

ing 

LP for 

allocation 
TFN 6 - Updated EAM - EAM - 

48 
Wang Chen et al. 

(2016) 

Manufactur

ing 
TOPSIS TFN 6 TFN EAM Arithmetic mean EAM - 

49 
Büyüközkan et al. 

(2017) 

RFID 

service 

provider 

Fuzzy AD 

(Axiomatic 

design) 

TFN 11 TFN 

Eigenvector based 

on index of 

optimism 

Aggregation based 

on consensus 

degree 

Index of 

optimism 
Saaty 

50 
Kumar et al. 

(2017) 
Automobile LP TFN 9 TFN EAM Geometric mean EAM - 

51 
Görener et al. 

(2017) 
Airline TOPSIS 

Interval type 2 

fuzzy set 

Interval type 2 

fuzzy set 
Geometric mean Geometric mean 

-Fuzzy

weights

are used

Saaty 

52 
Zimmer et al. 

(2017) 
Automobile IO TFN 5 Crsip EAM Geometric mean EAM Saaty 

53 
Awasthi et al. 

(2018) 
electronic VIKOR TFN 5 TFN 

Eigenvector by 

defuzzifying first 

Max-min with 

arithmetic mean 
COA Saaty 

54 
Celik and Akyuz 

(2018) 

Maritime 

trans 
TOPSIS 

Interval type-2 

fuzzy sets 

Interval type-2 

fuzzy sets 
Geometric mean - COA - 

55 Khorasani (2018) Service Copras TFN 9 TFN Geometric mean Geometric mean - - 

56 Liu et al. (2019) Agriculture TOPSIS TFN 9 TFN Geometric mean Geometric mean COA Saaty 

57 
Büyüközkana et 

al. (2019) 
Chemistry VIKOR 

Intuitionistic 

fuzzy sets 

Intuitionistic 

fuzzy sets 
IFWA IFWA 

Fuzzy 

entropy 
Saaty 
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Table A.10 Other selection articles with the techniques in their fuzzy AHP models 

Authors With method(s) 
Representation Aggregation Defuzzifica

tion 

Consis

tency Pairwise Performance Weights/Priorities Multi-experts 

Machine/tool selection 

1 Taha and Rostam (2011) ANN TFN 9 - Eigenvector - 
Index of 

optimism 
Saaty 

2 
Yazdani-Chamzini and 

Yakhchali (2012) 
TOPSIS TFN 9 TFN EAM 

Arithmetic 

mean 
EAM - 

3 Ic et al. (2013) - TraFN - Geometric mean - COA - 

4 Nguyen et al. (2015) COPRAS TFN 7 TFN Arithmetic mean - COA - 

5 Parameshwaran et al. (2015) 
Delphi and 

TOPSIS/VIKOR 
TFN 9 TFN EAM - EAM - 

Location/site selection 

6 Vahidnia et al. (2009) - TFN 9 - EAM - 

EAM/COA

/ index of 

optimism 

Saaty 

7 
Choudhary and Shankar 

(2012) 
TOPSIS TFN 9 TFN EAM - EAM - 

8 Mosadeghi et al. (2015) - 
TFN scale is 

not specified 
- EAM - EAM - 

9 
Samanlioglu and Ayag 

(2017) 
PROMETHEE TFN 5 TFN Eigenvector - 

Index of

optimism
Saaty 

10 Ayodele et al. (2018) - 
Interval type 2 

fuzzy set 
- Geometric mean

Geometric 

mean 
COA Saaty 

11 Erbas et al. (2018) TOPSIS TFN 5 TFN Geometric mean - COA Saaty 

12 Ju et al. (2018) 
Grey relational 

projection 
TFN 6 

Picture fuzzy 

set 
EAM - EAM - 

13 Singh et al. (2018) - TFN 6 - EAM - EAM -
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Authors With method(s) 
Representation Aggregation Defuzzifica

tion 

Consis

tency Pairwise Performance Weights/Priorities Multi-experts 

ERP selection 

14 Cebeci (2009) - TFN 5 - Geometric mean - COA - 

15 Kahraman et al. (2010) - 

TraFN (fuzzify 

the judgements 

first) 

- 
Crisp weights but

defuzzify first 

Weighted 

arithmetic 

mean 

COA - 

16 Onut and Efendigil (2010) - TFN 9 - EAM - EAM - 

17 Sarfaraz et al. (2012) - TFN 9 - 
Crisp weights but 

defuzzify first 

Geometric 

mean but 

defuzzify the 

decision 

matrix first 

CFCS Saaty 

18 Kilic et al. (2014) TOPSIS TFN 9 Crisp value Geometric mean 
Arithmetic 

mean 
COA - 

19 Ahmadi et al. (2015) 
Fuzzy cognitive 

maps 
TFN 6 - EAM - EAM - 

20 Efe (2016) TOPSIS TFN 5 TFN EAM - EAM/COA Saaty 

Project selection 

21 Taylan et al. (2014) TOPSIS TFN 5 TFN EAM 

-Mentioned

averaging but

not specified

EAM - 

22 BAYSAL et al. (2015) TOPSIS TFN 5 - Arithmetic mean - 
Index of 

optimism 
- 

Technology selection 

23 Ayag (2010) - TFN 5 - Eigenvector - 
Index of 

optimism 
Saaty 

24 García-Cascales (2012) TOPSIS TFN 5 TFN Arithmetic mean - - - 
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Authors With method(s) 

Representation Aggregation Defuzzifica

tion 

Consis

tency  Pairwise Performance Weights/Priorities Multi-experts 

25 Mirhedayatian et al. (2013) DEA TFN 5 - FP (based on DEA) - - FP 

26 Avikal et al. (2014) PROMETHEE TFN 5 crisp Eigenvector - 
Index of 

optimism 
Saaty 

27 Demirtas et al. (2014)  TFN 9 - EAM - EAM - 

28 Tan et al. (2014) - TFN 5 - FP - FP FP 

29 Vinodh et al. (2014) TOPSIS TFN 9 TFN Geometric mean - COA - 

30 Wang and Wang (2014) Kano TFN 5 - Eigenvector Max-min COA Saaty 

31 Budak and Ustundag (2015) - TFN 5 - Geometric mean 
Arithmetic 

mean 
COA - 

32 Mahjouri et al. (2017) TOPSIS TFN 5 TFN Geometric mean 
Arithmetic 

mean 
- - 

33 Naderzadeh et al. (2017) - TFN 5 - EAM - EAM - 

34 
Alaqeel and Suryanarayanan 

(2018) 
- TFN 9 - Eigenvector - 

Geometric 

mean 
Saaty 

35 Balusa and Gorai (2018) - TFN 9 - Geometric mean - 
Index of 

optimism 
Saaty 

36 Canan et al. (2018) - TraFN - Geometric mean 
Geometric 

mean 
COA Saaty 

37 Goyal et al. (2018) - 
TFN self-

defined scale 
- FP/EAM - FP/EAM FP 

38 Wang et al. (2019) VIKOR 
TFN (not 

specified) 
- EAM 

Mentioned but 

not specified 
EAM - 

39 Bostancioglu (2020) - TFN 9 - EAM - EAM - 

Evaluation of engineering sector, teaching performance and health service 

40 Akkaya et al. (2015) MOORA TFN 5 TFN EAM - EAM - 

41 Chen et al. (2015) - TFN 6 - EAM Max-min EAM Saaty 

42 Singh and Prasher (2017) - TFN 5 - Geometric mean - COA - 

Management of risk, sustainability, resource and process 
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Authors With method(s) 

Representation Aggregation Defuzzifica

tion 

Consis

tency  Pairwise Performance Weights/Priorities Multi-experts 

43 Mangla et al. (2015) - TFN 9 - EAM - EAM - 

44 Calabrese et al. (2016) - TFN 5 - 
Row sum (similar to 

arithmetic mean) 
- COA Saaty 

45 Calabrese et al. (2019) - TFN 5 - 
Row sum (similar to 

arithmetic mean) 
- COA Saaty 

46 Zyoud et al. (2016) TOPSIS TFN 5 TFN EAM 

Max-min 

Arithmetic and 

geometric 

mean 

EAM - 

47 
Sirisawat and Kiatcharoenpol 

(2018) 
TOPSIS TFN 9 TFN EAM  EAM - 

48 Celik and Akyuz (2018) TOPSIS 
Interval type 

2 fuzzy set 
- Geometric mean - COA Saaty 

49 Khan et al. (2019) - TFN 6 - EAM - EAM Saaty 

50 Singh and Sarkar (2019) TOPSIS 
TFN self-

defined scale 
TFN EAM - EAM - 

51 Tavana et al. (2020) MOORA TFN 5 TFN EAM 
Geometric 

mean 
EAM Saaty 

Diagnosis of diseases 

52 Nazari et al. (2018) FIS TFN 5 TFN EAM 
Geometric 

mean 
EAM - 

 


