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Abstract

Given a set of profitable items where each item is a set of weighted elements,
the Set-union Knapsack Problem is to pack a subset of items into a capacity
constrained knapsack to maximize the total profit of the selected items. This
problem appears in many practical applications; however, it is computationally
challenging. To advance the state-of-the-art for solving this relevant problem,
we introduce a competitive heuristic algorithm, which features original kernel-
based search components and an effective local search procedure. Extensive
computational assessments on 60 benchmark instances demonstrate the high
performance of the algorithm. We show different analyses to get insights into
the influences of its algorithmic components. We make the code of the algorithm
publicly available to facilitate its use in practice.

Keywords: Knapsack; Heuristics and metaheuristics; Decision making; In-
telligent systems; Combinatorial optimization.

1. Introduction

As a generalized knapsack model, the Set-Union Knapsack Problem (SUKP)
is defined as follows (Kellerer et al., 2004). Given 1) a set U of n elements where
each element j has a weight wj > 0, 2) a set V of m items where each item
i is a subset of elements Ui ⊆ U and has a profit pi > 0, and 3) a knapsack
of capacity C, SUKP involves determining a set of items S ⊆ V to maximize
the total profit of S while ensuring that the total weight of the elements of S
does not exceed the knapsack capacity C. Notice that the weight of an element
is counted only once even if it belongs to more than one selected items in S.
Formally, SUKP can be written as follows.

(SUKP ) Maximize f(S) =
∑
i∈S

pi (1)
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subject to W (S) =
∑

j∈∪i∈SUi

wj ≤ C, S ⊆ V (2)

Like other knapsack models (Amiri, 2020; Dahmani et al., 2020; Denysiuk
et al., 2019; Glover & Kochenberger, 1996; Qin et al., 2016; Lai et al., 2018b;
Vasquez & Hao, 2001), SUKP has a number of practical applications. As an
example, we consider the following decision-making problem to optimally allo-
cate data in large cyber systems (Tu & Xiao, 2016). Given a centralized cyber
system with a memory of fixed capacity holding a set of services (or requests)
with profits, where each service contains a set of data objects. Each data object
will consume a certain amount of memory when it is invoked, and multiple use
of the same data object will not cause additional memory consumption. The
goal is to select a subset of services, among the candidate services, such that the
total profit of the selected services is maximized while the total memory con-
sumed by the underlying data objects meets the memory capacity of the cyber
system. This application can be conveniently formulated by the SUKP model
where an item corresponds to a service with its profit and an element corre-
sponds to a data object with its memory consumption (element weight). Then,
solving the data allocation problem is equivalent to find the optimal solution
to the resulting SUKP problem. SUKP has other relevant applications related
to decision-making and intelligent systems including database partitioning (Na-
vathe et al., 1984), flexible manufacturing (Goldschmidt et al., 1994), key-pose
caching (Lister et al., 2010), and public key prototyping (Schneier, 1996).

Meanwhile, in terms of computational complexity theory, the decision ver-
sion of SUKP is known to be NP-complete (Goldschmidt et al., 1994). There-
fore from the perspective of solution methods, solving the problem is a highly
challenging task. Given its practical and theoretical relevance, a number of
algorithms for SUKP have been introduced in the literature.

First, exact and approximation algorithms based on dynamic programming
or greedy approximation methods were investigated in (Goldschmidt et al., 1994;
Taylor, 2016; Arulselvan, 2014). These studies are of theoretical nature and
didn’t show computational results.

Second, given the NP-hardness of SUKP, several algorithms based on meta-
heuristics were proposed recently to find approximate solutions in a reasonable
time frame. He et al. (2018) designed a binary artificial bee colony algorithm
(BABC) for solving SUKP and reported the first computational study on a
set of 30 benchmark instances they introduced. Later, He and Wang (2018)
devised a group theory-based optimization algorithm (GTOA) for several knap-
sack problems including SUKP. Then, Ozsoydan and Baykasoğlu (2018) pre-
sented a binary swarm intelligence algorithm (gPSO) that combines the genetic
algorithm with particle swarm optimization. Baykasoğlu et al. (2018) proposed
a modified weighted superposition attraction algorithm (WSA) for stationary
binary optimization problems including SUKP. Ozsoydan (2019) introduced a
swarm-based optimization algorithm (intAgents) using artificial search agents
with individual cognitive intelligence. Feng et al. (2019a; 2019b) introduced two
moth search algorithms (MS and EMS). These algorithms share the common
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feature that they solve the discrete SUKP indirectly by performing their search
in a continuous search space. Wei and Hao (2019) presented the first binary
optimization method for SUKP with two complementary local search phases
(I2PLS). Wu and He (2020) presented a hybrid Jaya algorithm (DHJaya) based
on the differential evolution crossover operator and Cauchy mutation strategy.
Lin et al. (2019) proposed a hybrid binary particle swarm optimization method
(HBPSO/TS). Finally, Liu and He (2019) combined the estimation of distribu-
tion algorithm based on Lévy flight (LFEDA) with a quadratic greedy repair
and optimization approach.

The literature review shows that the existing algorithms have a number
of limitations. First, the performances of these algorithms lack stability and
robustness (computational results with large standard deviations) even when
solving small benchmark instances (with 85 to 100 items and elements). Second,
their performances generally decrease when they are used to solve large instances
(with at least 500 items and elements). Third, they consume a substantial
amount of computation time to reach their reported results. Finally, most
existing algorithms require a non-negligible number of parameters (e.g., 4 and
7 parameters for two leading algorithms I2PLS and HBPSO/TS, respectively),
making it difficult to control their performances and understand their behaviors.

In this work, we aim at advancing the state-of-the-art of solving SUKP effec-
tively and robustly in particular when large problem instances are considered.
For this purpose, we investigate the first kernel based approach that overcomes
the limitations mentioned above. This work is also motivated by another im-
portant consideration. In fact, the general idea of kernel has proved to be quite
useful for several binary optimization problems (e.g., Vasquez & Hao (2001);
Wang et al. (2013); Zhang (2004)). This work demonstrates for the first time
its benefit for solving SUKP, whose contributions are summarized as follows.

First, to evaluate the meaningfulness of the idea of kernel for solving SUKP,
we investigate the distribution of items among high-quality solutions. This in-
vestigation reveals the existence of kernels, which lays the basis for adopting
the kernel concept to design our search algorithm. Indeed, the proposed ker-
nel based tabu search algorithm (KBTS) integrates three complementary search
components to perform an effective examination of the search space. That is,
a local search procedure is used to find various local optima, a kernel search
method is employed to discover additional high-quality solutions within par-
ticular areas, and a non-kernel search method is applied to ensure a guided
diversification.

Second, we show the competitiveness of the proposed algorithm by com-
paring it with the state-of-the-art algorithms on 60 benchmark instances. We
provide new lower bounds for several benchmark instances that can contribute
to future research on SUKP.

Third, we make the code of our KBTS algorithm publicly available, which
can help researchers and practitioners to better solve various problems that can
be formulated as SUKP.

Finally, the kernel based search components of the proposed algorithm rely
on general principals that can be advantageously adapted to other binary opti-
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mization problems.
The rest of the paper is structured as follows. Section 2 presents the proposed

algorithm as well as its components. Section 3 shows computational results and
comparisons with the state-of-the-art algorithms. Section 4 shows several anal-
yses to shed lights on the understanding of the key ingredients of the algorithm.
Conclusions and research perspectives are provided in the last section.

2. Kernel Based Tabu Search for SUKP

In this section, we present the KBTS algorithm for solving SUKP. We first
present its main scheme and then describe its components.

2.1. Main scheme
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Fig. 1. Flow chart of the KBTS algorithm.

The KBTS algorithm follows the flow chart shown in Fig. 1 and is described
in Algorithm 1.

The algorithm starts from a feasible initial solution generated by a dynamic
profit-ratio mechanism (line 3, Alg. 1, and Section 2.3). Then it enters a
‘while’ loop to execute the main search process. Specifically, the input solution
is improved by an iterative process (the ‘repeat’ loop), which includes a tabu
search procedure, a kernel search procedure and a direct perturbation procedure.
At each iteration of this process, the tabu search procedure (line 10, Alg. 1)
is first invoked to obtain a high-quality solution with the neighborhood Nf
(Section 2.4.1). During tabu search, a kernel solution (Sk) as well as a non-
kernel solution (S̄k) are created using information from a frequency counter Φ.
Then the kernel search procedure (line 11, Alg. 1, and Section 2.5) uses the
neighborhood Nk to perform an intensified search around the kernel solution to
seek other high-quality solutions. After that, the direct perturbation procedure
(Section 2.6) is applied to modify the last local optimum found (controlled by
the parameter δ), which is then used to start the next iteration of the process.
This process ends when γmax consecutive iterations are reached without further
improving the local best solution Sb. At this point, the search is judged to be
exhausted with the current search region and switches to the non-kernel search
procedure (Section 2.7) to explore a distant and unexplored region. Finally,
the whole algorithm terminates when the given time limit tmax is reached and
returns the overall best solution S∗ found during the search.
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Algorithm 1 Kernel Based Tabu Search for SUKP

1: Input: Instance I, cut-off time tmax, neighborhoods Nf , Nk, N̄k, local search depth
γmax, kernel coefficient ε, direct perturbation strength δ.

2: Output: The best solution found S∗.
3: S ← Dynamic Initialization(I) /* Generate an initial solution S, Sect. 2.3 */
4: S∗ ← S /* Record the overall best solution S∗*/
5: while T ime ≤ tmax do
6: Φ← Frequency Initialization() /* Initialize frequency counter Φ to 0 */
7: Sb ← S /* Record the best solution Sb found so far */
8: γ ← 0 /*γ counts the number of consecutive non-improving rounds*/
9: repeat

10: /* Record the local optimum Sl found by tabu search */
(Sl, Sk, S̄k)← Tabu Search (S,Nf ,Φ, ε) /* Sect. 2.4 */

11: Sl ← Kernel Search(Sk, Sl, Nk) /* Sect. 2.5 */
12: S ←Direct Perturbation(Sl, δ) /* Sect. 2.6 */
13: if f(Sl) > f(Sb) then
14: Sb ← Sl /* Update the local best solution Sb found so far */
15: γ ← 0
16: else
17: γ ← γ + 1
18: end if
19: until γ = γmax

20: if f(Sb) > f(S∗) then
21: S∗ ← Sb /* Update the overall best solution S∗ found so far */
22: end if
23: S ← Non-Kernel Search(S̄k, N̄k) /* Sect. 2.7 */
24: end while
25: return S∗

2.2. Solution representation, search space, and evaluation function

The search of the KBTS algorithm is limited to the feasible solution space
ΩF satisfying the knapsack constraint. By reference to the item set V with
m items, a candidate solution S of ΩF can be conveniently represented by
S = (y1, . . . , ym) where each yi is a binary variable: yi = 1 if item i is selected,
yi = 0 otherwise. A solution S can also be represented by S =< A, Ā > where
A ⊆ V is the set of selected items and Ā = V \ A is the set of the remaining

items. The quality of S is measured by its objective value f(S) =
m∑
i=1

piyi.

2.3. Dynamic initialization

The KBTS algorithm adopts an original initialization procedure using a
dynamic profit-ratio of non-selected items. This procedure is based on the fact
that for a given solution S, the weight of each element is counted only once.
When a new item k is added to S, only the new elements of k that do not belong
to the subset S will impact the total weight. Therefore, in our initialization
procedure, the profit-ratio of non-selected items will be recalculated according
to the elements belonging to the current solution S after adding a new item
into S. The dynamic profit-ratio r∗k of a non-selected item k is then given by
r∗k = pk/

∑
j∈Uk∧j /∈∪i∈SUi

wj .
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From an empty subset S, the dynamic initialization procedure operates as
follows. First, we calculate the dynamic profit-ratio r∗k of non-selected items.
Second, we identify the item k with the highest r∗k value and add the item into
S. We iterate these two steps until the knapsack constraint is reached.

Note that the dynamic profit-ratio refines the static profit-ratio used in (Wei
& Hao, 2019) and generally leads to solutions of better quality.

2.4. Tabu search procedure

The KBTS algorithm adopts the well-known tabu search (TS) metaheuristic
(Glover & Laguna, 1997) to explore local optima within a restricted neighbor-
hood. As a general search method, TS needs to be adequately adapted to the
specific optimization problem under consideration. One notices that TS is quite
successful to solve several knapsack problems (e.g., quadratic multiple knap-
sack (Qin et al., 2016), multidimensional knapsack (Glover & Kochenberger,
1996; Lai et al., 2018b), set-union knapsack problem (Lin et al., 2019; Wei &
Hao, 2019)) and other optimization problems (e.g., Dı́az et al. (2017); Lai et al.
(2020)).

Our tabu search procedure is shown in algorithm 2, whose particular fea-
tures tailored to SUKP are discussed below. Given an input solution S, the TS
procedure explores the neighborhood Nf (S) induced by the swap operator (see
Section 2.4.1) to make transitions from the current solution to neighbor solu-
tions. Specifically, for each ‘while’ iteration (lines 5-11, Alg. 2), TS selects the
best neighbor solution with the neighborhood search procedure, which is shown
in Algorithm 3. If the new selected solution S is better than the best solution
Sl found during tabu search, Sl is updated by S. Meanwhile, the frequency
counter Φi of each selected item i in S is updated by Φi = Φi + 1, The main
search (‘while’ loop) terminates when the neighborhood Nf (S) becomes empty
(see Algorithm 3). Then the kernel solution Sk and non-kernel solution S̄k are
created based on the frequency counter Φ, which will be presented in Sections
2.5 and 2.7.

Algorithm 2 Tabu Search

1: Input: Input solution S, neighborhood Nf , frequency counter Φ, kernel coefficient ε.
2: Output: Best solution Sl found during tabu search, kernel solution Sk, non-kernel solu-

tion S̄k.
3: Sl ← S /* Record the best solution Sl found during tabu search */
4: Continue← True
5: while Continue do
6: (Continue, S)← Neighborhood Search(S, N1, Continue) /* Algorithm 3 */
7: if f(S) > f(Sl) then
8: Sl ← S /* Update the best solution found during tabu search */
9: Φ← Update Frequency(Φ)

10: end if
11: end while
12: Sk ← Create Kernel(Φ, ε)
13: S̄k ← Create Non Kernel(Sk)
14: return (Sl, Sk, S̄k)
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Algorithm 3 Neighborhood Search

1: Input: Input solution S, flag Continue, neighborhood N .
2: Output: Continue, best solution S found.
3: Find admissible neighbor solutions N(S)
4: if N(S) 6= ∅ then
5: S ← argmax{f(S′) : S′ ∈ N(S)} /* Attain the best neighbor solution S */
6: Update tabu list
7: Continue = True
8: else
9: Continue = False

10: end if
11: return (Continue, S)

2.4.1. Move operator and neighborhood structure

From the current solution, a neighbor solution is generated by applying
the popular swap operator (Wei & Hao, 2019). Specifically, given a solution
S =< A, Ā > where A ⊆ V is the set of selected items and Ā = V \ A, a
swap(q, p) operation exchanges q items in A with p items in Ā, leading to a
neighbor solution designated by S ⊕ swap(q, p). Note that q and p refer to the
number of items involved in the swap operator. In our case, the candidate values
for q and p are 0 or 1. Therefore, the swap operator includes three different
operations: the Add operation with q = 0 and p = 1 (add one item from Ā into
A), the Delete operation with q = 1 and p = 0 (delete one item from A ) and
the Exchange operation with q = 1 and p = 1 (exchange one item of A against
one item of Ā). Then the basic neighborhood induced by the swap operator
includes all feasible solutions obtained by S ⊕ swap(q, p).

To enhance the computational efficiency of the KBTS algorithm, we define a
restricted neighborhood by using a neighborhood filtering strategy (Wei & Hao,
2019; Lai et al., 2018a) to exclude unpromising neighbor solutions. With this
strategy, only neighbor solutions S′ of reasonable quality verifying f(S′) > f(Sb)
are considered where Sb is the best solution found so far in the current tabu
search run. Formally, the filter-based neighborhood Nf (S) is defined as follows.

Nf (S) = {S′ : S′ = S ⊕ swap(q, p), q ∈ {0, 1}, p ∈ {0, 1}, f(S′) > f(Sb)} (3)

Furthermore, to ensure the computational efficiency when evaluating a feasi-
ble neighbor solution, we adopt the so-called gain updating strategy (Lin et al.,
2019; Wei & Hao, 2019). Specifically, we use a vector G of length n where Gj
(Gj ∈ {0, 1 . . . , n}) records the number of appearances of element j in a solution
S. Thus, only the elements that change values in G after performing swap(q, p)
will be considered when calculating the total weight of a new neighbor solution
S⊕ swap(q, p). That is, for each element j, if its Gj value changes from zero to
non-zero, the total weight of the new solution is increased by wj ; if Gj changes
from non-zero to zero, then total weight of the new solution is decreased by wj .
In other cases, the weight of the neighbor solution remains unchanged.
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2.4.2. Tabu list management and aspiration criterion

Our TS procedure employs a tabu list to avoid revisiting previous encoun-
tered solutions. When a swap operation is performed, each item i involved in
the swap is added in the tabu list and forbidden to move away from their re-
spective item set for the next Ti consecutive iterations, where Ti is called the
tabu tenure. Inspired by the tabu list management proposed in (Vasquez &
Hao, 2001), our tabu tenure Ti is set to the number of times item i is moved by
the swap operation. As such, items with a high (low) move frequency will be
forbidden for a longer (shorter) time. When no admissible move is available in
the neighborhood (i.e., Nf (S) = ∅), the TS procedure automatically stops.

During the tabu search, a best neighbor solution among those that are al-
lowed by the tabu list is selected to replace the current solution. Notice that a
neighbor solution is always selected if it is better than the best solution found
during the TS procedure even if the solution is forbidden by the tabu list. This
is the so-called aspiration criterion in tabu search (Glover & Laguna, 1997).

2.5. Kernel search procedure

The tabu search procedure is able to explore different local optimal solutions
with the help of the tabu list. Still, some interesting zones with better solutions
may be overlooked. The kernel search procedure is introduced to perform an
additional examination of particular regions identified by the so-called kernel
solution.

Definition 1. Let S be a set of feasible solutions, k an integer, and Φi the
frequency of item i appearing in the solutions of S, then the kernel solution (or
simply kernel) Sk is the set of top k items with the highest frequencies such that
Φi ≥ Φk and the total weight of Sk does not exceed the knapsack capacity.

In the KBTS algorithm, we employ the frequency counter Φi to keep track of
the number of times each item i appears in high-quality solutions. As mentioned
in Section 2.4 (line 9, Alg. 2), each time a better solution is found during the
tabu search procedure, the frequency counter Φi of the selected item i is updated
by Φi = Φi + 1. Then at the end of the TS procedure, we generate the kernel
Sk in two steps (line 12, Alg. 2). First, we sort all items in descending order
according to the values of Φ. Second, we add the top ε × |Sl| most frequently
appearing items to Sk, where ε is a parameter called kernel coefficient and |Sl| is
the number of the selected items in the best solution found during tabu search.
Then Sk serves as the input solution S for the kernel search (KS) procedure
shown in Algorithm 4.

The kernel search procedure shares the same framework with the TS pro-
cedure and employs the same neighborhood search procedure (see Algorithm
3), the same tabu list management and aspiration criterion. However, the KS
procedure performs its search with the kernel based neighborhood Nk(S) which
is composed of neighbor solutions induced by the swap operator applied to the
items of S excluding those of the kernel Sk. In other words, the items belonging
to the kernel Sk remain fixed during the kernel search and do not take part in
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any swap operation. By freezing the items of the kernel during the search, the
KS procedure ensures a strongly intensified examination around the kernel.

The KS procedure ends if no admissible move is available in the kernel based
neighborhood Nk(S). At this point, the region around the kernel is considered
to be sufficiently examined and the algorithm needs to move to a new region to
continue its search. For this, we employ a direct perturbation strategy that is
explained in the next section.

Algorithm 4 Kernel Search

1: Input: Input kernel solution Sk, attained local optimum Sl, neighborhood Nk.
2: Output: Best solution Sl during kernel search.
3: S ← Sk /* Generate a new solution by Sk */
4: Continue← True
5: while Continue do
6: (Continue, S)← Neighborhood Search(S, Nk, Continue)
7: if f(S) > f(Sl) then
8: Sl ← S /* Update the best solution found during kernel search */
9: end if

10: end while
11: return Sl

The kernel search procedure is inspired by the work presented in (Vasquez
& Hao, 2001) where the notion of kernel was introduced for solving a logic-
constrained knapsack problem. The KS procedure is also related to the notion
of backbone which was successfully applied to solve several binary optimiza-
tion problems such as satisfiability (Zhang, 2004) and unconstrained binary
quadratic programming (Wang et al., 2013). This is the first application of this
idea to SUKP. Notice that given the particular feature of SUKP, our way of
defining (and identifying) kernels remains unique compared to previous studies.

2.6. Direct perturbation procedure

The direct perturbation procedure aims to diversify the TS-KS process, by
modifying the input local optimum Sl to generate a new starting solution for
the next round of the TS-KS process. Specifically, the perturbation performs δ
random swap(q,p) (q ∈ {0, 1}, p ∈ {0, 1}, and excluding swap(q, p) with q = p =
0) operations to transform the input solution while ensuring the feasibility of the
resulting solution, where δ is a parameter called direct perturbation strength. It
is clear that larger δ values lead to more important changes of the input solution.

2.7. Non-kernel search procedure

When the TS and KS procedures (lines 9-19, Alg. 1) terminate, we employ
a global diversification strategy to definitively drive the search to a faraway
new region. To identify this new region, we refer to the kernel solution Sk =
{y1, . . . , ym} (described in Section 2.5) and define its opposite solution S̄k =
{x1, . . . , xm} such that xi = 1− yi (i = 1, . . . ,m). Then a feasible solution S is
created from S̄k and used as the input of the non-kernel search procedure. In
order to obtain the feasible input solution S, we randomly select items from S̄k
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and add them to S until the knapsack constraint is reached. The non-kernel
search procedure follows the same search scheme (Algorithm 5) as TS and KS,
but explores a different neighborhood N̄k defined as follows. Specifically, during
the non-kernel search, a swap operation is constrained to items that do not
belong to the kernel Sk. In other words, items of Sk are never selected to
become a part of a neighbor solution. As such, the non-kernel search has a
strong diversification effect. The NKS procedure stops when the neighborhood
becomes empty and the best solution found is used to initiate the next iteration
of the whole KBTS algorithm.

Algorithm 5 Non-Kernel Search

1: Input: Input non-kernel solution S̄k, neighborhood N̄k.
2: Output: Best solution Sc found during non-kernel search.
3: S ← Random(S̄k) /* Generate a feasible solution from S̄k */
4: Sc ← S /*Sc records the best solution found during non-kernel search */
5: Continue← True
6: while Continue do
7: (Continue, S)← Neighborhood Search(S, N̄k, Continue)
8: if f(S) > f(Sc) then
9: Sc ← S /* Update the best solution found during non-kernel search */

10: end if
11: end while
12: return Sc

2.8. Time complexity

We first consider the dynamic initialization procedure, which can be divided
into two steps. The first step of updating dynamic profit-ratio can be achieved
in O(m2n), and the second step of finding the non-selected item with the highest
r∗k value is bounded by O(m2), where m is the number of items and n is the
number of elements. Thus the time complexity of the dynamic initialization
procedure is O(m2n).

Now we evaluate one iteration of the main loop of the proposed algorithm.
As shown in Algorithm 1, the tabu search procedure (TS), the kernel search pro-
cedure (KS) and the non-kernel search procedure (NKS) all adopt the Neighbor-
hood Search (NS) framework. Given the current solution S =< A, Ā > (see Sec-
tion 2.4.1), the kernel solution Sk (see Section 2.5), and the non-kernel solution
S̄k (see Section 2.7), the corresponding complexity of one round of NS during the
three procedures is O([(m+|A|×|Ā|)]×n), O([(m−|Sk|)+(|A|−|Sk|)×|Ā|]×n)
and O([|S̄k|+ |A|× (|S̄k|− |A|)]×n). The complexity of the direct perturbation
procedure is O(1). Let Rmax be the total maximum rounds of NS invoked by
the TS, KS and NKS procedures. Then, the time complexity of one loop of
KBTS is O(m2n×Rmax).

Let Imax be the maximum number of the iterations of the KBTS algorithm
(which is determined by the cut-off time tmax). Then, the overall time complex-
ity of KBTS is O(m2n×Rmax × Imax). In Sections 3.3 and 4.4, we investigate
the implications on the practical use of the above theoretical time complexity
in terms of computational efficiency compared to existing SUKP algorithms.
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2.9. Discussions

To highlight the novelties and contributions of the KBTS algorithm, we
discuss below the main original features integrated in its search components.

First, the initialization procedure of Section 2.3 relies on an original dynamic
profit-ratio. This strategy exploits the particular feature of SUKP that the
elements of selected items can be reused regardless how many times they appear
in the selected items of the current solution. The dynamic profit-ratio is thus a
refined criterion compared to the static profit-ratio used in (Wei & Hao, 2019)
and indeed favors the creation of high-quality initial solutions.

Second, the tabu search procedure of Section 2.4 has several special features
that are different from other TS methods for SUKP (Lin et al., 2019; Wei & Hao,
2019). KBTS uses a parameter-free automatic tabu list strategy, while some pa-
rameters are required to control the tabu list and the tabu search termination
in previous TS algorithms. Also, KBTS adopts an aspiration criterion to en-
sure that the best solution encountered is never overlooked, while no aspiration
criterion is used in previous studies (Lin et al., 2019; Wei & Hao, 2019).

Third, although the general idea of kernel (or backbone) is known in the
literature, we investigate for the first time the benefit of applying this idea to
solve SUKP and propose a new way of identifying and using the kernel with
the KBTS algorithm. Specifically, we extract the most frequent items from a
set of high-quality solutions and use them to form a kernel solution (Sk). We
additionally employ a parameter (kernel coefficient) to flexibly control the size
of Sk within a proper range, which allows the kernel search procedure of Section
2.5 to intensively examine a given search region delimited by the kernel.

Fourth, the non-kernel search procedure of Section 2.7 relies on the opposite
solution S̄k of the kernel Sk. This is an original diversification strategy and has
the advantage of diversifying the search in a guided manner. To our knowledge,
such a strategy is not employed in the literature on SUKP.

Finally, as we demonstrate in the next section, the KBTS algorithm equipped
with these innovative features is able to compete very favorably with the current
best algorithms for SUKP in the literature.

3. Computational results and comparisons

This section is dedicated to an extensive evaluation of our KBTS algorithm
and comparisons with state-of-the-art SUKP algorithms. We report compu-
tational results on two sets of 60 benchmark instances, available at http:

//www.info.univ-angers.fr/pub/hao/SUKP_KBTS.html.

3.1. Benchmark instances

Set I (30 instances): Introduced in (He et al., 2018), this set of instances
have 85 to 500 items and elements with the following features. For each instance
with m items and n elements, the items and elements are associated by a m×n
binary relation matrix R, where Rij = 1 indicates that item i includes element
j. Each instance is further characterized by two parameters: α represents the
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density of Rij = 1 in the relation matrix R (i.e., α = (
∑m
i=1

∑n
j=1Rij)/(mn)), β

denotes the ratio of knapsack capacity C to the total weight of the elements (i.e.,
β = C/

∑n
j=1 wj). Thus each SUKP instance can be designated as m n α β.

These instances are widely tested in the literature including (He et al., 2018;
Lin et al., 2019; He & Wang, 2018; Ozsoydan & Baykasoğlu, 2018; Baykasoğlu
et al., 2018; Ozsoydan, 2019; Feng et al., 2019a,b; Wei & Hao, 2019; Wu & He,
2020; Liu & He, 2019).

Set II (30 instances): Introduced in this work, this set of instances have
the same characteristics as those of Set I, but are large in size with 585 to 1000
items and elements. Following (He et al., 2018), the profit and weight values of
these instances are generated randomly in [1,500].

3.2. Experimental protocol and reference algorithms

Computing platform. Our KBTS algorithm is programmed in C++1

and compiled with the g++ compiler with the -O3 option. To ensure a fair
comparison, all the experiments mentioned in this work were performed on an
Intel Xeon E5-2670 processor (2.5 GHz CPU and 2 GB RAM) running under
the Linux operating system.

Parameter settings. The KBTS algorithm employs three parameters,
whose descriptions and values are presented in Table 1. The effects and calibra-
tion of these parameters are presented in Section 4.1. The values of Table 1 can
be considered to be the default setting and are used consistently to solve all 60
instances presented in Section 3.1 without any further fine-tuning.

Table 1: Parameters settings of KBTS.

Parameters Section Description Value

γmax 2.1 local search depth 3

ε 2.5 kernel coefficient 0.6

δ 2.6 direct perturbation strength 3

Reference algorithms. We adopt three recent state-of-the-art algorithms:
hybrid jaya algorithm (DHJaya) (Wu & He, 2020), hybrid binary particle swarm
optimization with tabu search (HBPSO/TS) (Lin et al., 2019) and iterated
two-phase local search algorithm (I2PLS) (Wei & Hao, 2019). We also include
the first binary artificial bee colony algorithm (BABC) (He et al., 2018) as a
base reference. To ensure a fair comparison, we run the source codes of these
algorithms (kindly provided by their authors) as well as our KBTS algorithm
on our computing platform under the same stopping condition.

Stopping condition. Following (Wei & Hao, 2019), we run our KBTS
algorithm and each reference algorithm to solve each of the 30 instances of Set I
with a cut-off time of 500 seconds. For the 30 new large instances of Set II, the

1The code of our KBTS algorithm will be available at: http://www.info.univ-angers.

fr/pub/hao/SUKP_KBTS.html.
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cut-off time is set to 1000 seconds. Given the stochastic nature of the compared
algorithms, each instance is independently solved by each algorithm 100 times
with different random seeds.

3.3. Computational results and comparisons

Tables 2 and 3 present the detailed computational results2 of the compared
algorithms achieved on the two sets of benchmark instances. Column 1 gives
the names of the tested instances while the asterisk (*) indicates the optimal
value that are proved by CPLEX and reported in (Wei & Hao, 2019). The
best objective value (fbest), the average objective value over 100 runs (favg),
standard deviation over 100 runs (std) and the average run time (to reach the
fbest value, denoted by tavg) of each compared algorithm are reported in the
remaining columns. In addition, the last row #Avg of Tables 2 and 3 indicates
the average value of each column. Finally, dominating values of fbest and favg
among the compared results are indicated in bold, and equal best values are
shown in italic.

From the results of Table 2 on the instances of Set I, we observe that our
KBTS algorithm is very competitive compared to the reference algorithms in
terms of fbest, favg and std. Also, KBTS has a better average performance
and very small standard deviations, indicating its high robustness. The high
competitiveness of our KBTS algorithm becomes even more evident when we
check the results of Table 3 for the 30 large instances of Set II. Indeed, KBTS
dominates all the reference algorithms in all performance indicators. Moreover,
KBTS requires less computation times to attain better solutions with small
standard deviations, indicating its high computational efficiency and robustness.

Fig. 2 additionally shows a graphical representation of the comparative re-
sults of the five competing algorithms on the two sets of instances in terms of
the best objective values, the average objective values and the standard devia-
tions. The X-axis in each sub-figure indicates the 30 instances of each set and
the Y-axis gives the fbest, favg and std values of the compared algorithms. The
plots of Fig. 2 clearly indicate the dominance of our KBTS algorithm over the
reference algorithms and its particular advantage on the set of large instances.

2Our solution certificates are available at: http://www.info.univ-angers.fr/pub/hao/

SUKP_KBTS.html.
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Fig. 2. Best objective values, average objective values and standard deviations of BABC,
DHJaya, HBPSO/TS, I2PLS and KBTS on the 30 instances of Set I (left) and the 30 instances
of Set II (right).

Finally, Table 4 summarizes the comparative results between the KBTS
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Table 4: Summarized comparisons of the KBTS algorithm against each reference algorithm
with the p-values of the Wilcoxon signed-rank test over the two sets of benchmark instances.

Algorithm pair Instance set Indicator #Wins #Ties #Losses p-value

KBTS vs. BABC Set I (30) fbest 23 7 0 2.70e-5

favg 26 4 0 8.30e-6

Set II (30) fbest 30 0 0 1.73e-6

favg 30 0 0 1.73e-6

KBTS vs. DHJaya Set I (30) fbest 16 14 0 4.38e-4

favg 22 7 1 3.53e-5

Set II (30) fbest 30 0 0 1.73e-6

favg 30 0 0 1.73e-6

KBTS vs. HBPSO/TS Set I (30) fbest 2 28 0 1.80e-1

favg 12 15 3 7.60e-3

Set II (30) fbest 18 12 0 8.85e-5

favg 29 1 0 2.56e-6

KBTS vs. I2PLS Set I (30) fbest 0 30 0 NA

favg 20 10 0 1.51e-3

Set II (30) fbest 13 17 0 1.32e-4

favg 29 1 0 2.56e-6

algorithm and each reference algorithm. This table focuses on the fbest and
favg indicators and shows the number of instances achieved by KBTS to obtain
a better, an equal or a worse result (#Wins, #Ties and #Losses) compared to
each reference algorithm. To verify the statistical significance of the comparisons
of KBTS against the reference algorithms, the p-values from the non-parametric
Wilcoxon signed-rank test are shown in the last column. And a p-value less than
0.05 implies a significant difference between KBTS and its competitor, while
‘NA’ means that the two sets of compared results are exactly the same. This
summarized comparison clearly confirms the high performance of our KBTS
algorithm. Indeed, for a majority of the tested instances, KBTS always reports
better or equal results in terms of fbest and favg. Such a performance was never
attained by any reference algorithm.

4. Analysis

In this section, we present an analysis of the parameters used in the proposed
algorithm and the kernel based components.

4.1. Analysis of parameters

The proposed KBTS algorithm requires three parameters: kernel coefficient
ε, local search depth γmax and direct perturbation strength δ. We first carry out
a factorial experiment (Montgomery, D. C. , 2017) to gain insights into the effect
of parameters on the algorithm performance and then perform a one-at-a-time
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Table 5: Parameter levels for the 2-level full factorial experiment.

Low level High level

kernel coefficient ε 0.3 0.6

local search depth γmax 3 6

direct perturbation strength δ 3 6

sensitivity analysis (Hamby, 1994) to calibrate the parameters. For these ex-
periments, we select eight representative instances from Set II: 785 800 0.15 0.85,

800 785 0.15 0.85, 800 800 0.15 0.85, 885 900 0.15 0.85, 900 885 0.15 0.85, 985 1000

0.10 0.75, 1000 985 0.10 0.75 and 1000 1000 0.10 0.75. These instances are diffi-
cult since the results reported by different algorithms (see Table 3) show large
standard deviations.

We employ a 2-level full factorial experiment to observe the interaction effects
between the parameters. The levels of the three parameters are shown in Table
5. For this experiment, each instance was independently solved 20 times with
different combinations of parameters. Then we consider the average value of the
best objective values (fbest) obtained on the eight instances for each parameter
combination. We verify the normality of data distributions and the variance
homogeneity. We show the main effects of the parameters in Fig. 3 and the
analysis of the variances in Table 6.

From Fig. 3, we can observe that the effects of the parameter kernel coeffi-
cient and local search depth are positive, while the effect of direct perturbation
strength is negative. The p-values (< 0.05) in columns 2-3 of Table 6 indi-
cate that the performance of the algorithm is sensitive to the setting of kernel
coefficient and local search depth. Moreover, it makes sense to check the inter-
action effects between the parameters. From Table 6, we can observe that the
p-values of the last four columns are all greater than 0.05, which indicates that
the interaction effects among the parameters are not statistically significant.

Now we perform a one-at-a-time sensitivity analysis to determine a suitable
value for each parameter. Based on a reasonable range of parameter values:
ε ∈ {0.1, 0.2, ..., 1}, γmax ∈ {1, 2, ..., 10} and δ ∈ {1, 2, ..., 10}, we test the values
of each parameter independently while keeping the other parameters fixed to the
values of Table 1. For this, we run the algorithm with each parameter setting
30 times to solve each instance. Fig. 4 shows the average of the best objective
values (fbest) attained by KBTS with different parameter settings. The X-axis
indicates the ranges of the three parameters, i.e., 1 to 10 for γmax and δ, 0.1 to
1 for ε. From Fig. 4, we observe that KBTS reaches its best performance with
ε = 0.6, γmax = 3 and δ = 3. These values are thus used to define the default
parameter setting shown in Table 1 of Section 3.2.
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Fig. 3. Effects of the three parameters on the performance of the KBTS algorithm.

Table 6: p-values for the analysis of variances with the significance level 0.05.

Source of variation ε γmax δ ε * γmax ε * δ γmax * δ ε * γmax * δ

p-value 3.70e-2 1.80e-2 1.25e-1 3.90e-1 1.47e-1 1.92e-1 8.41e-1
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Fig. 4. Average of the best objective values (fbest) corresponding to different parameter
settings obtained by the one-at-a-time sensitivity analysis.

4.2. Impact of kernel search and non-kernel search

The proposed KBTS algorithm relies on the notion of kernel and the associ-
ated kernel search and non-kernel search procedures. To assess the usefulness of
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these components, we create a KBTS variant (denoted by KBTS−) by disabling
the kernel search procedure (i.e., removing line 11 in Alg. 1) and replacing
the non-kernel search procedure with a random strategy (i.e., we generate ran-
domly a feasible solution S of line 23 in Alg. 1). We run KBTS and KBTS−

30 times according to the experimental protocol given in Section 3.2 to solve
each instance of Set II and report the results in Table 7. In this table, we show
the fbest, favg and std values. The row #Avg indicates the average value of
each column and the row #Best shows the number of instances for which an
algorithm achieves the best results between the two set of results.

The results show that compared to KBTS, the KBTS− variant obtains worse
fbest values for 7 instances, and worse favg values for 5 instances, leading to
worse #Avg values of these performance indicators. Table 7 also indicates that
KBTS− deteriorates the results of KBTS for the most difficult instances (with
785 to 1000 items and elements), which reveals that the kernel search procedure
is particularly useful for solving difficult instances. Furthermore, the Wilcoxon
signed-rank tests in terms of fbest (p-value < 0.05) confirm that the performance
differences between KBTS and KBTS− are statistically significant.

4.3. Distribution of high-quality solutions and rationale of kernel search

To understand why the notion of kernel is pertinent, we present a study
on distributions of items in high-quality solutions. This study is based on a
selection of four representative instances: 500 485 0.15 0.85, 500 500 0.15 0.85,

1000 1000 0.10 0.75, 1000 1000 0.15 0.85. For each instance, we run KBTS 30
times to obtain 30 high-quality solutions and then extract frequency statistics
of selected items in these solutions, as shown in Fig. 5. The X-axis in each
sub-figure indicates the number of selected items and the Y-axis refers to the
frequency that one item appears in these solutions. We also present the number
of items corresponding to each frequency on the right side of the Y-axis and the
bottom value in this column corresponds to the number of items with a frequency
of 0. Since this bottom value is much larger than the other values corresponding
to the frequencies in the range {1, ..., 30}, we don’t draw its corresponding plot
for the convenience of observation.

From Fig. 5, we observe that the frequency of most items being selected in
a solution is polarized, that is, these items are either selected many times or
are rarely selected. In particular, almost 90% of the items in each of these four
instances never belong to a high-quality solution. This experiment thus indicates
that high-quality solutions often contain several identical items (which form a
kernel), providing a supporting argument for the usefulness of the kernel based
components of the KBTS algorithm.
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Table 7: Comparison between KBTS (with the kernel components) and KBTS− (without the

kernel components) on the instances of Set II.

Instance/Setting
KBTS KBTS−

fbest favg std fbest favg std

600 585 0.10 0.75 9914 9914 0 9914 9800.70 77.56

600 585 0.15 0.85 9357 9353.47 11.29 9357 9356.40 3.23

700 685 0.10 0.75 9881 9845 12 9881 9851.47 17.36

700 685 0.15 0.85 9163 9137.80 8.40 9163 9138.73 9.52

800 785 0.10 0.75 9837 9810.80 16.56 9829 9806.57 17.10

800 785 0.15 0.85 9024 8944 43.36 9024 8935.07 45.08

900 885 0.10 0.75 9725 9614.80 20.46 9725 9614.80 20.46

900 885 0.15 0.85 8620 8534.57 54.15 8588 8541.73 54.39

1000 985 0.10 0.75 9668 9512.13 74.70 9668 9477.40 56.68

1000 985 0.15 0.85 8448 8448 0 8448 8448 0

600 600 0.10 0.75 10524 10521.60 2.94 10524 10521.60 2.94

600 600 0.15 0.75 9062 9061.07 5.03 9062 9060.73 6.82

700 700 0.10 0.75 9786 9786 0 9786 9786 0

700 700 0.15 0.85 9229 9185.60 19.51 9177 9177 0

800 800 0.10 0.75 9932 9932 0 9932 9932 0

800 800 0.15 0.85 9101 8935.83 40.92 9101 8928.77 39.09

900 900 0.10 0.75 9745 9731.40 29.25 9745 9741.03 16.24

900 900 0.15 0.85 8990 8920.93 18.46 8916 8916 0

1000 1000 0.10 0.75 9544 9424 55.68 9544 9424.37 51.06

1000 1000 0.15 0.85 8474 8379.33 24.19 8438 8374.33 20.79

585 600 0.10 0.75 10393 10393 0 10393 10393 0

585 600 0.15 0.85 9256 9256 0 9256 9256 0

685 700 0.10 0.75 10121 10112.80 35.87 10121 10121 0

685 700 0.15 0.85 9176 9176 0 9176 9176 0

785 800 0.10 0.75 9384 9384 0 9384 9384 0

785 800 0.15 0.85 8746 8650.43 48.04 8663 8645.60 27.77

885 900 0.10 0.75 9318 9239.47 26.88 9318 9233.57 17.29

885 900 0.15 0.85 8425 8312.43 47.17 8425 8319.97 46.16

985 1000 0.10 0.75 9193 9086.07 77.58 9186 9083.90 69.38

985 1000 0.15 0.85 8528 8497.93 33.15 8528 8484.83 36.00

#Avg 9352.13 9303.35 23.52 9342.40 9297.69 21.16

#Best 30 22 - 23 17 -

p-value - - - 1.80e-2 2.31e-1 -
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Fig. 5. Distributions of high-quality solutions corresponding to different item frequencies.

4.4. Time-to-target analysis

To further asses the computational efficiency of the proposed KBTS algo-
rithm with respect to the reference algorithms (BABC, DHJaya, HBPSO/TS,
I2PLS, and KBTS), we present a time-to-target (TTT) analysis (Aiex et al.,
2007; Ribeiro et al., 2012). Basically, TTT shows the computation time required
by an algorithm to attain a given target objective value. This analysis is based
on four representative instances of Set II, i.e., 585 600 0.10 0.75, 600 600 0.15 0.85,

800 785 0.15 0.85, 1000 985 0.10 0.75. For each instance, we set the target value to
be a value, which can be reached by all the compared algorithms (10000, 8800,
8700 and 9000, respectively) and record the time (over 100 runs) of each algo-
rithm to reach a solution with an objective value at least as good as the given
target value. The time-to-target plots are shown in Fig. 6, where the time re-
quired to achieve the target value and the corresponding cumulative probability
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are displayed on the X-axis and Y-axis, respectively.
From Fig. 6, we observe that our KBTS algorithm has a very high com-

putational efficiency, surpassing all the reference algorithms according to the
cumulative probability. The lines of KBTS strictly runs above the lines of the
reference algorithms, revealing that our algorithm has always a higher proba-
bility to reach the given target value.
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Fig. 6. Time-to-target plots of the compared algorithms on four SUKP instances.

5. Conclusions

The Set-union Knapsack Problem (SUKP) is a relevant model for decision
making and intelligent systems. Given its intrinsic difficulty (NP-hard), heuris-
tic algorithms are useful to find high-quality solutions in a reasonable time
frame. We presented the kernel based tabu search algorithm, which combines
for the first time the notion of kernel with the powerful tabu search method.

Our computational study performed on two sets of 60 benchmark instances
indicated that the proposed algorithm dominates the current best SUKP algo-
rithms in the literature in terms of solution quality, robustness and computation
time. This dominance was particularly evidenced on large and difficult bench-
mark instances with at least 500 items and elements. Compared to the existing
SUKP algorithms, the proposed algorithm requires only three parameters, mak-
ing it more suitable to use in practice. Given that SUKP has a number of inter-
esting applications, the proposed algorithm provides a valuable tool for solving
these real world problems. The availability of the source code of our algorithm
and its high computational efficiency certainly facilitate such applications.
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For future work, we identify three perspectives. First, one can investigate
other ways to obtain the kernel solution, e.g., by using frequent pattern mining
technology. Second, SUKP is a constrained problem, it would be interesting
to investigate mixed search strategies that explore both feasible and infeasible
solutions. Third, solution-based tabu search has shown good performances on
other knapsack problems (e.g., Lai et al. (2018a)). Studying this approach
constitutes a promising direction for better solving SUKP. Finally, the proposed
algorithm or its variants can be embedded into population based frameworks
(e.g., memetic computing methods) to obtain more powerful algorithms.
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