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Abstract

In this work, we propose a new method for oversampling the training set of a classifier, in a
scenario of extreme scarcity of training data. It is based on two concepts: Generative Adversarial
Networks (GAN) and vector Markov Random Field (vMRF). Thus, the generative block of GAN
uses the vMRF model to synthesize surrogates by the Graph Fourier Transform. Then, the
discriminative block implements a linear discriminant on features measuring clique similarities
between the synthesized and the original instances. Both blocks iterate until the linear
discriminant cannot discriminate the synthetic from the original instances. We have assessed the
new method, called Generative Adversarial Network Synthesis for Oversampling (GANSO), with
both simulated and real data in experiments where the classifier is to be trained with just 3 or 5
instances. The applications consisted of classification of stages of neuropsychological tests using
electroencephalographic (EEG) and functional magnetic resonance imaging (fMRI) data and
classification of sleep stages using electrocardiographic (ECG) data. We have verified that
GANSO can effectively improve the classifier performance, while the benchmark method
SMOTE is not appropriate to deal with such a small size of the training set.

Keywords: classifier training, oversampling, generative adversarial networks, Markov random
fields

1. Introduction

Scarcity of data is a classical issue in the design and testing of automatic classifiers. The most
typical scenario is that of imbalance (Guo et al., 2017; Krawczyk, 2016; Lopez et al., 2013; He &
Garcia, 2009) are some representative reviews of the many ones existing to this regard. Detection
of credit card frauds (Bhattacharyya, 2011; Salazar, 2018) or non-destructive testing of materials
(Liao, 2008) can be significantly different application domains for the imbalance case. But a
more general setting also includes those applications where there is a lack of data for all the
assumed classes. For example, automatic classification of a variety of pathologies from the
analysis of biomedical signals or images (Jie et al., 2018; Beleites et al., 2013) requires a large

number of captures from a large number of patients, or from the same patient.



Oversampling of the defective classes is one obvious option to alleviate the scarcity of
training/testing data. In the data processing community, different variants around the main idea
of interpolating the available original data have been proposed. Interpolation methods are simple
to implement and have general applicability: they do not require assuming any statistical model.
The most consolidated technique is the Synthetic Minority Oversampling Technique (SMOTE),
first proposed in 2002 (Chawla el al., 2002). A given number of synthetic instances are obtained
from every original instance by random interpolation with some selected neighbors. This is made
in an effort to preserve the local properties of the implicit multivariate probability density function
(MPDF) in the oversampled space. Since 2002, different variants have appeared around this main
idea (Fernandez et al., 2018), like Borderline-SMOTE (Han et al., 2005), Adaptive Synthetic
(ADASYN) (He et al., 2008) and Self-level-SMOTE (Bunkhumpornpat et al., 2009), among
others. Basically, these extensions of SMOTE relate on an unequal consideration of every original
instance: more attention is payed to the instances that are closer to the instances of the other
classes, i.e., (more formally) that are closer to the overlapping area between the implicit MPDFs
of the different classes. Unfortunately, the statistical characterization given by a very small
number of original instances is poor, so recovering the implicit MPDF by interpolation is not
possible. We may find a similarity with recovering a signal by interpolation of the available
samples (sampling theorem). We will see in the experimental section that SMOTE is not
appropriate for the very small number of samples considered in this research.

Moreover, in the statistical signal processing area, one can find a diversity of synthesis methods
which try to (approximately) sample from some MPDF (see for example Angeletti, Bertin &
Abry, 2013). Synthesizing by sampling from some MPDF allows replication of statistical
properties of the original signals. However direct parametric or non-parametric estimation of the
MPDF requires a large number of training instances. Even assuming perfect knowledge of the

MPDF, sampling from it cannot be a simple task except for very specific types of densities.

In this work, we propose a new approach based on two concepts: Generative Adversarial
Networks (GAN) (Goodfellow, 2016; Lin et al., 2018; Su et al., 2019; Li et al., 2020), an emerging
paradigm in machine learning, and vector Markov Random Field (vMRF), an extension of the
classical MRF (Chellappa & Jain, 1991). As we will see, the method may be considered an effort
to incorporate the merits of the two mentioned approaches: no explicit estimation of the MPDF is
required, but structural information of the original data can be incorporated into the synthetic data.
Other recent approach also incorporates some type of structural information to alleviate the
scarcity of training data: Few-Shot Learning (FSL) (Lake, 2011; Han, 2018). FSL is inspired by
the form that humans learn new classes from a few (even only one) representative instance. This
learning takes advantage from some prior structural high-level information (in the case of humans

derived from the historic brain learning process). Thus, for example, a new animal class can be



learned from just a few shots because there is a prior knowledge about the essential structure of
an animal (head, body, legs ...). Stated in a more formal manner, there is assumed a structural
model whose parameters can be learned from a few outputs of the model. FSL has been applied
to complex instances like images or written characters, exploiting complex high-level models. In
contrast, our approach exploits much simpler structural information in the form of a vMRF which
connects segments of the instances that are assumed to be correlated. Moreover, this prior
information is not directly used to separate the different classes but to improve the synthetic
instances obtained from the original ones. Thus, different classes could share the same vVMRF
used to oversample their respective instance space. The proposed approach was tested in the
following real applications: classification of stages of a neuropsychological test (Barcelona test)
using electroencephalographic (EEG) data from epileptic patients; classification of stages of a
neuropsychological test (1-back working memory task) using functional Magnetic Resonance
Images (fMRI) from individuals with schizophrenia; and classification of sleep stages using

electrocardiographic (ECG) data from apnea patients.
2. Preliminaries

2.1 Generative adversarial network

Let x €[] M a vector that represent random instances defined by some unknown probability
density p(x). We propose an indirect sampling method, without requiring explicit knowledge of

p(x). It is based on a GAN structure. The GAN is composed by two blocks. The first one is
generative and tries to generate synthetic instances s so that p(s)D p(x). The second is a

discriminative detector, which tries to discriminate the original instances from the synthetic ones
provided by the generative block. Convergence is reached when the discriminative block cannot
effectively distinguish original from synthetic instances (i.e., a systematic posterior probability
close to 0.5 is assigned to both classes). This condition will be considered as indicative of the

generative block sampling from the correct distribution.
2.2 Vector Markov Random Field

In principle any discriminator and any generator implementation are candidates for the GAN,
but this implies too arbitrariness. This is because we face an ill-conditioned problem: many
possible p(x) can be compatible with a reduced number of available original instances. So we
need some kind of regularization (in a wide sense) to constraint the properties that are to be
prioritized in the synthetic instances. Regularization may emanate from some structural
assumptions about x, derived from prior knowledge (eg., expert informed data) or by standard
analysis methods in specific application domains. Structured approach leads naturally to the

consideration of MRF as we show in the following.



. . . . T
Let us consider that x is segmented in L non-overlapping segments x = [xlT x[] . We assume

that x is a vVMRF over an undirected graph G(V, E, A), where V is a set of L vertices, E is the set
of edges joining vertices and A is the (LxL) symmetric adjacency matrix. A VMRF is a
generalization of a MRF, assuming that vectors rather than scalars are assigned to the graph
vertices. Thus, every segment x; is assigned to vertex |, so that dependent segments are connected
by an edge equal to 1, i.e., the corresponding elements in A are set to 1, while independent
segments are left disconnected, i.e., the corresponding elements in A are set to 0. The fundamental
theorem of MRF can be straightforwardly extended to vMREF, so that we can factorize p(x) in the

form

p(x):H p(xc) . (D)

Where ¢ runs over the maximal cliques: subsets of fully connected vertices that cannot be
extended by adding more adjacent vertices. Thus, naming x; to the i-th segment of the c-th

T

maximal clique, we can write x° = [(XIC )T (xf_ )T } where {xfxic } < {x,...x_ } . Notice that one

C
segment can be a member of more than one maximal clique, hence Z L. > L. Also notice that a

c=1
vMREF can be interpreted as a simplification of a Conditional Random Field (CRF) (Lafferty,
McCallum & Pereira, 2001; Perez-Cruz, Pontil & Ghahramani, 2007). In a CRF every segment

x| (input) is tagged with a discrete scalar Yy (output) and a joint factorization is possible

C
p(y.x)=[] p (y° , x°) . CRF are assumed to implement discriminative classifiers to deduce the
c=1

most probable tags from an observed x. Thus, the goal is to learn

c
P(y/x) = p(y,x)/ p(x) = (H p(y°,X°)]/p(X) . But in our case the output y is of no concern
c=l

or could be considered to be included in the own vector x. The essential aspect is that factorization
(1) is assumed to model the relevant structural information to be preserved in the synthetic

instances.

The next section is dedicated to present the new oversampling algorithm. Then section 4 is
devoted to experiments with simulated and real data for assessing the practical interest of the

proposed synthesis method.

3. The GAN Synthesis for Oversampling method



Figure 1 depicts the essential aspects of the method. White arrows indicate the input information

required by every block, while solid arrows indicate the outputs they provide.
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Figure 1. GAN scheme of the proposed synthesis method

Thus, the generative block requires knowledge of the extended MRF and the selected original
instance from which a synthetic one is to be generated and given to the discriminative block for
testing its validity. It also requires knowledge of the current optimum discrimination coefficients
to correct the synthetic instances so that the discriminator could be “cheated”. On the other hand,
the discriminative block requires knowledge of the vMRF model, the original instances, and the
synthetic instance under test. With this information the optimum discriminative coefficients are
updated. If the synthetic instance under test can be discriminated from the set of original instances,

the optimum coefficients are provided to the generative block to improve the synthesis.
In the following sections we make a detailed description of every block.
3.1 The generative block

To generate a synthetic instance we follow a surrogating approach. Surrogates of a given time
signal are computed by Fourier transforming it to a spectral domain where the magnitude is
preserved while the phase is randomized. Then the inverse Fourier transform is computed.
Preserving the spectral magnitude guarantees that the covariance properties of the time signal are
kept in the surrogates. Eventually, some corrections can be made in the original domain to
preserve some additional properties like the empirical amplitude. Surrogating has been proposed
as a general method of signal synthesis (Borgnat, Abry & Flandrin, 2012), although the classical
application is that of hypothesis testing to decide if the signal fits or not some prescribed models
(Miralles et al., 2008; Mandic et al., 2008). Recently, this approach has been extended to arbitrary
domains by considering the Graph Fourier Transform (GFT) (Pirondini et al., 2016, Vergara et



al., 2017, Belda et al., 2019). This is of special interest in our case, as preserving the magnitude
of the GFT guarantees that the graph connectivity properties of the original signal (as defined by
the vMRF model) are preserved in the graph signal surrogate. Hence, let us describe in the

following the proposed method to implement the generative block.

First, let us define the concept of “extended undirected graph” G(Ve,Ee,Ae). This corresponds
to an extension of the graph G(V,E,A) where every sample of x is assigned to a vertex of the set
Ve. This vertices are connected by the set of edges E. in the form defined by the extended
symmetric adjacency matrix Ae. This matrix is defined so that all vertices corresponding to
samples from the same segment or from connected segments in G(V,E,A) are connected.
Otherwise, the samples are left disconnected. So A. is a block matrix formed by a total number

of L? blocks

A, . AL a, ... a

. o ci oo ’ )
AeLl AeLL & g
Where aj=1 if segments i and j are connected in G(V,E,A) and a;;=0 if they are disconnected.

Then let us generate a surrogate of some original instance Xq). First, we compute the GFT
—_ H —_
GFT (x(y ) = Ul'x(y =1 ; )

the columns of U, are the eigenvectors of the extended graph Laplacian matrix, Le = D. - Ae ,

M
being D. a diagonal matrix having the elementd,,, = Zaenm . Next the signs of r) are randomized.
m=1

This is equivalent to a phase randomization where phase changes are constrained to be *7 so
that the synthesized instance keeps real. Then the inverse GFT is computed. All this, in

conjunction with (3) can be compactly expressed for the computation of the synthetic instance sm)
-1
s =(U;') ®Ul'x, =U,@Ux,, , (4)

where we have used the fact that U. is an unitary matrix (eigenvectors are orthonormal) because
the Laplacian L. is a real symmetric matrix. The matrix ® is a diagonal matrix having randomly

selected values of 1 or -1, thus producing random sign changes in the transformed domain.

3.2 The discriminative block



Let us consider N original instances xn n=1...N and a synthetic instance sm computed from
one of the original instances x(nusing (4). The discriminator is to be designed so that it cannot be
“cheated” by sm), i.e., we need a discriminant function that can discriminate between the class of
the original instance xm) and the class of the synthetic instance sm). Considering the structured
model of equation (1), the discriminant function can be applied on similarities between maximal

cliques. Hence, let us define the vectors

, )

where Kk (xc,yc) is a similarity measure (to be defined later) between the c-th maximal cliques of

x and y. Then k(xn) n=1..N and k(sn) Nn=1..N are feature vectors respectively corresponding

to two different classes, and the discriminant is to be designed to separate both. The usual
discriminator of a GAN scheme is a neural network (Goodfellow, 2016), although other classical
alternatives for two-class problems exist like logistic regression (Menard, 2002) or the linear
discriminant (Duda, Hart & Stork, 2000). Considering that we face a problem of extreme scarcity
of original instances (very small N), we are restricted to using a discriminant function as simple
as possible, so that it could be reasonably learned with the reduced amount of available data.
Hence we propose the use of a linear discriminant. The discriminator can be a simple hard linear

detector

kK'w™ 0 , (6)

IAN VI

where H, and H  respectively define the class or hypothesis corresponding to the original

instance X(m) and the synthetic instance s(m). The optimum linear discriminant W can be obtained

from the training set (5) as the solution to the linear system of equations

W=y K = Kkl G K ]T v=| b 7
r=y AU (TR ORE(Y e - O

N

(2
This is an overdetermined system which can be solved by using the Moore-Penrose left
pseudoinverse

Wo =K' (KK™) v . )

op

3.3 The two blocks competition



Once we have separately described every block, let us put them together to present the complete
algorithm of synthesis. The two blocks compete iteratively. Let us assume that the generative
block generates and initial synthetic signal sy obtained from one of the original instances X(m)
using (4). Then, the discriminative block computes the coefficients wopto from (8) to optimally
discriminate s,0) from xm). Considering (6), we can verify the actual discrimination achieved by

a raw estimate of the probability of error, which can be obtained dividing by 2N, the number of

times that k(xn)T Wooto

<0 and kfn)T Wooo > 0. Avalue close to 0.5 of the estimated probability

of error indicates that the discriminator is not able to distinguish the original from the synthetic
instance. A value close to 0 indicates good discrimination. In this later case, we must try to correct
the synthetic instance so that it can be accepted as an original instance. This is faced in the
following.

Considering the form (equation (6)) in which the discriminator verifies if a given feature vector

k belongs to H; or to H.;, the generator may correct the vectors kfn) Ek(sn’o) n=1..N by

multiplying every component by a correcting factor. Let us define the vector of correcting factors

f, = [ f)l..fy ]T . The corrected feature set is the dot product of every vector of the current set by

f, ,l1e.,

§
o) o :[k(szm,o),xzn))- f) ... k(s(cm)o),x(cn)). fo‘:} n=1.N . (9

The goal of the correction is to “cheat” the discriminator, then the correcting vector can be

obtained by the solution to

T T
[k(sljo)-fo ka,O)-fO} Woro = | 1N]@[k§1,0)-wopt,o ka,o)-wopt,o} 1, = [ 1,]

L [——
(NxC) (Cx1) (Nx1) (NXC) (Cx1) (Nx1)
.(10)
This is again an overdetermined system which can be solved by using the Moore-Penrose left
pseudoinverse
s s Tyrs -1 s s s T (11)
fopt,O =K,, (KW‘O Kw‘o) [ IN] Kio= [k(1,o)'W0pt,0 k(N,o)'WODt,0:| ’

Notice that the optimum correcting factors correct the maximal cliques similarity measures, but
ultimately we have to correct the initial synthetic signal cliques to get a new synthetic signal that

can “cheat” the discriminator. Formally, we must find a correcting function for every maximal

clique to get a new maximal clique szm,l) =g° (S(Cm,o)) satisfying



k(sfm’l),x(cn)) - k(szm’o),xfn))- flo n=1.N . (12)

The solution to this problem, if any, strongly depends on the specific similarity measure. Let us

consider that we use the normalized correlation

sc Txc
__(m0) (n) _
K (850X ) = o n=1..N : (13)
Smo[[Xm
where ” ” stands for the Euclidean norm. It is not an easy matter to find the transformation

sgmyl) =q° (sfm’o)) that, considering (13), complies with (12). However a change in the sign of Sfm’o)

in (13) implies a change in the sign of k(sfm),x(cn)) n=1..N. Then we propose to use the

transformation s, ) = Sign( fono ) S(m) SO that

=K (80X )SiON(fio ) =K(s50%0)  N=L.N L (19)

This may be considered and approximation of (12) which only keeps the sign information of

f(;,t,o. This simplification admits a practical interpretation. Considering the hard decision (6)

implemented by the discriminator, a positive value of fo;t,o means that the current contribution of

the feature k (sfm 0),x(°n)) favors the shift of the statistic towards H; (the discriminant is being

cheated). On the contrary, a negative value of fc;tjomeans that the current contribution of the

feature k (sfm 0),xfn)) favors the shift of the statistic towards H.; (the discriminant is not being

cheated). In both cases, the magnitude of fo;t,o is a normalization adjustment to approximate the

statistic k'w to 1 as much as possible, as imposed by the system of equations (10). In conclusion

the sign of f¢ indicates if the sign of the feature, and so the sign of the clique, must be changed
or not to increase the difficulty of discriminating s, from X(m).

The above process describes the first iteration from i=0 to i+1=1o0f an iterative algorithm
that can be repeated until the discrimination probability of error is close to 0.5. We will call it
Generative Adversarial Network Synthesis for Oversampling (GANSO). A pseudocode
description is given next, which uses GANSO to compute one synthetic instance from one original

instance x(m) selected from the set {X(n)’

n=I..N } of original instances.



10

Algorithm: GANSO

1: Input: Original instance set {x n:1...N}, selected original instance x(m)e{x n=1...N},

() (n)°
adjacency matrix A, maximum number | of iterations for the generator/discriminator competitions.

# GENERATOR initialization

2: Initial synthetic instance eq. (4) Sy =Ue(I)U:|X(m)

s =" s T build cliques ¢ e V(s Y
3: Segment Sm o) =| S(m,op*+-Smo)L ; build cliques S(no) (s(m’o)l) ...(s(m,O)Lc) c=1.C

# DISCRIMINATOR initialization

4:for n=1...N do:

T T 7T T "
5: Segment X _|:X(n)1“'x(n)L:| ; build cliques x(, = [(x(n)l) ...(x(n)Lc) } c=1..C

6: Compute feature vector k(xn) as defined in (5) and (13)
7: end for

# BLOCKS competition

8:fori=0,1..1do:

# DISCRIMINATOR

9:for n=1...N do:

10: Compute feature vectors k(sn’i) as defined in (5) and (13)
11: end for

12: Compute optimum discriminator Wyy; using (7) and (8)

13: Compute probability of error as described after (8)
14: If probability of error 0.5 then

C c
15: 8, =S C= 1...C and go to 22
16: else CONTINUE
17: end if
# GENERATOR
18: Compute optimum correcting factors fopt’i using (9)-(11)
19: Compute corrected cliques sfm,iﬂ) = sign( fe )s(cm’i) c=1.C

opt,i
20: end for

. c e c —_—
21: 8, =80, €=1.C
22: Built S(p,) from its maximal cliques

23: Output S(m)
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4. Experiments
4.1 Simulated data

In this first experiment, we are going to illustrate the application of GANSO algorithm in a
simulated scenario. This example has been selected due to its simplicity and to the connection
with the real data application of the next section. We consider a two-class problem. The instances
of both classes are vectors x €] ™ . The dimension M is restricted to be a multiple of 3, so that

we may divide every instance into 3 segments x,X,,Xx, of dimension M/3.

The assumed model for the instances is indicated in the following

x,=al,,+e, ¢ [1N(0I)
x,=bl,,+e, ¢ [N(0,I) : (15)
x,=aly,,+e, e [IN(0.I)

In Class 1 the values a and b are obtained by independently sampling uniform probability
densities in the respective intervals (0, A) A>0 and (0, B) B>0 . In Class 2 the values a and b are
obtained by independently sampling uniform probability densities in the respective intervals
(0,-A) and (0,-B). Clearly, the presence of the same value a in segments 1 and 3 introduces some
structural information in both classes. Let us put this more formally. We can compute the cross-

correlation matrices between every pair of segments (notice that we assume thata,b,e,,e,, e, are

independent)

E[xlx;]z E[a-b]lMBlL/}+1M/3E[a-e;]+1M/3E[b~elT]+ E[eleﬂz

AB

= E[a]E[b]1,,1} 5 =551M/31{m =E[x,x] | 6
A3

E[x]xg]z E[az]lM/31;/3 =?1M/31L/3

Notice that 1,\,,/31{,,/3 is an (M/3)x(M/3) all-ones matrix, so for B<<A the cross-correlation

between segments 1-3 will be much greater than between segments 1-2, and 3-2 (actually it will
be zero if B=0). We may assume in both classes a simple vVMRF model of just three nodes, where

node 1 is connected to node 3 and node 2 is left unconnected. Figure 2 depicts this simple graph.
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Figure 2. MRF and corresponding maximal cliques of the structure instance.

Therefore we have two maximal cliques. The first one formed by the union of the segments 1
and 3 and the second by just the segment 2. In the showed experiment we have selected the values

M=21, A=3, B=0.3. Figure 3 shows superimposed 5 instances of Class 1 and another 5 of Class
2.

Amplitude

2 4 6 8 10 12 14 16 18 20
Sample number

Figure 3. Five instances of Class 1 (blue) and five instances of Class 2 (red). M=21, A=3, B=0.3

Let us assume that we want to train a classifier to separate both classes, but we only have 5
instances of every class available. Obviously, we could use the simulation model (15) to
synthesize as many instances as we want. However, to replicate a real data case with no model
knowledge, we are going to use GANSO to increase the training set size. In the following we will

use the term “original instance” to identify those instances generated by the simulation model (15)
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First, let us show the relevance of the iterative competition between the two blocks of GANSO.
We show in Figure 4 (left) 5 synthetic signals generated at iteration 0 of GANSO from,
respectively, 5 original signals of the Class 1. We can see that lines number 4 (orange) and number
5 (magenta) appear with a modified polarity in segments 1 and 2. This is because the vVMRF of
Figure 2 is in force as far as segments 1 and 2 share the same polarity (positive or negative).
However, after a few iterations, the polarity of these two segments is corrected (see Figure 4,

right) while the rest of instances remain unchanged.

Amplitude
Amplitude

5 10 15 20 ’ 5 10 15 20
Sample Number Sample Number

Figure 4. Five synthetic instances of Class 1 at iteration 0 of GANSO (left) and corrected instances after a few
iterations of GANSO (right)

Finally, Figure 5 shows the learning curves corresponding to a linear discriminant which is to
classify between Class 1 and Class 2. We show the probability of error for an increasing training
set size per class varying from 10 to 80 in steps of 5 instances. Notice that, ultimately, we want
to show the capability to reduce the classifier probability of error by adding synthetic instances
to the training set. Thus we need an estimate of the probability of error as reliable as possible. In
a real data application (see sections 4.2 to 4.4) we will be constrained by a reduced number of
available original instances, not only for training but also for testing. So we will be forced to resort
to random partitions of testing-training sets. However, in this simulation framework we can
provide as many testing original instances as we want for a better estimation of the probability of
error. Hence, the probability of error was estimated with a testing set of 100 original instances not
including the 5 used for training. Three different types of training sets were considered to get the
three different curves of Figure 5. The yellow one corresponds to training sets of only original
instances (not included in the test set to avoid overfitting). As expected, this yields the best results.
The blue line corresponds to a training set formed by 5 original instances per class plus 5D
synthetic instances per class generated by GANSO, with D varying from 1 to 15, so that the total
training set size still varies from 10 to 80. We can see that training with the GANSO synthetic
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instances gives a significant learning capability to the classifier, in spite of the using just 5 original
instances for training. We observe that the learning curve has an initial fast descent, i.e., by adding
some 10 synthetic instances (training set size of 15), the initial 0.50 probability of error of a
random detector is reduced to just 0.28. From that point on, the learning curve decreases at a
smaller rate. For example, notice that 65 synthetic instances added to the available 5 original
instances (training set size of 70) yield a probability of error similar to the one achieved by
training with some 30 original instances. In a real case scenario, this saving of 25 original
instances can be very relevant. We have also included the results corresponding to the benchmark
oversampling method SMOTE. We have essentially followed the standard procedure indicated in
(Fernandez et al., 2018). For every available original instance, we compute the difference between
it and one of the other available original instances randomly selected. This difference is multiplied
by a random number uniformly distributed between 0 and 1, and then, it is added to the original
instance under consideration. This is repeated D times until we have the required number of 5D
synthetic instances for every point in Figure 5. We can see in Figure 5 that SMOTE has no
learning capability in this scenario of very small number of original data. As it was commented
in the Introduction, recovering the original MPDF by interpolating a very small number of
instances is not feasible. Other variants of SMOTE were tried, but the results were quite similar.
This is again due to the assumed very small sample size scenario. Thus, for example, ADASYN
generates more synthetic instances from those original instances having more neighbors of the
majority class. In our case both classes has a very small number of original instances, i.e., there

is not a majority class, hence that measure of vicinity is not very stable.

0.5

0.4 !
503 ——GANSO| T
) -6-SMOTE
o ORIG
002Ff
o

0.1 >

0

10 20 30 40 50 60 70 80
Training set size

Figure 5. Learning curves of a linear classifier of classes 1 and 2 for different training sets: all original instances
(yellow), 5 original+5D GANSO synthetic (blue) and 5 original+5D SMOTE synthetic (red). D varies from 1 to 15

4.2 Real data application 1

Neurological activity of patients can be assessed by means of specialized tests involving audio

and/or visual stimuli. Thus, the so called “Barcelona test” (BT) (Quintana, 2010) encompasses a
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battery of tests designed in Spain in 1977 to evaluate higher mental functions. In this section, we
present an experiment which implement an abbreviated subtest of the BT family: a visual short-
term memory task. The subject is shown an item in the computer monitor screen for 10 seconds,
and after a 10-second retention interval, he is asked to recognize the previously seen item among
a set of four similar items. Once recognized, the subject press the keyboard and a new trial starts.
A total of 10 trials are implemented having increasing difficulty. During the test, 18 bipolar EEG
channels are recorded from the subject. Every channel is band-pass filtered between 0.5 and 30
Hz and sampled at a sampling frequency of 500 Hz. In this case, the objective is to verify to what
extend the EEG signals might demonstrate changes in the neurological activity of the patient as
he commutates from the stimuli phase to the retention+response phase. This information, in
combination with the test results (number of correct answers) may help a better diagnosis of the
subject neurological condition.

Then, we have implemented a two-class classifier, where Class 1 corresponds to the stimuli
phase and Class 2 to the retention+response phase. From every EEG signal we have extracted 7
features in non-overlapped epochs of 0.25 seconds: sample mean, sample mean absolute value,
centroid frequency, and powers in the delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-13 Hz) and beta
(13-30 Hz) frequency bands. From these features we form epoch instances of dimension 7. On
the other hand, we know the initial and final instants of the two phases, so we can compute labelled
phase instances by averaging all the epoch instances included inside the same phase interval.
Thus, we obtain one labelled instance of every class for each trial up to a total of 10 labelled
instances of Class 1 and 10 labelled instances of Class 2. This implies a very small number of
labelled instances for both training and testing the classifier (for example 5 for training and 5 for
testing). Certainly, we could increase the number of trials, but the subject will become
progressively tired and the results will not be reliable. Then, this seems an appropriate scenario
to experiment GANSO.

To this aim, we have considered the availability of 18 EEG channels. It has been demonstrated
elsewhere (see for example Salazar, Safont & Vergara, 2019) that the different EEG channels
exhibit different levels of correlation. So we may combine the 7-dimension phase instances of
every single channel to form higher-dimension instances with some structural information.
Obviously, there are many possible instance combination alternatives, but we have selected to
combine just three channels to form instances of 21-dimension. Moreover, the channels are
selected so that the first and the third have high correlation, while the intermediate is uncorrelated
with the other 2. Thus, we reproduce a similar case to the one showed in the simulations of the
previous section. Figure 6 shows the learning curves corresponding to a linear discriminant which
is to classify between Class 1 and Class 2 for two different channel triads: 8-4-16 and 4-5-12. Six
different subjects were separately considered. All of them suffered from neurological diseases

yielding temporal lobe epileptic seizures of different degree. We show for every subject the
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probability of error for an increasing training set size per class varying from 10 to 80 in steps of

5 instances. The training set was formed by 5 original instances per class plus 5D synthetic

instances per class, with D varying from 1 to 15. We have used both GANSO and SMOTE

methods to generate synthetic instances. The testing set was formed by the remaining 5 original

instances per class not selected for training. To get stable results, the showed probability of error

is an average over the probability of error corresponding to 250 different 5+5 partitions of the 10

original instances per class.
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Figure 6. Learning curves of a linear classifier of classes 1 and 2 for different training sets: 5 original+5D GANSO
synthetic (blue) and 5 original+5D SMOTE synthetic (red). D varies from 1 to 15. Six subjects are considered as well
as two different channel triads, 8-4-16 (left), 4-5-12 (right)
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We can see in Figure 6 that oversampling the training set by SMOTE cannot effectively
improve the performance of the linear classifier in all subjects. However, GANSO provides
synthetic training instances that achieve learning capability. Notice again the same fast descent
of the learning curve from an initial probability of error of 0.5 (random detector) to a smaller
value for 10 added synthetic instances (training set size of 15). That smaller value varies
significantly among the different subjects. Notice that the classifier performance is indicative of
the brain capability to commutate from one phase to the other during the implementation of the
BT. Hence, the learning curve could be used as an additional element of diagnosis. Thus, for
example, the information provided by the EEG signals of subject 2 seems to be very poorly related
to the commutation between phases. On the other extreme, the EEG signals of subject 6 are clearly
connected to the phase commutation. This was verified to be reasonably consistent with the
different characteristics of every patient as well as with the results of other psychological tests.
Thus, subject 6, significantly younger than the rest, was the one with the shortest historical record
of neurological disease, and his measured levels of attention/concentration and immediate visual
memory were the highest. However subject 2 presents a large history of disease, with the highest

rate of epileptic crisis among all the subjects and a low level of attention/concentration.

4.3 Real data application 2

This application is related to helping neurological disease diagnosis from functional Magnetic
Resonance Images (fMRI) of individuals with schizophrenia. Notice that an fMRI scanning
session could last more than 30 minutes when the patient is performing specific testing tasks. This
uses to be very stressing. Moreover, schizophrenic individuals require some medical stabilization
before the session. Thus, in general, it is of practical interest to reduce as much as possible the
number of fMRI sessions per patient. This is especially relevant in some cases like monitoring
one patient over time, e.g., considering if recently captured fMRI images belongs or not to the
same class than the old ones. It is also of interest in the evaluation of a reduced set of patients
grouped by some similarity condition (eg., they are relatives). So, the essential objective is to
evaluate if a classifier could be trained with a very small number of fMRI sessions.

In this experiment we will use fMRI images from an open access database
(https://openneuro.org/datasets/ds000115/), authored by (Repovs & Bard, 2012). Each input
corresponds to the fMRI scanning of a patient performing the N-back working memory task
(Gazzaniga et al.,, 2014). Images were collected by measuring the Blood-Oxygen-Level-
Dependent (BOLD) associated to changes in neuron blood flow due to brain activity. Scanning
was made in three different axes in steps of 4 mm, this defines volume images of 4 x 4 x 4 mm®
voxel size. We have considered the time interval corresponding to the 1-back working memory

task, where 137 images were captured, one every 2.5 s to a total time of 2.5x137=342,5 s= 5.7
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min. A total of twelve patients have been selected from the database, six of them (control) are
healthy, and the other six suffer from schizophrenia This provides sets of three patients per class
for training and three for testing in a two-class problem: healthy (class 1), non-healthy (class 2).
Figure 7 shows twelve fMRI axial slices respectively corresponding to the twelve selected
patients. Notice that, except for some artifacts probably due to eye movement, there are not
obvious differences among the images. Thus, training a classifier from such a small number of

images is a challenge.

Figure 7. Axial views of fMRI slices from 12 subjects of the study measured at instant time 80 (200 s from the start

of the 1-back working memory task). The top row corresponds to individuals with schizophrenia (subject database

identification 01, 05, 07, 09, 44, 60, from left to right) and the bottom row corresponds to healthy controls (subject
database identification 11, 12, 15, 37, 46, 49, from left to right)

Before proceeding with the subsequent steps, every image must be preprocessed to
compensate for some issues appearing during the acquisition process. Thus, we have
implemented brain skull removal, slice time correction, motion compensation, and spatial
smoothing (Lindquist, 2008; Jie et al., 2018).Then, we have applied the Automatic Anatomical
Labelling (AAL) software package (Tzourio, 2002) to every preprocessed fMRI. AAL is
typically used to build an atlas of 116 well established areas of the brain. Every area includes a
given number of voxels. Let us consider the time series formed by the sequencing of the 137
BOLD amplitudes corresponding to the same voxel of the preprocessed fMRIs. We assign a
unique time series to a given brain area by averaging the time series corresponding to all the
voxels inside it. Thus, we finally have 116 BOLD time series corresponding to the 116 brain
areas. On the other hand, brain connectivity has been recognized as a very relevant property
related to neurological activity (Repovs & Bard, 2012; Salazar et al., 2019; Straathof et al., 2019;
Mabhjoory et al., 2017; Lang et al., 2012). Thus, we have estimated the connectivity between
every two brain areas by computing the magnitude of the Pearson correlation coefficient
(MPCC) between the corresponding pair of time series. Therefore, we obtained a matrix of 116
x116 MPCCs for every patient. Then, we computed the occurrence percentage (histograms) of
MPCCs values in 15 uniform bins between 0 and 1. These 15 values are the features forming
the instance to be used as input to the classifier. Figure 8 shows the instances thus computed

corresponding to the six healthy patients (blue) and to the six non-healthy patients (red). We can
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see that instances are significantly overlapped, although the ones corresponding to healthy
patients exhibit a small bias toward larger occurrences of high MPCCs. This is consistent with

the expected loss of brain connectivity due to the presence of schizophrenia.
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Figure 8. Instances of the six healthy patients (Class 1, blue) and the six non-healthy patients (Class 2, red)

The 15-dimension instances thus computed are considered to be divided into three 5-
dimension non-overlapped segments so that we may assume the vMRF model of figure 2 to
implement GANSO. This can be a reasonable assumption if we have a look to the instances of
figure 8. Given that all the percentages of occurrence must add to 1, the first segment (bins 1 to
5) has lower amplitudes when the third segment (bins 11 to 15) has higher amplitudes and vice
versa. This can be loosely considered a “negative correlation” between segments. On the other
hand, the intermediate segment is left disconnected from the other two to allow some flexibility
to GANSO in the generation of the synthetic instances. Notice that the definition of the structural
constraints imposed by the vMRF do not need to be supported by strict mathematical models. It
rather relates to some general properties of the original instances provided to the synthesizer to
generate more appropriate instances. Figure 9 shows the learning curve corresponding to
increasing sizes of the training sets. Every class is trained with only three out of six original
instances plus a given number of synthetic instances. The testing set only includes the other three
original instances not used for training. To get stable results, the showed probability of error is an
average over the probability of error corresponding to 250 3+3 partitions of the 6 original
instances per class. The starting point of the curves corresponds to training with just the three
original instances of each class. At that point we get 0.47 probability of error, i.e., very close to
a random detector. Then the training set size is increased by adding synthetic instances to the
original three. We can appreciate an initial modest reduction of the probability of error for
SMOTE. For example, by adding 27 synthetic instances (training set size of 30), the probability
of error reduces to 0.41. However, GANSO gets a probability of error of 0.28 with the same
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number of 27 synthetic instances. From that point on, SMOTE cannot get further reductions,
while GANSO slowly arrives to 0.25. This is additional evidence that GANSO provides learning
capability even working with such a small number of available original instances. Notice the same
effect observed in the previous experiments: an initial fast descent of the learning curve for a
relative modest number of synthetic instances (some 9 instances for a total training set size of 12),

followed by a slower descent.
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Figure 9. Learning curves of GANSO (blue) and SMOTE (red) of a linear classifier of classes 1 and 2 for different
training set sizes. The first size is 3 (only original instances), the last size is 120 (3 original instances plus 117
synthetic instances)

4.4 Real data application 3

Determining the sleep stages of a patient through a long period of sleeping is significant to the
diagnosis of sleep disorders. The sequential record of the different sleep stages is called the
hypnogram (Jobert et al., 1994). Usually, hypnograms of a patient are manually determined by
physicians from visual inspection of the so-called polysomnograms (PSG): a set of biosignals
recorded from the patient while sleeping. This non-automatic procedure is tedious, long-lasting
and sensitive to the physician fatigue: a typical sleeping period may last some 7 hours. Hence,
automatic labelling of sleep stages is a very convenient option. Some automatic methods have
been tested (Agarwal & Gotman, 2001; Safont et al., 2019) requiring large amounts of manually
labelled stages to train the classifier. Thus, reducing the size of the training set as much as possible

is of most practical interest. This clearly suggests a candidate application to be tested by GANSO.

The considered methods were applied on publicly available data from St Vincent’s University
Hospital/University College Dublin Sleep Apnea Database in Physionet (Heneghan, 2011;
Goldberger et al., 2000). This database contains polysomnograms from 25 adult subjects (21 male,

4 female) with suspected sleep disorders. The database contains many kinds of physiological
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signals for every subject, as well as labeling for every 30-second epoch in sleep stages: wake,
rapid eye movement (REM), and stages 1 (light sleep) to 4 (deep sleep). Of particular interest is
the detection of wakefulness (arousals) (Jobert et al., 1994; Salazar, 2010) as they can be
symptoms of apnea and epilepsy. So we have considered a two class problem. Class 1 corresponds
to the wake stage and Class 2 to all the other stages. Moreover, to introduce a new signal modality
with respect to the preceding applications, we have only considered the electrocardiogram (ECG)
channel. ECG signal were sampled at 128 Hz and band-pass filtered between 0.3 and 75 Hz. The
following 32 features were extracted from the ECG channel for each of the epochs: autoregressive
model coefficients of order 4; Shannon’s entropy maximal overlap discrete wavelet packet
transform at level 4; multifractal wavelet leader estimates of the second cumulant of the scaling
exponents and the range of Holder exponents leaders; and multiscale wavelet variance estimates
up to fourth order using a Daubechies wavelet. These features are typically used in the literature
of sleep staging (Li & Zhou, 2016). After extraction, the number of features was reduced by
applying principal component analysis (PCA), resulting in12 features for an explained variance
98.9%. In this case, performing PCA has the additional interest of forming instances where we
can assume the vMRF model of figure 2 to implement GANSO, given PCA provides features
ordered in decreasing variance. Thus, the 12-dimension instances were considered to be divided
into three 4-dimension non-overlapped segments. As the total explained variance is a constant
number, increasing the amplitudes of the first segment implies a decreasing of the amplitudes of
the third segment and viceversa. This rationale is quite similar to the previous one regarding the
histogram features of figure 8. For every subject we have computed the original instances formed
by the amplitudes of the 12 PCA features corresponding to the first 10 epochs manually labelled
for Class 1 (wakes) and the first 10 epochs manually labelled for Class 2 (distributed in 2 epochs
for every different non-wake stage: REM, stage 1, stage 2, sage 3 and stage 4). Figure 10 shows
the 10 selected instances of Class 1 (blue) and Class 2 (red), for 4 representative subjects (profiles
are given in Table 1). Notice the general amplitude decreasing consistent with the variance

ordering of the PCA features.

Subject | Gender | Age PSG AHI Number of 30 s epochs required to Total number

number (number of apneas and | manually label the first 10 stages of of 30 s epochs
hypoapneas per hour) Class 1 and Class 2

5 M 47 12 79 (0,65 h) 813 (6,77 h)

16 M 49 16 79 (0,65 h) 852 (7,10 h)

18 F 41 13 85 (0,71 h) 913 (7,60 h)

23 M 49 14 80 (0,66 h) 838 (6,98 h)

Table 1. Profiles of 4 representative subjects
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Figure 10. Selected instances of 12 PCA features corresponding to wake stages (Class 1, blue, 10 instances) and
non-wake stages (Class 2, red, 10 instances), for four representative subjects

Then we computed the learning curves; the training set was formed by 5 of the original selected

instances per class plus 5D synthetic instances per class, with D varying from 1 to 15. The other

5 original instances were used for testing. A total of 250 5+5 partitions of the 10 original instances

per class were considered to compute average values. Figure 11 shows the learning curves

corresponding to the four subjects of Figure 10.
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Figure 11. Learning curves of GANSO (blue) and SMOTE (red) of a linear classifier of classes 1 and 2 for different
training set sizes. The first size is 5 (only original instances), the last size is 80 (5 original instances plus 75 synthetic

instances)

We can draw similar conclusions to the ones corresponding to the previous real data

experiments. GANSO yields a significant reduction of the initial probability of error by adding

synthetic instances to the original ones, while SMOTE is not able to get that reduction. Notice
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again the initial fast descent of the learning curve for a relative modest number of synthetic
instances followed by a slower descent. Similar learning curves were obtained for all the 25

subjects of the database.

Finally, a relevant data showed in Table 1 is the number of 30 s epochs required to manually
label the first 10 stages of Class 1 and Class 2. The physician can start to label the 30 s epochs
from the beginning of the ECG signal. Once there are at least 10 epochs from Class 1 and 10 from
Class 2, manual labeling can stop. Then the automatic classifier is trained/tested from the 10+10
corresponding original instances as already explained, so that it can be applied to label the rest of
the study. We can see in Table 1 that a saving above 90% of labeling the total sleep time is

possible, thus largely relieving the manual labeling.

5. Conclusions

We have presented a new oversampling method, termed GANSO, to alleviate the limitations of
classifier training in scenarios with extreme data scarcity. This later is compensated by some
assumed knowledge about the inherent structure of the instances defined by a vVMRF. This
structural information is exploited by a GAN in both the discriminative and the generative blocks.
Thus, the discriminative block implements a linear discriminant on features measuring the
similarities between the cliques of the input instance and the corresponding cliques of the original
labelled instances. On the other hand, the generative block extends the vMREF to the sample scale
to synthesize surrogates by the Graph Fourier Transform. Both blocks iterate until the linear
discriminant cannot distinguish the synthetic form the original instances. In the presented
experiments, 1 to 5 iterations of GAN were enough for the acceptation of the synthetic instance.

We have demonstrated, both in simulated and real data experiments that GANSO is able to
reduce the probability of error of the almost random detector corresponding to training with a
very small training set size (only 3 or 5 original instances in the presented experiments). However,
the benchmark method SMOTE cannot effectively improve the performance of a classifier with
such a very small training set.

The applications considered were classification of stages of neuropsychological tests using EEG
and FMRI data and classification of sleep stages using electrocardiographic (ECG) data for help
in diagnosing of epilepsy, schizophrenia, and sleep disorders, respectively. We have observed in
all the learning curves an initial fast decreasing of the probability of error. As a rule of thumb,
this initial reduction is achieved by adding a number of synthetic signals equal to two or three
times the available number of original signals. Further inclusion of more synthetic signals
achieves a continuous reduction of the probability of error but at a much smaller decreasing rate.

As a general conclusion, we may say that the vVMRF structural information and the validity
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verification of GAN that GANSO incorporates, are crucial elements to generate valid synthetic

instances to train the classifier.
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