
Understanding Static Code Warnings: an Incremental AI Approach

Xueqi Yang, Zhe Yu, Junjie Wang, Tim Menzies

Department of Computer Science, North Carolina State University, Raleigh, NC, USA

Institute of Software Chinese Academy of Sciences, Beijing, China

Abstract

Knowledge-based systems reason over some knowledge base. Hence, an important issue for such systems is how to
acquire the knowledge needed for their inference. This paper assesses active learning methods for acquiring knowledge
for “static code warnings”.

Static code analysis is a widely-used method for detecting bugs and security vulnerabilities in software systems.
As software becomes more complex, analysis tools also report lists of increasingly complex warnings that developers
need to address on a daily basis. Such static code analysis tools are usually over-cautious; i.e. they often offer many
warnings about spurious issues. Previous research work shows that about 35% to 91 % warnings reported as bugs by
SA tools are actually unactionable (i.e., warnings that would not be acted on by developers because they are falsely
suggested as bugs).

Experienced developers know which errors are important and which can be safely ignored. How can we capture
that experience? This paper reports on an incremental AI tool that watches humans reading false alarm reports. Using
an incremental support vector machine mechanism, this AI tool can quickly learn to distinguish spurious false alarms
from more serious matters that deserve further attention.

In this work, nine open-source projects are employed to evaluate our proposed model on the features extracted by
previous researchers and identify the actionable warnings in a priority order given by our algorithm. We observe that
our model can identify over 90% of actionable warnings when our methods tell humans to ignore 70 to 80% of the
warnings.

Keywords: Actionable warning identification, Active learning, Static analysis, Selection process

1. Introduction

Knowledge acquisition problem is a longstanding and
challenging bottleneck in artificial intelligence, especially
like Semantic Web project (Feigenbaum, 1980). Tra-
ditional knowledge engineering methodologies handcraft
the knowledge prior to testing that data on some do-

Email addresses: xyang37@ncsu.edu (Xueqi Yang),
zyu9@ncsu.edu (Zhe Yu),
wangjunjie@itechs.iscas.ac.cn (Junjie Wang),
tim.menzies@gmail.com (Tim Menzies)

main (Hoekstra, 2010). Such handcrafted knowledge is
expensive to collect. Also, building competent systems
can require extensive manually crafting– which leads to a
long gap between crafting and testing knowledge.

In this paper, we address these problems with self-
adaptive incremental active learning utilizing a human-in-
the-loop process. This approach can be leveraged to fil-
ter spurious vs serious static warnings generated by static
analysis (SA) tools.

Static code analysis is a common operation of detect-
ing bugs and security vulnerabilities in software systems.
The wide range of commercial applications of static anal-

Preprint submitted to Expert Systems with Applications October 23, 2020

ar
X

iv
:1

91
1.

01
38

7v
3

 [
cs

.S
E

]
 2

2
O

ct
 2

02
0

Figure 1: Example of a static code analysis warning, generated via the FindBugs tool.

ysis demonstrates the industrial perception that these tools
have a very high economic value. One of the popu-
lar SA tools, FindBugs1 (shown in Figure 1) has been
downloaded over a million times so far. However, large
amounts of warnings are falsely suggested by SA tools as
bugs to developers, overwhelming the few actionable ones
(true bugs). Due to high rates of unactionable warnings,
the utility of such static code analysis tools is question-
able. Previous research work shows that about 35% to
91 % warnings reported as bugs by SA tools are actually
unactionable (Heckman and Williams, 2008, 2011; Kim
and Ernst, 2007b).

Experienced developers have the knowledge of filter-
ing out ignorable and unactioable warnings. Our active
learning methods incrementally acquire and validate this
knowledge. By continuously and incrementally construct-
ing and updating the model, our approach can help SE de-
velopers to identify more actionable static warnings with
very low inspection costs and provide an efficient way to
deal with software mining on the early life cycle.

1http://findbugs.sourceforge.net/

This paper evaluates the proposed approach with the
following four research questions:

RQ1. What is the baseline rate for bad static warn-
ings?

While this is more a systems question rather than a re-
search question, it is a necessary precondition to our work
since it documents the problem we are trying to address.
For this question, we report results from FindBugs. These
results will serve as the baseline for the rest of our work.

RQ2. What is the previous state-of-the-art method
to tackle the prevalence of actionable warnings in SA
tools?

Wang et al. (Wang et al., 2018) conduct a systematic
evaluation of all the publicly available features (116 fea-
tures in total) that discuss static code warnings. That work
offered a ”golden set of features”; i.e., 23 features that
Wang et al. (Wang et al., 2018) argued were most useful
for extracting serious bug reports generated from Find-
Bugs. Our experiments combining three supervised learn-
ing models from the literature with these 23 features.

2

RQ3. Does incremental active learning reduce the
cost to identify actionable Static Warnings?

We will show that incremental active learning reduces
the cost of identifying actionable warnings dramatically
(and obtains performance almost as good as supervised
learning).

RQ4. How many samples should be retrieved to
identify all the actionable Static Warnings?

In this case study, incremental active learning can iden-
tify over 90% of actionable warnings by learning from
about 20% to 30% of data. Hence, we recommend this
system to developers who wish to reduce the time they
waste chasing spurious errors.

1.1. Organization of this Paper

The remainder of this paper is organized as follows.
Research background and related work is introduced in
Section 2. In Section 3, we describe the detail of our
methodology. Our experiment details are introduced in
Section 4. In Section 5, we answer proposed research
questions. Threats to validity and future work are dis-
cussed in Section 6 and we finally draw a conclusion in
Section 7.

To facilitate other researchers in this area, all our scripts
are data are freely available on-line2.

1.2. Contributions of this Paper

In the literature, active learning methods have been ex-
tensively discussed, like finding relevant papers in litera-
ture review (Yu et al., 2018; Yu and Menzies, 2019), se-
curity vulnerability prediction (Yu et al., 2019), crowd-
sourced testing (Wang et al., 2016a), place-aware applica-
tion development (Murukannaiah and Singh, 2015), clas-
sification of software behavior (Bowring et al., 2004),
and multi-objective optimization (Krall et al., 2015). The
unique contribution of this work lies in the novel appli-
cation of these methods to resolving problems with static
code warnings. To the best of our knowledge, no prior
work has tried to tame spurious static code warnings by

2Download our scripts and data from https://github.com/
XueqiYang/incrementally-active-learning_SWID.

treating these as an incremental knowledge acquisition
problem.

2. Related Work

2.1. Reasoning About Source Code
The software development community has produced

numerous static code analysis tools such as FindBugs,
PMD3, or Checkstyle4 that are able to generate various
warnings to help developers identifying potential code
problems. Such static code analysis tools such as Find-
Bugs leverage static analysis (SA) techniques to inspect
source code for the occurrence of bug patterns (i.e., the
code idiom that is often an error) without actually execut-
ing nor considering an exact input. These bugs detected
by FindBugs are grouped into a pattern list, (i.e, perfor-
mance, style, correctness and so forth) and each bug is
reported by FindBugs with priority from 1 to 20 to mea-
sure the severity, which is finally grouped into four scales
either scariest, scary, troubling, and of concern (Ayewah
et al., 2008).

Some SA tools learn to identify new bugs using his-
torical data from past problems. This is not ideal since
it means that whenever there are chances to tasks, lan-
guages, platforms, and perhaps even developers then the
old warnings might go out of date and new ones have to be
learned. Static warning identification is increasingly re-
lying on complex software systems (Wijayasekara et al.,
2012). Identifying static warnings in every stage of the
software life cycle is essential, especially for projects in
early development stage (Murtaza et al., 2016).

Arnold et al. (Arnold et al., 2009) suggests that every
project, early in its own lifecycle, should build its own
static warning system. Such advice is hard to follow since
it means a tedious, time-consuming and expensive retrain-
ing process at the start of each new project. To say that
in another way, Arnold et al.’s advice suffers from the
knowledge acquisition bottleneck problem.

2.2. Static Warning Identification
Static warning identification aims at identifying com-

mon coding problems early in the development process

3https://pmd.github.io/
4http://checkstyle.sourceforge.net/

3

https://github.com/XueqiYang/incrementally-active-learning_SWID
https://github.com/XueqiYang/incrementally-active-learning_SWID

via SA tools and distinguishing actionable warnings from
unactionable ones (Heckman and Williams, 2011; Hove-
meyer and Pugh, 2004; Yan et al., 2017).

Previous studies have shown that false positives in
static alerts have been one of the most important barri-
ers for developers to use static analysis tools (Avgustinov
et al., 2015; Johnson et al., 2013; Thung et al., 2015). To
address this issue, many techniques have been introduced
to identify actionable warnings or alerts. Various mod-
els have been mentioned in their study, including graph
theory (Bhattacharya et al., 2012; Boogerd and Moonen,
2008), machine learning (Shivaji et al., 2009; Wang et al.,
2016b) etc. However, most of the studies are plagued by a
common issue, choosing the appropriate warning charac-
teristics from abundant feature artifacts proposed by SA
studies so far.

Ranking schemes are one way to improve static analy-
sis tool (Kremenek et al., 2004). Allier et al. (Allier et al.,
2012) proposed a framework to compare 6 warning rank-
ing algorithms and identified the best one to rank warn-
ings. Similarly, Shen et al. (Shen et al., 2011) employed
a ranking technique to rank the true error reports on top
so as to reduce false positive warnings. Some other works
also prioritize warnings by selecting different categories
of impact factors (Liang et al., 2010) or by analyzing soft-
ware history (Kim and Ernst, 2007a).

Recent work has shown that this problem can be solved
by combining machine learning techniques to identify
whether a detected warning is actionable or not, e.g., find-
ing alerts with similar code patterns and building predic-
tion models to classify new alerts (Hanam et al., 2014).
Heckman and Williams did a systematic literature review
revealing that most of these works focus on exploring
a reasonable characteristic set, like Alert characteristics
(AC) and Code characteristics (CC), to distinguish action-
able and unactionable warnings more accurately (Hanam
et al., 2014; Heckman and Williams, 2009, 2011). One
of the most integrated study explores 15 machine learning
algorithms and 51 warning characteristics derived from
static analysis tools and achieves good performance with
high recall (83-99 %) (Heckman and Williams, 2009).
However, in practice, information on bug warning pat-
terns is limited to be obtained, especially for some trivial
checkers in SA tools. Also, these tools suffer from con-
flation issues where similar warnings are given different
names in different studies.

Wang et al. (Wang et al., 2018) recently conducted a
systematic literature review to collect all publicly avail-
able features (116 in total) for SA analysis and imple-
mented a tool based on Java for feature extraction. All
the values of these collected features are extracted from
warning reports generated by FindBugs based on 60 revi-
sions of 12 projects. Six machine learning classifiers were
employed to automatically identify actionable static warn-
ing. 23 common features were identified as the best and
most useful feature combination for Static Warning Iden-
tification, since the best performance is always obtained
when using these 23 golden features, better than using to-
tal feature set or other subset strategies. To the best of our
knowledge, this is the most exhaustive research about SA
characteristics yet published.

2.3. Active Learning
Labeled data is required by supervised machine learn-

ing techniques. Without such data, these algorithms can-
not learn predictors. Obtaining good labeled data can
sometimes be time consuming and expensive. In the case
of this paper, we are concerned with learning how to label
static code warnings (spurious or serious). For another ex-
ample, training a good document classifier might require
hundreds of thousands of samples. Usually, these exam-
ples do not come with labels, and therefore expert knowl-
edge (e.g., recognizing a handwritten digit) is required to
determine the “right” label.

Active learning (Settles, 2009) is a machine learning al-
gorithm that enables the learners to actively choose which
examples to label from amongst the currently unlabeled
instances. This approach trains on a little bit of labeled
data, and then asks again for some more labels for the un-
labelled examples that are most “interesting” (e.g. whose
labels are most uncertain). This process greatly reduces
the amount of labeled data required to train a model while
still achieving good predictive performance.

Active learning has been applied successfully in sev-
eral SE research areas, such as finding relevant papers in
literature review (Yu et al., 2018; Yu and Menzies, 2019),
security vulnerability prediction (Yu et al., 2019), crowd
sourced testing (Wang et al., 2016a), place-aware applica-
tion development (Murukannaiah and Singh, 2015), clas-
sification of software behavior (Bowring et al., 2004), and
multi-objective optimization (Krall et al., 2015). Overall,
there are three different categories of active learning:

4

• Membership query synthesis. In this scenario, a
learner is able to generate synthetic data for labeling,
which might not be applicable to all cases.

• Stream-based selective sampling. Each sample is
considered separately in the case of label querying
or rejection. There are no assumptions on data dis-
tribution, and therefore it is adaptive to change.

• Pool-based sampling. Samples are chosen from a
pool of unlabeled data for the purpose of labeling.
The learner is usually initially trained on a fully
labeled fraction of data to generate a preliminary
model, which is subsequently used to identify which
sample would be most beneficial to be used next in
the training set during the next generation of active
learning loop. Pool-based sampling scenario is the
most widely adopted scheme in literature, which is
also applied in our work.

Previous work has shown the successful adoption of ac-
tive learning in several research areas. Wang et.al (Wang
et al., 2016a) applied active learning to identify the test
reports that reveal “true fault” from a large amount of
test reports in crowdsourced testing of GUI applications.
Within that framework, they proposed a classification
technique that labels a fraction of most informative sam-
ples with user knowledge, and trained classifiers based on
the local neighborhood.

Yu et.al (Yu et al., 2019a, 2018; Yu and Menzies, 2019)
proposed a framework called FASTREAD to assist re-
searchers to find the relevant papers to read. FASTREAD
works by 1) leveraging external domain knowledge (e.g.,
keyword search) to guide the initial selection of papers;
2) using an estimator of the number of remaining pa-
per to decide when to stop; 3) applying error correc-
tion algorithm to correct human mislabeling. This frame-
work has also been shown effective in solving other soft-
ware engineering problems (Yu and Menzies, 2018), such
as inspecting software security vulnerabilities (Yu et al.,
2019), finding self-admitted technical debt (Fahid et al.,
2019), and test case prioritization (Yu et al., 2019b). In
this work, we adopt a similar framework in static warning
analysis.

To the best of our knowledge, this work is the first study
to utilize incremental active learning to reduce unneces-
sary inspection of static warnings based on the most ef-

fective feature attributes. While Wang et al. is the closest
work to this paper, we differ very much from their work.

• In that study, their raw data was screen-snaps of er-
roneous conditions within a GUI. Also, they spend
much effort tuning a feedback mechanism special-
ized for their images.

• In our work, our raw data is all textual (the text of
a static code warning). We found that a different
method, based on active learning, worked best for
such textual data.

3. Methodology

3.1. Overview

This work applies an incremental active learning frame-
work to identify static warnings. This is derived from
active learning, which has been proved outperformed in
solving the total recall problem in several areas, e.g., elec-
tronic discovery, evidence-based medicine, primary study
selection, test case prioritization, and so forth. As illus-
trated in Figure 2, we aim to achieve higher recall with
lower effort in inspecting warnings generated by SA tools.

3.2. Evaluation Metrics

Table 1 represents all the variables involved in our
study. We evaluated the active learning results in terms of
total recall and cost, which are demonstrated as follows:

Figure 2: Learning Curve of Different Learners.

5

Table 1: Description of Variables in Incremental Active Learning.
Variable Description

E
Set of warning that reported by static
analysis tools

T
Set of actionable warning or target
samples

L
Set of warning that has been currently
retrieved or labeled

LT
Set of warning has been currently labeled
and reveals actionable warning

Total Recall LT /T

cost L/E

Total recall addresses the ratio between samples la-
beled but not revealing actionable warning and total real
actionable warning samples. The optimal value of total
recall is 1, which represents all of the target samples (or
actionable warning in our case) have been retrieved and
labeled as actionable.

Cost considers the set of warning that has currently
been retrieved or labeled out of the set of warning re-
ported by the static warning analysis tools. The value of
cost varies between the ratio of actionable warnings in the
dataset and 1. The lower bound means active learning al-
gorithm prioritizes all targeted samples without uselessly
labeling any unactionable warnings. This is a theoretical
optimal value (which, in practice, may be unreachable).
The upper bound means active learning algorithm suc-
cessfully retrieves all the real warning samples, but at the
cost of labeling them all (which is meaningless because
randomly labeling samples will achieve the same goal).

Figure 2 is an Alberg diagram showing the learning
curve of different learners. In this figure, the x-axis and
y-axis respectively represent the percentage of warnings
retrieved or labeled by learners (i.e. cost) and the per-
centage of actionable warnings retrieved out of total ac-
tionable ones (i.e. total recall). An optimal learner will
achieve higher total recall than others when a specific cost
threshold is given, e.g., at the cost of 20 % effort as illus-
trated in Figure 2. The best performance in Figure 2 is ob-
tained by optimal learner, followed by proposed learner,
random learner and worst learner. This learning curve is
a performance measurement at different cost thresholds
settings.

AUC (Area under the ROC Curve) measures the

Table 2: Operators of Active Learning.
Operator Description

Machine Learning Classifier
Widely-used classification
technique.

Presumptive non-relevant
examples

Alleviate the sampling bias of
non-relevant examples.

Aggressive Undersampling Data-balancing technique.

Query strategy
Uncertainly sampling and
certainty sampling in active
learning.

area under the Receiver Operator Characteristic (ROC)
curve (Heckman and Williams, 2011; Witten et al., 2016)
and reflects the percentage of actionable warnings against
the percentage of unactionable ones so as to overall report
the discrimination of a classifier (Wang et al., 2018). This
is a widely adopted measurement in Software Engineer-
ing, especially for imbalanced data (Liang et al., 2010).

3.3. Active Learning Model Operators
Several operators are apply to address the challenge of

the total recall problem, as listed in Table 2. Specific de-
tails about each operator are illustrated as follows:

Classifier We employ three machine learning clas-
sifiers as an embedded active learning model, linear
SVM with weighting scheme, Random Forest and Deci-
sion Tree with default parameters as these classifiers are
widely explored in software engineering area and also
reported in Wang et al.’s paper. All of the classifiers
are modules from Sckit-learn (Pedregosa et al., 2011), a
Python package for machine learning.

Presumptive non-relevant examples, proposed by
Cormack et al. (Cormack and Grossman, 2015), is a tech-
nique to alleviate the sample bias of negative samples in
unbalanced dataset. To be specific, before each training
process, the model samples randomly from the unlabeled
pool and assumes that the sampled instance is labeled
as negative in training, due to the prevalence of negative
samples.

Aggressive undersampling (Wallace et al., 2009) is
a sampling method to cope with an unbalanced dataset
by throwing away majority negative training points close
to the decision plane of SVM and aggressively accessing
minority positive points until the ratio of these two cate-
gories is balanced. It’s an effective approach to kill un-
balanced bias in datasets. This technique is suggested by

6

Wallace et al. (Wallace et al., 2010) after the initial stage
of incremental active learning and when the established
model becomes stable.

The querying strategy is the approach utilized to de-
termine which data instance in an unlabelled pool to query
for labelling next. We adopt two of the most commonly
used strategies, uncertainty sampling (Settles, 2009) and
certainty sampling (Miwa et al., 2014).

Uncertainty sampling (Settles, 2009) is the simplest
and most commonly used query strategy in active learn-
ing, where unlabeled samples closest to the decision plane
of SVM or predicted to be the least likely positive by a
classifier are sampled for query. Wallace et al. (Wallace
et al., 2010) recommended uncertainty sampling method
in biomedical literature review and it reduces the cost of
manually screening literature efficiently.

Certainty sampling (Miwa et al., 2014) is a kind of
greedy algorithm to maximize the utility of incremental
learning model by prioritizing the samples which are the
most likely to be actionable warnings. Contrary to uncer-
tainty sampling, certainty sampling method gives prior-
ity to the instances which are far away from the decision
plane of SVM or have the highest probability score pre-
dicted by the classifier. It speeds up the process of retriev-
ing and plays the major role of stopping earlier.

Figure 3: Procedure of Incremental Active Learning.

3.4. Active Learning Procedures
Figure 3 presents the procedures of incremental active

learning, and a detailed description of each step is demon-
strated as follows:

1. Initial Sampling.
We propose two initial sampling strategies to cope
with the scenario that historical information is avail-
able or not.
For software projects in early life cycle without suf-
ficient historical revisions in the version control sys-
tem, random sampling without replacement is used
in the initial stage when the labeled warning pool is
NULL.
For software projects with previous version infor-
mation, we utilize version N-1 to get a pre-trained
model and initialize sampling on version N. This
practice can reduce the cost of manually excluding
unactionable warnings since the prevalence of false
positive in SA datasets.

2. Human or oracle labeling.
After a warning message is selected by initial sam-
pling or query strategy, manual inspection is required
to identify whether the retrieved warning is action-
able or not. In our simulation, the ground truth serves
as a human oracle and it returns a label once a warn-
ing presupposed as unlabeled is queried by active
learning model.
In static analysis, inspecting and tagging the warning
being queried is considered as a main overhead of
this process. As demonstrated in Table 4, this over-
head is denoted as Cost and is what software devel-
opers strive to reduce.

3. Model Training and updating.
After a new coming-in warning is labeled by human
oracle, this data sample is added to training data. The
model is retrained and updated recursively.

4. Query Strategy.
Uncertainty sampling is leveraged when the action-
able samples retrieved and labeled by our model
is under a specific threshold. This query strategy
mainly applies when targeted data samples are rare
in training set and building a stable model faster is
required (Yu et al., 2019).
Finally, after labeled actionable warning exceed the
given threshold, certainty sampling is employed to

7

aggressively searching for true positive and greedily
reduce the cost of warning inspection.

Table 3: Summary of Projects Surveyed.

Project Period Revision-
Interval Domain

Lucence
-solr

01/2013-
01/2014 3 month Search engine

Tomcat
01/2013-
01/2014 3 month Server

Derby
01/2013-
01/2014 3 month Database

Phoenix
01/2013-
01/2014 3 month Driver

Cassandra
01/2013-
01/2014 3 month Big data manage

Jmeter
01/2012-
01/2014 6 month Performance manage

Ant
01/2012-
01/2014 6 month Build manage

Commons
.lang

01/2012-
01/2014 6 month Java utility

Maven
01/2012-
01/2014 6 month Project manage

4. Experiment

4.1. Static Warning Dataset

The nine datasets explored in this work are collected
from previous research. Wang et al. (Wang et al., 2018)
performed a systematic literature review to gather all pub-
licly available features (116 in total) for SA analysis. For
this research, all the values of this collected feature set
were extracted from warnings reported by FindBugs on
the 60 successive revisions of 12 projects. Using the Static
Warning (SA) tool, we applied FindBugs to 60 revisions
from 12 projects’ revision history. By collected perfor-
mance statistics from three supervised learning classifiers
on 12 datasets, a golden feature set (23 features) is found
via a greedy backward elimination algorithm. We utilize
the best feature combination as the warning characteris-
tics in our research.

On closer inspection of these datasets, we found three
projects with obvious data inconsistency issues (such as
data features mismatch with data labels). Hence, our
study only explored the remaining nine projects.

Table 3 lists the summary of projects surveyed in our
paper. For each project, there are 5 versions collected
from starting revision time after a specific revision inter-
val. We train the model on version 4 and test on version
5.

Previous research (Wang et al., 2018) collected 116
static warning features with a systematic literature review.
These features fall into eight categories, and 95 features
are left after eliminating unavailable ones as shown in
Table 4. We employ the 23 golden features as the in-
dependent variables proposed by Wang et al., which are
highlighted in bold in Table 4. In our study, the depen-
dent variable is actionable or unactionable. These labels
were generated via a method proposed by previous re-
searches (Hanam et al., 2014; Heckman and Williams,
2008; Liang et al., 2010). That is, for a specific warn-
ing, if it is closed in later revision after a revision interval
when the project was collected, it will finally be labeled
as actionable. For warning still existing after later revision
interval, it will be labeled as unactionable. Otherwise, for
some minority warnings which are deleted after later in-
terval, they will be removed and ignored in our study.

Table 5 shows the number of warnings and distribution
of each warning type (as reported by FindBugs) in nine
software projects. Note that our data is highly imbalanced
with the ratio of targeted samples from 3 to 34 percent.

4.2. Machine Learning Algorithms
We choose three machine learning algorithms, i.e.,

Support Vector Machine (SVM), Random Forest (RF),
Decision Tree (DT). These classifiers are selected for their
common use in the software engineering literature. All
these three algorithms are studied in Wang et al.’s pa-
per (Wang et al., 2018) and the best performance is ob-
tained by Random Forest, followed by Decision Tree. Re-
garding to SVM, it obtains the worst perform reported
in six algorithms by Wang et al. (Wang et al., 2018),
but due to its wide combination with active learning and
promising performance in many research areas like im-
age retrieval (Pasolli et al., 2013) and text classifica-
tion (Tong and Koller, 2001), especially imbalanced prob-
lems (Ertekin et al., 2007), we also include this algorithm
in our work. We now give a brief description of these
algorithms and their application in this work.

All our learners come from the Python toolkit Scikit-
Learn (Pedregosa et al., 2011). For the most part, we use

8

Table 4: Categories of Selected Features. (8 categories are shown in the
left column, and 95 features explored in Wang et al. are shown in the
right column with 23 golden features in bold.)
Category Features

Warning combination

size content for warning type;
size context in method, file, package;
warning context in method, file, package;
warning context for warning type;
fix, non-fix change removal rate;
defect likelihood for warning pattern;
variance of likelihood;
defect likelihood for warning type;
discretization of defect likelihood;
average lifetime for warning type;

Code characteristics

method, file, package size;
comment length;
comment-code ratio;
method, file depth;
method callers, callees;
methods in file, package;
classes in file, package;
indentation;
complexity;

Warning characteristics
warning pattern, type, priority, rank;
warnings in method, file, package;

File history

latest file, package modification;
file, package staleness;
file age; file creation;
deletion revision; developers;

Code analysis

call name, class, parameter signature,
return type;
new type, new concrete type;
operator;
field access class, field;
catch;
field name, type, visibility, is static/final;
method visibility, return type,
is static/ final/ abstract/ protected;
class visibility,
is abstract / interfact / array class;

Code history

added, changed, deleted, growth, total, percentage
of LOC in file in the past 3 months;
added, changed, deleted, growth, total, percentage
of LOC in file in the last 25 revisions;
added, changed, deleted, growth, total, percentage
of LOC in package in the past 3 months;
added, changed, deleted, growth, total, percentage
of LOC in package in the last 25 revisions;

Warning history
warning modifications;
warning open revision;
warning lifetime by revision, by time;

File characteristics
file type;
file name;
package name;

Table 5: Number of Samples on Version 5.
Project Open/Unactionable Close/Actionable Delete
ant 1061 54 0
commons 744 42 0
tomcat 1115 326 0
jmeter 468 145 7
cass 2245 356 64
phoenix 2046 343 13
mvn 790 28 44
lucence 2257 1168 440
derby 2386 121 0

the default parameters from that toolkit. Exception for
support vector machines, we followed the advice of a pre-
vious publication (Krishna et al., 2016) which suggested
using a linear, and a not radial, kernel).

Support Vector Machine. Support Vector Machine
(SVM) (Cortes and Vapnik, 1995) is a supervised learning
model for binary classification and regression analysis.
The optimization objective of SVM is to maximize the
margin, which is defined as the distance between the sep-
arating hyperplane (i.e., the decision boundary) and the
training samples (i.e., support vectors) that are closest to
the hyperplane. Support vector machine is a powerful lin-
ear model, it also can tackle nonlinear problems through
the kernel trick, which consists of multiple hyperparame-
ters that can be tuned to make good predictions.

Random Forest. Random forests (Liaw et al., 2002)
can be viewed as an ensemble of decision trees. The idea
behind ensemble learning is to combine weak learners to
build a more robust model or a strong learner, which has a
better generalization error and is less susceptible to over-
fitting. Such forests can be utilized for both classification
and regression problems, and also employed to measure
the relative importance of each feature on the prediction
(by counting how often attributes are used in each tree of
the forest).

Decision Tree. Decision tree learners are known for
their ability to decompose complex decision processes
into small and simple subsets (Safavian and Landgrebe,
1991). In this process an associated multistage decision
tree is hierarchically developed. There are several tree-
based approaches widely used in software engineering ar-
eas like ID3, C4.5, CART and so forth. Decision tree is
computationally cheap to use, and is easy for developers
or managers to interpret.

9

Input : Vn−1, previous version for training
Vn, current version for prediction
C, common set of features shared by five releases

Output : Total Recall, total recall for version n
cost, samples retrieved by percent

// Keep reviewing until stopping rule satisfied
while |LR| < 0.95|R| do

// Start training or not
if |LR| ≥ 1 then

CL← Train(L);
// Query next
x← Query(CL,¬L,LR);

else
// Random Sampling
x← Random(¬L);

end
// Simulate review
LR, L← Include(x,R, LR, L);
¬L← E \ L;

end
return LR;

Function Train(Vn−1)

// Classifier: Linear-SVM,decision tree,
random forest

clf← Classifier ;
trainingx, trainingy ← Vn−1

clf← clf .fit(trainingx, trainingy)

return clf ;
end
Function PredictProb(Vn,clf)

// predict Probability

posat ← list(clf .classes).index(”yes”)
testsetx, testsety ← Vn

prob ← clf .PredictProb(testsetx)[:, posat]

return prob, testsety ;
end
Function Retrieve(prob, testsety)

// retrieve by descending-sorted probability

sum = 0
order ← np.argsort(prob)[:: −1][:]
posall ← number − of − positive − samples
numall ← length − of − testsety

while i ∈ order do
// Sort label by descending order
labelreal ← testsety[i]

sorted label .append(labelreal)

// Retrieve
while label ∈ sorted label do

if label == ”yes” then
sum + = 1
posget ← sum

else
continue

end
end
totalrecall .append(posget/posall)

cost.append(len(sorted label) / numall)
end
return totalrecall , cost;

end

Algorithm 1: Pseudo Code for Supervised Learn-
ing.

5. Experiments

In this section, we answer the four research questions
formulated in Section 1.

RQ1. What is the baseline rate for bad static warn-
ings?

5.1. Research method

Static warning tools like FindBugs, Jlint and PMD
are widely used in static warning analysis. Previous re-
search has shown that FindBugs is more reliable than
other SA tools regarding to its effective discrimination
between true and false positives (Rahman et al., 2014;
Wang et al., 2018). FindBugs is also known as a cost-
efficient SA tool for detecting warnings by the combi-
nation of line-level, method-level and class-level granu-
larity, thus reports much fewer warnings with obviously
more lines (Panichella et al., 2015; Rahman et al., 2014).
Due to all the merits mentioned above, FindBugs has
gained widespread popularity among individual users and
technology-intensive companies, like Google5.

In terms of a baseline result, we used the default prior-
ity ranking reported by FindBugs. Since FindBugs gen-
erates warnings and classifies them into seven categories
of patterns (Shen et al., 2011), in which warnings with
the same priority in random order have the same sever-
ity to be fixed. And the higher priority denotes that the
warning report is more likely to be actionable suggested
by FindBugs. This randomly ranking strategy provides a
reasonable probabilistic bounded time for software devel-
opers to find bugs and implements the scene without any
information to prioritize warning reports (Heckman and
Williams, 2011; Kremenek et al., 2004).

5.2. Research results

As is shown in Figure 4, the dark blue dashed line de-
notes the learning curve of random selection generated
from Findbugs reports. The curve grows diagonally, in-
dicating that an end-user without any historical warning

5In 2009, Google held a global fixit for UMD’s FindBugs tool and
aimed at gathering feedback for the 4,000 highest confidence reported
by FindBugs. It has been downloaded for more than a million times so
far.

10

information or auxiliary tool has to inspect 2507 warnings
to identify only 121 actionable ones in Derby dataset.

RQ2. What is the previous state-of-the-art method
to tackle the prevalence of actionable warnings in SA
tools?

5.3. Research method

Wang et al. (Wang et al., 2018) implements a Java tool
to extract the value of 116 total features collected from ex-
haustive systematic literature review and employs the ma-
chine learning utility Weka6 to build classification mod-
els. An optimal SA feature set with 23 features is iden-
tified as the golden features by obtaining the best AUC
values evaluated with 6 machine learning classifiers. We
reproduce the experiments with three most outperform-
ing supervised learning models in the previous research
study, e.g., weighted linear SVM, random forest and de-
cision tree with default parameters in Python3.7. The de-
tailed process to replicate the baseline is demonstrated in
Algorithm 1.

The specific process is as follows: For each project, a
supervised model (either weighted SVM, Random Forest
or Decision Tree) is built by training on Version 4. After
the training process, we test on Version 5 for the same
project and get a list of probability for each bug reported
by FindBugs to be actionable. Sort this list of probability
from most likely to be real actionable to least likely and
retrieve these warnings in a descending order to report the
total recall, cost and AUC as evaluation metrics.

5.4. Research results

As shown in Table 6, the median and IQR of AUC
scores of ten runs on nine projects are reported in our pa-
per. Median and IQR are commonly used robust measures
of a set of observations. IQR (the interquartile range) is
a measure of statistical dispersion. It evaluates the vari-
ability of distribution by dividing a data set into quartiles
and reflecting the difference between 75th and 25th per-
centiles.

6https://www.cs.waikato.ac.nz/ ml/weka/

For three supervised learning methods explored, Lin-
ear weighted Support Vector Machine and Random For-
est both outperform Decision Tree. For incremental ac-
tive learning algorithms, the best combination is Active
Learning + Support Vector Machine, followed by Active
Learning + Random Forest and Active Learning + Deci-
sion Tree.

It’s observed that incremental active learning can obtain
high AUC, no worse than supervised learning on most of
datasets. The pink shadow highlights the median results
of active learning methods which are better or no less 0.05
than the median AUC of the state-of-the-art methods.

The column ”Prior Work” shows results reported in
Wang et al.’s prior research (Wang et al., 2018). Note that
our AUC scores for supervised models replicated with
Python3.7 are higher than that prior work implemented
by Weka. This difference is explained by two factors.

• We found that better results could be obtained by ad-
justing some of the learner parameters; e.g. we use a
linear (not radial) kernel for our SVM.

• The implementation tools employed by our study
and previous work are different. Prior work used a
Java implementation of these tools (in Weka) while
our replication utilizes a more recent Python toolkit
(Scikit-Learn) that is being used and updated by a
larger and more developed community.

RQ3. Does incremental active learning reduce the
cost to identify actionable Static Warnings?

The purpose of this research question is to compare in-
cremental active learning with random selection and tra-
ditional supervised learning models.

5.5. Research method

Considering a real-world scenario when a software
project in different stages of the life cycle, RQ3 is an-
swered in two parts: We first contrast incremental active
learning, denoted as solid lines in Figure 4 with random
ranking (default ranking reported from FindBugs, denoted
as dark blue dashed line in Figure 4). Then, we compare
active learning results with supervised learning (denoted
as purple, lighted blue and red dashed lines in Figure 4).

11

Table 6: AUC % on 9 projects for 10 runs. Our results are better than prior results (shown in blue) since they used default parameters in Weka while
we adjusted (e.g.) the SVM kernel (as well as a more recent implementation of these tools).

Active+SVM Supervised SVM Active+RF Supervised RF Active+DT Supervised DT

Project Median IQR
Median
(IQR)

Median of
Prior work

Median IQR
Median
(IQR)

Median of
Prior work

Median IQR
Median
(IQR)

Median of
Prior work

Derby 98 1 97(2) 50 96 7 97(4) 43 93 2 94(4) 44
Mvn 94 3 96(7) 50 93 2 97(3) 45 67 3 91(2) 45
Lucence 95 1 97(3) 50 85 9 99(2) 98 94 2 93(4) 98
Phoenix 97 2 97(3) 62 90 7 97(3) 71 90 2 91(7) 70
Cass 96 5 99(3) 67 96 4 98(5) 70 90 1 94(4) 69
Jmeter 94 1 95(2) 50 90 4 97(2) 86 86 2 91(12) 82
Tomcat 98 1 97(3) 50 92 5 96(2) 80 94 2 92(6) 64
Ant 95 2 98(2) 50 94 1 98(3) 44 84 3 94(7) 44
Commons 91 3 98(3) 50 93 1 92(2) 57 80 8 85(14) 56

5.6. Research results

Results of supervised learning methods are denoted as
light blue, purple and red dashed lines. As revealed in
Figure 4, Random Forest outperforms the other classifiers,
followed by Linear SVM and Decision Tree.

Figure 4 provides an overall view of the experiment re-
sults to address Research Question 3. These nine subplots
are the results of a ten-time repeated experiment on fourth
and fifth versions of nine projects and we only report the
median values here. The latest version 5 is selected to
construct incremental active learning, while for the super-
vised learning model, we choose the two latest versions,
learning patterns from version fourth for model construc-
tion and testing on version fifth for evaluation to make the
experimental results comparable.

Figure 5 summarizes the ratio of real actionable warn-
ings in version 5 of each project and the corresponding
median of cost when applying incremental active learning
to identify all these actionable warnings.

As illustrated in Figure 4, incremental active learning
outperforms random selection, which simulates real-time
cost bound when an end-user recurs to warning reports
prioritized by FindBugs. While, the learning curve of
incremental active learning without historical version is
almost as good as supervised learning in most of nine
projects based on version history. Also, the test results on
nine datasets suggest that Linear SVM + incremental ac-
tive learning is the best combination of all active learning
schemes, and Random Forest is the winner in supervised

learning methods.
Overall, the above observations suggest that applying

an incremental active learning model in static warning
identification can help to retrieve actionable warnings in
higher priority and reduce the effort to eliminate false
alarms for software projects without adequate version his-
tory.

RQ4. How many samples should be retrieved to
identify all the actionable Static Warnings?

How many samples to be retrieved is a critical problem
when implementing an active learning model in the sce-
nario of static warning identification. Stopping too early
or too late will incur the issue of missing important ac-
tionable warnings or wasting unnecessary running time
and CPU resources.

In the following part, we introduce the research method
and analysis of the experimental results to answer Re-
search Question 4.

5.7. Research method

Figure 5 employs the box-plot to describe the costs re-
quired or percentage of samples retrieved by three classi-
fiers, Linear weighted SVM, Random Forest and Decision
Tree combined with our incremental active learning algo-
rithm. Horizontal coordinate of the box charts represents
the thresholds of recall, a mechanism to stop retrieving
new potential actionable warnings when the proportion of

12

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Samples retrieved(%)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

To
ta
l R
ec
al
l

Total Recall for commons_version 5(786 samples in total)

Active_RF
Active_linear-SVM
Active_DT
Supervised-linear-SVM
Supersived-RF
Supersived-DT
Random

(a) commons

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Samples retrieved(%)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

To
ta
l R
ec
al
l

Total Recall for tomcat_version 5(1441 samples in total)

Active_RF
Active_linear-SVM
Active_DT
Supervised-linear-SVM
Supersived-RF
Supersived-DT
Random

(b) tomcat

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Samples retrieved(%)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

To
ta

l R
ec

al
l

Total Recall for jmeter_version 5(613 samples in total)

Active_RF
Active_linear-SVM
Active_DT
Supervised-linear-SVM
Supersived-RF
Supersived-DT
Random

(c) jmeter

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Samples retrieved(%)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

To
ta
l R
ec
al
l

Total Recall for cass_version 5(2601 samples in total)

Active_RF
Active_linear-SVM
Active_DT
Supervised-linear-SVM
Supersived-RF
Supersived-DT
Random

(d) cass

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Samples retrieved(%)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

To
ta

l R
ec

al
l

Total Recall for derby_version 5(2507 samples in total)

Active_RF
Active_linear-SVM
Active_DT
Supervised-linear-SVM
Supersived-RF
Supersived-DT
Random

(e) derby

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Samples retrieved(%)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

To
ta

l R
ec

al
l

Total Recall for phoenix_version 5(2389 samples in total)

Active_RF
Active_linear-SVM
Active_DT
Supervised-linear-SVM
Supersived-RF
Supersived-DT
Random

(f) phoenix

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Samples retrieved(%)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

To
ta
l R
ec
al
l

Total Recall for lucence_version 5(3425 samples in total)

Active_RF
Active_linear-SVM
Active_DT
Supervised-linear-SVM
Supersived-RF
Supersived-DT
Random

(g) lucence

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Samples retrieved(%)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

To
ta
l R
ec
al
l

Total Recall for mvn_version 5(818 samples in total)

Active_RF
Active_linear-SVM
Active_DT
Supervised-linear-SVM
Supersived-RF
Supersived-DT
Random

(h) mvn

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Samples retrieved(%)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

To
ta
l R
ec
al
l

Total Recall for ant_version 5(1112 samples in total)

Active_RF
Active_linear-SVM
Active_DT
Supervised-linear-SVM
Supersived-RF
Supersived-DT
Random

(i) ant

Figure 4: Test Results of incremental active learning, supervised learning and randomly selection.

13

@70recall @80recall @90recall @100recall
Recall threshold

0.0

0.2

0.4

0.6

0.8

1.0

Co
st
 a
t g

iv
en
 re

ca
ll
th
re
sh
ol
d

Dataset: Commons
AL_SVM
AL_RF
AL_DT

@70recall @80recall @90recall @100recall
Recall threshold

0.0

0.2

0.4

0.6

0.8

1.0

Co
st
 a
t g

iv
en
 re

ca
ll
th
re
sh
ol
d

Dataset: Tomcat
AL_SVM
AL_RF
AL_DT

@70recall @80recall @90recall @100recall
Recall threshold

0.0

0.2

0.4

0.6

0.8

1.0

Co
st
 a
t g
iv
en
 re
ca
ll
th
re
sh
ol
d

Dataset: Jmeter
AL_SVM
AL_RF
AL_DT

@70recall @80recall @90recall @100recall
Recall threshold

0.0

0.2

0.4

0.6

0.8

1.0

Co
st
 a
t g

iv
en

 re
ca
ll
th
re
sh
ol
d

Dataset: Cass
AL_SVM
AL_RF
AL_DT

@70recall @80recall @90recall @100recall
Recall threshold

0.0

0.2

0.4

0.6

0.8

1.0

Co
st
 a
t g

iv
en
 re

ca
ll
th
re
sh
ol
d

Dataset: Derby
AL_SVM
AL_RF
AL_DT

@70recall @80recall @90recall @100recall
Recall threshold

0.0

0.2

0.4

0.6

0.8

1.0

Co
st
 a
t g

iv
en
 re

ca
ll
th
re
sh
ol
d

Dataset: Phoenix
AL_SVM
AL_RF
AL_DT

@70recall @80recall @90recall @100recall
Recall threshold

0.0

0.2

0.4

0.6

0.8

1.0

Co
st
 a
t g

iv
en

 re
ca
ll
th
re
sh
ol
d

Dataset: Lucence
AL_SVM
AL_RF
AL_DT

@70recall @80recall @90recall @100recall
Recall threshold

0.0

0.2

0.4

0.6

0.8

1.0

Co
st
 a
t g

iv
en

 re
ca
ll
th
re
sh
ol
d

Dataset: Mvn
AL_SVM
AL_RF
AL_DT

@70recall @80recall @90recall @100recall
Recall threshold

0.0

0.2

0.4

0.6

0.8

1.0

Co
st
 a
t g

iv
en

 re
ca
ll
th
re
sh
ol
d

Dataset: Ant
AL_SVM
AL_RF
AL_DT

Figure 5: Cost Results at different thresholds for Incremental Active Learning.

14

related samples found reached the specific given thresh-
olds. The vertical axis means the corresponding effort re-
quired to obtain the given recall, measured by the propor-
tion of warnings retrieved.

5.8. Research results
Based on the results shown in Figure 5, it can be ob-

served that the growth of effort required is in a gentle and
slow fashion when the threshold of relevant warnings vis-
ited increasing from 70 % to 90 %. However, for reaching
100 % threshold, the effort needed is almost or over twice
compared with the cost of threshold equal to 90 %. A
very intuitive suggestion can be obtained from Figure 5 is
learning from 20 % or 30 % warnings for each of these
nine projects, in which case the active learning models
can identify over 90 % of actionable warnings.

However, there is an exception. Results of lucence re-
veal that our model has to inspect more than 40 % of data
to identify 90 % actionable warnings. Revisiting Table 5,
it indicts that most of our projects have data imbalanced
issues (ratio of target class is less than 20 % for derby,
mvn, phoenix, cass, commons and ant, and for jmeter
and tomcat it’s slightly over 20 %) while ratio of lucence
(about 35 %) is relatively higher. Our study attempts to
provide a solid guideline but there is no general conclu-
sion about the specific percent of data that should be fed
into the learner. It highly depends on the degree of data
imbalance and the trade-off between missing target sam-
ples and reducing costs. Since the cost can only be re-
duced at the expense of a lower threshold, which means
missing some real actionable warnings.

In summary, our model has been proven to be an effi-
cient methodology to deal with information retrieval prob-
lem for SA identification of extremely unbalanced data
sets, moreover, it is also a good option for engineers
and researchers to apply active learning model in general
problems because it has a lower building cost, a wider
application range, and a higher efficiency compared with
state-of-the-art supervised learning methods and random
selection.

6. Discussion

6.1. Threats to validity
As to any empirical study, biases can affect the final re-

sults. Therefore, conclusions drawn from this work must

be considered with threats to validity in mind. In this sec-
tion, we discuss the validity of our work.

Learner bias. This work applies three classifiers,
weighted linear SVM, Random Forest and Decision Tree,
which are the best setting according to previous research
work (Wang et al., 2018). However, this doesn’t neces-
sarily guarantee the best performance in other domains
or other static warning datasets. According to the No
Free Lunch Theorems (Wolpert et al., 1997), applying our
method framework to other areas would be needed before
we can assert that our methods are also better in those do-
mains.

Sampling bias. One of the most important threats to
validity is sampling bias since several sampling meth-
ods, random sampling, uncertainty sampling and certainty
sampling, are used in combination. However, there are
also many sampling methods in the active learning area
we can utilize. And different sampling strategies and
combinations may result in better performance. This is
a potential research direction.

Ratio bias. In this paper, we propose an ideal scale
value for our learner to retrieve on nine static warning
datasets to effectively solve the prevalence of false pos-
itive in warnings reported by SA tools. obvious improve-
ment is observed for this unbalanced problem. But it
doesn’t necessarily apply to balanced datasets.

Measurement bias. To evaluate the validity of the
incremental active learning method proposed in this pa-
per, we employ two measurement metrics: total recall
and cost. Several prior research work has demonstrated
the necessity and effectiveness of these measurements (Yu
et al., 2018; Yu and Menzies, 2019; Yu et al., 2019). Nev-
ertheless, many studies are still based on some classic and
traditional metrics, eg. confusion matrix or also known
as error matrix (Landgrebe and Duin, 2008). There ex-
ist many popular terminology and derivations from con-
fusion matrix, false positive, F1 score, G measure, and
so on. We cannot explore and include all the options in
one article. Also, even for this same research methodol-
ogy, conclusions drawn from different evaluation matri-
ces may differ. However, in this research scenario, it is
more efficient to report recall and cost for an effort-aware
model.

15

6.2. Future Work
Estimation. In real-world problems, labeled data may

be scarce or expensive to be obtained, while data without
labels may be abundant. In this case, the query process of
our incremental learning model cannot safely stop to ob-
tain a given targeted threshold without knowing the actual
number of actionable warnings in the data set beforehand.
Therefore, estimation is required to guarantee the algo-
rithm stopping detection at an appropriate stage: stopping
too late will cause unnecessary cost to explore unaction-
able warnings and increase false alarms; while stopping
too early may incur missing potential and important true
warnings.

Ensemble of classifiers. Ensemble learning is a
methodology of making decision based on inputs of mul-
tiple experts or classifiers (Zhang and Ma, 2012). It’s a
feasible and important scheme to reduce the variance of
classifiers and improve the reliability and robustness of
the decision system. The famous No Free Lunch Theo-
rems proposed by Wolpert et al. (Wolpert et al., 1997)
gives us an instinct guidance to recur to ensemble learn-
ers. This will be promising to make the best of incremen-
tal active learning by precisely making predictions and
pinpoint real actionable warnings with a generalized de-
cision system.

7. Conclusion

Previous research work shows that about 35% to 91%
warnings reported as bugs by static analysis tools are ac-
tually unactionable (i.e., warnings that would not be acted
on by developers because they are falsely suggested as
bugs). Therefore, to make such systems usable for pro-
grammers, some mechanism is required to reduce those
false alarms.

Arnold et al. (Arnold et al., 2009) warn that knowl-
edge about what is an ignorable static code warning may
not transfer from project to project. Here, they advise
that methods for managing static code warnings should
be tuned to different software projects. While we agree
with that advice, it does create a knowledge acquisition
bottleneck problem since acquiring that knowledge can
be a time-consuming and tedious task.

This explored methods for acquiring knowledge of
what static code warnings can be ignored. Using a human-
in-the-loop active learner, we conducted an empirical

study with 9 software projects and 3 machine learning
classifiers to verify how the performance of current SA
tools could be improved by an efficient incremental ac-
tive learning method. We found about 90 % of action-
able static warnings can be identified when only inspect-
ing about 20 % to 30 % warning reports without using his-
torical version information. Our study attempts to bridge
the research gap between supervised learning and effort-
aware active learning models by an in-depth analysis of
reducing the cost of static warning identification prob-
lems.

Our method significantly decreases the cost of inspect-
ing falsely reported warnings generated by static code
analysis tools for software engineers (especially in the
early stage of software project’s life cycle) and provides a
meaningful guideline to improve the performance of cur-
rent SA tools. Acceptance and adoption of future static
analysis tools can be enhanced by combining with SA fea-
ture extraction and self-adaptive incremental active learn-
ing.

Acknowledgements

This work was partially funded by NSF grant
#1908762.

References

Allier, S., Anquetil, N., Hora, A., Ducasse, S., 2012.
A framework to compare alert ranking algorithms, in:
2012 19th Working Conference on Reverse Engineer-
ing, IEEE. pp. 277–285.

Arnold, J., Abbott, T., Daher, W., Price, G., Elhage, N.,
Thomas, G., Kaseorg, A., 2009. Security impact ratings
considered harmful. arXiv preprint arXiv:0904.4058 .

Avgustinov, P., Baars, A.I., Henriksen, A.S., Laven-
der, G., Menzel, G., de Moor, O., Schäfer, M., Tib-
ble, J., 2015. Tracking static analysis violations over
time to capture developer characteristics, in: Proceed-
ings of the 37th International Conference on Software
Engineering-Volume 1, IEEE Press. pp. 437–447.

Ayewah, N., Pugh, W., Hovemeyer, D., Morgenthaler,
J.D., Penix, J., 2008. Using static analysis to find bugs.
IEEE software 25, 22–29.

16

Bhattacharya, P., Iliofotou, M., Neamtiu, I., Faloutsos,
M., 2012. Graph-based analysis and prediction for soft-
ware evolution, in: 2012 34th International Conference
on Software Engineering (ICSE), IEEE. pp. 419–429.

Boogerd, C., Moonen, L., 2008. Assessing the value
of coding standards: An empirical study, in: 2008
IEEE International Conference on Software Mainte-
nance, IEEE. pp. 277–286.

Bowring, J.F., Rehg, J.M., Harrold, M.J., 2004. Active
learning for automatic classification of software behav-
ior, in: ACM SIGSOFT Software Engineering Notes,
ACM. pp. 195–205.

Cormack, G.V., Grossman, M.R., 2015. Autonomy and
reliability of continuous active learning for technology-
assisted review. arXiv preprint arXiv:1504.06868 .

Cortes, C., Vapnik, V., 1995. Support-vector networks.
Machine learning 20, 273–297.

Ertekin, S., Huang, J., Giles, C.L., 2007. Active learning
for class imbalance problem, in: SIGIR, pp. 823–824.

Fahid, F.M., Yu, Z., Menzies, T., 2019. Better tech-
nical debt detection via surveying. arXiv preprint
arXiv:1905.08297 .

Feigenbaum, E.A., 1980. Knowledge engineering: the
applied side of artificial intelligence. Technical Report.
STANFORD UNIV CA DEPT OF COMPUTER SCI-
ENCE.

Hanam, Q., Tan, L., Holmes, R., Lam, P., 2014. Find-
ing patterns in static analysis alerts: improving action-
able alert ranking, in: Proceedings of the 11th Working
Conference on Mining Software Repositories, ACM.
pp. 152–161.

Heckman, S., Williams, L., 2008. On establishing a
benchmark for evaluating static analysis alert prioriti-
zation and classification techniques, in: Proceedings
of the Second ACM-IEEE international symposium
on Empirical software engineering and measurement,
ACM. pp. 41–50.

Heckman, S., Williams, L., 2009. A model building
process for identifying actionable static analysis alerts,

in: 2009 International Conference on Software Testing
Verification and Validation, IEEE. pp. 161–170.

Heckman, S., Williams, L., 2011. A systematic literature
review of actionable alert identification techniques for
automated static code analysis. Information and Soft-
ware Technology 53, 363–387.

Hoekstra, R., 2010. The knowledge reengineering bottle-
neck. Semantic Web 1, 111–115.

Hovemeyer, D., Pugh, W., 2004. Finding bugs is easy.
Acm sigplan notices 39, 92–106.

Johnson, B., Song, Y., Murphy-Hill, E., Bowdidge, R.,
2013. Why don’t software developers use static analy-
sis tools to find bugs?, in: Proceedings of the 2013 In-
ternational Conference on Software Engineering, IEEE
Press. pp. 672–681.

Kim, S., Ernst, M.D., 2007a. Prioritizing warning cate-
gories by analyzing software history, in: Proceedings
of the Fourth International Workshop on Mining Soft-
ware Repositories, IEEE Computer Society. p. 27.

Kim, S., Ernst, M.D., 2007b. Which warnings should i
fix first?, in: Proceedings of the the 6th joint meeting
of the European software engineering conference and
the ACM SIGSOFT symposium on The foundations of
software engineering, ACM. pp. 45–54.

Krall, J., Menzies, T., Davies, M., 2015. Gale: Geometric
active learning for search-based software engineering.
IEEE Transactions on Software Engineering 41, 1001–
1018.

Kremenek, T., Ashcraft, K., Yang, J., Engler, D., 2004.
Correlation exploitation in error ranking, in: ACM
SIGSOFT Software Engineering Notes, ACM. pp. 83–
93.

Krishna, R., Yu, Z., Agrawal, A., Dominguez, M., Wolf,
D., 2016. The’bigse’project: Lessons learned from
validating industrial text mining, in: 2016 IEEE/ACM
2nd International Workshop on Big Data Software En-
gineering (BIGDSE), IEEE. pp. 65–71.

Landgrebe, T.C., Duin, R.P., 2008. Efficient multiclass
roc approximation by decomposition via confusion ma-
trix perturbation analysis. IEEE transactions on pattern
analysis and machine intelligence 30, 810–822.

17

Liang, G., Wu, L., Wu, Q., Wang, Q., Xie, T., Mei, H.,
2010. Automatic construction of an effective training
set for prioritizing static analysis warnings, in: Pro-
ceedings of the IEEE/ACM international conference on
Automated software engineering, ACM. pp. 93–102.

Liaw, A., Wiener, M., et al., 2002. Classification and re-
gression by randomforest. R news 2, 18–22.

Miwa, M., Thomas, J., O’Mara-Eves, A., Ananiadou, S.,
2014. Reducing systematic review workload through
certainty-based screening. Journal of biomedical infor-
matics 51, 242–253.

Murtaza, S.S., Khreich, W., Hamou-Lhadj, A., Bener,
A.B., 2016. Mining trends and patterns of software
vulnerabilities. Journal of Systems and Software 117,
218–228.

Murukannaiah, P.K., Singh, M.P., 2015. Platys: An active
learning framework for place-aware application devel-
opment and its evaluation. ACM Transactions on Soft-
ware Engineering and Methodology (TOSEM) 24, 19.

Panichella, S., Arnaoudova, V., Di Penta, M., Antoniol,
G., 2015. Would static analysis tools help develop-
ers with code reviews?, in: 2015 IEEE 22nd Inter-
national Conference on Software Analysis, Evolution,
and Reengineering (SANER), IEEE. pp. 161–170.

Pasolli, E., Melgani, F., Tuia, D., Pacifici, F., Emery, W.J.,
2013. Svm active learning approach for image classifi-
cation using spatial information. IEEE Transactions on
Geoscience and Remote Sensing 52, 2217–2233.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., et al., 2011. Scikit-learn: Ma-
chine learning in python. Journal of machine learning
research 12, 2825–2830.

Rahman, F., Khatri, S., Barr, E.T., Devanbu, P., 2014.
Comparing static bug finders and statistical prediction,
in: Proceedings of the 36th International Conference
on Software Engineering, ACM. pp. 424–434.

Safavian, S.R., Landgrebe, D., 1991. A survey of deci-
sion tree classifier methodology. IEEE transactions on
systems, man, and cybernetics 21, 660–674.

Settles, B., 2009. Active learning literature survey. Tech-
nical Report. University of Wisconsin-Madison Depart-
ment of Computer Sciences.

Shen, H., Fang, J., Zhao, J., 2011. Efindbugs: Effective
error ranking for findbugs, in: 2011 Fourth IEEE Inter-
national Conference on Software Testing, Verification
and Validation, IEEE. pp. 299–308.

Shivaji, S., Whitehead Jr, E.J., Akella, R., Kim, S., 2009.
Reducing features to improve bug prediction, in: 2009
IEEE/ACM International Conference on Automated
Software Engineering, IEEE. pp. 600–604.

Thung, F., Lo, D., Jiang, L., Rahman, F., Devanbu, P.T.,
et al., 2015. To what extent could we detect field de-
fects? an extended empirical study of false negatives
in static bug-finding tools. Automated Software Engi-
neering 22, 561–602.

Tong, S., Koller, D., 2001. Support vector machine active
learning with applications to text classification. Journal
of machine learning research 2, 45–66.

Wallace, B.C., Schmid, C.H., Lau, J., Trikalinos, T.A.,
2009. Meta-analyst: software for meta-analysis of bi-
nary, continuous and diagnostic data. BMC medical
research methodology 9, 80.

Wallace, B.C., Trikalinos, T.A., Lau, J., Brodley, C.,
Schmid, C.H., 2010. Semi-automated screening of
biomedical citations for systematic reviews. BMC
bioinformatics 11, 55.

Wang, J., Wang, S., Cui, Q., Wang, Q., 2016a. Local-
based active classification of test report to assist crowd-
sourced testing, in: 2016 31st IEEE/ACM Interna-
tional Conference on Automated Software Engineering
(ASE), IEEE. pp. 190–201.

Wang, J., Wang, S., Wang, Q., 2018. Is there a
golden feature set for static warning identification?:
an experimental evaluation, in: Proceedings of the
12th ACM/IEEE International Symposium on Empir-
ical Software Engineering and Measurement, ACM.
p. 17.

Wang, S., Liu, T., Tan, L., 2016b. Automatically learn-
ing semantic features for defect prediction, in: 2016

18

IEEE/ACM 38th International Conference on Software
Engineering (ICSE), IEEE. pp. 297–308.

Wijayasekara, D., Manic, M., Wright, J.L., McQueen, M.,
2012. Mining bug databases for unidentified software
vulnerabilities, in: 2012 5th International Conference
on Human System Interactions, IEEE. pp. 89–96.

Witten, I.H., Frank, E., Hall, M.A., Pal, C.J., 2016. Data
Mining: Practical machine learning tools and tech-
niques. Morgan Kaufmann.

Wolpert, D.H., Macready, W.G., et al., 1997. No free
lunch theorems for optimization. IEEE transactions on
evolutionary computation 1, 67–82.

Yan, M., Zhang, X., Xu, L., Hu, H., Sun, S., Xia, X.,
2017. Revisiting the correlation between alerts and
software defects: A case study on myfaces, camel, and
cxf, in: 2017 IEEE 41st Annual Computer Software
and Applications Conference (COMPSAC), IEEE. pp.
103–108.

Yu, Z., Carver, J.C., Rothermel, G., Menzies, T., 2019a.
Searching for better test case prioritization schemes: a
case study of ai-assisted systematic literature review.
arXiv preprint arXiv:1909.07249 .

Yu, Z., Fahid, F., Menzies, T., Rothermel, G., Patrick,
K., Cherian, S., 2019b. Terminator: Better auto-
mated ui test case prioritization, in: Proceedings
of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ACM,
New York, NY, USA. pp. 883–894. URL: http://
doi.acm.org/10.1145/3338906.3340448,
doi:10.1145/3338906.3340448.

Yu, Z., Kraft, N.A., Menzies, T., 2018. Finding better
active learners for faster literature reviews. Empirical
Software Engineering 23, 3161–3186.

Yu, Z., Menzies, T., 2018. Total recall, language process-
ing, and software engineering, in: Proceedings of the
4th ACM SIGSOFT International Workshop on NLP
for Software Engineering, ACM. pp. 10–13.

Yu, Z., Menzies, T., 2019. Fast2: An intelligent assis-
tant for finding relevant papers. Expert Systems with
Applications 120, 57–71.

Yu, Z., Theisen, C., Williams, L., Menzies, T., 2019. Im-
proving vulnerability inspection efficiency using active
learning. IEEE Transactions on Software Engineering
, 1–1doi:10.1109/TSE.2019.2949275.

Zhang, C., Ma, Y., 2012. Ensemble machine learning:
methods and applications. Springer.

19

http://doi.acm.org/10.1145/3338906.3340448
http://doi.acm.org/10.1145/3338906.3340448
http://dx.doi.org/10.1145/3338906.3340448
http://dx.doi.org/10.1109/TSE.2019.2949275

	1 Introduction
	1.1 Organization of this Paper
	1.2 Contributions of this Paper

	2 Related Work
	2.1 Reasoning About Source Code
	2.2 Static Warning Identification
	2.3 Active Learning

	3 Methodology
	3.1 Overview
	3.2 Evaluation Metrics
	3.3 Active Learning Model Operators
	3.4 Active Learning Procedures

	4 Experiment
	4.1 Static Warning Dataset
	4.2 Machine Learning Algorithms

	5 Experiments
	5.1 Research method
	5.2 Research results
	5.3 Research method
	5.4 Research results
	5.5 Research method
	5.6 Research results
	5.7 Research method
	5.8 Research results

	6 Discussion
	6.1 Threats to validity
	6.2 Future Work

	7 Conclusion

