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ABSTRACT 

Activation functions play a vital role in the training of Convolutional Neural Networks. For this reason, 

developing efficient and well-performing functions is a crucial problem in the deep learning community.  

The idea of these approaches is to allow a reliable parameter learning, avoiding vanishing gradient 

problems. The goal of this work is to propose an ensemble of Convolutional Neural Networks trained using 

several different activation functions. Moreover, a novel activation function is here proposed for the first 

time.  Our aim is to improve the performance of Convolutional Neural Networks in small/medium sized 

biomedical datasets. Our results clearly show that the proposed ensemble outperforms Convolutional 

Neural Networks trained with a standard ReLU as activation function. The proposed ensemble outperforms 

with a p-value of 0.01 each tested stand-alone activation function; for reliable performance comparison we 

tested our approach on more than 10 datasets, using two well-known Convolutional Neural Networks: 

Vgg16 and ResNet50.  
The MATLAB code used here will be available at https://github.com/LorisNanni.

1. Introduction and State of the Art 

Neural networks are one of the most popular tools in artificial intelligence. In recent years they became 
the state of the art technique in many fields like image classification (He, Zhang, Ren, & Sun, 2016), object 
detection (Ren, He, Girshick, & Sun, 2015), face recognition (Schroff, Kalenichenko, & Philbin, 2015) and 
machine translation (Bahdanau, Cho, & Bengio, 2015). The first deep neural networks were trained using 
activation functions like the hyperbolic tangent or the sigmoid function. However, these functions saturate 
as the modulus of the input goes to infinity, while the gradients rapidly decrease, allowing only the training 
of shallow networks. In order to address these problems, in 2011 Glorot et al. (Glorot, Bordes, & Bengio, 
2011) showed that deep networks can be efficiently trained using Rectified Linear Units (ReLU), an 
activation function which coincides with the identity function if the input is positive and it is zero when the 
input is negative (Nair & Hinton, 2010). Although this function is not differentiable, it outperformed the 
previous saturating activation functions, allowing AlexNet to win the ImageNet competition in 2012 
(Krizhevsky, Sutskever, & Hinton, 2012). Since ReLU was very effective, very simple and very fast to 
evaluate, in the following years, many deep learning researchers focused on finding ReLU-like activations 
with slightly different properties. 

One example is Leaky ReLU (Maas, 2013), an activation function that is equal to ReLU for positive 
inputs (i.e.: the identity function) and it has a very small slope α > 0 for negative inputs, α being a 
hyperparameter. In this way, the gradient of the function is never zero and it is less likely that the 
optimization process gets stucked in local minima. The same idea is the basis for Exponential Linear Units 
(ELU) (Clevert, Unterthiner, & Hochreiter, 2015). ELU is once again equal to ReLU for positive inputs, 
but it exponentially decreases to a limit point α as the input goes to minus infinity. This means that this 
activation has always positive gradient, but, unlike Leaky ReLU, saturates on its left side. A famous 
modification of ELU is Scaled Exponential Linear Unit (SELU) (Klambauer, Unterthiner, Mayr, & 
Hochreiter, 2017), which is ELU multiplied by a constant λ. Their idea is to tune these hyperparameters in 
order to make SELU preserve the mean and the variance of its input features. This helps to mitigate the 
vanishing gradient problem and allows the authors to successfully train deep feed-forward networks. 

Standard activation functions do not depend on any learnable parameters and the training of the network 
only modifies the weights and the biases. In 2015 He et al. (He, Zhang, Ren, & Sun, 2015) implemented 
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Parametric ReLU (PReLU), which is a Leaky ReLU activation function where the slope of the negative 
part is a learnable parameter. According to the authors, this idea was the key to reach super-human results 
in the ImageNet 2012 dataset. Since this method adds parameters to the network, this activation makes 
overfitting more likely, so it is suitable in particular for larger datasets. According to the authors, PReLU 
always outperforms non-learnable activations on the training set, but might fail to generalize on the test set. 
After that, many learnable activations with different shapes have been proposed (Agostinelli, Hoffman, 
Sadowski, & Baldi, 2014; Scardapane, Vaerenbergh, & Uncini, 2018). In particular, Agostinelli et al. 
(Agostinelli et al., 2014) proposed a piecewise linear activation that they called Adaptive Piecewise Linear 
Unit (APLU), whose slopes and points of non differentiability are learnt at training time. This method is the 
most similar to the one that we propose here.  

Learnable activations can also be defined using multiple fixed activations as their starting point. Manessi 
and Rozza (Manessi & Rozza, 2018) created a new learnable activation function by learning an affine 
combination of tanh, ReLU and the identity function. More recently, it was proposed (Ramachandran, 
Zoph, & Le, 2017) the Swish activation function 𝑓(𝑥) = 𝑥𝜎(𝛽𝑥) where σ(∙) is the sigmoid activation and 
β is a parameter that can optionally be learnable. The authors found this activation function using 
reinforcement learning. They created a network that tried to create different activation functions with a 
reward related to the performance of the activation function chosen. They used very simple activations as 
building blocks that their network could use to generate more complex activations. According to them, the 
best performing function was the Swish activation. In the reinforcement learning framework, only standard 
activations were considered. This means that the Swish activation was found keeping the parameter β fixed. 
However, in their tests the activation performed better if it was set to be learnable. 

In this paper we propose a piecewise linear activation function which is the sum of PReLU and multiple 
Mexican hat functions: we named our approach Mexican ReLU (MeLU). It has a number of learnable 
parameters that ranges from zero to infinity. In our case, the total number of parameters is a 
hyperparameter. It is built to have desirable properties that can improve the representation power of the 
network and help the network to reach better minima. First of all, if the number of parameters goes to 
infinity, it can approximate every continuous function 𝑓 on a compact set. Moreover, it does not saturate in 
any direction and its gradient is almost never flat. Finally, modifying a parameter changes the activation 
only on a small interval, making the optimization process simpler. We introduce MeLU because the recent 
literature dealing with learnable activations showed that they have the potential to outperform standard 
activations, but their improvement over the state of the art did not lead to the replacement of ReLU as the 
standard activation in the deep learning community. We believe that it is because the overall improvement 
of the recently proposed activations over the state of the art is not that large to justify the use of more 
complex functions that have not been widely tested. With MeLU, we try to make the transition from ReLU 
to learnable activations easier by initializing MeLU so that it coincides with ReLU in the first training step, 
enabling efficient transfer learning. Besides, we show that ReLU and MeLU can be used together to create 
an ensemble. 

The most important results of this work are the following: 

 We compare several activation functions, using two different Convolutional Neural Networks 
(CNNs), in thirteen small/medium size biomedical dataset. The CNNs chosen for our tests are 
Vgg16 (Simonyan & Zisserman, 2015) and ResNet50 (He et al., 2016). 

 We show that an ensemble of activation functions (AF) strongly outperforms each AF singularly 
considered. 

 We propose a new activation function. 

The rest of the paper is organized as follows. In Section 2 we describe the most popular activation functions 

in the literature. In Section 3 we introduce MeLU and present its most important properties. In Section 4, 

we evaluate our activation function in many different dataset classification tasks, and we compare it with 

other methods presented in Section 2. Conclusions and take-home messages are summarized in Section 5. 

2. Activation functions for CNNs 

In this section, we present some of the best performing activation functions proposed in the literature for 

deep neural networks. We compared these functions by substituting them into two well-known CNNs, 

ResNet50 and VGG16, pre-trained on ImageNet. 

ResNet50 is a CNN whose main features are called skip connections (He et al., 2016). The difference with 

the usual building block of a standard CNN, namely a convolution followed by an activation, is that in a 

skip connection the input of a block is summed to its output. This should help the gradient flow. 



 

 

VGG16 is a CNN whose blocks are made of small stacked convolutional filters (Simonyan & Zisserman, 

2015). It has been shown that they have the same effect of larger convolutional filters, but they use less 

parameters. 

 

2.1. Rectified Linear Units 

 

Rectified Linear Unit (ReLU) is defined as 

 

𝑦𝑖 =  𝑓(𝑥𝑖) = {
0, 𝑥𝑖 < 0

𝑥𝑖 , 𝑥𝑖 ≥ 0
       with      𝑓′(𝑥𝑖) = {

0, 𝑥𝑖 < 0
1, 𝑥𝑖 ≥ 0

.                            (1) 

 

2.2. Leaky ReLU 

 

Leaky ReLU is defined as 

 

𝑦𝑖 =  𝑓(𝑥𝑖) = {
𝑎𝑥𝑖 , 𝑥𝑖 < 0

𝑥𝑖 , 𝑥𝑖 ≥ 0
       with       𝑓′(𝑥𝑖) = {

𝑎, 𝑥𝑖 < 0
1, 𝑥𝑖 ≥ 0

,                         (2) 

 

where 𝑎 is a small real number. With respect to ReLU, this function has the advantage that there is no point 

where the gradient is null, helping the optimization process. 

 

2.3. ELU 

 

Exponential Linear Unit (ELU) is defined as 

 

       𝑦𝑖 =  𝑓(𝑥𝑖) = {
𝑎(exp(𝑥𝑖) − 1), 𝑥𝑖 < 0

𝑥𝑖 , 𝑥𝑖 ≥ 0
       with       𝑓′(𝑥𝑖) = {

𝑎 exp (𝑥𝑖), 𝑥𝑖 < 0
1, 𝑥𝑖 ≥ 0

,               (3) 

 

where 𝑎 is a real number. Like Leaky ReLU the gradient of this function is always positive. Besides it has 

the advantage of being differentiable. It also has the property of being bounded from below by −𝑎. 

 

2.4. SELU 

 

Scaled Exponential Linear Unit (SELU) is defined as 

 

𝑦𝑖 =  𝑓(𝑥𝑖) = {
𝑠𝑎(exp 𝑥𝑖 − 1), 𝑥𝑖 < 0

𝑠𝑥𝑖 , 𝑥𝑖 ≥ 0
       with       

𝑑𝑦𝑖

𝑑𝑥𝑖
=  𝑓′(𝑥𝑖) = {

𝑠𝑎 exp (𝑥𝑖), 𝑥𝑖 < 0
𝑠, 𝑥𝑖 ≥ 0

,          (4) 

 

where 𝑎, 𝑠 are real numbers. This function is basically ELU multiplied by an additional parameter. It was 

created in the context of feed-forward networks to avoid the problem of gradient vanishing or explosion. 

Klambauer sets the parameters 𝑎 = 1.6733 and 𝑠 = 1.0507 because this choice of the parameters allows 

SELU to map a random variable of null mean and unit variance in a random variable with null mean and 

unit variance. 

 

2.5. PReLU 

 

Parametric ReLU is defined as 

 

𝑦𝑖 =  𝑓(𝑥𝑖) = {
𝑎𝑐𝑥𝑖 , 𝑥𝑖 < 0

𝑥𝑖 , 𝑥𝑖 ≥ 0
    with    

𝑑𝑦𝑖

𝑑𝑥𝑖
= {

𝑎𝑐 , 𝑥𝑖 < 0
1, 𝑥𝑖 ≥ 0

    and    
𝑑𝑦𝑖

𝑑𝑎𝑐
= {

𝑥𝑖 , 𝑥𝑖 < 0
0, 𝑥𝑖 ≥ 0

,            (5) 

 

where 𝑎𝑐 are real numbers that are different for every channel of the input. The big difference between this 

function and Leaky ReLU is that the parameters 𝑎𝑐 are learnable. 



 

 

 

2.6. S-Shaped ReLU (SReLU) 

 

S-Shaped ReLU was firstly introduced in (Jin et al., 2016). It is defined as 

 

                                      𝑦𝑖 =  𝑓(𝑥𝑖) = {

𝑡𝑙 + 𝑎 
𝑙(𝑥𝑖 − 𝑡𝑙), 𝑥𝑖 < 𝑡𝑙

𝑥𝑖 , 𝑡𝑙 ≤ 𝑥𝑖 ≤ 𝑡𝑟

𝑡𝑟 + 𝑎 
𝑟(𝑥𝑖 − 𝑡𝑟), 𝑥𝑖 > 𝑡𝑟

,                                 (6) 

 

where 𝑡𝑙 , 𝑡𝑟, 𝑎𝑙 , 𝑎𝑟 are learnable real numbers. This function has a very large representation power thanks to 

the high number of parameters. Its gradient is 

 

                                                 
𝑑𝑦𝑖

𝑑𝑥𝑖
=  𝑓′(𝑥𝑖) = {

𝑎 
𝑙 , 𝑥𝑖 < 𝑡𝑙

1, 𝑡𝑙 ≤ 𝑥𝑖 ≤ 𝑡𝑟

𝑎 
𝑟 , 𝑥𝑖 > 𝑡𝑟

                                           (7) 

 

                                                           
𝑑𝑦𝑖

𝑑𝑎𝑙 = {
𝑥𝑖 − 𝑡𝑙 , 𝑥𝑖 < 𝑡𝑙

0, 𝑥𝑖 ≥ 𝑡𝑙                                                             (8) 

 

                                                             
𝑑𝑦𝑖

𝑑𝑡𝑙 = {
−𝑎𝑙 , 𝑥𝑖 < 𝑡𝑙

0, 𝑥𝑖 ≥ 𝑡𝑙                                                                  (9) 

 

2.7. APLU 

 

Adaptive Piecewise Linear Unit (APLU) is defined as 

 

                                                    𝑦𝑖 =  ReLU(𝑥𝑖) + ∑ 𝑎𝑐max (0, −𝑥𝑖 + 𝑏𝑐)𝑛
𝑐=1 ,                              (10) 

 

where 𝑎𝑐, 𝑏𝑐 are real numbers that are different for every channel of the input. This function is piecewise 

linear and it can approximate any continuous function on a compact set, for a suitable choice of the 

parameters, as 𝑛 goes to infinity. The gradient of APLU is given by the sum of the gradients of ReLU and 

of the functions contained in the sum. The gradients of APLU with respect to the parameters are 

 

                                                              
𝑑𝑓(𝑥,𝑎)

𝑑𝑎𝑐
= {

−𝑥 + 𝑏𝑐 , 𝑥 < 𝑏𝑐

0, 𝑥 ≥ 𝑏𝑐
 ,                                                 (11) 

 

                                                              
𝑑𝑓(𝑥,𝑎)

𝑑𝑏𝑐
= {

−𝑎𝑐 , 𝑥 < 𝑏𝑐

0, 𝑥 ≥ 𝑏𝑐
 ,                                                        (12) 

 

Besides, a 0.001 𝐿2-penalty on the norm of the parameters ac is suggested in the original paper to avoid the 

explosion of the parameters. This means that there is an additional term in the loss function which is 

 

𝐿𝑟𝑒𝑔 = ∑|𝑎𝑐|2.

𝑛

𝑐=1

 

 

3. Mexican ReLU 

In the previous sections, we introduced many activation functions that have already been proposed in the 

literature. In this section we introduce Mexican ReLU (MeLU), a new activation function for neural 

networks. MeLU relies on the same ideas that motivated the introduction of APLU, but it solves the 



 

 

problem of its unstable training without any penalty on the learnable parameters. Besides, in this paper we 

show that using different activation functions can be a simple and effective way to create an ensemble, 

hence a new well-performing activation could also be seen as a useful ingredient for building that 

ensemble. In order to define MeLU, let 

 

                                                            𝜙𝑎,𝜆(𝑥) = max (𝜆 − |𝑥 − 𝑎|, 0)                                              (14) 

 

be a “Mexican hat type” function, where 𝑎, 𝜆 are real numbers. The name comes from the fact that this 

function is null when |𝑥 − 𝑎| > 𝜆 and it constantly increases with a derivative of 1 between 𝑎 − 𝜆 and 𝑎 

and decreases with a derivative of minus 1 between 𝑎 and 𝑎 + 𝜆. If one draws it, it has the shape of a 

Mexican hat. We are aware that the term Mexican hat refers to a famous wavelet in the field of computer 

vision, we chose to call 𝜙𝑎,𝜆(𝑥) “Mexican hat type” because its shape is similar to the shape of the wavelet. 

These functions are the building blocks of MeLU. MeLU is defined as 

 

                                          𝑦𝑖 =  𝑀𝑒𝐿𝑈(𝑥𝑖) = 𝑃𝑅𝑒𝐿𝑈(𝑥𝑖) + ∑ 𝑐𝑗 𝜙𝑎𝑗,𝜆𝑗
(𝑥𝑖)𝑘−1

𝑗=1                              (15) 

 

for each channel of the hidden layer. 𝑘 is total number of learnable parameters in every channel, i.e: the  

𝑘 − 1 coefficients of the Mexican hat functions plus one learnable parameter in PReLU. The parameters 𝑐𝑗 

are learnable, 𝑎𝑗 , 𝜆𝑗 are fixed and they are chosen recursively. 

At this point we must preliminarily introduce the parameter maxInput. maxInput is a parameter that 

depends on the upper bound of the inputs. For example, in case of RGB images, it should be to 255, while 

in case of audio signal it should be set to 1. We created MeLU depending on this parameter because the 

sum with the Mexican hat functions modify the original PReLU on a limited set and we use maxInput to 

decide how wide that set should be. Although we suggest to initialize maxInput depending on the upper 

bound on the inputs and although its name suggests to do that, maxInput can be initialized to any value. 

However, our experiments show that it works better when it is used as it was meant to be used. 

The first Mexican hat function has its maximum in 2 ∙ 𝑚𝑎𝑥𝐼𝑛𝑝𝑢𝑡 and it is equal to zero in 0 and               

4 ∙ 𝑚𝑎𝑥𝐼𝑛𝑝𝑢𝑡. The next two functions are chosen to be zero outside, respectively, the intervals [0, 2 ∙
𝑚𝑎𝑥𝐼𝑛𝑝𝑢𝑡] and [2 ∙ 𝑚𝑎𝑥𝐼𝑛𝑝𝑢𝑡, 4 ∙ 𝑚𝑎𝑥𝐼𝑛𝑝𝑢𝑡], and imposing that they have their maximum in 𝑚𝑎𝑥𝐼𝑛𝑝𝑢𝑡 

and 3 ∙ 𝑚𝑎𝑥𝐼𝑛𝑝𝑢𝑡. The next four Mexican hat functions are defined by iteratively dividing each interval 

into two parts. In Table 1 we summarize the value of the first seven Mexican hat functions. 

 
Table 1. Fixed parameters of MeLU with 𝑚𝑎𝑥𝐼𝑛𝑝𝑢𝑡 = 256. 

j 1 2 3 4 5 6 7 
𝑎𝑗 512 256 768 128 384 640 896 

𝜆𝑗 512 256 256 128 128 128 128 

 

We now show some properties of MeLU. The Mexican hat functions are continuous and piecewise 

differentiable, hence MeLU inherits these properties. If all the 𝑐𝑖 are initialized at zero, MeLU coincides 

with ReLU. This helps transfer learning when we substitute MeLU in a network pretrained with ReLU. The 

same holds for networks trained with Leaky ReLU or PReLU. Moreover, the derivatives of a Mexican hat 

functions are a Hilbert basis on a compact set with the 𝐿2 norm, hence they can approximate every function 

in 𝐿2([0,1024]) as k goes to infinity.  

It is worth noting that the structure of a hidden layer is 𝑓(𝐴ℎ + 𝑏), where h is the input of the hidden layer, 

A is the weight matrix, b is the bias and f is the activation. If we consider the joint optimization of the 

weights, the bias and the activation parameters, we see that we can approximate any continuous function on 

a compact set. Consider an interval I and let g be a function on that interval. We can approximate g using 

MeLU by simply choosing A, b to map I into [0, 4 ∙ 𝑚𝑎𝑥𝐼𝑛𝑝𝑢𝑡] falling in the previous case, which is the 

approximation on a compact set.  

Let us now focus on the relationship between MeLU and the other activations in the literature. It is clear 

that MeLU extends ReLU, Leaky ReLU and PReLU. Since it has more parameters, it has a higher 



 

 

representation power, but it might overfit easily. The most similar activations to MeLU in the literature are 

S-shaped ReLU and APLU. S-shaped ReLU is somehow the dual of MeLU: S-shaped ReLU divides the 

real line into two half lines and an interval and changes the slope of the activation on the two half lines. 

Conversely, most of the basis functions of MeLU have a limited support. 

APLU and MeLU look very similar. Indeed, they can approximate the same set of functions: piecewise 

linear functions which are equal to the identity for 𝑥 large enough. However, they do it in a very different 

way. For the right choice of the parameters, APLU can be equal to any piecewise linear function because 

the points of non-differentiability are learnable, while MeLU can represent every piecewise linear function 

only exploiting the joint optimization of the weights matrix and the biases. This means that MeLU adds to a 

network one half of the parameters of APLU and has the same representation power. The second difference 

between the two functions is in the gradients. In optimizing a neural network there are two important 

factors: the output of every hidden layer and the gradient of that output with respect to the parameters.  

The gradients of MeLU with respect to the parameters are the Mexican hat functions. The gradients of 

APLU are computed in Section 2.7. It is clear that they are very different. The strong point of the solution 

we propose is its superior performance at the optimization stage. Without loss of generality, suppose that at 

a certain point in the training process 𝑏1 > 𝑏2 > ⋯ > 𝑏𝑛. Suppose now that it would be optimal for the 

network to modify the activation function between 𝑏1 and 𝑏2. The only parameters whose gradients are not 

null in that interval are 𝑎1 and 𝑏1, so changing them would be optimal. However, changing 𝑎1 has a very 

small effect near 𝑏1, since the modulus of its gradient is the distance between x and 𝑏1. The only option left 

would be changing 𝑏1. However, even this option is not very good, since this would change the function 

even where it is not needed, since the support of the gradient is unbounded. This means that the 

optimization process might be very inefficient. Conversely, in the same situation, MeLU changes the 

activation exactly where it is needed, making the optimization easier.  

 
Figure 1. The first seven Mexican hat functions for the construction of MeLU (multiplied by a coefficient to avoid the overlap of 

the graphs). The input of the activation is on the horizontal axis, the output is on the vertical axis. 

 

In the figure above, we can see the difference between the basis functions of MeLU and APLU. This might 

be the reason why the coefficients in APLU must be regularized with an 𝐿2 penalty and benefit from a low 

learning rate, while MeLU does not need any regularization. 



 

 

In our experiments we set 𝑘 = 4,8. The learnable parameters are initialized to zero, so the activation is 

initialized to be ReLU. This helps the training at the very beginning, exploiting all the nice properties of 

ReLU. For example, MeLU is convex for many iterations at the beginning of the training.  

4. Experimental Results 

We tested our novel activation function using the CNNs detailed in the previous section on a heterogeneous 
selection of publicly available datasets. In detail, the datasets are summarized in Table 2.  
The protocol used in our experiments is a five-fold cross-validation, unless differently specified in the 
dataset description above.  To validate the experiments the Wilcoxon signed rank test (Demsar, 2006) has 
been used.  

 
Table 2. Descriptive Summary of the Datasets: the number of classes (#C), number of samples (#S) 

Dataset Description #C #S URL for Download 

CH The Chinese Hamster Ovary Cells 

dataset (Boland & Murphy, 2001) 
5 327 https://ome.grc.nia.nih.gov/iicbu2008/hela/index.html 

HE the 2D HELA dataset (Boland & 

Murphy, 2001) 

10 862 https://ome.grc.nia.nih.gov/iicbu2008/hela/index.html 

LO the Locate Endogenous dataset 

(Moccia et al., 2001) 

10 502  

TR the Locate Transfected dataset 

(Moccia et al., 2001) 
11 553  

RN the Fly Cell dataset (Shamir, Orlov, 

Eckley, Macura, & Goldberg, 

2008) 

10 200 https://ome.grc.nia.nih.gov/iicbu2008/hela/index.html 

TB Terminal bulb aging (Shamir et al., 

2008) dataset 

of images of C. elegans terminal 

bulb at 7 ages 

7 970 https://ome.grc.nia.nih.gov/iicbu2008 

LY Lymphoma dataset (Shamir et al., 

2008) 

3 375 https://ome.grc.nia.nih.gov/iicbu2008 

MA Muscle aging (Shamir et al., 2008). 

This dataset includes images of C. 

elegans muscles at 4 ages 

4 237 https://ome.grc.nia.nih.gov/iicbu2008 

LG Liver gender (Shamir et al., 2008). 
This dataset shows liver tissue 

sections from 6-month male and 

female mice on a caloric restriction 
diet, the 2 classes being male vs 

female. 

2 265 https://ome.grc.nia.nih.gov/iicbu2008 

LA Liver aging (Shamir et al., 2008). 
This dataset shows liver tissue 

sections from female mice on ad-

libitum diet of 4 ages 

4 529 https://ome.grc.nia.nih.gov/iicbu2008 

CO histological images of human 

colorectal cancer (Kather et al., 

2016). 

8 5000 https://zenodo.org/record/53169#.WaXjW8hJaUm 

BGR breast grading carcinoma 

(Dimitropoulos et al., 2017) 

3 300 https://zenodo.org/record/834910#.Wp1bQ-jOWUl 

LAR Laryngeal dataset (Moccia et al., 

2017) 
3 1320 https://zenodo.org/record/1003200#.WdeQcnBx0nQ 

In tables 4 and 5 we report the performance obtained using different activation functions coupled with 
Vgg16 and ResNet50. The performance is measured as the classification accuracy. To reduce the 
computation time all the results are calculates using a batch size (BS) of 30 and a learning rate (LR) of 
0.0001 for 30 epochs. To improve the performance of the networks, we use data augmentation. Data 
augmentation is a technique that consists in changing the input image to create many new images that 
represent the same object. In this paper we randomly reflected the original images in both axis and rescaled 
them in both axis by two factors uniformly sampled in [1,2]. This means that the vertical and horizontal 
proportions of the new image are rescaled.  



 

 

In Table 3 we summarize the initialization of the hyperparameters and of the learnable parameters of the 
activations that we use a baseline. We use the variable maxInput in the sense that we explained before to 
initialize the parameters in SReLU and to change the relative learning rate of the learnable parameters in 
APLU. 

Table 3. Initialization of the hyperparameters 

Leaky ReLU 𝑎 = 0.01 

ELU 𝑎 = 1 

PReLU 𝑎𝑐 = 0 for every channel 

SReLU 𝑎𝑙 = 0, 𝑡𝑙 = 0, 𝑎𝑟 = 1, 𝑡𝑟 = 𝑚𝑎𝑥𝐼𝑛𝑝𝑢𝑡, hence it is equal to ReLU in the first step 

APLU 𝑎𝑐 = 0 for every channel, while 𝑏𝑐 are random 

 

Besides, the learning rate of the coefficients 𝑎𝑐 in APLU was divided by 𝑚𝑎𝑥𝐼𝑛𝑝𝑢𝑡 to improve 

convergence. This means that, if λ is the global learning rate, the learning rate λ* of the parameters ac is 

given by  

 

λ*=
λ

maxInput
 

 
We also created six ensembles of those networks by applying a sum rule. The sum rule consists in 

summing all the scores vectors of the networks in the ensemble to create a new score vector that takes into 
account the predictions of all the networks. The class predicted by the ensemble is the one with the highest 
score. 

Our six ensembles are divided into: 

 ENS: ensemble among all the methods with a given 𝑚𝑎𝑥𝐼𝑛𝑝𝑢𝑡 of a given CNN. Hence, for a 
given CNN, there are two different ensembles named ENS, one for each choice of 𝑚𝑎𝑥𝐼𝑛𝑝𝑢𝑡; 

 eENS: ensemble among all the methods of a given CNN.  

 
Table 4. Performance obtained using ResNet50. 

 Activation CH HE LO TR RN TB LY MA LG LA CO BG LAR Avg 

ResNet50  

MaxInput=1 

MeLU (k=8) 92.92 86.40 91.80 82.91 25.50 56.29 67.47 76.25 91.00 82.48 94.82 89.67 88.79 78.94 

Leaky ReLU 89.23 87.09 92.80 84.18 34.00 57.11 70.93 79.17 93.67 82.48 95.66 90.33 87.27 80.30 

ELU 90.15 86.74 94.00 85.82 48.00 60.82 65.33 85.00 96.00 90.10 95.14 89.33 89.92 82.79 

MeLU (k=4) 91.08 85.35 92.80 84.91 27.50 55.36 68.53 77.08 90.00 79.43 95.34 89.33 87.20 78.76 

PReLU 92.00 85.35 91.40 81.64 33.50 57.11 68.80 76.25 88.33 82.10 95.68 88.67 89.55 79.26 

SReLU 91.38 85.58 92.60 83.27 30.00 55.88 69.33 75.00 88.00 82.10 95.66 89.00 89.47 79.02 

APLU 92.31 87.09 93.20 80.91 25.00 54.12 67.20 76.67 93.00 82.67 95.46 90.33 88.86 78.98 

ReLU 93.54 89.88 95.60 90.00 55.00 58.45 77.87 90.00 93.00 85.14 94.92 88.67 87.05 84.54 

ENS 95.38 89.53 97.00 89.82 59.00 62.78 76.53 86.67 96.00 91.43 96.60 91.00 89.92 86.28 

ResNet50  

MaxInput=255 

MeLU (k=8) 94.46 89.30 94.20 92.18 54.00 61.86 75.73 89.17 97.00 88.57 95.60 87.67 88.71 85.26 

MeLU (k=4) 92.92 90.23 95.00 91.82 57.00 59.79 78.40 87.50 97.33 85.14 95.72 89.33 88.26 85.26 

SReLU 92.31 89.42 93.00 90.73 56.50 59.69 73.33 91.67 98.33 88.95 95.52 89.67 87.88 85.15 

APLU 95.08 89.19 93.60 90.73 47.50 56.91 75.20 89.17 97.33 87.05 95.68 89.67 89.47 84.35 

ReLU 93.54 89.88 95.60 90.00 55.00 58.45 77.87 90.00 93.00 85.14 94.92 88.67 87.05 84.54 

ENS 93.85 91.28 96.20 93.27 59.00 63.30 77.60 91.67 98.00 87.43 96.30 89.00 89.17 86.62 

eENS  94.77 91.40 97.00 92.91 60.00 64.74 77.87 88.75 98.00 90.10 96.50 90.00 89.77 87.06 

 
 
 
 
 
 
 
 



 

 

Table 5. Performance obtained using Vgg16. 

 Activation CH HE LO TR RN TB LY MA LG LA CO BG LAR Avg 

Vgg16 

MaxInput=1 

MeLU (k=8) 99.69 92.09 98.00 92.91 59.00 60.93 78.67 87.92 86.67 93.14 95.20 89.67 90.53 86.49 

Leaky ReLU 99.08 91.98 98.00 93.45 66.50 61.13 80.00 92.08 86.67 91.81 95.62 91.33 88.94 87.43 

ELU 98.77 93.95 97.00 92.36 56.00 59.69 81.60 90.83 78.33 85.90 95.78 93.00 90.45 85.66 

MeLU (k=4) 99.38 91.16 97.60 92.73 64.50 62.37 81.07 89.58 86.00 89.71 95.82 89.67 93.18 87.13 

PReLU 99.08 90.47 97.80 94.55 64.00 60.00 81.33 92.92 78.33 91.05 95.80 92.67 90.38 86.79 

SReLU 99.08 91.16 97.00 93.64 65.50 60.62 82.67 90.00 79.33 93.33 96.10 94.00 92.58 87.30 

APLU 99.08 92.33 97.60 91.82 63.50 62.27 77.33 90.00 82.00 92.38 96.00 91.33 90.98 86.66 

ReLu 99.69 93.60 98.20 93.27 69.50 61.44 80.80 85.00 85.33 88.57 95.50 93.00 91.44 87.33 

ENS 99.38 93.84 98.40 95.64 68.00 65.67 85.07 92.08 85.00 96.38 96.74 94.33 92.65 89.47 

Vgg16 

MaxInput=255 

MeLU (k=8) 99.69 92.09 97.40 93.09 59.50 60.82 80.53 88.75 80.33 88.57 95.94 90.33 88.33 85.79 

MeLU (k=4) 99.38 91.98 98.60 92.55 66.50 59.59 84.53 91.67 88.00 94.86 95.46 93.00 93.03 88.39 

SReLU 98.77 93.14 97.00 92.18 65.00 62.47 77.60 89.58 76.00 96.00 95.84 94.33 89.85 86.75 

APLU 98.77 92.91 97.40 93.09 63.00 57.32 82.67 90.42 77.00 90.67 94.90 93.00 91.21 86.33 

ReLu 99.69 93.60 98.20 93.27 69.50 61.44 80.80 85.00 85.33 88.57 95.50 93.00 91.44 87.33 

ENS 99.38 93.84 98.80 95.27 68.50 64.23 84.53 92.50 81.33 96.57 96.66 95.00 92.20 89.13 

eENS  99.38 94.07 98.80 95.64 69.00 65.88 85.87 93.33 82.67 96.57 96.88 95.33 92.50 89.68 

 

 

In Table 6 we report the results of the Wilcoxon signed-rank test on some of the proposed activations and 

ensembles. We did not consider those activations with 𝑚𝑎𝑥𝐼𝑛𝑝𝑢𝑡 = 1 in order to make the table smaller. 

One can see that the ensembles statistically differ from every single network with a p-value lower than 0.001. 
 

Table 6. p-values of the classification task 

Activation Leaky 
ReLU 

ELU PReLU ReLU MeLU 
(k=8) 

MeLU 
(k=4) 

SReLU APLU ENS eENS 

Leaky ReLU ------- 0.395 0.092 0.029 0.200 0.001 0.042 0.046 0.000 0.000 

ELU ------- ------- 0.319 0.074 0.104 0.006 0.095 0.123 0.000 0.000 

PReLU ------- ------- ------- 0.009 0.096 0.001 0.025 0.033 0.000 0.000 

ReLU ------- ------- ------- ------- 0.568 0.103 0.829 0.809 0.000 0.000 

MeLU (k=8) ------- ------- ------- ------- ------- 0.082 0.611 0.726 0.000 0.000 

MeLU (k=4) ------- ------- ------- ------- ------- ------- 0.213 0.059 0.001 0.000 

SReLU ------- ------- ------- ------- ------- ------- ------- 0.616 0.000 0.000 

APLU ------- ------- ------- ------- ------- ------- ------- ------- 0.001 0.000 

ENS ------- ------- ------- ------- ------- ------- ------- ------- ------- 0.002 

eENS ------- ------- ------- ------- ------- ------- ------- ------- ------- ------- 

 

 

In Table 7 we report performance, in some datasets, obtained choosing optimal values of BS and LR for 

ReLU. Also with BS and LR optimized for ReLU the performance of ENS is higher than that obtained by 

ReLU. This means that in this experiment we somehow overfit the networks trained with ReLU choosing 

those BS and LR that obtained the best performance in the test set. We show that also in this case the 

ensemble outperform stand-alone ReLU. 

 
Table 7. Performance with optimized BS and LR. 

 Activation CH LA  MA 

Resnet50 
MaxInput=255 
BS=10 
LR=0.001 

MeLU (k=8) 98.15 98.48 Vgg16 
MaxInput=255 
BS=50 
LR=0.0001 

90.42 

MeLU (k=4) 98.15 98.67 87.08 
SReLU 99.08 96.00 88.33 

APLU 98.46 98.48 93.75 

ReLu 97.23 96.57 92.08 

ENS 99.38 99.05 93.75 
 



 

 

Besides, for a more fair comparison, we tested an ensemble created with different activations and an 

ensemble created using ReLU networks. We followed the approach proposed in (Lumini, Nanni, & 

Maguolo, 2020) and created a learned ensemble of networks whose output vector is the weighted sum of 

the output vectors of the networks in the ensemble. The method consists in minimizing the average 

crossentropy loss among all the test sets that we considered, except from one left out test set. Then we test 

the ensemble on the left out test set. Besides, with add a concave penalty to the weights 𝑤𝑖 such that it 

encourages the learning of ensembles whose weights are zero, i.e: are smaller in size. This penalty is equal 

to  

 

𝐿𝑅𝐸𝐺 =  ∑ 𝑤𝑖
𝛾
 

 

where 𝛾 < 1. By changing the value of 𝛾 we were able to create ensembles of different sizes ranging from 6 

to 19 among a pool of 24 networks. We repeated this experiment using only 24 ReLU networks in the first 

scenario (RELU ENS) and the 24 networks of Tables 4 and 5 in the second one (ACT ENS). In Figure 2 we 

show the average performances of the two methods for different ensemble sizes. One can see that our 

approach outperforms the ReLU baseline every time. Apparently, the best ensembles never had a size larger 

than 19, probably due to the fact that some networks had a low performance. This is consistent with the fact 

that eENS contains all the networks and it performs worse than the new approaches. We want to stress the 

fact that the trainings of the ensemble are independent from each other, i.e: the ensemble of size 𝑛 is not 

learned starting from the ensemble of size 𝑛 − 1.  

 
Figure 2. Performances of RELU ENS (blue line) and ACT ENS (red line). The size of the ensemble is on the horizontal axis and 

the relative performance on the vertical axis. 

 

Every additional parameter in the activation functions increases the computational time for training and 

testing. We report the training and test times for one fold of two datasets (CH, HE) in Table 8. Times are 

reported in seconds. In both datasets we trained and tested VGG16 on one fold. 

ReLU is by far the fastest, although it is an unfair comparison, because it is the only function completely 

created by MATLAB developers. Our implementations of the other functions might be not optimal. One 



 

 

can see that MeLU with 𝑘 = 8 is the slowest function. However, the speed of MeLU with 𝑘 = 4 is 

comparable to the one of the other activation functions. 
Table 8. Training and test times for the different activations using VGG16. 

  ReLU Leaky 
ReLU 

ELU PReLU MeLU 
(k=8) 

MeLU 
(k=4) 

SReLU APLU 

CH 
Train 81 130 137 138 463 288 361 225 

Test 0.34 0.6 0.9 0.7 2.6 1.5 1.6 1.3 

HE 
Train 224 340 352 365 1230 777 993 612 

Test 0.58 0.89 1.2 1.0 3.1 2.12 2.75 1.6 

 

In general, adding parameters make the network slower, but not by many order of magnitude. If training 

and inference times are not particularly relevant, learnable activations can be useful to improve the network 

performance. 

From the results reported in Tables 4, 5, 6 & 7 the following conclusions can be drawn: 

 both ENS and eENS outperform with a p-value lower than 0.02 all the stand-alone activation 

functions. Moreover, eENS outperforms ENS in both the CNN topologies (i.e. Vgg16 and 
ResNet50) with a p-value of 0.05. This is the most important finding of this work; 

 MeLU obtains the best average p6terformance in both the CNNs; 

 Different behaviors occur in the two topologies, since in ResNet50 there is a clear performance 

difference between 𝑀𝑎𝑥𝐼𝑛𝑝𝑢𝑡 = 1, 255, while in Vgg16 similar performance is obtained with 

𝑀𝑎𝑥𝐼𝑛𝑝𝑢𝑡 = 1, 255. 

 Also optimizing BS and LR for ReLU similar conclusions are obtained, ENS outperforms the other 

activation functions, including ReLU; 

 From our experiments one can see that the best approaches depend on the applications. If the 

training time is limited, one should use ReLU; if speed at inference time is important, we suggest to 

use MeLU. Otherwise, if only the accuracy matters, we suggest to create an ensemble. 

 

Conclusion 
The purpose of the present paper was to evaluate the performance of an ensemble of CNNs created by 

changing the activation functions in famous pre-trained networks. Besides, we tested several activation 

functions on several challenging datasets and reported their results. We also proposed a new activation 

function called Mexican Linear Unit. 

Our experiments show that an ensemble of multiple CNNs that only differ in the activation functions 

outperforms the results of the single CNNs and of naïve ensembles made by ReLU networks. Besides, we 

show that there is not an activation that is consistently better than the others. In particular, we see that 

MeLU is competitive with the other activation functions in the literature. MeLU also seems to be the best 

performing activation when 𝑘 = 4, in particular on VGG16. Notice that we only tested MeLU with 𝑘 =
4,8, we did not cherry-picked the best performing parameters 𝑘 on the test set. As future work we aim to 

create even larger ensembles of CNNs to see how much we can boost the performances of the single CNN. 

The drawbacks of this approach are speed and memory requirements. However, we plan to do it with very 

small CNNs and see if such an ensemble is competitive with much larger networks which are still larger 

than the ensemble. 

Finally, we share the MATLAB code of every activation and ensemble that we created. 
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