
Structural representation learning for network alignment with self-
supervised anchor links

Author

Nguyen, Thanh Toan, Pham, Minh Tam, Nguyen, Thanh Tam, Huynh, Thanh Trung, Tong,
Van Vinh, Hung Nguyen, Quoc Viet, Quan, Thanh Tho

Published

2020

Journal Title

Expert Systems with Applications

Version

Accepted Manuscript (AM)

DOI

10.1016/j.eswa.2020.113857

Downloaded from

http://hdl.handle.net/10072/396731

Griffith Research Online

https://research-repository.griffith.edu.au

http://dx.doi.org/10.1016/j.eswa.2020.113857

Structural representation learning for network
alignment with self-supervised anchor links

Nguyen Thanh Toana, Pham Minh Tamb, Nguyen Thanh Tamc, Huynh Thanh
Trungd, Tong Van Vinhb, Nguyen Quoc Viet Hungd, Quan Thanh Thoe,∗

aFaculty of Information Technology, Ho Chi Minh City University of Technology
(HUTECH), Ho Chi Minh City, Vietnam

bHanoi University of Science and Technology, Vietnam
cEcole Polytechnique Federale de Lausanne, Switzerland

dGriffith University, Australia
eDepartment of Software Engineering, Ho Chi Minh City University of

Technology–Vietnam National University, Ho Chi Minh City 76000, Vietnam

Abstract

Network alignment, the problem of identifying similar nodes across networks, is

an emerging research topic due to its ubiquitous applications in many data do-

mains such as social-network reconciliation and protein-network analysis. While

traditional alignment methods struggle to scale to large graphs, the state-of-the-

art representation-based methods often rely on pre-defined anchor links, which

are unavailable or expensive to compute in many applications. In this paper, we

propose NAWAL, a novel, end-to-end unsupervised embedding-based network

alignment framework emphasizing on structural information. The model first

embeds network nodes into a low-dimension space where the structural neigh-

borhoodship on original network is captured by the distance on the space. As

the space for the input networks are learnt independently, we further leverage

a generative adversarial deep neural network to reconcile the spaces without

relying on hand-crafted features or domain-specific supervision. The empirical

results on three real-world datasets show that NAWAL significantly outper-

∗Corresponding author
Email addresses: nt.toan@hutech.edu.vn (Nguyen Thanh Toan),

pminhtamnb@gmail.com (Pham Minh Tam), thanhtamhp@gmail.com (Nguyen Thanh Tam),
h.thanhtrung@griffith.edu.au (Huynh Thanh Trung), vinhbachkhoait@gmail.com (Tong
Van Vinh), quocviethung.nguyen@griffith.edu.au (Nguyen Quoc Viet Hung),
qttho@hcmut.edu.vn (Quan Thanh Tho)

Preprint submitted to Expert Systems with Applications

forms state-of-the-art baselines, by over 13% of accuracy against unsupervised

methods and on par or better than supervised methods. Our technique also

demonstrate the robustness against adversarial conditions, such as structural

noises and graph size imbalance.

Keywords: graph mining, graph matching, network alignment, network

representation learning, network embedding

1. Introduction

Networks are universal languages for describing complex data. The network

data structure naturally captures relationships between entities from different

fields, such as social networks analysis, economics, bioinformatics and pattern

recognition. Effective analyses on these data benefit a great range of subsequent5

research works and applications, including link prediction (Wang et al., 2018;

Pandey et al., 2019), node classification (Gupta et al., 2017; Du et al., 2019) and

community detection (Francisquini et al., 2017; Han et al., 2018; Yang et al.,

2018b), which prove the importance of network data. However, these works

only focus on modeling single networks whereas many real-world applications10

require interpreting data from multiple networks. Consequently, in recent years,

network alignment, the task of identifying the correspondence of nodes across

different networks, has been proposed as a prerequisite for many interesting

inter-network applications (Bayati et al., 2009).

Network alignment is one of the fundamental problem in many intelligent15

data analysis applications. In urban planning and and smart city applications,

some integrated expert systems are used to find the mappings of points of inter-

est across different traffic network (Zhang & Philip, 2015). In robotic intelligence

systems, network alignment helps to match difference scenes without human su-

pervision (Yang et al., 2018a). In social networks, we expect the aligned nodes20

to be held by the same person. This predictive information can be exploited

to perform better downstream functions such as social recommendation (Nisha

& Mohan, 2019), content recommendation (Zhang & Tong, 2016), and group

recommendation (Toan et al., 2018). In bioinfomatics, knowledge-based expert

systems that identify the common protein molecules between different protein-25

protein-interaction (PPI) networks (Hashemifar & Xu, 2014) will be indispens-

able for the new integrative systems biology.

Despite its huge benefits to expert and intelligence systems, with the nature

of an NP-hard problem (Bayati et al., 2009), network alignment is a challenging

task. Many unsupervised approaches have been proposed to solve this problem30

directly, such as IsoRank (Singh et al., 2008), NetAlign (Bayati et al., 2009),

UniAlign (Koutra et al., 2013), FINAL (Zhang & Tong, 2016) and REGAL

(Heimann et al., 2018). Although having a straightforward advantage as not

using any labelled pairs, these methods often rely on matrix decomposition,

whose assumptions are not always applicable for domain-specific networks with35

unique structures such as social networks, where neighborhood relations (e.g.

friendship) matter. Moreover, the fail to deal with large-scale networks, as the

matrix decomposition on the whole network is often polynomial (cubic) (Bayati

et al., 2009).

To make the solution scalable, new supervised alignment techniques (Man40

et al., 2016) leverage existing network embeddings (Perozzi & Skiena, 2014;

Grover & Leskovec, 2016; Hamilton et al., 2017; Pham & Do, 2019) to compute

the alignment function directly from the latent node features. However, they

often rely on a large amount of labelled data for training the latent features,

which requires heavy manual labor and nevertheless domain-specific only (Zhou45

et al., 2018). Some methods try to mitigate the issue by using only pre-defined

anchor links (i.e. important pairs of nodes known prior by domain knowledge)

for training, which is not always available and might still fail to capture other

links if network structures are not uniform (Liu et al., 2019). For example, in

social networks, users have multiple accounts in different online platforms but50

often have little or no motivation to explicitly correlate their identities (Cao

et al., 2018). To sum up, current methods have either not reached competitive

performance to handle large-scale network or they still require a large amount

of explicit anchor links to deal with network alignment problems efficiently.

3

In this paper, we introduce a scalable and autonomous framework entitled55

Network Alignment With Self-supervised Anchor Links (NAWAL) that go

beyond unsupervised and supervised approaches. NAWAL is scalable by lever-

aging the advantage of learning the light-weight node features from neighbor-

hood/proximity structures of the network itself to overcome the efficiency issue

of unsupervised methods. However, unlike supervised techniques, NAWAL de-60

fines its own anchor links from the current top similar pairs and refines the

matching from these anchor links. This process is repeated many times to reach

the optimum (e.g. the new anchors is not different from the previous ones).

More precisely, we first embed independently the source and target networks

into low-dimensional latent spaces. The advantages of this embedding step are65

two-fold: (1) it helps to the facilitate the computation for later process thanks to

low-dimension characteristic of the latent spaces and (2) the learned embeddings

capture the topology trait of each network node by using distance (similarity

in the embedding space approximates similarity in the original network), which

can be used to distinguish one node from the others. Next, as the embed-70

ding spaces are constructed independently, a mapping function W is learned

to reconcile the two generated embedding spaces into a common space where

the corresponding node pairs from source and target networks have similar em-

bedding. To achieve a high quality mapping function without supervision data,

first we initialize the mapping by employing a generative adversarial network75

(Goodfellow, 2016), then carefully further refine it by applying the closed-form

Procrustes solution (Schönemann, 1966) on high confidence anchor links. Fi-

nally, with the optimized learned mapping W∗, we leverage a greedy heuristic

to seek for all hidden node pairs between networks.

The main contributions are summarized as follows:80

• We propose an embedding-based Network Alignment With Self-supervised

Anchor Links (NAWAL), an unsupervised network alignment framework

which identifies node alignments by first learning node embeddings for

each network, then obtaining hidden node pairs by reconciling the em-

4

bedding spaces using a sophisticated mapping function. At the level of85

10% network structural noise, NAWAL reaches over 90% whereas other

unsupervised approaches achieve just less than 50% on average.

• Within our framework, to achieve high-quality mapping without using any

cross-network supervision information, we first apply the GAN network to

initialize the mapping which is able to distinguish between embeddings of90

source and target spaces, then fine-tune the mapping with the closed-form

Procrustes solution. To the best of our knowledge, we are the first to do

so to tackle the network alignment problem.

• Experiments on real-world graphs show that our approach success to

achieve solid alignment results on three different real-world datasets and95

exhibits robustness to noise factors such as structural inconsistency and

graph size imbalance. Our technique significantly outperforms all unsu-

pervised baselines with over 13% accuracy higher than the second best

technique (FINAL) and achieves similar performance against supervised

baselines without using any prior knowledge (labelled data or pre-defined100

anchor links), especially reaching the same or better level of performance

of the best supervised method (PALE) in many scenarios.

The remaining sections of our paper are organized into nine sections. Section

2 introduces some necessary background information on our study. Section 3

provides an overview of our approach. Section 4 outlines how to embed single105

networks independently, whereas Section 5 shows how to reconcile embedding

spaces in the network alignment stage. Section 6 reveals the alignment result

retrieval technique, and then experimental results are presented in Section 7.

Section 8 discusses related work before we conclude in Section 9.

2. Background110

In this section, as background, we define some important terminologies that

are used to discuss throughout this paper.

5

Definition 1: Network. A network is a pair G = (V,E), where V is a set of

nodes together with E is a set of edges.

This definition can be used to generalize most networks by changing the115

detailed definition of V and E. For example, in an online social network, E

contains social relationships or tracking relationships and V represents users

in the network. We learn a unique latent user space learning for each network

according to a network embedding technique. Based on this, we define network

embedding as follow:120

Definition 2: Network Embedding. Given a network G = (V,E), network

embedding aims to learn an encoder function ENCΘ : v → zv ∈ Rd, where zv

is the latent representation of vertex v and d is the dimension of the learned

representation. The encoder ENCΘ retains the original network information,

such that two vertices similar in the original network should have similar repre-125

sentations in the learned vector space. Learning node embeddings requires three

main steps:

• Define an encoder ENCΘ : V → Rd projects each network node to a

low-dimensional space.

• Define a similarity function SG : V × V → R+ in the original network130

that measures the relationship between any two nodes.

• Optimize the parameters Θ of the encoder so that similarity function SG of

two nodes approximates the distance between their representation vectors:

SG(u, v) ≈ ENCΘ(u)TENCΘ(v);u, v ∈ V (1)

These embeddings then can be used as features for a wide range of machine

learning tasks such as classification, clustering, link prediction, and visualiza-

tion.

Definition 3: Anchor Links. Given two networks Gs = (Vs,Es),Gt =135

(Vt,Et) are aligned networks. We say the node pair (as, at) where as ∈ Vs, at ∈

Vt is an anchor link, if as = at.

6

To distinguish the nodes in the source and target networks, we set s and

t as the lower notation for each network. The number of anchors has a great

influence on the ability to reconcile the networks. The larger the number of140

anchors, the higher chances of reconciling them.

3. Model and Approach

In this section, we propose the NAWAL Framework for the network align-

ment problem in general. We first introduce a motivating example in Section

3.1, then define the network alignment in Section 3.2. The overview of our145

approach is described in Section 3.3.

3.1. Motivating Example

In this section, we introduce a motivating example that serves as the running

example of this paper. Fig.1 considers a setting in which a system desires to

predict whether a pair of users belong to the same real person. In other words,150

we need to identify all virtual twins between social networks, such as Facebook

and Twitter. It is worth noting that little to no prior knowledge about a pair of

users is given. Likewise in the figure, only one aligned pair is known in advance

whereas many other pairs are still hidden.

In the above example, although some users may expose their explicit infor-155

mation in a third-party channel (like www.aboutme.com site), this information

is limited. It would be helpful if all hidden pairs of users are extracted which

supports a variety of applications. In addition, the approach is more adaptive

to the real-world scenario if all anchor links are predictable although limited re-

sources are available. Such predictive problem can be formulated as a network160

alignment problem where its formal definition is presented in the next section.

Solving the network alignment under a very low resource constraint as in this

example motivates us to propose the idea of this paper.

7

Figure 1: A motivating example of network alignment

3.2. Model

In this section, we formally define the problem of network alignment in gen-165

eral. We focus on one-to-one alignment problem, where each node can only be

aligned to a maximum of one corresponding node in parallel networks (Kong

et al., 2013). For simplicity, we focus on aligning two graphs (e.g., social or

protein networks), although our method can easily be extended to more net-

works. Without loss of generality, we select one network as source network and170

the other as target network, denoted by Gs and Gt respectively. For each node

in the source network, we aim to recognize, if any, its counterpart in the target

network. To achieve this goal, network alignment techniques often calculate

an alignment matrix S, which is technically a cross-network similarity matrix:

S(u, v) represents the similarity between a node u ∈ Vs and v ∈ Vt . This can175

be formally formulated as follow:

Network alignment. Given two networks Gs = (Vs,Es),Gt = (Vt,Et)

where Vs,Vt are sets of nodes and Es,Et are sets of edges, the problem of

network alignment is to return an alignment matrix S where S(u, v) represents

the similarity between a node u ∈ Vs and v ∈ Vt.180

8

Matching node pairs across source and target network then can be inferred

by applying heuristics on this alignment matrix (Heimann et al., 2018; Kollias

et al., 2012) to learn M : Vs ×Vt → {0, 1} such that M(u, v) = 1 if two nodes

u ∈ Vs, v ∈ Vt share the same identity; otherwise M(u, v) = 0.

The summary of notations used throughout the paper and their usages can185

be found in Table 1.

Table 1: Summary of notations

Notation Description Usages

W, Winit The alignment matrix that maps the source network’s

embedding to the same vectoral space to the target

network’s embedding.

Section 5.1, 5.2

W∗ The optimal alignment matrix after being refined by

applying the closed-form Procrustes solution.

Section 5.2,6

M(u, v) The matrix (with only 0 or 1 value) represents whether

u and v are aligned nodes.

Section 3.2,6

S(u, v) The matrix represents the cross-network similarity of

two nodes between graphs.

Section 3.2,6

3.3. Approach

In literature, the traditional network alignment techniques using matrix fac-

torization to directly calculate the alignment matrix can work with no super-

vision data whereas achieve good accuracy for some cases. However, they fail190

to scale to large network due to the sparsity and the enormous size of adja-

cency matrix. Some recent works leverage the advances of network embedding

by projecting the network nodes to a low-dimension vector space to make their

model adapt to such large network. As the representation spaces are learned

independently, these models require a number of observed links between nodes195

of the two networks as anchors to reconcile the embedding spaces so that after

reconciling to a common space, the embeddings of the anchor nodes will be

close. However, these kind of supervised data are unavailable or hard to obtain

in many applications because of the privacy policy of the service providers or the

9

unwilling of users of revealing their identity in another platform. Therefore, in200

our work, we propose a network alignment model without using any supervision

information.

There are many challenges we have to consider to overcome this problem.

First, the model has to guarantee scalability, which is essential for modern

applications. As a result, we choose to apply network embedding as the im-205

mediate step to reduce the dimension of the representation spaces and thus

make the model scalable. The low-dimension embedding spaces also capture

the characteristic of network nodes (i.e., homophily principle), which helps to

identify the nodes across source and target networks. However, choosing repre-

sentation learning poses the second challenge: the incompatibility between the210

representation space of the source and the target network. Although the source

and target networks are encoded by the same embedding technique, these em-

beddings might belong to different and incomparable vector spaces as the two

encoding processes are independent. Therefore, after obtaining the node em-

beddings for each network, we learn a mapping function to reconcile the two215

embedding spaces into one common space such that the corresponding nodes

in two networks will have similar embeddings in this common space. However,

learning the mapping function without any supervision data itself is a hard chal-

lenge that has never be addressed before in the network alignment literature.

Given this challenge, there is a need of a special mechanism that can interpolate220

the mapping function from the relative similarity of the structure between two

representation spaces.

In the light of the above considerations, we design our unsupervised rep-

resentation based network alignment framework to contain 3 components as

shown in Fig.2. The aim of this study is to develop an intelligent framework225

using deep learning to enrich the knowledge representation by aligning network

representation from multiple domains and the whole process is autonomous (i.e.,

without any help or supervision from human or knowledge expert).

10

Figure 2: Overview of NAWAL Framework.

3.3.1. Network embedding

In this step, we embed the source and target network independently into230

low-dimension latent spaces. To do that, we maximize the co-occurrence of

direct neighbor nodes using log-likelihood function and negative sampling, the

popular strategy which helps to speed up the training process. We consider

the first-order topology information instead of the higher-order (e.g unbiased

random walks, biased random walks) for two reasons: (1) The inconsistency due235

to random sampling often amplifies the difference between the representation

spaces of the networks, which consequently makes them harder, even impossible

to reconcile; and (2) they can raise computational and time expense due to the

sampling step, especially for biased random walks. More detail of this step is

described in Section 4.240

3.3.2. Reconciling embedding spaces

This main focus of this component is to reconcile the learned embedding

spaces by learning a mapping function without using any supervision data. The

learning function we choose here is the linear function, as this is simple but ef-

fective model achieved good results on the word translation task, on par with a245

more complicated model such as multi-layer perceptron (Mikolov et al., 2013a).

To train the linear mapping in an unsupervised way, we first generate the initial

mapping using the generative adversarial network. The network simulates a

two-player game: the generator tries to generate the mapping function that rec-

onciles the networks whereas the discriminator tries to distinguish them. Then,250

11

we use the nodes that align the best as the initial anchor points to gradually

train the mapping function. Further detail of this step will be described in

Section 5.

3.3.3. Retrieving alignment result

After learning the mapping function to reconcile the mapping spaces, we255

obtain the alignment results in this stage. Intuitively, the nodes which have

similar embeddings will be matched together. In consideration of this belief, we

leverage a greedy heuristic to align all nodes between graphs. To facilitate the

searching for the nearest neighbor algorithms, an efficient data structure has

been proposed to fast identify the topmost similar embeddings among graphs.260

Further detail of this step is described in Section 6.

4. Network Embedding

In this section, we embed separately the given networks into low-dimensional

spaces which encapsulates the intrinsic structure of the graph. By doing so, the

latent representation of network maintains the following criteria:265

• Dimensional reduction. The dimension of the representation space is much

smaller than the number of network edges. This helps to facilitate many

subsequent network analysis task both in term of computational efficiency

and scalability, as the adjacency matrix of the large real-world network is

often sparse and massive size.270

• Informative. The node embeddings reflect node proximity of the network

nodes in original network in terms of topology structure. This means

that any two nodes have direct or neighborhood relationship should have

similar embeddings.

• Continuous. The learned embeddings have continuous values to support275

subsequent analytic where these embeddings are used as features. The

embeddings then become the self-identity of network nodes, which helps

to identify the corresponding nodes across the networks.

12

As the networks are embedded independently, for simplicity, we focus on

describing the embedding on one network G = (V,E) without distinguishing280

between the source and the target networks. For every pair of nodes (u, v) ∈

E, the goal is to find the parameters θ so as to maximize their co-occurrence

probability between them:

maximize
θ

∏
(u,v)∈E

p(u|v; θ) (2)

For network embedding, the parameters θ are their vector representations

(zu, zv). Let us denote by p(E = 1|u, v) the probability that (u, v) came from

the edge sets. Our objective function to best reflect the co-occurrence of nodes

in edges set will become:

maximize
θ

∏
(u,v)∈E

p(E = 1|u, v; θ) (3)

To reduce the computation complexity, the log function is applied to trans-

form the product to sum. The objective function then becomes maximizing the

log-likelihood:

maximize
θ

∑
(u,v)∈E

logp(E = 1|u, v; θ) (4)

where p(E = 1|u, v; θ) can be defined using softmax as in the skip-gram model

(Mikolov et al., 2013b):

p(E = 1|u, v; θ) =
1

1 + e−z
T
u .zv

= σ(zTu .zv) (5)

leading to the objective:

maximize
θ

∑
(u,v)∈E

logσ(zTu .zv) (6)

Since only observed edges are taken into account in the above objective

function, there exists a trivial solution when zu = zv and zTu .zv −→ ∞. To285

avoid this phenomenon, for each edge (u, v), the nodes vk|(u, vk) /∈ E are chosen

and the probability p(E = 0|u, vk) is added to the objective function, with

13

p(E = 0|u, vk) = 1 − p(E = 1|u, v) being the probability that (u, vk) do not

come from the edge sets:

maximize
θ

log[σ(zTu .zv)] +
K∑
k=1

log[(1− σ(zTu .zk))] (7)

where there are K negative samples. Empirically, each node is sampled by290

the probability P(v) ∼ d
3/4
v as proposed in (Mikolov et al., 2013a) with dv is

the degree of node v. Finally, we train the representation vector independently

for all nodes of network G with a stochastic gradient descent algorithm.

5. Reconciling Embedding Spaces

In this section, we consider that we have two embedded sets (Zs ← Gs,Zt ←295

Gt) trained independently according to the method proposed in Section 4. Let

Zs = {z1
s , ..., z

n
s } and Zt = {z1

t , ..., z
m
t } be two sets of n and m node embeddings

which come from the source and target networks respectively. We focus on find-

ing a mapping W between two sets so that translations are close to each other

in the shared space. We use the term translation here as this technique is mo-300

tivated by (Conneau et al., 2017) as an idea of machine translation. We propose

a GAN-based approach to learn this mapping W between the source and tar-

get networks. We accomplish this by using both generative and discriminative

processes as presented in Fig.3.

5.1. Rough alignment under a GAN-based setting305

Figure 3: A GAN-based approach to learn the mapping W between the source and target

networks.

14

The basic idea of a generative adversarial network (GAN) is a game be-

tween two players: the generator and the discriminator. Given a data distribu-

tion which we are trying to model pdata, the main goal of the first player, the

generator, is to generate samples in pmodel which approximates pdata. At the

same time, the other player, the discriminator, examines samples to determine310

whether they are real or fake data. The discriminator is trained as a traditional

binary classifier under a supervised setting by dividing inputs into two classes:

real class (l = 0) or fake class (l = 1).

We employ the idea of GAN to make it suitable for our alignment problem.

Formally, we design our framework as a structured probabilistic model (Goodfel-315

low et al., 2016) that contains latent variables zs sampled from Zs and observed

variables zt sampled from Zt. This approach is in line with an unsupervised

domain adaption problem as proposed by (Ganin et al., 2016), wherein our case,

a domain is represented by a network embedding (source or target). The two

players in the game are exposed by two processes which are differentiable by320

their inputs and parameters:

• The discriminator is presented as a function that takes samples (both real

and fake samples) as inputs and ΘD as parameters.

• The generator is a function that takes zs as an input and uses W as a

parameter. It is worth noting that the learned W of the second player325

will be used as the mapping function for network alignment. Hence, from

now on, we call this process an aligner instead of a generator as described

in the original GAN concept.

Both processes have cost functions defined on ΘD and W:

• The cost function for the discriminator is JD(ΘD,W). By minimizing

the JD, we train ΘD to maximize the probability of assigning correct

labels to both training examples and samples from the generator. This

process controls only ΘD as parameters and is independent on W. The

15

discriminator loss function can be written as:

JD(ΘD|W) = − 1

n

n∑
i=1

logPΘD
(l = 1|Wzis)−

1

m

m∑
j=1

logPΘD
(l = 0|zjt) (8)

where zis ∈ Zs, z
j
t ∈ Zt.330

• The cost function for the aligner is JW (ΘD,W). This process controls

only W as parameters and is independent on ΘD. In the unsupervised

setting, W is trained so that the discriminator is unable to distinguish

between generated and actual data. The aligner loss function can be

written as:

JW (W|ΘD) = − 1

n

n∑
i=1

logPΘD
(l = 0|Wzis)−

1

m

m∑
j=1

logPΘD
(l = 1|zjt) (9)

where zis ∈ Zs, z
j
t ∈ Zt.

Orthogonality. The aligner W obtained in the previous step gives a good

performance. However, (Smith et al., 2017) showed that we can further im-

prove the result by enforcing W orthogonal. They showed that the optimal

linear transformation between vector spaces should be orthogonal as orthogonal335

matrices

help maintain the distance between any two vectors across spaces. In our case,

we also want to preserve the dot product of embeddings which forms a more

stable training algorithm.

Although SVD guarantees us to achieve an optimal result by enforcing the340

constraint of orthogonality, this is an expensive procedure when we compute

iteratively together with stochastic gradient descent. Furthermore, it may guide

the parameters to go far from the optimizing direction of the main gradient

descent. Hence, we use an approximate approach to make the algorithm more

efficient (Cisse et al., 2017). In particular, after every main update, we perform345

the following update:

W← (1 + β)W − β(WWT)W (10)

Empirically, we found that beta = 0.01 works best with our framework.

16

Algorithm 1 Rough alignment algorithm

1: Input: Embeddings of node in source network Zs

2: Embeddings of node in target network Zt

3: Number of training iterations T

4: Number of step per discriminator train Kdis

5: Batch size m

6: Output: Initial linear mapping Winit

7: W = INIT WEIGHT () . Initialize the mapping

8: for t = 1 . . . T do

9: for k = 1 . . .Kdis do . Training discriminator

10: Sample Bdiss = {z1
s , ..., z

m
s } from Zs.

11: Sample Bdist = {z1
t , ..., z

m
t } from Zt.

12: Update ΘD with Bdiss , Bdist by Eqn. 8.

13: Sample noise samples Bgen = {z1
s , ..., z

m
s } from Zs.

14: Update W with Bgen by Eqn. 9. . Updating generator

15: Enforce W by orthogonal constraint with Eqn. 10.

16: Winit ←W . Take the final result as initial mapping for refinement step

17: return Winit

The training process. We follow the standard training procedure of (Goodfel-

low et al., 2014) to train our model (Algorithm 1). The training process consists

of a simultaneous mini-batch gradient descent. On each step, two mini-batches350

are sampled: a mini-batch of values from the target embedding and a mini-batch

of values drawn from the source embedding. Then two gradient steps are made

simultaneously: one updating ΘD to reduce JD and one updating W to reduce

JW . For each iteration, W is also updated according to orthogonal constraints

after the main gradient update.355

After this section (Section 5.1), we get an initial mapping W which is able

to roughly reconcile the two embedding spaces. This mapping will be further

refined so that we denote it as Winit and it will used as the input for the next

Section (Section 5.2).

17

5.2. Refinement360

After the process introduced in the previous section, we obtain an initial lin-

ear mapping Winit that is able to align the vector representations of the source

and target networks to some extent. However, the quality of this mapping func-

tion can be further improved due to two reasons. First, the generated function

Winit is just approximately orthogonal, while this is a necessary characteristic365

for a good mapping (Cisse et al., 2017). Second, the GAN network attempts

to align every node from source to target network, while there are some nodes

with less topology information (i.e., low degree) can adversely affect the quality

of the mapping. Therefore, in this section, we fine-tune the obtained matrix

Winit from the previous step to achieve the finest mapping function.370

To this end, starting from the initial mapping function, we select the most

reliable matching pairs as the anchor links. To do so, we first employ cross-

domain similarity local scaling (CSLS) as the comparison metric to produce

matching pairs, as this metric has been proven by (Conneau et al., 2017) to

be better in inducing pairs of the nearest neighbors than employing traditional375

Euclidean distance as the comparison metric. Then, only aligned pairs with a

high matching score are taken as anchors to ensure the quality. We denote the

selected anchor links set by C.

After carefully choosing the anchor links set C, we use this set as a groundtruth

to train a new linear mapping function by minimizing the difference between

the embedding of source nodes after applying the mapping function and the

embedding of target nodes in the anchor links. Mathematically, we find the

linear mapping matrix W∗ such that:

W∗ = argmin
W

||WinitZs − Zt||F (11)

where (Zs,Zt) are embeddings of the nodes in anchor links set C. Using the

result from (Schönemann, 1966), the exact solution W∗ in Equation 11 can be380

found using the following formula:

W∗ = UVT (12)

18

where UΣVT = SVD(ZtZ
T
s). It is worth noting the singular value decom-

position is performed on the anchor links set C only (whose size is extremely

less than the data size) and thus tractable in practice. The algorithm for the

refinement step is demonstrated in Algorithm 2.385

Algorithm 2 Refinement algorithm

1: Input: Embeddings of node in source network Zs

2: Embeddings of node in target network Zt

3: Initial linear mapping Winit

4: Number of refinement step Krefine

5: Keeping ratio k ratio

6: Output: Fine-tuned linear mapping W∗

7: W∗ = Winit . Initialize the optimal mapping

8: for t = 1 . . .Krefine do

9: Call = Produce all matching pairs from W∗Zs and Zt based on CSLS

10: C = Select k ratio of top matching anchor pairs from Call

11: W∗ = PROCRUSTES (C) . Find optimized mapping with C using

Eqn. 12.

12: return W∗

6. Alignment Result Retrieval

The aligner W∗ trained in the previous section is used to infer the similarity

matrix as:

S = (W∗Zs)Z
T
t (13)

After getting the similarity matrix S, a heuristic greedy matching algorithm

(Kollias et al., 2012) is applied to the matrix as a post-processing step to achieve

one-to-one alignment accuracy. The heuristic iteratively finds the highest score

S[i, j] on the similarity matrix and records the node pair M(i, j) = 1, then390

all scores involving either node i or node j are deleted from the matrix (and

replaced with a zero value); the process stops when one of the graphs has all of

its nodes paired.

19

In order to compute all pairs of similarities between the embeddings, a naive

approach can be applied. To align one node pair, that approach needs to iterate395

all row pairs between embedding matrices to choose the top-1 similarity node.

This is undesirable to do because of its computation complexity. In practice,

only some of the top most-likely alignments should be considered. Hence, we

need a better way for quickly finding the closest vectors which yields some

specialized data structures that facilitate searching for the nearest neighbor400

algorithms and many other applications (Bhatia et al., 2010). Among those

specialized data structures, we choose the kd-tree to overcome the computation

problem.

We denote Z′t = W∗Zs as the embeddings after reconciliation from the

source embeddings. In this case, we want to compute similarities between node405

embeddings from Z′t and the target embedding Zt. We store embeddings from

Zt into kd-tree. For each node in Z′t, we can quickly query this tree with

its embedding to find the α ≤ n closest embeddings from nodes in Zt. If

multiple top alignments are desired, they may be returned in sorted order by

their embedding similarity.410

7. Experiments and Evaluations

In this section, we conduct experiments and evaluate the performance of our

proposed NAWAL Framework. We first introduce the experimental setup in

Section 7.1. Then, we use three social network datasets to conduct compre-

hensive experiments and detailed analyses in comparison with existing baseline415

methods in Section 7.2. Finally, in Section 7.4 we conduct further analysis in a

case study to demonstrate its generality.

7.1. Experimental setup

7.1.1. Datasets

To evaluate the efficiency and validity of our proposed framework, three420

real-world networks are adopted for experimental purposes, including Facebook,

FourSquare, and Twitter. The basic statistics of them are presented in Table 2.

20

Table 2: Statistics of the datasets

Networks Users Edges

Facebook 17.359 112.381

FourSquare 17.355 132.208

Twitter 20.024 114.999

Network alignment methods primarily exploit the topology consistency of the

network structure to perform alignment as nodes which share the same neighbors

often tend to refer to the same entity. Following state-of-the-art alignment425

algorithms (Zhang & Tong, 2016; Koutra et al., 2013), we study the structural

noise by randomly removing edges from real-world datasets. Specifically, for

each real network data set with an As adjacency matrix, we build a new network

with the At = PAsP
T adjacency matrix, where P is a randomly generated

permutation matrix with non-zero values that indicate the ground-truths for the430

network alignment problem. We add structural noise to At by removing edges

with probability ranging from 0% to 40% without disassociating any nodes.

With experiments requiring imbalance between source and target networks, we

remove nodes from Vp with probability p to create the target network.

7.1.2. Baseline methods435

We compare our approach to six state-of-the-art network alignment methods:

Unsupervised Methods. Like our approach, these methods do not use any

labelled data, but sometimes rely on hand-crafted features (e.g., username sim-

ilarity between two social network users) to create prior alignment preference

(Zhang & Tong, 2016):440

• IsoRank: a popular spectral alignment technique which models the simi-

larity of nodes based on the correlation between the degree of their neigh-

bors (Singh et al., 2008).

• FINAL: a spectral alignment technique which defines three criteria namely

structure similarity, node feature similarity and edge feature similarity to445

21

tackle alignment problems on attributed networks (Zhang & Tong, 2016).

• REGAL: a spectral alignment technique which employs low-rank matrix

factorization approximation to speed up calculation of alignment matrix

(Heimann et al., 2018).

• UAGA: a representation learning based technique that which learn the450

embeddings focusing on high-order proximity using random walks, then

uses a GAN-based mapping function to reconcile the learnt embedding

spaces (Chen et al., 2019).

Supervised Methods. These methods use labelled links or pre-defined anchor

links between the source and target networks as supervision data to train their455

model:

• PALE: a representation learning based technique which learns node em-

beddings by maximizing the co-occurrence likelihood of vertices, then

leverages linear or MLP as the mapping function (Man et al., 2016).

• DeepLink: a representation learning based technique which generates the460

embeddings using the skip-gram model, then uses auto-encoder and MLP

to construct the mapping function (Zhou et al., 2018).

• IONE: a representation learning based technique which adopts the first-

order proximity as input-output context to learn node embeddings, which

are used later to generate alignment results. (Liu et al., 2019).465

7.1.3. Metrics

In this section, we present similarity metrics to evaluate the performance of

the algorithms. These metrics can be separated into two categories: prediction

metric and ranking metric.

Prediction metric. Recent approaches consider network alignment as a bi-

nary classification task. We simply employ a setwise metric (Zhang et al., 2014)

22

to define accuracy metric which is calculated by:

acc =
#{correctly identified node pairs}

#{groundtruth node pairs}
(14)

Ranking metric. Some approaches may provide a top-k ranking list of poten-470

tial matching nodes rather than only one. The goal is to rank true matching

identities as accurate as possible. These metrics may greatly support applica-

tions related to information retrieval or recommendation systems so that we

also take MAP (Man et al., 2016) and Precision@k (Iofciu et al., 2011) into

consideration for evaluating the algorithms.475

7.1.4. Settings

Due to the randomness, we run each data set 50 times to compute aver-

age results. For our discriminator, we use MLP with two hidden layers of size

2048, and Leaky-ReLU activation functions. The input to the discriminator is

corrupted with dropout noise with a rate of 0.1. As suggested by (Goodfellow,480

2016), we include a smoothing coefficient s = 0.1 in the discriminator predic-

tions. We use stochastic gradient descent with a batch size of 64, a learning

rate of 0.1, and a decay of 0.98 both for the discriminator and W. We divide the

learning rate by 2 every time our unsupervised validation criterion decreases.

For other algorithms, we tune the parameters to have the best experiment per-485

formance. We use alignment accuracy as the main evaluation metric to measure

the performance. Besides, we employ some ranking metrics to illustrate the gen-

erality of the algorithms. All the experiments are conducted on an AMD 3.0

GHz system with 32 GB of main memory and four GTX Titan X graphic cards.

7.2. Alignment Performance Analysis490

To assess the reliability of NAWAL, we empirically interpret the effective-

ness of our unsupervised approach on several benchmarks and compare it with

both state-of-the-art unsupervised and supervised methods. For each learning

methods, we conduct a suitable analysis on robustness to structural noise and

graph size imbalance.495

23

(a) facebook (b) foursquare (c) twitter

Figure 4: Robustness of algorithms to structural noise.

7.2.1. Robustness to structural noise

Network alignment methods utilize the structure of the network as the main

information for the algorithms. Therefore, it is necessary to verify the stability

of the model for network structural noise. To stimulate the structural noise,

we consider each of the twenty-one experimental settings (i.e.,(3 datasets) x (7500

levels of structural noise ranging from 0% to 40%)) as trials and consider what

performance trends are likely to generalize (Table 3).

Comparative performance to unsupervised methods. From Fig.4, we can see that

the accuracy of all algorithms is monotonically decreasing along with the increas-

ing of the level of structural noise. Based on the results in Fig.4 and Table 3, we505

can see that the proposed NAWAL model gives better network alignment results

than the other unsupervised models in most cases. Our technique achieves 35

- 40% higher accuracy than the second best technique UAGA when the noise

level reaches to 0.4 for all the three datasets. This is because our model focus

on captures the first-order proximity information (through the loss function)510

instead of the higher-order proximity as in UAGA, which helps to avoid the

inconsistency due to random sampling. REGAL starts with very high perfor-

mance for a noise-free case, however, its accuracy drops sharply when the level

of noise increases. From these results, we can see that the IsoRank method

exhibits the worst performance as a trivial method. However, when the level of515

noise increases (i.e., over 10%), IsoRank perform better than REGAL. This is

24

because REGAL adopts a strict assumption on topology consistency that the

two nodes are similar when their neighbor’s degree is the same, which makes the

model susceptible to a considerable level of structure noise. The performance

of the FINAL has less sensitivity for the structural noise but its performance520

remains at a medium level (from lower than 60% to 80%). In the worst case,

FINAL outperforms NAWAL, however, NAWAL is superior to FINAL in most

cases. The average accuracy on three datasets of NAWAL model is 84.04%, sug-

gesting performance improvement over IsoRank, REGAL and FINAL models

by 57.85%, 42.77% and 13.28%, respectively.525

Table 3: Average performance of algorithms to structural noise.

Methods
Facebook FourSquare Twitter

ACC MAP P@5 P@10 ACC MAP P@5 P@10 ACC MAP P@5 P@10

Unsupervised methods

IsoRank 23.69 30.77 39.08 44.33 22.44 29.41 37.31 43.96 20.33 30.59 41.09 51.81

FINAL 61.82 75.33 92.97 94.47 75.49 80.82 86.86 86.88 69.66 76.34 83.99 84.03

REGAL 27.46 32.55 37.19 42.70 29.56 32.99 36.46 39.17 28.61 32.36 36.31 39.56

UAGA 47.32 57.01 68.27 76.71 31.07 42.25 53.07 61.75 35.11 45.16 56.74 66.91

Supervised methods

PALE 74.32 79.62 85.67 89.12 83.57 87.40 91.91 94.45 71.29 76.96 83.44 87.37

DeepLink 46.29 56.30 67.68 76.95 31.57 41.82 52.93 62.18 35.89 46.01 57.22 66.24

IONE 16.43 22.72 29.42 35.47 24.29 29.64 35.43 40.25 15.85 20.76 24.79 29.88

Our proposed method

NAWAL 78.17 82.82 88.24 91.23 86.52 89.73 93.52 95.54 75.21 80.26 85.95 89.39

Comparative performance to supervised methods. In this experiment, we use

20% of the number of known anchor links to guide supervised models (PALE,

DeepLink). However, without pre-defined anchor links, our proposed method

outperforms the existing supervised alignment methods. Overall, we find that

the NAWAL and PALE algorithm perform the best, in terms of both average530

accuracy and structural noise robustness. However, when comparing the results

of PALE and NAWAL, we can see that the NAWAL model often works better.

The average performance achieved by IONE is generally lower than the other

methods. Although both DeepLink and IONE are sensitive to the structural

noise factor, DeepLink works better. The average accuracy of the NAWAL535

model is 84.04%, indicating that it outperforms the IONE model by 61.17%, the

DeepLink model by 39.94%, and the PALE model by 3.09%. In order to evaluate

25

the performance on the ranking metrics, we evaluate different approaches in

terms of MAP, top-5 Precision (P@5), and top-10 Precision (P@10) in Table 3.

It can be seen that the performance on ranking metrics is basically consistent540

with the accuracy.

7.2.2. Robustness to graph size imbalance

This experiment evaluates the robustness of all models through another fac-

tor of noise, that is the graph size difference between the two networks.

(a) facebook (b) foursquare (c) twitter

Figure 5: Robustness of algorithms to graph size imbalance.

In Fig. 5, we provide the results of our algorithm compared to other state-of-545

the-art recent algorithms by varying the graph size imbalance factor from 0% to

40% and in Table 4, we provide qualitative results of these frameworks. From

the quantitative results, we can see that NAWAL framework performs better

than other methods on average.

Comparative performance to unsupervised methods. From the comparison ex-550

periments in Fig.5, it can be seen that representation learning-based methods

such as UAGA and REGAL are sensitive in accurately aligning the test nodes

when dealing with graph size imbalance factor. This indicates that taking into

account the imbalance factor, the latent representations of the source and target

networks are harder to align. REGAL suffers a significant drop when the imbal-555

ance factor increases. IsoRank shows worse performance than other methods.

However, its accuracy is less broken by imbalance factor than REGAL, which

results in its accuracy being higher than REGAL when imbalance factor exceeds

26

10%. UAGA also suffers a considerable accuracy drop of around 40% when the

removal ratio reaches up to 0.4 for all datasets. FINAL, matrix-factorization560

based method, is basically consistent with all datasets and is able to an achieve

average result in each case. From the experimental results in Table 4, it can be

derived that the average accuracy of NAWAL model is 87.37%, which outper-

forms the IsoRank, REGAL and FINAL models by 53.11%, 46.34% and 16.50%,

respectively.565

Table 4: Average performance of algorithms to graph size imbalance.

Methods
Facebook FourSquare Twitter

ACC MAP P@5 P@10 ACC MAP P@5 P@10 ACC MAP P@5 P@10

Unsupervised methods

IsoRank 37.81 49.86 63.97 73.47 36.20 47.93 61.29 72.35 23.51 34.87 46.76 58.96

FINAL 57.77 72.44 92.09 95.04 76.83 81.51 86.64 86.65 72.27 78.33 85.02 85.04

REGAL 26.96 32.27 36.90 43.20 29.64 33.14 36.47 39.43 29.84 33.92 38.26 41.56

UAGA 49.89 57.86 73.28 81.64 32.49 42.34 51.44 61.98 38.69 50.41 60.48 71.17

Supervised methods

PALE 85.85 89.43 93.74 95.56 88.28 91.43 95.29 97.00 79.40 84.35 90.24 93.37

DeepLink 48.22 58.89 71.43 80.78 31.30 41.61 52.73 62.01 37.74 48.45 60.46 69.99

IONE 28.68 39.28 50.76 60.67 43.27 52.13 61.96 69.39 21.34 27.67 33.31 39.75

Our proposed methods

NAWAL 84.58 88.31 92.63 94.76 88.83 91.69 95.14 96.82 79.93 84.57 90.07 92.92

Comparative performance to supervised methods. From the results in Fig.5, it

can be concluded that the NAWAL method and PALE method always per-

form better than the DeepLink. Besides, the NAWAL model is on par with

or outperforms PALE in most cases. The performance of DeepLink decreases

gradually when the imbalance factor increases. In average, on three datasets,570

for NAWAL, the percentages of speedup contributed by IONE, DeepLink and

PALE are around 55.00%, 42.56% and 0.43%, respectively.

7.2.3. Robustness to scalability

In this experiment, we investigate the scalability of the network alignment

techniques by studying the computation time each technique needed to process575

the large-size input networks. We try our best to apply a broad range to the

setting, with the number of nodes ranging from 1,000 to 1,000,000 nodes. As the

size of the input networks cannot be manipulated using the real-world dataset,

27

we use the Small-world network generative Watts & Strogatz (1998) model to

synthesize the input networks. Because computation time increases exponen-580

tially with the growth of the input network size, we apply logarithmic scale. We

set the memory limit to 24GiB as we want to consider gpu and cpu memory in

a fair manner.

Figure 6: Effect of graph size on running time.

The result of the experiment is shown in Figure 6. In general, the computa-

tion time of the techniques significantly increase with the growth of the network585

size. In more details, the computation of matrix factorization based methods

such as IsoRank, REGAL and FINAL are relative lower than that of represen-

tation based methods when the size of input networks is small, less than 10,000

nodes. However, this figure of such methods soars up when the input size be-

come larger, and cannot be traced when the network node size reaches 1,000,000590

because of the explosion of memory usage. On the other hands, all the repre-

sentation learning based methods like NAWAL, UAGA, PALE and DeepLink

all show good scalability, as they are all able to handle when the network size

goes high. Our technique has quite similar computation time with PALE, and

better than that of UAGA and DeepLink with around 500,000 seconds faster595

when the network size reaches 1,000,000. This is because our technique as well

as PALE use direct neighborhoodship instead of random sampling, which is a

costly process in terms of running time.

28

7.3. Ablation tests

In this section, we study the importance of each proposed components in our600

framework by comparing the performance of our final model to several variants.

The details of the variants are as follows.

• NAWAL-1: employs the linear mapping function (Man et al., 2016) to

reconcile the learnt embedding spaces.

• NAWAL-2: uses the multi-layer perceptron (Man et al., 2016) to reconcile605

the learnt embedding spaces.

• NAWAL-3: leverages a sophisticate AutoEncoder mapper (Zhou et al.,

2018) to unifies the learnt representation spaces.

• NAWAL-4: has the similar pipeline as the final model, except not using

the refinement step described in Section. 5.2.610

Table 5 presents the result with only important metrics and datasets due to

space limitation. It can be seen that our original model NAWAL outperforms

other variants. In particular, NAWAL model achieves higher accuracy and P@5

(around 2-3%) than NAWAL-1, NAWAL-2 and NAWAL-3 for all datasets. This

proves the superiority of the GAN-based mapping function to the other function,615

given that all these reconciliations are performed on the same representation

learning technique. Also, NAWAL in general performs better than NAWAL-

4, which confirms the need of refinement step to enhance the quality of self-

supervised ground-truth.

Table 5: Ablation test

Dataset Metric NAWAL NAWAL-1 NAWAL-2 NAWAL-3 NAWAL-4

Foursquare
Accuracy 0.9603 0.9468 0.9446 0.9277 0.9548

P@5 0.9842 0.9794 0.9698 0.9541 0.9828

Facebook
Accuracy 0.9228 0.9127 0.9120 0.9012 0.9053

P@5 0.9703 0.9665 0.9589 0.9328 0.9316

29

7.4. Case studies620

In this section, we present some visualization results (best viewed in color)

to intuitively demonstrate the effect of the embedding reconcilement step (Step

2 of NAWAL Framework). We leverage the PCA algorithm to visualize the

data distributions. The figures show the embeddings before (Fig.7-a, Fig.8-a,

and Fig.9-a) and after (Fig.7-b, Fig.8-b, and Fig.9-b) being reconciled into a625

common space. The mapped source embeddings (WZs) is in orange, and the

target embeddings (Zt) is in blue. There is a strong correspondence between the

two aligned data distributions which leads to the success of the whole network

alignment process in terms of both noise robustness and accuracy.

(a) before (b) after

Figure 7: The effect of the embedding reconcilement step on the Facebook dataset.

(a) before (b) after

Figure 8: The effect of the embedding reconcilement step on the FourSquare dataset.

30

(a) before (b) after

Figure 9: The effect of the embedding reconcilement step on the Twitter dataset.

8. Related Work630

Related work mainly includes two parts. The first part reviews various

network embedding methods which can be exploited as a pre-processing step

for the network alignment framework. The second part is on network alignment

which is the problem we focus on this study.

8.1. Network Embedding635

Our work is related to the problem of network embedding as the node rep-

resentations of the source and the target networks are learned independently at

the first step of NAWAL framework. Network embedding methods aim to learn a

low-dimensional representation of nodes in the network (Cai et al., 2018). Many

network embedding approaches have been proposed in the past decades. Clas-640

sical graph embedding algorithms such as IsoMap (Tenenbaum et al., 2000),

Laplacian Eigenmaps (Belkin & Niyogi, 2003) are not applicable for embed-

ding large-scale networks. These techniques construct a unique embedding for

each node directly and efficiently extract information from a network with a low

computational cost. However, due to their limited representation abilities, these645

methods cannot learn a highly non-linear mapping when encoding the network

structure from a high dimensional to a low-dimensional space.

Recent methods that model the graph-structured input by neural networks

have been proposed such as LINE (Tang et al., 2015), DeepWalk (Perozzi &

31

Skiena, 2014), SDNE (Wang et al., 2016), node2vec (Grover & Leskovec, 2016),650

and GraphSAGE (Hamilton et al., 2017). These methods have a high ability

to model a non-linear transformation of network structure. They learn node

embeddings by optimizing the first-order or higher-order node similarity. The

embedding algorithm used by NAWAL is inline with the first-order node similar-

ity methods. We do not consider the methods which maximize the higher-order655

similarity as they can raise computational and time expense due to the sampling

step.

8.2. Network Alignment

Network alignment problem has drawn considerable research interests in re-

cent years. This problem has been widely applied in many application areas such660

as database schema matching (Melnik et al., 2002), data mining (Bayati et al.,

2009), social network (Feng et al., 2018), computer vision (Yang et al., 2018a) to

bioinformatics (Hashemifar & Xu, 2014; Singh et al., 2008). Recent approaches

can be categorized into unsupervised and supervised alignment methods.

The unsupervised methods aim to tackle the problem of network alignment665

in a general manner and hence, they did not exploit any anchor links. Most of

them compute the network alignment by adopting a matrix factorization. Al-

though these approaches are quite straightforward, it has been proven to solve

the problem effectively. One famous algorithm is IsoRank (Singh et al., 2008),

inspired by PageRank (Xing & Ghorbani, 2004), which constructs an eigen-670

value problem for every pair of input networks with the assumption that the

protein in a PPI network is compatible with the protein in another network if

the source node’s neighbors match the neighbors of the target node. NetAlign

(Bayati et al., 2009) models the alignment problem as NP-hard combinatorial

optimization problem and approximates it by applying the belief propagation675

heuristic. BigAlign (Koutra et al., 2013) then reformulates bipartite network

alignment as a new optimization problem and proposes a gradient-descent-based

algorithm to solve it effectively. Again, on an optimization-based perspective,

FINAL (Zhang & Tong, 2016) also develop an algorithm to find the optimal

32

alignment result by preserving network consistency principle. User alignment,680

also called social identity linkage (Liu et al., 2014), anchor link prediction (Kong

et al., 2013), cross-platform identification of anonymous identical users (Zhou

et al., 2015) in some literatures, aims at identifying one user’s accounts across

social networks. Due to the rich featured nodes of social networks, some aligners

take both user profiles (i.e., username, locations, posts) and structural similarity685

into account to compute the alignment matrix score (Liu et al., 2013). CoL-

ink (Zhong et al., 2018) incorporates a sequence-to-sequence attributed-based

model, and a heuristic relationship-based model to solve the problem of user

alignment across social networks. Using an approximation of low-rank matrix

factorization and representation learning, REGAL (Heimann et al., 2018) fur-690

ther accelerates the network alignment process.

Inspired by network embedding techniques (Perozzi & Skiena, 2014; Grover

& Leskovec, 2016; Liu et al., 2018; Ji et al., 2018; Hamilton et al., 2017; Pham

& Do, 2019), many supervised alignment approaches have been proposed un-

der the theme of embedding and mapping approaches to deal with large-scale695

networks. Those approaches aim to induce network alignment work by indepen-

dently learning the embeddings in each network using single network structure,

and then learning a mapping from one embedding space into the other based on

anchor links. The first of such methods is PALE (Man et al., 2016) which learns

nodes embedding by maximizing the co-occurrence likelihood of nodes then ap-700

plies linear or multilayer perceptron (MLP) as mapping function. DeepLink

(Zhou et al., 2018) employs unbiased random walk to generate embeddings us-

ing skip-gram then using auto-encoder and MLP to construct mapping function.

UAGA Chen et al. (2019) leverages the same embedding technique as DeepLink,

but adopts generative adversarial network (GAN) based mapping function to705

reconcile the learnt spaces in an unsupervised manner. Mego2vec (Zhang et al.,

2018) incorporated both attribute embeddings and structural embeddings into

a convolutional neural network to train the model with alignment labels. IONE

(Liu et al., 2019) then uses the same mapping function as PALE but its em-

bedding process is more complicated as it takes into account second-order node710

33

similarity.

Table 6: Characteristics of different network alignment techniques

Technique Feature-based Learning Type

IsoRank (Singh et al., 2008) No Unsupervised

BigAlign (Koutra et al., 2013) Yes Unsupervised

FINAL (Zhang & Tong, 2016) Yes Unsupervised

CoLink (Zhong et al., 2018) Yes Weakly-supervised

REGAL (Heimann et al., 2018) Yes Unsupervised

PALE (Man et al., 2016) No Supervised

Meg2vec (Zhang et al., 2018) Yes Supervised

DeepLink (Zhou et al., 2018) No Supervised

IONE (Liu et al., 2019) No Supervised

UAGA (Chen et al., 2019) No Unsupervised

A summary comparison of existing network alignment techniques is shown

in Table 6. Whereas these methods put in a solid performance in some large

datasets, they rely only on labeled data where the cost of generating them for a

new machine learning task is often an obstacle for applying learning methods. To715

bridge this gap, in our end-to-end setting, we propose a GAN-based approach

to bridge the gap so that our model is able to learn a mapping between the

source and target network in the situation when the network data are either fully

unlabeled. While our model and UAGA both use GAN-based reconciliation, our

technique focus on capturing the first-order proximity by using the the direct720

neighborhoodship instead of using random sampling. This is because direct

neighborhoodship is simple yet effective context as it captures the essential

information of network structure, while significantly reduces the computation

effort and time expense due to the sampling step. Besides, the inconsistency

due to random sampling often amplifies the structural noises. Also, we carefully725

design the refinement step that employs the cross-domain similarity local scaling

to enhance the quality of the self-supervised ground-truth iteratively. The cross-

domain similarity local scaling favors the less noisy and localized first-order

proximity information encoded in our representation learning model.

34

9. Conclusions730

This paper proposes NAWAL, an end-to-end, unsupervised framework for

network alignment, which is a fundamental step for emerging intelligence and ex-

pert systems such as multiple social networks analysis or cross-lingual knowledge

graph reconciliation. The contributions of this paper can be seen in method-

ological and empirical viewpoints.735

In methodological perspective, NAWAL goes beyond the existing methods

in two aspects. First, it aims to propose an unsupervised network alignment

approach based on the adversarial training framework, which learns the light-

weight latent node features to scale the alignment. Second. the alignment is

an iterative self-supervised process of refining the matching (similarity) matrix740

from the currently defined anchor links (top matching pairs from the previous

matrix) until the optimisation does not improve. In practice, our approach

can be seamlessly integrated with existing supervised methods, which leverages

domain expert or prior knowledge as guidance.

In empirical perspective, NAWAL improves on the existing methods on both745

scalable and autonomous aspects. Experiments on best-practice benchmarking

datasets parameterised settings, and state-of-the-art alignment methods verify

the efficiency and effectiveness of our method on real-world and large-scale social

networks, including Facebook, FourSquare, and Twitter. Our approach gener-

ally outperforms the baselines by a margin of over 13% accuracy in average and750

by without using any prior knowledge.

In the future, this work can be extended in several directions. First, NAWAL

incorporates the first-order structural information for embedding step - which

is efficient and a natural choice by existing works. However, it shall be in-

teresting to explore some higher-order network representations such as Graph755

Convolutional Network (Zhang et al., 2019). Second, node attribute should be

aggregate to increase the knowledge representation capacity as it plays a critical

role in some network domains. For example, in a social network, a user who

engages in multiple social platforms may have a common name, which is useful

35

indicative information for the reconciliation step. Third, we shall extend this760

alignment technique to knowledge graph alignment, which is useful to a variety

of applications (e.g., question-answering (Bakhshi et al., 2020), ontology align-

ment (Karimi & Kamandi, 2019)). Finally, we plan to exploit some parallel and

distributed techniques to improve the efficiency to support for a wide range of

real-time downstream applications.765

Acknowledgement

The research is supported by Vingroup Innovation Foundation (VINIF) in

project code VINIF.2019.DA01.

References

Bakhshi, M., Nematbakhsh, M., Mohsenzadeh, M., & Rahmani, A. M. (2020).770

Data-driven construction of sparql queries by approximate question graph

alignment in question answering over knowledge graphs. Expert Systems with

Applications, 146 , 113205.

Bayati, M., Gerritsen, M., Gleich, D. F., Saberi, A., & Wang, Y. (2009). Al-

gorithms for large, sparse network alignment problems. In 2009 Ninth IEEE775

International Conference on Data Mining (pp. 705–710). IEEE.

Belkin, M., & Niyogi, P. (2003). Laplacian eigenmaps for dimensionality reduc-

tion and data representation. Neural computation, 15 , 1373–1396.

Bhatia, N. et al. (2010). Survey of nearest neighbor techniques. arXiv preprint

arXiv:1007.0085 , .780

Cai, H., Zheng, V. W., & Chang, K. C.-C. (2018). A comprehensive survey of

graph embedding: Problems, techniques, and applications. IEEE Transac-

tions on Knowledge and Data Engineering , 30 , 1616–1637.

36

Cao, X., Zhang, W., & Yu, Y. (2018). A bootstrapping framework with inter-

active information modeling for network alignment. IEEE Access, 6 , 13685–785

13696.

Chen, C., Xie, W., Xu, T., Rong, Y., Huang, W., Ding, X., Huang, Y., & Huang,

J. (2019). Unsupervised adversarial graph alignment with graph embedding.

arXiv preprint arXiv:1907.00544 , .

Cisse, M., Bojanowski, P., Grave, E., Dauphin, Y., & Usunier, N. (2017). Par-790

seval networks: Improving robustness to adversarial examples. In Proceedings

of the 34th International Conference on Machine Learning-Volume 70 (pp.

854–863). JMLR. org.

Conneau, A., Lample, G., Ranzato, M., Denoyer, L., & Jégou, H. (2017). Word

translation without parallel data. CoRR, abs/1710.04087 .795

Du, Y., Guo, W., Liu, J., & Yao, C. (2019). Classification by multi-semantic

meta path and active weight learning in heterogeneous information networks.

Expert Systems with Applications, 123 , 227–236.

Feng, S., Shen, D., Nie, T., Kou, Y., He, J., & Yu, G. (2018). Inferring anchor

links based on social network structure. IEEE Access, 6 , 17340–17353.800

Francisquini, R., Rosset, V., & Nascimento, M. C. (2017). Ga-lp: A genetic

algorithm based on label propagation to detect communities in directed net-

works. Expert Systems with Applications, 74 , 127–138.

Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette,

F., Marchand, M., & Lempitsky, V. (2016). Domain-adversarial training of805

neural networks. The Journal of Machine Learning Research, 17 , 2096–2030.

Goodfellow, I. (2016). Nips 2016 tutorial: Generative adversarial networks.

arXiv preprint arXiv:1701.00160 , .

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning . MIT Press.

http://www.deeplearningbook.org.810

37

http://www.deeplearningbook.org

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,

S., Courville, A., & Bengio, Y. (2014). Generative adversarial nets. In

Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, & K. Q. Wein-

berger (Eds.), Advances in Neural Information Processing Systems 27 (pp.

2672–2680). Curran Associates, Inc. URL: http://papers.nips.cc/paper/815

5423-generative-adversarial-nets.pdf.

Grover, A., & Leskovec, J. (2016). node2vec: Scalable feature learning for

networks. In KDD (pp. 855–864). ACM.

Gupta, M., Kumar, P., & Bhasker, B. (2017). Heteclass: A meta-path based

framework for transductive classification of objects in heterogeneous informa-820

tion networks. Expert Systems with Applications, 68 , 106–122.

Hamilton, W., Ying, Z., & Leskovec, J. (2017). Inductive representation learning

on large graphs. In Advances in Neural Information Processing Systems 30

(pp. 1024–1034).

Han, T., Tian, Y.-C., Lan, Y., Li, F., & Xiao, L. (2018). Revealing the dens-825

est communities of social networks efficiently through intelligent data space

reduction. Expert Systems with Applications, 94 , 70–80.

Hashemifar, S., & Xu, J. (2014). Hubalign: An accurate and efficient method

for global alignment of protein-protein interaction networks. Bioinformatics

(Oxford, England), .830

Heimann, M., Shen, H., Safavi, T., & Koutra, D. (2018). Regal: Representation

learning-based graph alignment. In CIKM (pp. 117–126).

Iofciu, T., Fankhauser, P., Abel, F., & Bischoff, K. (2011). Identifying users

across social tagging systems. In Fifth International AAAI Conference on

Weblogs and Social Media.835

Ji, H., Shi, C., & Wang, B. (2018). Attention based meta path fusion for

heterogeneous information network embedding. In Pacific Rim International

Conference on Artificial Intelligence (pp. 348–360). Springer.

38

http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf

Karimi, H., & Kamandi, A. (2019). A learning-based ontology alignment ap-

proach using inductive logic programming. Expert Systems with Applications,840

125 , 412–424.

Kollias, G., Mohammadi, S., & Grama, A. (2012). Network similarity decom-

position (nsd): A fast and scalable approach to network alignment. TKDE ,

24 , 2232–2243.

Kong, X., Zhang, J., & Yu, P. S. (2013). Inferring anchor links across multiple845

heterogeneous social networks. In Proceedings of the 22nd ACM international

conference on Information & Knowledge Management (pp. 179–188). ACM.

Koutra, D., Tong, H., & Lubensky, D. (2013). Big-align: Fast bipartite graph

alignment. In ICDM (pp. 389–398).

Liu, J., Zhang, F., Song, X., Song, Y.-I., Lin, C.-Y., & Hon, H.-W. (2013).850

What’s in a name?: an unsupervised approach to link users across communi-

ties. In Proceedings of the sixth ACM international conference on Web search

and data mining (pp. 495–504). ACM.

Liu, L., Li, X., Cheung, W., & Liao, L. (2019). Structural representation learn-

ing for user alignment across social networks. IEEE Transactions on Knowl-855

edge and Data Engineering , .

Liu, S., Wang, S., Zhu, F., Zhang, J., & Krishnan, R. (2014). Hydra: Large-scale

social identity linkage via heterogeneous behavior modeling. In Proceedings

of the 2014 ACM SIGMOD international conference on Management of data

(pp. 51–62). ACM.860

Liu, X., Kertkeidkachorn, N., Murata, T., Kim, K.-S., Leblay, J., & Lynden,

S. (2018). Network embedding based on a quasi-local similarity measure. In

Pacific Rim International Conference on Artificial Intelligence (pp. 429–440).

Springer.

39

Man, T., Shen, H., Liu, S., Jin, X., & Cheng, X. (2016). Predict anchor links865

across social networks via an embedding approach. In IJCAI (pp. 1823–1829).

volume 16.

Melnik, S., Garcia-Molina, H., & Rahm, E. (2002). Similarity flooding: a ver-

satile graph matching algorithm and its application to schema matching. In

ICDE (pp. 117–128).870

Mikolov, T., Le, Q. V., & Sutskever, I. (2013a). Exploiting similarities among

languages for machine translation. arXiv preprint arXiv:1309.4168 , .

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013b). Dis-

tributed representations of words and phrases and their compositionality. In

NIPS (pp. 3111–3119). Curran Associates, Inc.875

Nisha, C., & Mohan, A. (2019). A social recommender system using deep

architecture and network embedding. Applied Intelligence, 49 , 1937–1953.

Pandey, B., Bhanodia, P. K., Khamparia, A., & Pandey, D. K. (2019). A

comprehensive survey of edge prediction in social networks: Techniques, pa-

rameters and challenges. Expert Systems with Applications, .880

Perozzi, R., B.; Al-Rfou, & Skiena (2014). Deepwalk: Online learning of social

representations. In KDD .

Pham, P., & Do, P. (2019). W-metapath2vec: The topic-driven meta-path-based

model for large-scaled content-based heterogeneous information network rep-

resentation learning. Expert Systems with Applications, 123 , 328–344.885

Schönemann, P. H. (1966). A generalized solution of the orthogonal procrustes

problem. Psychometrika, 31 , 1–10.

Singh, R., Xu, J., & Berger, B. (2008). Global alignment of multiple protein

interaction networks with application to functional orthology detection. Pro-

ceedings of the National Academy of Sciences, 105 , 12763–12768.890

40

Smith, S. L., Turban, D. H., Hamblin, S., & Hammerla, N. Y. (2017). Offline

bilingual word vectors, orthogonal transformations and the inverted softmax.

arXiv preprint arXiv:1702.03859 , .

Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., & Mei, Q. (2015). Line: Large-

scale information network embedding. In Proceedings of the 24th international895

conference on world wide web (pp. 1067–1077). International World Wide Web

Conferences Steering Committee.

Tenenbaum, J. B., De Silva, V., & Langford, J. C. (2000). A global geometric

framework for nonlinear dimensionality reduction. science, 290 , 2319–2323.

Toan, N. T., Cong, P. T., Tam, N. T., Hung, N. Q. V., & Stantic, B. (2018).900

Diversifying group recommendation. IEEE Access, 6 , 17776–17786.

Wang, D., Cui, P., & Zhu, W. (2016). Structural deep network embedding. In

Proceedings of the 22nd ACM SIGKDD international conference on Knowl-

edge discovery and data mining (pp. 1225–1234). ACM.

Wang, Z., Liang, J., & Li, R. (2018). Exploiting user-to-user topic inclusion905

degree for link prediction in social-information networks. Expert Systems

with Applications, 108 , 143–158.

Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’

networks. Nature, 393 , 440–442. URL: http://dx.doi.org/10.1038/30918.

Xing, W., & Ghorbani, A. (2004). Weighted pagerank algorithm. In Proceed-910

ings. Second Annual Conference on Communication Networks and Services

Research, 2004. (pp. 305–314). IEEE.

Yang, H., Song, D., & Liao, L. (2018a). Image captioning with relational knowl-

edge. In Pacific Rim International Conference on Artificial Intelligence (pp.

378–386). Springer.915

Yang, J., Zhang, M., Shen, K. N., Ju, X., & Guo, X. (2018b). Structural corre-

lation between communities and core-periphery structures in social networks:

Evidence from twitter data. Expert Systems with Applications, 111 , 91–99.

41

http://dx.doi.org/10.1038/30918

Zhang, H., Kan, M.-Y., Liu, Y., & Ma, S. (2014). Online social network profile

linkage. In Asia Information Retrieval Symposium (pp. 197–208). Springer.920

Zhang, J., Chen, B., Wang, X., Chen, H., Li, C., Jin, F., Song, G., & Zhang,

Y. (2018). Mego2vec: Embedding matched ego networks for user alignment

across social networks. In Proceedings of the 27th ACM International Con-

ference on Information and Knowledge Management (pp. 327–336). ACM.

Zhang, J., & Philip, S. Y. (2015). Multiple anonymized social networks align-925

ment. In 2015 IEEE International Conference on Data Mining (pp. 599–608).

IEEE.

Zhang, S., & Tong, H. (2016). Final: Fast attributed network alignment. In

KDD (pp. 1345–1354).

Zhang, S., Tong, H., Xu, J., & Maciejewski, R. (2019). Graph convolutional930

networks: a comprehensive review. Computational Social Networks, 6 , 11.

Zhong, Z., Cao, Y., Guo, M., & Nie, Z. (2018). Colink: An unsupervised

framework for user identity linkage. In Thirty-Second AAAI Conference on

Artificial Intelligence.

Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., & Zhong, T. (2018).935

Deeplink: A deep learning approach for user identity linkage. In INFOCOM

(pp. 1313–1321).

Zhou, X., Liang, X., Zhang, H., & Ma, Y. (2015). Cross-platform identifica-

tion of anonymous identical users in multiple social media networks. IEEE

transactions on knowledge and data engineering , 28 , 411–424.940

42

 Our approach is scalable to real-world online social networks

 Our method is robust to structural noises up to 40%

 Our model outperforms unsupervised methods by over 13% accuracy

 Our model is cheaper than supervised methods in not using any prior knowledge

 Our performance is robust and maintains 90% accuracy even if data is 10% sparser

*Highlights (for review)

Nguyen Thanh Toan: Conceptualization, Methodology, Formal analysis, Validation,

Writing - Original Draft. Pham Minh Tam: Resources, Data Curation, Visualization.

Nguyen Thanh Tam: Methodology, Formal analysis, Writing - Review & Editing. Huynh

Thanh Trung: Methodology, Validation. Tong Van Vinh: Methodology, Validation.

Nguyen Quoc Viet Hung: Conceptualization, Writing - Review & Editing. Quan Thanh

Tho: Supervision.

*Credit Author Statement

Declaration of interests

☒ The authors declare that they have no known competing financial interests or personal relationships

that could have appeared to influence the work reported in this paper.

☐The authors declare the following financial interests/personal relationships which may be considered

as potential competing interests:

*Conflict of Interest

