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Abstract

Visual Question Answering in Medical domain (VQA-Med) plays an important

role in providing medical assistance to the end-users. These users are expected

to raise either a straightforward question with a Yes/No answer or a challenging

question that requires a detailed and descriptive answer. The existing techniques

in VQA-Med fail to distinguish between the different question types sometimes

complicates the simpler problems, or over-simplifies the complicated ones. It is

certainly true that for different question types, several distinct systems can lead

to confusion and discomfort for the end-users. To address this issue, we propose

a hierarchical deep multi-modal network that analyzes and classifies end-user

questions/queries and then incorporates a query-specific approach for answer

prediction. We refer our proposed approach as Hierarchical Question Segregation

based Visual Question Answering, in short HQS-VQA. Our contributions are

three-fold, viz. firstly, we propose a question segregation (QS) technique for VQA-

Med; secondly, we integrate the QS model to the hierarchical deep multi-modal

neural network to generate proper answers to the queries related to medical

images; and thirdly, we study the impact of QS in Medical-VQA by comparing

the performance of the proposed model with QS and a model without QS. We

evaluate the performance of our proposed model on two benchmark datasets, viz.

∗Corresponding author
Email addresses: deepak.pcs16@iitp.ac.in (Deepak Gupta), swati17293@gmail.com

(Swati Suman), asif@iitp.ac.in (Asif Ekbal)
1Both authors contributed equally to this work.

ar
X

iv
:2

00
9.

12
77

0v
1 

 [
cs

.C
L

] 
 2

7 
Se

p 
20

20



RAD and CLEF18. Experimental results show that our proposed HQS-VQA

technique outperforms the baseline models with significant margins. We also

conduct a detailed quantitative and qualitative analysis of the obtained results

and discover potential causes of errors and their solutions.

Keywords: Visual Question Answering, Neural Networks, Medical Domain,

Support Vector Machine, Gated Recurrent Units

1. Introduction

The advancement in the field of Computer Vision (CV) (Arai & Kapoor, 2019;

Guo et al., 2020; Li et al., 2020) and Natural Language Processing (NLP) (Ruder,

2019; Ruder et al., 2019; Fu, 2019; Dong et al., 2019) over the last decade, has

introduced several interesting machine learning techniques. The problems such

as object detection (Liu et al., 2020), segmentation (Liu et al., 2019), and image

classification (Sun et al., 2020a,b) in CV, and machine translation (Yang et al.,

2020), question answering (Gupta et al., 2018b, 2019; Chen et al., 2016; Gupta

et al., 2018a,c), biomedical and clinical text mining (Ningthoujam et al., 2019;

Yadav et al., 2018, 2019, 2020; Chen et al., 2019), speech recognition (Magnuson

et al., 2020) in NLP, are being solved much more efficiently than ever before. This

has facilitated the researchers to indulge into solving interdisciplinary problems

that demand knowledge of both the fields.

Visual Question Answering (VQA) (Gao et al., 2019; Kafle et al., 2020) has

emerged as one such problem. In VQA, the task is poised as questions being

asked with respect to an image, where the machine needs to learn and generate

answers of such questions based on the learned features of the input image. In

contrast to the typical CV tasks which largely focus on solving problems such as

action identification, image classification, VQA tasks are relatively complex. It

demands more intelligence like object recognition, semantic feature extraction,

external knowledge, and common sense knowledge. Many domain-specific VQA

tasks have surfaced in the last few years, and VQA in the medical domain is
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one such that plays a significant role in providing medical assistance. Since

this task is related to the medical domain, end-users can be categorized based

on the type of queries raised by them. Patients, medical students, and related

users are anticipated to ask elementary questions mostly having Yes/No as the

answer. On the other hand, clinicians and medical experts are expected to raise

a more problem-specific query demanding a detailed and descriptive answer. For

this reason, different portals must be created to satisfy the query-specific need,

but that would lead to confusion and discomfort to end-users. To tackle this

problem, in this paper, we propose a question segregation technique to segregate

the user queries. For this module, we use a simple statistical machine learning

model, based on simple hand-engineered, and word frequency-based features.

Towards the solution of the problem of generic VQA-Med, we propose a

hierarchical deep multi-modal network that analyzes and classifies the queries

at the root of the hierarchy and then incorporates the query-specific approach

at leaf nodes. To predict the answers in this model, we generate the question

and image representations using Bidirectional Long Short Term Memory (Bi-

LSTM) (Graves & Schmidhuber, 2005) and Inception-Resnet-v2 (Szegedy et al.,

2017), respectively. We fuse the representations together and pass it to the

specific answer prediction model at the leaf node. For the task of question

classification in the root node, we propose a question segregation technique. We

use Support Vector Machine (SVM) (Cristianini et al., 2000) as the classifier

with hand-engineered and word frequency-based features for QS. We use the

machine learning technique for QS, as the rule-based strategy suffers from the

problem of defining too many rules that may not extend to other datasets (Clark

et al., 2018). The following examples from RAdiology Data (RAD) (Lau et al.,

2018) show the difficulty of the rule-based approach in the medical domain.

• Question: Evidence of hemorrhage in the kidneys?

Answer: No

Question-type: ‘Yes/No’
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• Question: Is the spleen present?

Answer: on the patient’s left

Question-type: ‘Others’

Careful analysis of the question reveals that the first example expects a de-

scriptive type answer that is to list out the facts that indicate kidney hemorrhage

(Question-type: ‘Others’ ), while the second example expects to confirm the

presence/absence of spleen (Question-type: ‘Yes/No’ ). The presence of such

anomalies in the question acts as a hindrance in the formation of robust rules

for the classification of questions into their correct type.

We perform all our experiments in the RAD and ImageCLEF2018 VQA-

Med 2018 (CLEF18) datasets, as they perfectly capture the problem statement

that we intend to solve. Detailed discussion on the dataset can be found in

Section 4. Experimental evaluation demonstrates promising results, showing

the effectiveness of our proposed approach. Additionally, error analysis of the

system’s outputs shows the future direction in this research area by addressing

different kinds of errors.

The organization of this paper is as follows. We first discuss the related work

in VQA. Then we present the details of the methodologies that we implemented

to solve our specific problem. In particular, we explain our proposed HQS-VQA

models in detail. Basically, we discussed the technique used for the question

segregation module and the VQA components used to generate the query-specific

answers. Details of experiments along with the evaluation results and necessary

analysis are reported. Finally, we conclude and provide the future directions of

our work.

1.1. Motivation

The motivation behind our work are stemmed from the following facts:
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• Nowadays, medical and physiological images (“ct-scan”, “x-ray”, etc.) and

reports for the patients are easily accessible with the increase in the use

of medical portals. But the patient still needs to visit a medical expert

to fully understand those reports and get answers to their queries. This

process is both time-consuming and cost-sensitive. On the other hand,

clinicians also find an efficient VQA system very useful to understand the

results of a complex medical image. They may use such a system as a

second opinion just to boost their self-confidence in the understanding

of some specific aspects of such medical images. Although it is possible

to search queries on search engines, the search results may be inaccurate,

spurious, vague, and, or enormous. In the case of medical reports such

inaccurate, spurious, or vague results could lead to serious after-effects.

In this context, the VQA in the medical domain is getting attention as

an important research problem trying to provide the answer to end-user

queries related to medical images.

• VQA-Med intends to assist patients and clinicians in general, but can also be

useful in medical education. A clinical apprentice or medical students who

just started learning the basics of handling images of different modalities,

may learn by asking queries and getting answers. Thus, developing an

efficient and automated VQA system for the medical domain comes out

as an essential task. Even though many medical datasets are published

publicly, most of them deal with some specific disease in a particular

body part with a fixed image modality. ImageCLEFtuberculosis task (Cid

et al., 2018) is one such example which was published to build models

for detection, classification, and severity measurement of TB from the

provided chest-CT. On the contrary, it is a more challenging problem to

have a generic strategy that deals with VQA queries regarding multiple

image modalities linked to multiple diseases that may appear in any part

of the body. The solution to such a generic problem will be considerably

less confusing to the patients.
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• The difference in the type of end-users results in different query types.

The queries from patients most of the time are expected to be generic in

nature, having the need to produce ‘Yes’ or ‘No’ as the answer. Whereas,

the queries from clinicians and medical experts are expected to be more

problem-specific, which requires elaborate answers. Again, a skilled trainee

is expected to ask more specific and sophisticated questions, while queries

from beginners are likely to be simple and straightforward. For example, a

naive trainee may inquire about the presence of any abnormality in the

image, whereas a senior trainee may identify the abnormality of ‘intraven-

tricular hemorrhage’ from the image, and want to understand more about

the grade and effect of the hemorrhage. They can then draw inferences

from the acquired data for effective treatment.

• This difference in query type thus needs different problem-specific attention,

which needs to be dealt with isolation. Again, multiple end systems for

multiple types of queries may create confusion, and discomfort to the

end-user. There should be a single end-user module to solve both the

complex and simple queries. Table 1 demonstrates one such system where

any clinically relevant question can be asked about the image. Here, image

plays an important role as the answer to the questions may vary based on

the provided image.

Image Question Answer

Is this a cyst in the left lung? No

Has the left lung collapsed? Yes

Where is the nodule?
Below the 7th rib in the

right lung

What are the densities in both mid-lung fields? pleural plaques

Table 1. Sample, question-answer pairs formulated from a single image. More than one clinically relevant questions can be asked from

a given image.

• We identify this need, and propose a SVM-based question segregation
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technique to segregate the questions. We then use this information to

propose a hierarchical deep multi-modal network to generate the answers.

1.2. Contributions

• We propose a SVM based Question Segregation technique for the task of

question classification for VQA in the medical domain.

• We propose a hierarchical deep multi-modal neural model and integrate it

with the proposed question segregation module to generate proper answers

to the queries related to medical images.

• We study the impact of QS in Medical-VQA by comparing the performance

of the proposed model with question segregation and a model without

such segregation. We also compare it with the baseline models to study

its effectiveness.

• We evaluate our model on two different datasets,which demonstrate the

fact that our proposed method is generic in nature.

2. Related Work

The major challenges of the VQA-Med are closely related to the general

VQA and QA in the medical domain and we see a lot of interesting solutions

evolving over time. We present the survey with respect to the related datasets

and methods in the following subsections.

2.1. Datasets

A number of research projects have been initiated for the development of

benchmark datasets to promote the works in the medical domain. The Genomic

corpus released as part of the TREC (Hersh & Bhupatiraju, 2003) task is one
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of the benchmark datasets for the medical QA task. It focuses exclusively on

scientific papers. However, a small number of questions in the dataset are not

sufficient to evaluate the efficiency of the large-scale QA systems. This constraint

led to the release of several other datasets, such as Question Answering for

Machine Reading Evaluation (QA4MRE) (Morante et al., 2013) and Biomedical

Semantic Indexing and Question Answering (BioASQ) (Tsatsaronis et al., 2015).

The QA4MRE consists of the Biomedical Text on Alzheimer’s Disease, while

BioASQ gathers information from various heterogeneous sources to address

real-life questions from the biomedical experts. A number of datasets, such as

MRI-DIR (Ger et al., 2018), fastMRI (Zbontar et al., 2018), and a few more

(Bradley et al., 2017; Vallieres et al., 2017; Shaimaa et al., 2017) focused on

different medical tasks, are also available. However, the images in the VQA-Med

dataset have different modalities and contain radiological markings such as short

information, tags, etc. It may also contain a stack of sub-images that is not the

case with the existing medical datasets. In addition, general VQA datasets (Lin

et al., 2014; Mukuze et al., 2018; Gebhardt & Wolf, 2018; Antol et al., 2015) are

task-specific, unlike VQA-Med, where a question can be asked about any disease

from any part of the body.

In this work, we use the RAD (Lau et al., 2018) and CLEF18 (Ionescu

et al., 2018) medical VQA datasets, which are different from the existing VQA

datasets. The obvious reason is their focus on the medical domain, which offers

distinguishing challenges. The images, questions, and answers must be clinically

relevant in order to be a part of this dataset which is not a constraint in the

VQA datasets.

2.2. Methods

VQA tasks are primarily based on three key components: generating rep-

resentations of images and questions; passing these inputs through a neural

network to produce a co-dependent embedding, and then generating the correct
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response. Fig 1 illustrates this framework where the key components can take a

wide variety of forms.

Fig 1. Framework for VQA where, question and image are taken as input to generate or

predict the answer.

VQA systems differ from each other in the way they fuse multi-modal

information. Although most open-ended VQA algorithms used the classification

mechanism, this strategy can only produce answers seen during training. The

multi-word response is generated one word at a time using LSTM (Gao et al.,

2015; Malinowski et al., 2015). The response generated, however, is still restricted

to words seen in the course of training.

For question encoding, most methods for VQA uses a variant of Recurrent

Neural Network (RNN) (Mikolov et al., 2010). RNNs are capable of handling

sequence problems, but when RNN processes lengthy sequences, context data

is easily ignored. LSTM’s (Greff et al., 2016) proposal mitigated the long-

distance dependency issue. In addition, the researchers also discovered that the

respective route from the decoder to the encoder will be reduced if the input

sequence is inverted, contributing to network memory. The Bi-LSTM (Graves

& Schmidhuber, 2005) model combines the above two points and improves the

results. The Gated Recurrent Unit (GRU) (Cho et al., 2014) is also notable, and

widely used, simplification of the LSTM. As for the image feature extraction,

Convolutional Neural Network (CNN) (Traore et al., 2018) are used where VGG-
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net (Simonyan & Zisserman, 2015) and deep residual networks (ResNet) (He

et al., 2016) are the most popular choice.

The application of attention on the image can help to improve the performance

of the model by discarding the irrelevant parts of the image. So, attention

mechanisms (Xiong et al., 2016; Yang et al., 2016) are usually incorporated in

the models so that they may learn to attend to the important regions of the

input image. However, attending image is not enough but question attention

is important too as most of the words in the question may be irrelevant so

simultaneous integration of both question and image attention is advised (Lu

et al., 2016). The fundamental concept behind all these attentive models is

that for answering a specific question, certain visual areas in an image and

certain words in a question provides more information than others. The Stacked

Attention Network (SAN) (Yang et al., 2016) and the Dynamic Memory Network

(DMN) (Xiong et al., 2016) used image features from a CNN feature map’s

spatial grid. In (Yang et al., 2016) an attention layer is specified by a single layer

of weights using the question and image feature defined to calculate attention

distribution across image locations. Using a weighted sum, this allocation is

then applied to the CNN feature map to pool across spatial feature locations.

It creates a global representation of the image that highlights certain spatial

regions.

VQA depends on the image and question being processed together. This was

achieved earlier by using simplified methods such as concatenation or element-

wise product, but these methods fail to capture the complex interactions between

these two modalities. Later, multi-modal bi-linear pooling was proposed where

the idea was to approximate the outer product between the two features, enabling

a much deeper interaction between them. Similar concepts have been shown

to work well to improve the fine-grained image recognition (Lin et al., 2017).

Multimodal Compact Bilinear (MCB) (Fukui et al., 2016) is the most significant

VQA technique used in bilinear pooling. It calculates the outer product in a
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reduced dimensional space instead of explicit calculation to minimize the number

of parameters to be learned. Then this is used to predict the relevant spatial

features according to the question. The major change was the use of MCB for

feature fusion instead of element-wise multiplication.

Methods for Medical-VQA must be different from general VQA as the size

of the datasets is incomparable. The other challenge with Medical-VQA is to

balance the number of image features (usually thousands) with the number

of clinical features (usually just a few) in the deep learning network to avoid

drowning out of the clinical features. Attention-based on bounding box too cannot

be applied directly as medical images lack the bounding box information. For

medical imaging, there are many computer-aided diagnostic systems (Kawahara

& Hamarneh, 2016; van Tulder & de Bruijne, 2016; Tarando et al., 2016). Most

of them, however, deal with single disease problems and focused primarily on

easily identifiable areas such as the lungs and skin. In contrast to these systems,

Medical-VQA deals with multiple diseases at the same time apart from handling

multiple body parts which are difficult for machines to learn.

Recently, the ImageCLEF introduced the challenge of Medical Domain Visual

Question Answering, VQA-Med 20182 (Ionescu et al., 2018). The system sub-

mitted by Peng et al. (2018) achieved the best performance (in terms of BLEU

score) in VQA-Med 2018 for medical visual question answering. They built

their best performing systems using ResNet-152 for image feature extraction and

Multimodal Factorized High-order (MFH) Yu et al. (2018) for language-vision

fusion. Zhou et al. (2018) utilized the Inception-Resnet-v2 and Bi-LSTM for

image and question representation, respectively. They used the inter-attention

mechanism to fuse the language and vision features. Their best performing

system stood second among all the submitted systems in the challenge. The

third best system submitted by Abacha et al. (2018) uses the pre-trained VGG-16

2https://www.imageclef.org/2018/VQA-Med
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model for image feature extraction and LSTM for question representation. They

utilized the stack attention network to fuse the question and image features. In

the second edition3 of VQA-Med, Yan et al. (2019) submitted the best system for

medical visual question answering. The proposed approach utilized the BERT

(Devlin et al., 2018) for question representation and pre-trained VGG-16 model

for image representation. They fused the question and image features using

MFB mechanism.

Inherently, questions follow a temporal sequence and naturally cluster into

different types. This question-type information is very important to predict the

response regardless of the image. Authors in (Kafle & Kanan, 2016) use a similar

approach where they first identify the question-type and use this information

for answer generation. Our work, however, isolates the learning path based

on question-type rather than using this knowledge as a feature. This type of

information can also affect model performance as some of the VQA models

perform better than others for certain types of questions. Therefore, these

models can be intelligently combined to leverage their varied strengths. We

propose a simple model with a question segregation module which segregates

the learning path based on the question types (Yes/No and Others) to reap the

benefits of question-type dedicated models. We use Inception-Resnet to encode

image feature and Bi-LSTM for question feature creation.

3. Materials and Methods

3.1. Problem Modeling

Given a pair (Q, I), where Q is the textual question accompanied by any

medically relevant image I, the Medical-VQA task is aimed to generate the

3https://www.imageclef.org/2019/medical/vqa/
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appropriate answer A. Mathematically, it can be formulated as,

A = f(Q, I, α) (1)

where f is the answer prediction function and α denotes the model parameters.

Questions in Q can be categorized into two question types (q type). For questions

with q type = Y es/No, the input Q have a straightforward binary response.

While for questions with q type = Others, it can have a well-thought-out variable

length response generated from the answer dictionary words. The problem is to

develop a hierarchical model with a question segregation module to differentiate

the learning path for the two q type for solving the generic Medical-VQA task.

3.2. Methodology

Our proposed approach towards the solution of the problem is to form a

two-level hierarchy, where the top-level task is question segregation and the

next-level task is answer prediction. The proposed hierarchical model is depicted

in Fig 2. The subsequent sections describe the components of the proposed

hierarchy.

Fig 2. Abstract representation of the proposed hierarchical HQS-VQA model. The first level

segregates the questions while the second level generates the answer using the leaf node.

Answer prediction strategy is decided based on the question type.

3.2.1. Question Segregation

Question Segregation, in general, segregates the questions from a question

list Q = [q1, q2 . . . qn] based on the q type, where n denotes the total number

of questions. In this list, qi = “w1 w2 . . . wm” denotes the ith question in
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the list containing a sequence of m words. The task of question segregation is

relatively an easier task compared to answer prediction. Thus, we find a simple

statistical machine learning model based on simple hand-engineered, and word

frequency-based features to effectively solve the problem poised in the top-tier

(segregation) of our proposed hierarchical setup. We employ an SVM classifier

for this purpose. The SVM is relatively less complex compared to the deep

neural network. Moreover, the datasets, which we use here are relatively smaller,

and hence deep learning models tend to perform on the lower-side compared to

the classical supervised SVM based model. Fig 3 illustrates the entire question

segregation process.

.
Fig 3. Proposed question segregation module with linear SVM learner as base classifier. The

extracted feature vectors are fed to the SVM for question segregation.

The classifier, and input to QS module i.e. question feature vectors generated

from the questions in the dataset are explained as follows:

Question Feature Vectors: From each question, we extract the following two

vectors:

• Question Identifier Vector: We form a set of r question identifier words,

where each word tries to represent the question motive. We then convert

every question into a question vector V = [v1, v2 . . . vr], where vi ∈ {1, 0}

indicates the presence or absence of the ith question identifier word in the

question.

• Tf-idf Vector: We use tf-idf (term frequency - inverse document fre-

quency) to assess how significant wj is to a qi in Q. It can be calculated
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as:

tf -idf(wj , qi) =
f(wj , qi)∑m
j=1 f(wj , qi)

∗ loge
n∑n

i=1 f(wj , qi)
(2)

where f(wj , qi) is the frequency of wj in qi, n is the number of words in

question qi. From the entire vocabulary, we consider only top m
′

words

with the highest tf-idf values. We then convert every qi in the list Q

into tf-idf vector such that position of every wj in qi is represented by

tf -idf(wj , qi).

We concatenate both the feature vectors to represent a question.

Question Classifier: The SVM (Cortes & Vapnik, 1995; Cristianini et al.,

2000) is a statistical classification technique and inspired by it’s performance

in (Wang et al., 2018; Zhi et al., 2018). we use SVM learner as the base

classifier. It takes the question feature vectors as input during the training stage

to segregate the questions according to its type. It is a linear function which

can be represented as,

f(vi) = 〈vi, wT 〉+ b, where 〈vi, wT 〉 = ||vi|| ||wT || cos(θ) (3)

where vi, w
T , and b are feature vector of ith question, weight, and bias respectively.

So, ∀i; i ∈ [1, n], either of the following equations can be true based on q type.

〈vi, wT 〉+ b ≥ 1, if(q type == Y es/No) (4)

or

〈vi, wT 〉+ b ≤ −1, if(q type == Others) (5)

We use the SVM with linear kernel, and use ‘hinge’ as the loss function. The

hinge loss `(y) of the prediction y = f(vi) for a true q type t and a classifier

score y is defined as,

`(y) = max(0, 1− t ∗ f(vi)) (6)
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3.2.2. Answer Prediction

Answer prediction component is at the second level of our hierarchy, where

two separate models M = {m1, m2} deal with the problem of answer generation

at the lowest level nodes, i.e. leaf nodes. While m1 = Y es/No deals with the

problem of producing simple Yes/No answers from simple incoming queries

at the first leaf node, m2 = Others, on the other hand, deals with complex

queries to produce other expertise answers at the second leaf node. We extract

the question and image feature vectors which are then fused together. Based

on q type this model passes the fused vector through several layers to finally

generate the answer. We outline these tasks with more details in the following

subsections.

Question Feature Extraction: We first pre-process the questions by convert-

ing the words into lowercase and then lemmatizing them to reduce the ambiguity

among their different forms. Next we remove words like ‘the’, ‘and ’, ‘with’ etc.

to discard useless information. We then map pure numbers to ‘num’ token and

alphanumeric words to ‘pos’ token to minimize the complexity of information

in questions. We then generate the integer sequence from the pre-processed

questions that are finally fed to the embedding layer together with the word

embedding for the extraction of question feature (FQ) of dimension m× d where

m is the total number of words in the question and d denotes the dimension of

the word embedding vector. Fig 4 illustrates the entire process.

The components of the question feature extraction process are described

below:

• Word embedding: We use word embedding to vectorize words to capture

their meaning. For this we first generate d1 dimensional vectors G =

[g1, g2 . . . gd1 ] using the GloVe (Pennington et al., 2014) vector. We also

introduce the sub-word embedding to capture the embedding of unknown

word in medical terminology. For sub-word embedding, we follow the
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Fig 4. Flowchart of generating question embedding. The word embedding is the

concatenation of GloVe and Custom (sub-word) embedding, which are used along with the

integer sequence representation of the questions by the embedding layer.

(Bojanowski et al., 2017) work on FastText vector and generate the sub-

word embedding vector of dimension d2 as C = [c1, c2 . . . cd2
]. We

next concatenate the embeddings to create the final d-dimensional word

embedding vector E = [g1, g2 . . . gd1 , c1, c2 . . . cd2 ].

Image Feature Extraction: For image feature extraction, we use the Inception-

Resnet-v2 model. It is a type of advanced CNN that integrates the inception

module (Szegedy et al., 2014) with ResNet. Inception enables one to accomplish

a very good performance at comparatively low computational costs, while resid-

ual connections considerably speed up network training by enabling connection

shortcuts. Together they allow the development of deeper and wider networks in

the inception-resnet-v2 model. Basically, the network utilizes residual links (He

et al., 2016) (Fig 5) to combine filters of varying dimensions, which not only

prevent the issue of degradation caused by deep structures but also decreases

the training cost.

Fig 5. Canonical form of a 2-layer ResNet block. Layer-2 is skipped over activation from

layer-1 using residual link.
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Since the model expects an input of dimension 299 × 299, we re-size the

input images to suit that dimension. We then initialize the model with weights

pre-trained on ImageNet (Russakovsky et al., 2015). Such initialization facilitates

transfer learning (Long et al., 2017), which is incorporated to enable a model to

learn from another model pre-trained on a bigger dataset. It helps to train our

deep neural network with a comparatively smaller dataset. Though the type of

images in the medical domain is very different from those in the general domain,

still transferring learned knowledge is more promising than training straight

from scratch (Tajbakhsh et al., 2016). Activations are obtained from the model’s

last fully connected layer as it represents the detected features of the medical

image (F I). The features generated are of size 1000.

Question and Image Feature Fusion: Unidirectional LSTM layer helps to

capture the sequence information in the question, but it can only retain prior

information as it has only seen the past inputs. In bidirectional layer inputs

run bidirectionally in two ways, one from the past to the future and vice-versa.

Therefore, before bi-modal feature fusion, we feed the extracted question feature

vector FQ to the bidirectional layer with LSTM as input for the recurrent

instance. The process to generate the representation of question by Bi-LSTM is

depicted in Fig 6.

It helps to preserve the information from both past and future. We use

it with sequences returned, so that LSTM hidden layer returns a sequence

of values one per time-step instead of returning a single value for the entire

sequence, such that
−→
H = [

−→
h 1,

−→
h 2 . . .

−→
hm], and

←−
H = [

←−
hm,

←−
hm−1 . . .

←−
h 1].

Here, for forward and backward directions,
−→
H , and

←−
H are the sequence of

hidden state outputs, while
−→
h i, and

←−
h i are the hidden state outputs at ith

time-step. The final Bi-LSTM output is then
←→
H = [

←→
h 1,

←→
h 2 . . .

←→
h m], with

←→
h i =

←→
h i �

←→
h m−i+1; ∀i ∈ [1,m], where � denotes the concatenate operator.

To minimize the problem of overfitting due to small amount of training data we

also used dropout value of 50% in the this layer.

18



Fig 6. The processing of a question by Bi-LSTM to get the question representation. The

word embedding of each word in the question is fed to a Bi-LSTM network, and the forward

and backward hidden state outputs are concatenated at each time-step to get the final

representation of the question.

We feed F I to the RepeatVector4 layer to make it’s dimension same as FQ

for the modeling convenience. We then concatenate the repeated F I , and
←→
H

for fusion. We finally feed the output to Batch-Normalization(Ioffe & Szegedy,

2015) layer for regularization and to increase the stability of the network. Thus,

the normalized fused feature (F ) is:

F = BN((Bidirectional(LSTM(FQ))) ⊕ (RepeatV ector(m)(F I))) (7)

where, BN and ⊕ represents Batch-Normalization and concatenation respectively.

The process of feature fusion is illustrated in Fig 7.

Fig 7. The architecture represents the fusion of the two modalities’ feature vectors using

concatenate layer, the output of which is normalized to generate the fused feature vector.

Answer Prediction - Yes/No: We treat model m1 (c.f. Section 3.2.2) as a

two-class classification model. To generate the answer, we flatten the normalized

4RepeatVector(n) replicates the input feature vector n times.
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fused feature (F ) to generate a single long fused feature (F
′
) which we pass

through the fully-connected layer with two output neurons. We formulate the

prediction procedure to predict the answer using Softmax as the activation

function in the fully-connected layer as,

â = P(ai|F
′
,W, b) = softmax(F

′
Wi + bi)

=
eF

′
Wi+bi

eF
′WY es+bY es + eF

′WNo+bNo
, i ∈ {Y es,No}

(8)

where, â is the prediction probability of selecting the ith answer word (ai)

given F
′

bias (bi), and weight matrix Wi (i ∈ {Y es,No}). We use categorical

cross entropy as loss function having the following formula.

L(a, â) = −(aY es ∗ log(âY es) + aNo ∗ log(âNo)) (9)

where, ai and âi denote the actual and predicted probability, respectively, of

selecting ‘Y es/No’ as answer.

Answer Prediction - Others: We treat model m2 (c.f. Section 3.2.2) as

a multi-label classification model for which we create a separate word-index

dictionary for answers Da = {w1 : 1, w2 : 2 . . . wz : z}, where z is the total

number of unique words in the answer list. We also transform the xth answer

list A(x) of answer length r to A
′
(x) = [a

′

1, a
′

2 . . . a
′

r], where a
′

i is the ith answer

which is encoded in the form of one-hot vector (a binary vector with values 0

and 1). We pass the normalized fused feature (F ′) to the fully-connected layer

with t output neurons to generate F
′′
. We formulate the recursive prediction

procedure to predict the answer words using TimeDistributed5 layer having

Softmax activation as,

â = P(ai|F
′′
, âi−1, b) = softmax(F

′′
Wi + bi) =

eF
′′
Wi+bi∑z

j=1 e
F ′′Wj+bj

(10)

5https://keras.io/api/layers/recurrent_layers/time_distributed/
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where, â is the probability of selecting the ith answer word (ai) given F
′′
, bias

(b), and the set of probabilities of previously predicted answer words (âi−1), and

Wi is the weight matrix. z is the number of the words in vocabulary. We use

categorical cross entropy as the loss function as follows:

L(a, â) = −
z∑

i=1

r∑
j=1

(aij ∗ log(âij)) (11)

In Eq (11), for ith word in the answer sequence of length r, aij and âij denotes

the actual and predicted probability of selecting the jth word of the answer

dictionary having z words.

3.2.3. Hyper-parameters

In the QS module to create the tf-idf vector, we consider top 500 words with

the highest tf-idf values from the vocabulary in the training set of 2000 words.

After studying the training set, we select 10 words (‘is ’, ‘was ’, ‘are’, ‘how ’, ‘can’,

‘does’, ‘which’, ‘what ’, ‘type’, and ‘there’) to form the set of question identifier

words. We use the default values of the rest of the parameters (e.g., the c in

the SVM). For question embedding, we create 600-dimensional word embedding

by concatenating the two 300-dimensional GloVe and FastText embeddings,

following an approach similar to the work proposed in (Ghannay et al., 2016).

We create a question dictionary of size 1050 to capture the most frequent words

in the questions. For answers, we create a separate answer dictionary of size

equal to the count of unique word in the answer list. As a negligible number

of questions is of length greater than 21, we fix the maximum question length

as 21. For answers having type ‘Others’, we prune the maximum length to 11.

However, for Yes/No type answers, the length is 1, as only Yes or No is the

probable answer. Consistency is maintained in the input length by appending

‘blank ’ at the end for the shorter sequences and curbing longer sequences up to

the required length. For the hidden layer of Bi-LSTM, we fix 128 neurons in each
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direction. We use the Categorical Accuracy6 as the metrics to calculate the mean

accuracy rate for multiclass classification problems across all the predictions.

We consider a batch of size 256 for training. We set the number of epochs to 251

and to optimize the weights during training we use Adam optimizer (Kingma &

Ba, 2014). We obtained the optimal hyper-parameters value based on the model

performance on validation dataset.

3.2.4. Evaluation Metric

In our work, the datasets we use for evaluating our proposed model has only

one reference answer. Thus, reporting high accuracy means generating a high

number of the answers with exact same words as in the reference answer. This

may not be necessary at all times and is a very complex task even in the medical

domain. However, more than one answer may be correct. This is explained with

an example given in Table 2.

Question Multiple correct answers

Where is the lung lesion located?

• Right lobe

• Lower lobe

• Right lower lobe

Table 2. Example where the absence of the degree of specification makes all the answers to

the question are correct.

In this regard, we follow the standard evaluation schemes from the Image-

CLEF2018 VQA-Med 2018 challenge. The evaluation metrics are as follows:

• BiLingual Evaluation Understudy (BLEU) (Papineni et al., 2002):

It stands for and it is a popular evaluation metric in machine translation,

which compares the generated answer with the reference answer based

on the number of n-grams of the generated answers that match with the

6https://github.com/keras-team/keras/blob/master/keras/metrics.py
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reference answer, along with the brevity penalty for shorter output. BLEU

is computed using the multiple modified n-gram provisions7

BLEU = BP · exp

( N∑
n=1

wn loge pn

)
(12)

where pn is the modified n-gram precision, BP is the brevity penalty

to penalize short answer, wn is weight between 0 and 1 for loge pn and∑N
n=1 wn = 1, N is the maximum length of n-gram. BP can be computed

as follows:

BP =

1 if c > r

exp
(
1− r

c

)
if c ≤ r

(13)

where c is the number of unigrams in all the candidate answers r is the

best match lengths for each candidate answer in the dataset.

BLUE score serves as a better evaluation metric in this work, but it is not

that effective when more than one medical term indicates the same part

or symptom (e.g. the words ‘Lung ’, and ‘Lobe’ refers to the same organ).

As shown in Table 3, all the answers are correct for the question, but the

BLEU score decreases as it fails to consider synonyms during evaluation.

Question Multiple correct answers

Where is the lesion located?

– Right lobe

– Right lung

– Right lobe of the lung

Table 3. Example of the semantically similar answers. Although not all the answers to the

question are the same, but they are semantically correct.

• Word-based Semantic Similarity (WBBS) (Hasan et al., 2018): It is

another evaluation metrics used to assess the performance of the systems

7To compute modified n-gram precision, all candidate n-gram counts and their corresponding

maximum reference counts are collected. The candidate counts are clipped by their corre-

sponding reference maximum value, summed, and divided by the total number of candidate

n-grams. Specifically,
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submitted in the VQA-Med 2018 challenge. WBSS metric based on Wu-

Palmer Similarity8 Wu & Palmer (1994) with WordNet ontology in the

backend. It computes a similarity score between the ground truth an-

swer and system-generated answer by considering the word-level semantic

similarity.

We follow the evaluation setup discussed in ImageCLEF2018 VQA-Med 2018

challenge overview paper (Hasan et al., 2018) to evaluate the performance of

the system. Towards this, we first pre-process the predicted and ground-truth

answers and then calculate the scores. For pre-processing, we convert the answers

to lower-case, remove the punctuations, and apply tokenization9 to the individual

words in the answer. We also remove the stopwords in the answer from the

NLTK’s10 English stopword list.

We also use the following metrics to evaluate the effectiveness of our Answer

Prediction module for q type = ‘Y es/No’ (c.f. Section 3.2.2):

• Precision (P): It reflects the fraction of correctly predicted instances of

a class (say c) from the total number of predicted instances as c.

P =
|{instances of c} ∩ {predicted instances as c}|

|{predicted instances as c}|
(14)

We report the macro-averaged precision Pm, where C is a set of all the

possible classes,

Pm = (
∑

c∈C
Pc)/‖C‖ (15)

• Recall (R): It reflects the fraction of correctly predicted instances from

the total number of actual instances belonging to c.

R =
|{instances of c} ∩ {predicted instances as c}|

|{instances of c}|
(16)

8https://datasets.d2.mpi-inf.mpg.de/mateusz14visualturing/calculate
9http://www.nltk.org/modules/nltk/tokenize/punkt.html#PunktLanguageVars.

wordtokenize
10http://nltk.org/
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We report the macro-averaged recall (Rm) for the set of all classes C similar

to Eq (15).

• F1-score (F1): It is a function of P and R.

F1 = 2 ∗ ((P ∗ R)/(P + R)) (17)

We report the macro-averaged F1-score similar to Eq (15).

• Accuracy (A): It reflects the fraction of correctly predicted instances

from the total number of instances.

A =
|{correctly predicted answers}|

|{answers}|
(18)

4. Data Description

Datasets for Medical-VQA consists of Natural Language questions about

the content of radiography images, and the task is to generate the appropriate

answer. The questions are framed on the different modalities of medical image like

‘angiogram’, ‘magnetic resonance imaging’, ‘computed tomography’, ‘ultrasound’,

etc. that describes how the image is taken. These images can have different

orientations e.g. ‘sagittal’, ‘axial’, ‘longitudinal’, ‘coronal’, etc. Along with the

variety in orientation and modalities, images can be of any body part or organ

such as heart, lung, skull, etc. (Fig 8).

(a) Brain (b)Breasts (c) Chest (d) CNS (e) AP (f) Axial (g)Coronal(h) PA

Fig 8. Sample images in the Medical-VQA dataset. The images in this dataset can be of

different organs (a to d) and/or modalities (e to h).
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4.1. RAD Dataset

RAD dataset is a recently released dataset for VQA in the medical domain.

Statistics of the dataset are as follows:

• The training set consists of 3, 064 question-answer pairs.

• The test set consists of 451 question-answer pairs.

Some of the images in the dataset are blurred while others contain markings

such as short information, tags, etc. But none of the images in the dataset

contains a stack of sub-images. The questions are primarily categorized into 11

categories viz. abnormality, attribute, color, counting, modality, organ system,

other, plane, positional reasoning, and size. The average question length is 5

to 7 words which is greater than the answer length. 53% of the answers are of

Yes/No type while rest of them are either one word or short phrase answers.

The maximum question length in the dataset is about 21 words, with an

average of 7 words. It should also be noted that many questions are being

rephrased, which are semantically similar. For example,

• What is the size and density of the lesion?

• Describe the size and density of this lesion?

From the statistical study of the dataset, we find that only 87% of the free-form,

and 93% of the rephrased questions are unique, while only 32% answers are

unique. More than half of the answers are of Yes/No type. This is visualized by

the peak in the Fig 9b for one-word answers.

4.2. CLEF18 Dataset

CLEF18 task is similar to RAD task where a semi-automatic approach is

used to generate the questions and answers from the captions. It uses the
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(a) Questions (b) Answers

Fig 9. Word-Frequency distribution in the RAD dataset. The graph demonstrates that for

both the questions and the answers, this distribution is almost similar for train and test data

splits.

radiology images and their respective captions extracted from the PubMed

Central articles11 (essentially a subset of the ImageCLEF2017 caption prediction

task (Eickhoff et al., 2017)). Due to the way the question-answer (QA) pairs

are generated, they are diverse and descriptive. The dataset also contains a lot

of artificial questions that are semantically invalid. Table 4 demonstrates the

complexity of a sample question-answer pair from the training data.

Question Answer

what reveals prominent bilateral enhancing parietal

occipital lesions on flair and t2 sequences and small

areas of hyperintensity in the left periventricular white

matter on diffusion weighted images?

mri of the brain

what does mri in sagital plane show?

the collection was superficial to the muscles of the

back and the gluteal region but deep to the posterior

layer of the thoraco lumbar fascia

Table 4. Sample examples from the CLEF18 training data. Most of the questions and answers are descriptive and complicated in this

dataset as they are generated semi-automatically.

11https://www.ncbi.nlm.nih.gov/pmc/
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Statistics of the provided dataset are as follows:

• The training set consists of 5413 questions along with their respective

answers about 2, 278 images.

• The validation set consists of 500 questions along with their respective

answers about 324 images.

• The test set consists of 500 questions about 264 images.

Some of the images in the dataset are blurred (Fig 10a) and most of the

images contain radiology markings (Fig 10b) such as short information, tags,

arrows, etc. A few of them even consists of a stack of sub-images (Fig 10c).

(a) Blurred (b) Radiology markings (c) Stacked

Fig 10. Sample images in the CLEF18 dataset. Some of the images in this dataset are

blurred (hazy/not clear), and/or contains short information in the form of radiology markings,

and/or contains stack of sub-images.

Question categorization is not present in the dataset and only 0.6% of the

answers in training, 6% in validation, and 10% in test data are of Yes/No type.

From Fig 11, we can see that the average question length is more than answers,

and the word frequency distribution is not even in the data splits.

5. Results and Analysis

5.1. Baselines

We compare our proposed methodology with the existing works in VQA-Med.
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(a) Questions (b) Answers

Fig 11. Word-Frequency distribution in the CLEF18 dataset. The graph shows that for the

data splits, this distribution is not comparable for both the questions and the answers.

Towards this, we use the following baseline models.

1. ResNet152 + LSTM + MFH (Peng et al., 2018): We compare our approach

with the best system reported in the ImageCLEF2018 challenge of VQA-

Med 2018. They used LSTM to extract the question features, whereas the

image features were extracted from the ResNet152 model pre-trained on the

Imagenet dataset. For question and image feature fusion, they employed

the co-attention mechanism with MFH to generate the question-image

representation. They predicted the probable words to form the answers

using the multi-label classification and then generated the answers using

sampling.

2. Inception-Resnet-v2 + Bi-LSTM + Attention (Zhou et al., 2018): Our

second baseline model corresponds to the second best system participated

in the ImageCLEF2018 challenge of VQA-Med 2018. Before applying

the question and image to their proposed model, they performed the pre-

processing steps on image and question both. They employed Inception-

Resnet-v2 model to extract image features, and Bi-LSTM model to encode

the questions. They utilized the attention mechanism to fuse the image

and question features.

3. VGG-16 + LSTM + SAN (Abacha et al., 2018): This is the third best
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system participated in the ImageCLEF2018 challenge of VQA-Med 2018.

They used LSTM to extract the question features, whereas the image

features were extracted from the last pooling layer of VGG-16 pre-trained

on the Imagenet dataset. The stacked attention network (Yang et al., 2016)

is used to fuse the question and image features to obtain a single feature

representation. These features are used to predict the answers from the

given answer list, which is compiled from the training dataset.

4. VGG16 + BERT + MFB (Yan et al., 2019): We compare the performance

of our proposed model with the best performing system participated in the

ImageCLEF2019 challenge of VQA-Med 2019. They utilized the BERT

model to extract the question features, whereas the image features were

extracted from the multiple pooling layers of VGG-16 pre-trained on

Imagenet dataset. Multi-Modal Factorized Bilinear (MFB) (Yu et al.,

2017) pooling were used to fuse the question and image features.

RAD CLEF18 CLEF18+RAD

Yes/No Others Overall Yes/No Others Overall Yes/No Others Overall

Precision 0.98 0.99 0.99 1.00 0.93 0.93 0.99 1.00 0.99

Recall 0.99 0.98 0.99 0.28 1.00 0.93 0.99 1.00 0.99

F1-score 0.99 0.98 0.99 0.44 0.96 0.91 0.99 1.00 0.99

Table 5. Performance of Question-Segregation model in terms of Precision, Recall, and

F1-score.

5.2. Result

Table 5 shows the performance of our QS model on RAD, CLEF18, and

CLEF18+RAD dataset in terms of Precision, Recall, and F1-score. QS using

SVM shows impressive results on the stated datasets. For CLEF18 dataset Recall

and F1-score for ‘Yes/No’ type question is little less due to the less number of

such questions in training example.

Table 6 shows the comparison of our proposed approach with the baseline

models on the datasets in terms of BLEU and WBBS scores. Our proposed
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Model
RAD CLEF18 CLEF18+RAD

BLEU WBSS BLEU WBSS BLEU WBSS

Peng et al. (2018) – – 0.161 0.184 – –

Peng et al. (2018)∗ 0.023 0.104 0.023 0.072 0.027 0.081

Zhou et al. (2018) – – 0.134 0.173 – –

Zhou et al. (2018)$ 0.522 0.532 0.072 0.112 0.277 0.299

Abacha et al. (2018) – – 0.121 0.174 – –

Abacha et al. (2018)∗ 0.035 0.213 0.051 0.170 0.036 0.173

Yan et al. (2019)∗ 0.002 0.011 0.005 0.069 0.002 0.023

Ours 0.411 0.437 0.132 0.162 0.257 0.288

Table 6. Comparison between the baseline models and our model in terms of BLEU and

WBBS scores. Star (∗) denote the re-implementation of the proposed work with the authors

reported experimental setups. Dollar ($) denote the official implementation of the approach

proposed by the author.

approach for medical visual question answering achieves the BLEU score of

0.132 and WBBS score of 0.162 on the CLEF dataset. Peng et al. (2018)

reports the BLEU score of 0.161 on the CLEF dataset. Since there is no official

open-source implementation available for their system, we re-implemented the

approach with the official experimental setup discussed in the paper, but only

achieves the BLEU score of 0.023 and WBBS score of 0.072. We also fine-tune

the hyper-parameters of their network with the available validation dataset,

but we were not able to improve the performance further. Peng et al. (2018)

used the sampling approach to generate the answer in contrast with the other

systems that participated in the ImageCLEF2018 VQA-Med 2018 challenge.

The comparatively less (only 5413 examples) amount of data to train the system

raises the question of the effectiveness of the sampling approach to generate the

correct answer. We also extend the experiments for the RAD and CLEF+RAD

dataset on the re-implementation of the approach of Peng et al. (2018). For

both the datasets, we randomly select 10% of the data from the training set to

fine-tune the network hyper-parameters. We obtain the BLEU score of 0.023

and WBBS score of 0.104 on the RAD dataset. The improvement (in terms
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of WBBS) in the RAD dataset can be understood by the fact that the RAD

test set contains questions, which can be answered in a single-word. A similar

observation is made on the results of the CLEF+RAD dataset.

Zhou et al. (2018) reported the performance in terms of BLEU (0.134) and

WBBS (0.173) scores on the CLEF dataset. We evaluated the performance of

their implementations12 on the CLEF dataset, and recorded the BLEU and

WBBS score of 0.072 and 0.112, respectively. We achieve the BLEU score of 0.522

and WBBS score of 0.532 on the RAD dataset with the re-implementation of their

approaches. The reason for significant improvement for the RAD dataset is that

Zhou et al. (2018) performed considerable pre-processing on image, question, and

answer and also post-processed the generated answers. In their pre-processing

steps, they adopted image enhancement and reconstructed the images with

exceedingly small random rotations, offsets, scaling, clipping, and increase to 20

images per image. For questions, they utilized the methods like stemming and

lemmatization to alter verbs, nouns, and other words into their original forms.

Furthermore, they replaced all the medical terms with their abbreviations, a

combination of letters and numbers are replaced with ‘pos’ token and the pure

numbers are mapped to an ‘num’ token. For answers, they used lemmatization

and removed all the stop words. They also replaced all the words associated

with any number in answer. These words are generally the measures, for e.g.

‘cm’ in ‘5 cm’. As a post-processing step, they added several simple rules to the

generated answers to make these more reasonable. In addition, they also deleted

extra prepositions and additional words from the answers of yes/no questions.

These additional pre-processing and rule-based post-processing steps make the

system highly focused on medical VQA and not adaptable to the other domains

of VQA. Additionally, the rules favor the short answers, which are only useful in

the case of answer prediction and may suffer for answer generation. In contrast,

our proposed approach achieves better performance for the CLEF dataset and

12https://github.com/youngzhou97qz/CLEF2018-VQA-Med

32

https://github.com/youngzhou97qz/CLEF2018-VQA-Med


comparable performance on the CLEF+RAD dataset without any additional

processing on questions, images, or answers. Our system is generic, and it can

be adaptable to any domain of VQA.

We also perform an additional experiment to further examine the performance

improvement by Zhou et al. (2018) on RAD and CLEF+RAD datasets. Toward

this, we introduce an attention mechanism similar to the Zhou et al. (2018) in

our proposed model. The introduction of basic attention leads to significant

performance improvement on the RAD dataset. With the new model (our

proposed + attention), we achieve 0.542 and 0.553 BLEU and WBBS scores,

respectively, on the RAD dataset. The new model achieves the 0.110 (0.313)

and 0.051 (0.142) BLEU (WBBS) scores on CLEF and CLEF+RAD datasets,

respectively. The experiment with the new model shows that the attention favors

the RAD dataset well, and we achieve much better BLEU, and WBBS scores

compared to Zhou et al. (2018). However, it goes against the CLEF dataset, and

we report the performance degradation on CLEF and CLEF+RAD datasets.

Abacha et al. (2018) reported the BLEU score of 0.121 on the CLEF dataset.

The official implementation of their system is not available. Therefore, we

re-implemented the approach with the official experimental setup discussed in

the paper, but only achieved the BLEU score of 0.051 and WBBS score of

0.170. Similar to the re-implementation of Peng et al. (2018), we fine-tune

the hyper-parameters of their network with the available validation dataset.

In our re-implementation, we use the fine-tuned hyper-parameters to train the

network on the training and validation dataset of CLEF (as done by Abacha et al.

(2018)) to evaluate the performance on the test dataset of CLEF. We perform

experiments with the RAD and CLEF+RAD datasets on the re-implemented

approach of Abacha et al. (2018). For both the RAD datasets, we randomly

select 10% of the data from the training set to fine-tune the network hyper-

parameters. For CLEF+RAD dataset, we fine-tune the hyper-parameters on the

combination of validation data of CLEF and 10% of the RAD training set. We
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obtain the BLEU score of 0.0351 and WBBS score of 0.213 on the RAD dataset.

For CLEF+RAD dataset, we report the BLEU and WBBS scores of 0.0365 and

0.173, respectively.

We also compare the performance of our system with Yan et al. (2019).

Similar to the other works, we re-implement all the existing approaches and

report the results on all the datasets. By observing performance on all the

experiments, we conclude that the number of training samples is not sufficient

enough to use for the sophisticated language-vision fusion mechanism such

as SAN, MFB, or MFH. The model quickly gets over-fitted, which leads to

lower performance on the test dataset. However, much simpler models (our

proposed and Zhou et al. (2018)) without any sophisticated language-vision

fusion mechanism performs comparatively better on the task.

We follow the evaluation setup discussed in ImageCLEF2018 VQA-Med 2018

challenge overview paper (Hasan et al., 2018) to evaluate the performance of the

system. But we cannot directly compare the results of our implementation of

the ImageCLEF2018 VQA-Med 2018 participating systems (Peng et al., 2018;

Zhou et al., 2018; Abacha et al., 2018) and our proposed approach, as the

participants did not use their own evaluation setup/script. The ImageCLEF2018

VQA-Med 2018 challenge organizers release the performance scores in terms of

BLEU and WBBS scores. Further, the official evaluation scores are not readily

available for use. To make fair comparison and reproducibility of our works, we

make our source codes available13 along with the evaluation script of all the

re-implementations of the existing works and our proposed approach.

We also analyze that, in general, a model performs better if more training

samples are present, thus the models must have better scores when trained and

tested on the combined dataset. But further analysis of the results reveals that

the models perform better on the individual datasets than on the combined one.

13https://bit.ly/3aH6EFm
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This is due to the difference in the size of the datasets, and the way the questions

are framed and answers are generated. While the CLEF18 dataset is created by a

semi-automatic approach, the RAD dataset is manually created. The difference

in quality and complexity of the generated sequence in the two datasets is clearly

visible in Table 7, where both the questions require liver identification, but there

is a considerable difference in complexity of the question as well as the answer.

Due to the complications and the limited number of examples in the datasets,

the model fails to learn efficiently.

Question Answer

RAD
What solid organ is seen on the right

side of this image?
The liver

CLEF18

What shows the dilated common bile

duct with a filling defect within it

indicating the tumor extending?

Magnetic resonance

imaging image of

the liver

Table 7. Example of question-answer pair, which shows that question and answer structure

in CLEF18 is more complicated than in RAD.

5.2.1. Impact of QS module

Table 8 demonstrates the impact of QS (c.f. Section 3.2.1) module. It

also reveals that QS improves the model’s performance by a significant margin

regardless of the question type. The performance difference is clearly visible in

Fig 12.

RAD CLEF18 CLEF18+RAD

without with without with without with

Yes/No 0.606 0.634 0.400 0.620 0.534 0.581

Others 0.099 0.129 0.015 0.080 0.064 0.102

Overall 0.392 0.411 0.053 0.132 0.213 0.257

Table 8. Result of our model with and without question type segregation, for RAD, CLEF18,

and CLEF18+RAD dataset.
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(a) Yes/No (b) Others (c) Overall

Fig 12. Impact of QS on the model performance. it shows that with QS the model performs

better regardless of the type of question or dataset.

Impact of QS on questions with type ‘Yes/No’: For this type of question,

the main advantage of QS is that it prevents the model from predicting any

answer phrases other than a straightforward ‘Yes’ or ‘No’. While a model

without QS can predict any answer word or sequence of answer words that turns

out to be irrelevant. Table 9 shows the model’s predicted responses with and

without the QS module.

Question :

Is the GI tract is

highlighted by con-

trast?

Is the surrounding

phlegmon normal?

Were both sides af-

fected?

Does the PET scan

show abnormal

tracer accumulation?

Ans (w/o.) : bilateral bronchiectasis axial internal whorled

Ans (w.) : Yes Yes Yes No

Ans (GT) : Yes No Yes No

Table 9. Comparison of Ground Truth (GT) answer with the predicted answer having question-type Yes/No by the model with (w.)

and without (w/o.) QS. Without QS, our model predicts answer words that are not expected for question in this category.

With QS, the search space is reduced to only two words that is ‘Yes ’ and ‘No’
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while a model without QS will have to unnecessarily predict the answer words

from the entire answer dictionary (a dictionary containing all the possible answer

words). This reduction in search space leads to a better chance of predicting

the right answer. Table 10 demonstrates the effectiveness of QS in our model

for ‘Yes/No’ type questions. The scores show that, for RAD, CLEF18 and

CLEF18+RAD datasets, QS improves precision (Eq. 14), recall (Eq. 16) and

f1-score (Eq. 17) by 0.3, 0.1, 0.2 and 0.3, 0.5, 0.2 points respectively.

RAD CLEF18 CLEF18+RAD

w/o. w. w/o. w. w/o. w.

precision 0.38 0.63 0.60 0.72 0.37 0.58

Recall 0.37 0.64 0.12 0.63 0.35 0.58

F1-score 0.37 0.63 0.17 0.62 0.34 0.58

Table 10. Performance of our model with (w.) and without (w/o.) QS module for Y/N type

questions.

sample-imgs/chest

Impact of QS on questions with type ‘Others’: A model without QS

can predict ‘Yes’ or ‘No’ as an answer which is completely irrelevant for the

questions with type ‘Others’. But the quality of prediction increases when QS

is integrated with the same model. Table 11 includes several such instances

where the model with QS fails to predict the answer correctly but produces an

answer that is applicable to the question-image pair and is more acceptable than

straightforward ‘Yes’ or ‘No’.

5.3. Error Analysis

On the outputs generated by our model, we conduct thorough error analysis

and classify the main sources of errors in the following types:

1. Semantic Error: This type of error occurs when the system predicts the

answer words that are semantically comparable but fails to predict the

exact same words as the ground-truth answer.
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Question :
(1) The image is

taken in what plane?

(2) Where are the in-

farcts?

(3) Is this patient

male or female?

(4) What does the

mri show?

Ans (w/o.) : Yes No No No in

Ans (w.) : pa in right chest mass

Ans (GT) : axial basal ganglia female tumor

Table 11. Comparison of Ground Truth (GT) answer (Ans) with the predicted answer having question-type Yes/No by the model

with (w.) and without (w/o.) QS. Without QS, our model predicts Yes or No along with other answer words that are not expected for

question in this category.

2. Modality/Plane Confusion: This type of error specifically occurs for

questions that require identification of the modality/plane. For such

questions, the system fails to identify whether only the plane, modality, or

a prediction of modality subtype is sufficient, or the question requires a

possible combination of these.

3. Specification Error: When the question itself fails to specify how much

information is desired in the answer, this type of error occurs where more

than one correct answer is possible.

4. Boundary Loss: This type of error occurs when the system predicts the

correct answer but does not predict the unimportant ground truth answer

words that the question itself can determine.

5. Miscellaneous Error: This type of error occurs when the system predicts

the information needed to answer the question, but fails to analyze the

information collected to answer the question.

Table 12, Table 13, and Table 14 include a variety of examples along with
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Semantic

Error:

Question :
Where do you see

acute infarcts?

How is the patient

oriented?

How was this image

taken?

where is the lesion lo-

cated?

Ans(GT) : R frontal lobe Posterior-Anterior T2-MRI
Lower lobe of the

right lung

Ans(pred.) : right frontal lobe pa mri t2 weighted right lower lobe

Comments : R refers to Right.
pa is acronym for

Posterior-Anterior.

T2-MRI denotes mri

(t2-weighted).

Semantically same

answer with different

sentence structure.

Modality/

Plane

Confusion:

Question :
What imaging

modality is this?

What kind of image

is this?

What type of image

is this?

What type of image

is this?

Ans(GT) :
Sagittal view of t2

weighted mri
X-ray Plain film x-ray CT with contrast

Ans(pred.) : mri t2 weighted axial x ray x ray ct

Comments :

Identification of

plane is not required

as per the question.

Predicted answer is

more precise.

GT answer is more

precise.

GT answer consists

of modality and it’s

subtype information.

Table 12. Error analysis (Semantic Error and Modality/Plane confusion): Comparison of Ground Truth answer with the predicted

answer for understanding the error types.
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Specification

Error:

Question :

What does the ct

scan of the chest

show?

What lobe of the

brain is the lesion lo-

cated in?

What is the location

of the lesion?

Where are the lesions

formed?

Ans(GT) : A large mass Right frontal lobe
Right lower lateral

lung field

Mediastinum and

Hilum of the right

lung

Ans(pred.) : mass right lobe lower lung in right lung

Comments :

Predicted answer

does not specify the

amount of mass.

Predicted answer

lacks image-plan

specification.

GT answer is more

specific in terms of le-

sion location.

GT answer specifi-

cally defines the le-

sion formation.

Boundary

Loss:

Question :
In what plane was

this image taken?

What lobe of the

brain is the lesion lo-

cated in?

Is the spleen present?
What kind of image

is this?

Ans(GT) : Axial plane Right frontal lobe On the patient’s left T2 weighted mri

Ans(pred.) : axial right frontal left t2 weighted

Comments :

‘plane’ is uninforma-

tive word in the GT

answer.

Uninformative word

‘lobe’ in the GT an-

swer.

GT answer consists

additional and unin-

formative words.

Predicted answer

lacks modality

information.

Table 13. Error analysis (Specification Error and Boundary Loss): Comparison of Ground Truth answer with the predicted answer for

understanding the error types.
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Miscellaneous

Error:

Question :
Is this an MRI or a

CT scan?

Is this patient male

or female?

Where are the lesions

found?

What does the ct pul-

monary angiogram

show?

Ans(GT) : MRI Female In both lungs Massive filling defect

Ans(pred.) : brain chest in right large defect

Comments :

Question demands

modality identifica-

tion but organ is

identified and pre-

dicted.

Question demands

gender identification

for which chest anal-

ysis is required

Partial prediction.
Type of defect is not

identified.

Table 14. Error analysis (Miscellaneous Error): Comparison of Ground Truth answer with the predicted answer for understanding the

error types.

the justifications to better understand each of these error types. To quantify

each error types, we randomly choose 100 incorrectly generated samples from

the CLEF+RAD dataset and categorize them into the five error types. We

quantitatively analyze the errors and found that 20.54% errors belong to Modal-

ity/Plane Confusion and 14.16% errors belong to Semantic Error. Similarly, we

found 16.48% errors fall into the Specification Error type. Boundary Loss type

error contribute to the 20.49% of the total errors. The remaining errors (28.33%)

associated with the Miscellaneous Error type.
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6. Conclusion

In this paper, we propose a hierarchical multi-modal approach to tackle

the VQA problem in the medical domain. In particular, we use a question

segregation module at the top level of our hierarchy to divide the input questions

into two different types (‘Yes/No’ and ‘Others’), followed by individual and

independent models at the leaf level, each dedicated to the type of question

segregated at the previous level. Our proposed approach can be applied to any

related problem where such segregation is possible but it does require non-trivial

changes in the architecture. To evaluate the usefulness of our proposed model,

we conduct experiments on two different datasets, RAD and CLEF18. We also

perform experiments on the combined data of the above two datasets to show

the generalisability of our approach. Models, when trained with the proposed

hierarchy with QS, scored better, outperforming all the stated baseline models.

It suggests that questions with different types learn better in isolation having

their individual learning paths. Experimental results indicate the effectiveness

of our work, depicting its value for the VQA in the medical domain. We also

find out that even simple versions of our model are competitive.

Further analysis of the obtained results reveals that the evaluation metric

needs improvement to evaluate VQA in the medical domain. For future work, we

plan to investigate a better evaluation strategy for evaluating the task apart from

devising a detailed scheme for QS. We also plan to introduce better individual

models to handle each of the leaf node tasks.
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