
Northumbria Research Link

Citation: Chen, HaoJie, Ding, Guofu, Qin, Sheng-feng and Zhang, Jian (2021) A hyper-
heuristic based ensemble genetic programming approach for stochastic resource
constrained project scheduling problem. Expert Systems with Applications, 167. p.
114174. ISSN 0957-4174

Published by: Elsevier

URL: https://doi.org/10.1016/j.eswa.2020.114174
<https://doi.org/10.1016/j.eswa.2020.114174>

This version was downloaded from Northumbria Research Link:
http://nrl.northumbria.ac.uk/id/eprint/44705/

Northumbria University has developed Northumbria Research Link (NRL) to enable users
to access the University’s research output. Copyright © and moral rights for items on
NRL are retained by the individual author(s) and/or other copyright owners. Single copies
of full items can be reproduced, displayed or performed, and given to third parties in any
format or medium for personal research or study, educational, or not-for-profit purposes
without prior permission or charge, provided the authors, title and full bibliographic
details are given, as well as a hyperlink and/or URL to the original metadata page. The
content must not be changed in any way. Full items must not be sold commercially in any
format or medium without formal permission of the copyright holder. The full policy is
available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been
made available online in accordance with publisher policies. To read and/or cite from the
published version of the research, please visit the publisher’s website (a subscription
may be required.)

http://nrl.northumbria.ac.uk/policies.html

A Hyper-heuristic-Based Ensemble Genetic Programming Approach

for Stochastic Resource Constrained Project Scheduling Problem

HaoJie Chen 1,Guofu Ding 1,Shengfeng Qin2,Jian Zhang1

HaoJie Chen

e-mail: chenhaojie12138@163.com

Guofu Ding

e-mail: dingguofu@163.com

Shengfeng Qin

e-mail: sheng-feng.qin@northumbria.ac.uk

Jian Zhang(Correspondence author)

e-mail:jerrysmail@263.net

1. School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031,

China

2. Department of Design, Northumbria University, Newcastle upon Tyne NE1 8ST, UK

mailto:%20chenhaojie12138@163.com
mailto:jerrysmail@263.net

Abstract: In project scheduling studies, to the best of our knowledge, the hyper-heuristic

collaborative scheduling is first-time applied to project scheduling with random activity durations.

A hyper-heuristic-based ensemble genetic programming (HH-EGP) method is proposed for

solving stochastic resource constrained project scheduling problem (SRCPSP) by evolving an

ensemble of priority rules (PRs). The proposed approach features with (1) integrating the critical

path method into the resource-based policy class to generate schedules; (2) improving the existing

single hyper-heuristic project scheduling research to construct a suitable solution space for solving

SRCPSP; and (3) bettering genetic evolution of each subpopulation from a decision ensemble with

three different local searches in corporation with discriminant mutation and discriminant

population renewal. In addition, a sequence voting mechanism is designed to deal with

collaborative decision-making in the scheduling process for SRCPSP. The benchmark PSPLIB is

performed to verify the advantage of the HH-EGP over heuristics, meta-heuristics and the single

hyper-heuristic approaches.

Key words: Ensemble decision; Genetic programming; Hyper-heuristics; Priority rule; Stochastic

resource constrained project scheduling

1 Introduction

As one of the most important problems in project management, resource constrained project

scheduling problem (RCPSP) involves planning a set of activities while considering various

resource and precedence constraints. It is an NP-hard problem (Blazewicz, Lenstra, & Kan, 1983)

with a wide range of industrial application scenarios, such as semiconductor wafer fabrication

(Wang, Zhang, & Wang, 2018), software development (Chen & Zhang, 2013), and aircraft

assembly (Shan et al., 2017). And most often, the objective of RCPSP is to minimise the project

makespan (Arkhipov, Battaïa, & Lazarev, 2019; Hartmann & Briskorn, 2010), i.e., the completion

time of the last activity in the project.

There is a body of research on the problem solving methods and optimisation strategies. In

general, they can be categorised into the exact algorithms and heuristics-based approaches. The

exact algorithms (Brucker, Knust, Schoo, & Thiele, 1998; Chakrabortty, Sarker, & Essam, 2015;

Moukrim, Quilliot, & Toussaint, 2015) can effectively solve small-scale RCPSP, but, generally

speaking, their scalability is poor; in other words, their solution time will become unacceptable

when the problem scale increases. For solving large-scale RCPSP problems, heuristics-based

approaches have been widely used to obtain approximate optimal solutions with a rapid

scheduling process. In general, the heuristics-based methods can be divided into constructive and

meta-heuristic methods. The former relies on schedule generation scheme (SGS), which is often

classified as serial and parallel (Kolisch, 1996a), and determines an execution sequence of

activities through a large number of PRs, such as the most total successors and the latest finish

time (Kolisch, 1996b). In contrast, the latter iteratively optimises an initial population produced

randomly or according to a certain strategy to obtain an optimal solution. The meta-heuristic

methods usually have powerful global search capabilities, including simulated annealing (Boctor,

1996), genetic algorithm (Kadri & Boctor, 2018; Mendes, Gonçalves, & Resende, 2009), particle

swarm optimisation (Jia & Seo, 2013), and hybrid algorithm (Bettemir & Sonmez, 2015; Chen et

al., 2010).

An important common assumption of the above studies is that the duration of an activity is

deterministic and unvaried during the project implementation, although this assumption is difficult

to maintain in the real world. During an industrial production process, there exist many

disturbance factors on a planned activity, including machine faults, resource shortages and the

most common factor - human influences, which lead to some deviations of an activity’s duration

from its expected ideal value. For example, in an assembly production process, workers, tools and

other resources required by an assembly operation are fixed, but the duration of this operation can

be varied due to factors such as human emotion and proficiency. In order to deal with this duration

time uncertainty, there are two common strategies for RCPSP, namely proactive/reactive

scheduling (Lamas & Demeulemeester, 2016) and stochastic scheduling (Chen et al., 2018). The

former does not violate the concept of activity duration as a value, but either by adding activity

buffers based on estimation (proactive scheduling), or repairing illegal schedule caused by

dynamic factors through the updated information (reactive scheduling) (Davari &

Demeulemeester, 2019). The latter solves a stochastic resource constrained project scheduling

problem (SRCPSP) extended from RCPSP, and it adopts a distribution to replace a fixed activity

duration and has gained more and more attention in recent years. In SRCPSP, the most commonly

used objective function becomes the minimum expected makespan, leading its solution as a

scheduling policy rather than a schedule itself (Möhring, Radermacher, & Weiss, 1985).

Currently, most existing SRCPSP methods are mainly based on meta-heuristics or

priority heuristics. To our best knowledge, there is a lack of hyper-heuristic method in SRCPSP,

which incorporates learning mechanisms into search methods for selecting or generating heuristics

to solve combinatorial optimisation problems effectively in a heuristics computational time (Burke

et al., 2013). The hyper-heuristics approach is supposed to have better optimisation ability and fast

response ability, which are very important for most common scheduling scenarios, especially when

solving dynamic problems. And its effectiveness has been verified in job shop scheduling (Nguyen

et al., 2012) and static project scheduling (see Section 2.3 for details).

 In this paper, a new hyper-heuristic-based ensemble genetic programming framework

(HH-EGP) is proposed for generating a decision ensemble that contains a set of evolved PRs. It

controls the evolution of multiple subpopulations (single hyper-heuristics) for selecting optimal

PRs to form a decision ensemble and to achieve collaborative decision scheduling. Thus, it can

achieve better scheduling than traditional PRs, meta-heuristics and the single hyper-heuristic

methods by evolving PRs under a heuristic computing time. Compared with the existing research,

the main contributions of this study are as follows:

1. An HH-EGP framework to effectively evolve a decision ensemble with multiple PRs for

solving SRCPSP and realise the benefits of applying the hyper-heuristic scheduling and

ensemble scheduling technology in the SRCPSP problem for the first time.

2. Design of a sequence voting mechanism to achieve collaborative decision-making in

SRCPSP.

3. Modification of the basic components in existing hyper-heuristic studies and

improvement of the subpopulation evolution process.

Section 2 first shows the problem description and related mathematical definition of SRCPSP.

and then more specifics on the related work, the motivation of this study and its novelties and

differences compared with related work are described. Section 3 introduces some modified basic

components in HH-EGP, including policy class, PR coding structure, attribute/terminal set and

function set. The evolution process of decision ensemble and subpopulations in HH-EGP and the

designed collaborative decision mechanism are described in Section 4. In Section 5, experiments

and results are given to verify the effectiveness and superiority of this method. In Section 6,

conclusions are drawn with discussions on the potential merit and future research directions of

HH-EGP.

2 Problem definition and related work

2.1 Definition and problem description of SRCPSP

The description of SRCPSP is based on RCPSP, which contains a project represented by a

directed acyclic graph G(V, E), and its structure is shown in Fig.1 with 12 activities as an example.

The nodes V = {0, 1, …, n+1} represent n+2 activities, in which activity 0 and activity n+1 are

dummy activities to indicate the beginning and end of the project. The arrowed connection (E)

between two activities represents the precedence relationships between activities. In the process of

project implementation, |K| renewable resources are required and each resource has a constant

maximum supply Rk. Each activity i of SRCPSP has two important attributes: a fixed set of

resource requirements and an activity duration subject to a known distribution over a range.

Suppose rik and di are the demand of activity i for resource k and its duration, respectively. P(B)

represents the occurrence probability of event B to measure the duration randomness. Let Si and

PSi represent the successors and the predecessors of activity i, and sti refers to the start time of

activity i. The longest path from the beginning to the end of the project is called the critical path,

as shown by the red dotted arrow in Fig.1. It is worth mentioning that the critical path in the same

G(V, E) may change due to the duration uncertainty. The mathematical model of SRCPSP is as

follows:

activity

project

A1

A2

A3

A4

A6

A7

A8

A9

A10

A11

A12
Start

Dummy

activity

A5

resource

Possible

critical path

End

Dummy

activity

duration

Minimum

Expect

Maximum

Fig.1 The structure of SRCPSP

Objective:

*

*
1

()
min () / 100%

totalIns
ins ins

ins ins

E CP
devi totalIns

CP=

−
= 

d
 (1)

S.t:

 , ,j i i i i j j ist st d i V j S or st st d i V j PS−      −      (2)

,

t

ik k

i A

r R k K t T


     (3)

 0 1 0 10; (0) (0) 1n nr r P d P d+ += = = = = = (4)

 (0) 0iP d  = (5)

Referring to Chen et al. (2018), the objective of this paper is to minimise the average

percentage deviation of E(d) (expected makespan) and CP* (the critical path using the expected

durations d*) over multiple instances shown in Eq.(1), where totalIns represents the total number

of instances to be scheduled, and ins is the insth instance. In addition, Eq.(2) represents the

precedence constraint, i.e. all activities cannot start until their predecessors are completed. Eq.(3)

is the resource constraint, that is, the sum of the required resources of all activities in the execution

state cannot exceed the maximum supply at any time, where t is the time point, At is the set of the

executed activities at time t, and T is a maximum allowed time point. Eq.(4) indicates that the

duration of the dummy activity is 0 and no resources are required, and Eq.(5) shows that any

activity duration cannot be negative.

2.2 Existing scheduling approach for SRCPSP

In the existing SRCPSP methods, the precise algorithm is very rare, only including, to our

knowledge, a branch-and-bound (Stork, 2001) and a Markov chain (Creemers, 2015), and most

studies focus on priority heuristics or meta-heuristics scheduling, which are divided into two parts.

In the first part, an activity sequence will be produced through their priority mechanism, also

known as a solution. In priority heuristics, an activity sequence is generated based on activity

priorities, while, in meta-heuristics, it is produced by iteration. Then, in the second part, a policy is

adopted to transform this solution into activity start time without violating precedence and

resource constraints. Thus, how to sort activities and implement policies is very important in

solving SRCPSP.

2.2.1 How to sort activities with heuristics or meta-heuristics

The first key point to solve SRCPSP is how to sort activities, i.e., the ordering of activity

scheduling. A lot of methods have been proposed, and most of them are more inclined to

meta-heuristic method. Golenko-Ginzburg and Gonik (1997) proposed a meta-heuristic algorithm

composed of three sub-algorithms, whose functions are control, calculation and selection,

respectively. Tsai and Gemmill (1998) described a tabu search algorithm combining multiple tabu

lists and randomised short-term memory for this purpose. Ballestin and Leus (2009) designed a

greedy randomised adaptive search with descriptive sampling. Chakrabortty, Sarker, and Essam

(2017) combined six heuristics into a robust optimisation model to find higher quality solutions.

Fang et al. (2015) proposed an estimation of distribution algorithm using permutation-based local

search, and their experiments show that the algorithm has a clear dominance in the middle or high

distribution. In addition, evolutionary algorithm and swarm intelligence are gradually applied.

Ashtiani, Leus, and Aryanezhad (2011) introduced a genetic algorithm and Tahooneh and Ziarati

(2011) applied the artificial bee colony algorithm to SRCPSP. In recent years, due to its fast

response and good solving ability, PRs-based heuristics have been considered and applied. Chen et

al. (2018) summarised the existing 12 PRs and designed five PRs based on statistics. Their

experiments analysed the pros and cons of different PRs, and proved that the optimal PRs have the

stronger solving ability under the fast response by comparing with different meta heuristics,

especially in the middle and high distribution. Wang et al. (2017) analysed the performance and

characteristics of 20 PRs for SRCPSP, and based on this study, Chen et al. (2019) considered the

dynamic factor of new project arrival, and further analysed the advantages and disadvantages of

the same 20 PRs.

2.2.2 Scheduling policies

 Another key point is how to convert the activity sequence into scheduling with scheduling

policies. Scheduling policies can be classified as static policies and dynamic policies (Chen et al.,

2018). In the static policy class, applied policies will not be changed during the whole execution

process and their relevant information is known before decision time, while policies in the

dynamic class will be applied dynamically with seeking a best policy to apply step by step in the

process, thus the solution with dynamic policies may be just a temporary solution, which needs to

be updated or repaired in an dynamic way with the activity completion or other new information

acquisition. Although the dynamic policies are more flexible and more adaptable, applying them

takes a lot of computing time. This gives the reason why the use of static policies is more widely

adopted (Chen et al., 2018; Li & Womer, 2015).

Based on the current research (Ashtiani, Leus, & Aryanezhad, 2011; Chen et al., 2018;

Rostami, Creemers, & Leus, 2018), the static policies are divided into the following six sub-classes:

resource-based policy class (RB-policies), activity-based policy class (AB-policies), earliest-start

policy class (ES-policies), pre-selective policy class (PS-policies), pre-processor policy class

(PP-policies) and generalised preprocessor policy class (GP-policies). The characteristics of these

polices can be summarised into three categories.

(1) Direct policy category

RB-policies and AB-policies fall into this category because they can be directly applied

without invoking additional decision-making strategies. The function of RB-policies (Ashtiani et

al.,2011) is similar to that of parallel SGS in RCPSP, that is to say, for an ordering L of all

activities, a decision maker should start as many activities as possible without violating resource

constraints and precedence constraints according to the order in L at each decision time.

RB-policies are neither monotone nor continuous (Radermacher, 1981), so they are associated

with Graham anomalies (Graham, 1969). Graham anomaly is an abnormal phenomenon that the

decrease of an activity duration will lead to the increase of the makespan. On the basis of

RB-policies, AB-policies (Ballestín, 2007) add a start-start (SS) side constraint, that is, any

activity in ordering L cannot start before its predecessors start, so AB-policies are often continuous

and monotonous (Chen et al., 2018).

(2) Policy category with minimal forbidden set

By introducing a minimum forbidden set, Radermacher (1981) and Igelmund and

Radermacher (1983) proposed ES-policies and PS-policies, respectively. A forbidden set is a

subset of all activities in which the sum of resource requirements (one or more resources) between

any two activities is greater than the resource availability, so they cannot be executed at the same

time. If any subset of the forbidden set breaks this condition, it is called the minimum forbidden

set (Stork, 2001). If a finish-start (FS) constraint is added between activities in the minimum

forbidden set, that is, one activity must start after another activity is completed, then the original

logical relationship between activities will be extended to calculate the earliest start time without

resource limitation. ES-policies and PS-policies are two different expressions based on this idea.

An ES-policy is a set of FS constraints while a PS-policy is an activity sequence.

(3) Policy category with extra constraint

Consistent with ES-policies and PS-policies, PP-polices proposed by Ashtiani et al. (2011)

firstly have the logical relationship of original activities by adding extra FS constraints. The extra

FS constraints are added through the extra meta-heuristic. Inspired by this, Rostami, Creemers,

and Leus (2018) found that the extension of activity logical relationship would rely not only on

extra FS constraints, but also on SS constraints. Thus, GP-policies are proposed and a

meta-heuristic algorithm is designed to find these constraints. Their experiments show that the

extra FS and SS are effective for optimising the expected makespan.

2.3 Application of hyper-heuristics in project scheduling

Although many approaches have been proved to be effective, both PRs and meta-heuristics

have some defects. For meta-heuristics, their optimisation needs to be iterative, resulting in a lot of

computing time, which limits their applicability and practicability as the problem scale increases.

At the same time, meta-heuristics always need a lot of random operations, such as crossover and

mutation in genetic algorithm, which reduce their stability, especially in the case of a problem

with randomness, thus weakening their solving ability. On the contrary, PRs can achieve rapid

response and effective scheduling, but have no optimisation ability. From relevant research (Chen

et al., 2018, 2019; Wang et al., 2017), we can see that the pros and cons of PRs are related to data

characteristics and objective functions.

In order to overcome these defects, hyper-heuristic methods attract a growing number of

attentions and are gradually used in project scheduling in recent years, since their optimisation

process involves selection, combination and generation of heuristics. At the beginning, only

greedy search (Anagnostopoulos & Koulinas, 2012) or threshold accepting (Koulinas &

Anagnostopoulos, 2012) was used to realise heuristic control. Then, meta-heuristics such as

evolutionary algorithm and swarm intelligence are incorporated into hyper-heuristic optimisation.

In addition to a hyper-heuristic framework based on particle swarm optimisation proposed by

Koulinas, Kotsikas, and Anagnostopoulos (2014), genetic programming becomes the main way for

hyper-heuristic project scheduling. Lin, Zhu, and Gao (2020) constructed a genetic programming

framework, which incorporated 10 low-level heuristics, for solving RCPSP by considering

multi-skills and employing the design-of-experiment method to investigate the effect of relevant

parameters. Chand et al. (2018) proposed a genetic programming algorithm to solve RCPSP by

evolving and generating new PRs and verified its superiority by comparing with traditional PRs.

On this basis, Chand, Singh, & Ray. (2019) further considered dynamic resource disruptions and

validated the effectiveness of genetic programming with evolutionary PRs.

2.4 Motivation and contribution

Based on the reviewing of the above existing research, our research motivations and

contributions are summarised as follows:

1. As a new way of project scheduling, hyper-heuristic has been paid more and more

attention in recent years, but the research is still at its infant stage. To the best of our knowledge,

there is no research to explore the effect of hyper-heuristic scheduling on SRCPSP. Generally

speaking, single hyper-heuristic scheduling may have the risk of insufficient stability under

dynamic scheduling problems (Hart & Sim, 2016). Therefore, our motivation is to explore the idea

of ensemble learning-based scheduling for better than the single hyper-heuristic scheduling. It is

expected to achieve better results through multiple PRs collaborative scheduling, which is a

common idea in classification and regression (Polikar, 2006). Thus, in this paper, an HH-EGP

framework is proposed to apply hyper-heuristic and ensemble learning for solving SRCPSP for the

first time.

2. In order to implement HH-EGP, some basic components have been first modified (see

Section 3) to allow combining the critical path method with RB-policies to obtain the excellent

schedule. This is because that the evaluation of decision ensemble or PRs depends on policy

classes as evidenced in (Chen et al., 2018) and (Villafáñez et al., 2019).Secondly, according to the

characteristics of SRCPSP and to guarantee a complete solution space, we design a coding

structure with discriminant and modify the function set and terminal/attribute set to form a new

PR structural representation.

3. Due to the aforementioned changes, the existing voting or other cooperative mechanisms

in scheduling field are not suitable for SRCPSP. Therefore, we design a new sequence voting

mechanism, through the cooperation between PRs to generate a final priority sequence at each

decision time for achieving RB-policies collaborative scheduling. Meanwhile, we design and

integrate three local searches, discriminant mutation and discriminant population renewal to

improve the evolutionary process of each subpopulation (see Section 4).

Based on the benchmark PSPLIB (Sprecher & Kolisch, 1996), experiments are carried out

under five distributions to verify the superiority of the proposed method and further analyse the

influence of the number of subpopulation individuals and decision PRs on its performance.

3 The framework of HH-EGP

The framework of HH-EGP is shown in Fig.2, which includes its evolution process and

contribution. As can be seen from the left of Fig.2, HH-EGP is to generate a better decision

ensemble through continuous iteration on the basis of initialisation. Some improvements are

needed in the key steps to achieve better evolution and collaborative decision-making, as shown

on the right of Fig.2. These improvements include two aspects: basic components displayed in

Yellow and the ensemble evolution in Green. In the basic components, two parts need to be

improved as the basis of initialisation and scheduling generation in HH-EGP. The first is the new

representation of each PR to complete individual initialisation, including the encoding structure

with discriminant, the modified function and the terminal/attribute set needed to form this

structural expression. The second is the selection of policy classes needed for PRs or ensemble

scheduling to achieve the evaluation. In the ensemble evolution, three local searches, the

discriminant mutation and the discriminant renewal are partnered with crossover to improve the

subpopulation evolutionary process, resulting in better representative PRs to update the decision

ensemble. Meanwhile, a sequence voting mechanism is designed to evaluate the decision

ensemble with collaborative decision as the basis for the ensemble evolution.

HH-EGP

ContributionEvolution process

Initialize parameters, population

and the decision ensemble

Design representation structure and

modify function and attribute set

Select and improve policy class to

generate scheduling

Design voting mechanism to generate

activity sequence through

collaborative decision

Local search operation

Discriminant mutation operation

Discriminant renewal

Output final decision ensemble

Evaluate PRs within the

subpopulations

Select representative PRs to

update the decision ensemble

Evaluate the decision ensemble

Evolve the subpopulations

Whether the termination

conditions are met

Start

End

Y

N

Fig.2 The framework of HH-EGP

3.1 New structural representation of PR

3.1.1 The encoding structure of PR

In the existing hyper-heuristic research of evolution PRs, the PR structure usually uses an

arithmetic representation, which is a tree structure shown in Fig.3. The nodes in the bottom layer

are continuously transported through the functional symbols in the upper layer to form a priority

expression, and the result is (LS-EF)×DT. However, according to the performance analysis of PRs

by Kolisch (1996b) and Browning and Yassine (2010) in project scheduling, the outstanding PRs

may be to maximise or minimise some priority expression, such as the rule of the most total

successors and the early finish time rule. In addition the existing structure (Chand et al., 2018;

Chand, Singh, & Ray, 2019) only contains priority expressions. Thus in this paper, the

discriminant is added to the PR structure as shown in Fig.3. When the discriminant at the top level

is “fall”, the priority expression is minimised, and the maximisation is “rise”. Therefore, there are

more combinations, because the same priority expression can form two PRs through different

discrimination. The layer number corresponding to each node in the tree is called its depth and the

depth of the discriminant in the top layer is 0. Thus, the maximum depth of Fig.3 is 3.

Fall

*

- if

LS EF 0 DT RR

Fig.3 The example of PR structure

3.1.2 Modifying the terminal/attribute set

Chand, Singh, and Ray (2019) summarised some attributes in the deterministic duration in

RCPSP, but due to the characteristics of SRCPSP, we need to modify the existing attribute set in

two aspects. First, the RB-policies used in this paper will build a temporary scheduling and filter

out an eligible set at every decision time (see Section 4.2). The early start time for each activity in

the collection is consistent, so the early start in the static attribute is not needed. At the same time,

when the activity duration is uncertain, referring to the PRs summarised by Chen et al. (2018), we

take the duration as a priority attribute, then the original attribute set adds two attributes, Duration

and Total Successor Duration. Secondly, the calculation of all-time related attributes in the

training process depends on the expected duration d*, and the normalisation only calculates the

activities in the eligible set. The modified attribute set (newly added in Italic) and its calculation

formula are shown in Table 1.

Table 1 The attribute set of activity

Attribute Calculation formula

Early Finish (EFi) ,
max

i
t

j

EF
i j AE

EF


Late Start (LSi) ,
max

i
t

j

LS
i j AE

LS


Late Finish (LFi) ,
max

i
t

j

LF
i j AE

LF


Total Successor (TSi)
| |

| |-1

i
t

S
i AE

V


Total Successor Duration (TSDi)
*

*

1

i

j t

j Sj

j V

d i AE
d 






Duration (DTi)
*

*
,

max

i
t

j

d
i j AE

d


Resources Required (RRi)
| |

1

1 01

| | 0

K
ik

t

k

if r
i AE

K otherwise=







Average Resource Requirement (AvgRRi)
| |

1

1

| |

K

ik
t

k k

r
i AE

K R=



Maximum Resource Requirement (MaxRRi) max {1,2,...,| | },ik
t

k

r
k K i AE

R
 

Minimum Resource Requirement (MinRRi) min {1,2,...,| | },ik
t

k

r
k K i AE

R
 

AEt is the eligible set at time t

The attributes in modified attribute set are described as follows:

 EFi: The earliest finish time of activity i in the eligible set, of which calculation ignores

resource constraints.

 LSi/LFi: The latest start/finish time of activity i in the eligible set, and the resource

constraints are ignored when calculating.

 TSi: The total number of all immediate and non-immediate successors of activity i.

 TSDi: The duration sum of all immediate and non-immediate successors of activity i.

 RRi: The total number of resource types required for activity i.

 AvgRRi: The average resource requirement of activity i across its duration.

 MaxRRi: The maximum resource requirement of activity i across its duration.

 MinRRi: The minimum resource requirement of activity i across its duration.

3.1.3 The function set

On the basis of Chand et al. (2019), the function set extends three kinds of function operators,

whose calculation method is shown in Table 2.

Table 2 The function set

Symbol Function Formula Symbol Function Formula

+ Add(a,b) a b+ - Sub(a,b) -a b

* Mul(a,b) a b Neg Neg(a) -1 a

Exp Exp(a) ae Abs Abs(a)
0

1

a if a

a otherwise



− 

÷ Div(a,b)
/ 0

0

a b if b

otherwise





Max Max(a,b)

a if a b

b otherwise





Min Min(a,b)
a if a b

b otherwise





If If(c,a,b)

0a if c

b otherwise

=



3.2 RB-policies integrated with critical path method

Within the six policy categories (see the Section 2), RB-policies are chosen in the proposed

HH-EGP for the following considering. According to the analysis (Stork, 2001), taking PSPLIB

data as an example, the average number of the minimal forbidden set in different instances is 326

with 30 activities, but the average value reaches 243871 when the activity number increases to 120.

Thus, if we adopt the policy class with minimal forbidden set, HH-EGP will increase a lot of

additional calculation. And for the policy class with extra constraint, from the research of Ashtiani

et al. (2011) and Rostami et al. (2018), there are no any effective direct methods, but turn to

meta-heuristics to add extra FS or SS constraints between activities. However, the search process

for adding extra constraints is contrary to the original intention of PRs scheduling to avoid

iteration. Therefore, the direct policy class is the best choice, in which RB-policies are better than

AB-policies in both efficiency and ability to obtain excellent objective value (Chen et al., 2018),

so the RB-policy class is our final choice.

In addition, we integrate the RB-polices with the critical path method as shown in Algorithm

I. It is known that RB-policies will generate an activity priority sequence, but this sequence is

known before the decision (sorted by one PR) and cannot change in the decision. However, when

the RB-policy is combined with the critical path method, this integrated approach can recalculate

the start time and finish time of each activity through the critical path method to generate a

temporary schedule at decision time, so that the generated sequence and activity priority will

change dynamically. In this way, the function of RB-policies is similar to that of parallel SGS in

RCPSP. Referring to Villafáñez et al. (2019), if parallel SGS generates a temporary schedule

according to the critical path method at every decision-making time, it will achieve better

scheduling because it can dynamically change the priority of activities and the sequence of

activities. Similarly, in SRCPSP, the dynamic change of activity priority is more important,

because the initial activity sequence only depends on the estimated value of one attribute.

Therefore, this paper designs an improved RB-policy integrated with the critical path method.

Algorithm I The RB-policy with the critical path method

Initialise decision time t = 0 and get all activities V in the project;

while |V|>0

 // Step 1: Temporary schedule construction

 Generate a temporary schedule according to the critical path method;

 // Step 2: Eligible set filtering

 Initialise the eligible set AEt;

 for i in V

 Get the predecessor set PSi of activity i;

 if all activities in PSi are completed

 Put the activity i in AEt;

 end if

 end for

 // Step 3: Priority assignment and sorting of activities

 Calculate the priority of each activity in AEt and maximise or minimise sorting to generate

AEt1;

 // Step 4: Activity scheduling

 for i in AEt1

 if the remaining resources can meet the requirement of activity i

 schedule activity i and remove i from V;

 update remaining resources;

 end if

 end for

 set t =the minimum completion time of the started activities;

end while

Note that because RB-policies are based on greedy use of resources, it will bring Graham

anomalies. The reason for Graham anomaly is that the project itself has changed, such as reducing

the duration of one activity. In this paper, the RB-policies combined with the critical path only

makes the priority and activity sequencing change dynamically without changing the project

characteristics. Therefore, this integrated approach only dynamically calculates the priority

without changing the project structure. Therefore, it does not affect the characteristics of

RB-policies, that is, it can neither eliminate Graham anomalies nor bring about additional

problems.

4 The evolution of HH-EGP

Unlike the single hyper-heuristic, HH-EGP is based on a decision ensemble rather than a

single PR. A decision ensemble contains multiple PRs, each of which is evolved by a

subpopulation. Each PR in the decision ensemble is equal, that is, HH-EGP does not assign more

weight to a particular PR decision or prefer any particular PR. Therefore, the ensemble scheduling

is to measure the activity priority sequence determined by each PR to generate a comprehensive

sequence at each decision time, i.e., HH-EGP generates scheduling results through multiple single

hyper-heuristics cooperative decisions.

Ensemble evolutionInitialization

Step 3:Population initialization

Step 2:Parameter acquisition

The subpopulation

number Subnum

The subpopulation

size SubSize

The maximum

iteration Maxgen

The mutation rate RPm The crossover rate RPc

Expression initialization Discriminant initialization

Step 1:Obtain all instances

Step 4:Decision ensemble initialization

Evaluate the first

unmanaged subpopulation

Select the best PR into the

decision ensemble

The decision set

contains the identical or

similar PR

Label the current sub-

population

All subpopulations

 are evaluated

N

Y

Step 8: Output the final decision ensemble

Step 5: Subpopulation evolution

Crossover Local search
Discriminant

renewal

Discriminant

mutation

Step 6: Evaluate the current sub-population and select the new

optimal PR

Step 7: Ensemble update

Replace the

corresponding old PR

with the new PR to form

a new decision ensemble

All sub-populations have completed the evolution

Whether the maximum

 iteration are reached

The new decision

ensemble is better

Accept the new ensemble

Enter the next

generation

Start

Output the initial

decision ensemble

Y

N

N

Y

No operation

Y

N

Y

N

End

Fig.4 The evolutionary process of HH-EGP

The goal of HH-EGP is to generate a decision ensemble through evolution (initialisation and

iteration), and the evolutionary process of HH-EGP is shown in Fig.4, in which the highlighted

part represents its main execution steps. As can be seen from Fig.4, the evolutionary process of

HH-EGP mainly includes two parts, initialisation and ensemble evolution. The main work of

initialisation is to prepare all the inputs needed in the iteration, including obtaining instances to

evaluate PRs and the decision ensemble, setting parameters, initialising population based on gene

structure, and initialising the decision ensemble by selecting representative PR of each

subpopulation. There are four steps in the ensemble evolution. Firstly, each subpopulation evolves

itself to form a new PRs through genetic operators. Secondly, the optimal new PR is selected to

update the decision ensemble. Thirdly, the scheduling ability of the new ensemble is evaluated to

decide whether to accept the new ensemble. And finally, when the termination condition is

reached, the final decision ensemble will be output. It is worth mentioning that the data under all

conditions are difficult to be obtained in practice. Therefore, the evolution of HH-EGP can only be

carried out under the available data, i.e., the training set, while in the execution of HH-EGP (Fig.4),

the involved instances are the training set. From Fig.4, the two key problems of HH-EGP are how

to iterate the subpopulation and how to evaluate the decision ensemble, that is, how to make

collaborative decision.

4.1 Subpopulation iteration

In HH-EGP, the PRs contained in the decision ensemble are derived from multiple

subpopulations for recommendation. Therefore, the subpopulation iteration is the basis of forming

a better decision ensemble, including initialising subpopulation, generating new PRs, evaluating

new PRs and updating subpopulation.

4.1.1 Population initialisation and PR evaluation

Before the iteration in Fig.4, each subpopulation needs to be initialised, i.e., PRs with

different structure as shown in Fig.3 are generated. Due to the structure characteristic, the

initialisation of PRs is divided into two parts. The priority expression in the lower layer is

generated by the classical ramped half-and-half method, and its maximum depth is controlled

between 2 and 6 (Luke & Panait, 2001), while the discriminant is controlled by a random number,

that is, if the generated random number is less than 0.5, it is "fall", otherwise it is "rise". In

addition, PR evaluation depends on Eq.(1), where the expected makespan E(d) of a single instance

is the scheduling result according to Algorithm I when all activities take the expected duration d*.

In this way, during the training process, PRs only need to perform scheduling once in a single

instance, thus greatly reducing the computation amount and time.

4.1.2 Population evolution

Population evolution is a key part of subpopulation iteration in HH-EGP because it can

generate different new PR structure by splitting and combining, and its execution process is shown

in Algorithm II.

Algorithm II The evolution of subpopulation

// Step 1: Obtain subpopulation and parameters

Obtain the subpopulation, the decision ensemble, the mutation rate RPm and the crossover rate

RPc;

Copy old subpopulation to generate a temporary subpopulation

// Step 2: Crossover operation

Shuffle randomly to produce a non-repeating sequence;

for num:Subsize/2

 if random< RPc

 Obtain two individuals from temporary subpopulation according to sequence order and

perform crossover;

 Insert the new individual into the corresponding position;

 end if

end for

// Step 3: Local search operation

for num: Subsize

 Get the numth individual in the temporary subpopulation;

 Generate a random integer randint from 0 to 2;

 switch(randint)

 case 0: subtree replacement local search;

 break;

 case 1: node replacement local search;

 break;

 case 2: subtree deletion local search;

 break;

 end switch

end for

// Step 4: Discriminant mutation operation

for num: Subsize

if random< RPm

 Get the numth individual in the temporary subpopulation;

Execute discriminant mutation;

 end if

end for

// Step 5: Discriminant subpopulation renewal

if the old subpopulation is labelled

 Delete all identical or similar individuals in the old subpopulation with the decision ensemble;

end if

Merge the temporary subpopulation into old subpopulation;

Select Subsize optimal individuals from old subpopulation to form next subpopulation;

1 Crossover

In genetic programming, the common way of crossover is subtree crossing (Zhou, Yang. &

Zheng, 2019), which is that two parent individuals exchange their part subtree to form new

individuals, as shown in (a) of Fig.5.

Exchange
 part

Fall

*

-

LS EF

Rise

+

RR

Original individual

LF DT

exchange

 individual

Processed
part

Fall

*

LF RR

Rise

+

-LS EF DT

one new

individual
another new

individual

(a) crossover

Neg

TS

exchange

subtree

Fall

*

Neg RRTS

new

individual

(b) subtree replacement local search

+

exchange

node
Fall

*

+LS EF RR

new

individual

(c) node replacement local search

Fall

RR

new

individual

(d) subtree deletion local search

Fig.5 Crossover and local searches

2 Local searches

Different from the existing research (Chand et al., 2018; Chand, Singh, & Ray, 2019; Lin,

Zhu, & Gao, 2020), this paper designs three local searches to replace the mutation operation in

genetic programming, so as to obtain more combination ways to provide more choices for the

decision ensemble composition. The examples of three local searches are shown in (b), (c) and (d)

of Fig.5.

Subtree replacement local search: this local search comes from the mutation of genetic

programming, that is, replacing a part of the original tree with a new randomly generated subtree,

which may increase the new characteristics that do not exist in the original population.

Node replacement local search: different from others, this local search will not change the

tree structure, but only replace one of the nodes with the same property. For example, if the

selected node is the function symbol “+”, it can only be replaced by other function symbols with

two child nodes, such as "-", when performing the local search. In addition, if the selected node is

"if", its first child node will be replaced, for example, converting from "0" to "1" to change the

selection of "if".

Subtree deletion local search: it is not necessary that all subtrees of an overly complex

structure tree are effective, so this paper designs the local search to randomly delete some subtrees.

There are two special cases in performing this local search: 1) if the parent node of the selected node

for deletion is "if", then its judgment node "0" or "1" should also be deleted; 2) If its parent node has

only one child node, we will randomly select an attribute from the terminal set to replace the subtree

with its root node.

3 Discriminant mutation

Although three local searches are used to replace the original genetic programming mutation

to realise further changes of structure tree, due to the coding particularity, a discriminant mutation

is designed to transform the top discriminant. As shown in Algorithm II, when the generated

random number is less than the mutation rate, it will become "rise" if the top-level discriminant of

the original individual is "fall".

4 Discriminant population renewal

This discriminant population renewal is to eliminate the identical or similar individuals in the

decision ensemble, which refers to the same or similar priority expression generated by the

inconsistent structure tree. For example, in Fig.6 (a), the priority expressions generated by two

different structure trees are the same (LS-RR)×EF, while in (b), although they are 2EF and EF2,

respectively, the earliest start time of each activity cannot be negative, so their effects are the same.

All the labelled subpopulations in Fig.4 will perform this operation to destroy the existing optimal

individuals to re-evolve, resulting in avoiding multiple identical or similar individuals in the

decision ensemble to affect collaborative decision-making.

Fall

-

* *

LS EF RR EF

Fall

*

- EF

LS RR

(a) identical individuals

Fall

+

EF EF

(b) similar individuals

Fall

*

EF EF

Fig.6 The same or similar individuals

4.2 Ensemble evaluation

Similar to the individual evaluation, the ensemble evaluation is also to calculate the objective

function Eq.(1) after scheduling in multiple instances, so the key is how to realise the

collaborative decision between PRs at every decision time when scheduling. In job shop

scheduling, an ensemble decision is to continuously select the job with the highest priority by

voting or other ways (Hart & Sim, 2016; Park et al., 2018; Part et al., 2015). However, the

principle that only one job can be selected at each decision time is contrary to RB-policies, whose

principle is shown in Algorithm I that multiple activities can be scheduled at decision time after

ranking the eligible set as long as the relevant constraints are not violated. Therefore, a sequential

voting mechanism is designed in this paper shown in Algorithm III, which can generate the final

sequence at each decision time by voting according to the multiple sequences of PRs, so as to

realise collaborative decision under SRCPSP.

Algorithm III The sequence voting mechanism

// Step 1: Obtain input and initialisation

Obtain the current eligible set AEt, the decision ensemble DE;

Initialise the final sequence Sfinal;

// Step 2: PR independent prioritisation

for PR in DE

 Calculate activity priority based on PR expression and sort AEt;

end for

// Step 3: Collaborative decision sequencing

while the number of activities in Sfinal is less than the size of AEt;

 Initialise a temporary set TS;

 for PR in DE

 Select the first activity of PR corresponding sequence to add to TS;

 end for

 Count the occurrence number of each activity in TS and select the activity with the

maximum number;

 if the maximum number of multiple activities is equal

 Select the activity with the lowest code;

 end if

 Add the selected activities to Sfinal;

 for PR in DE

 Delete the selected activity from PR corresponding sequence;

 end for

end while

In order to further understand Algorithm III, take the collaborative scheduling of 4 activities

with 3 PRs as an example, and the process of generating the final sequence is shown in Fig.7. First

of all, each PR in the decision ensemble will calculate the priority of each activity in the eligible

set according to its own representation and generate a sequence by sorting the eligible set shown

in (a) of Fig.7. Then, each PR will recommend the activity with the highest priority to the decision

ensemble, and the decision ensemble will then select the one with the most recommended number,

as the A1 in Fig.7 (a). If there is a tie in this process, for example, supposed that the activity with

the highest priority of PR1 in Fig.7 (a) is A4 rather than A1, then the recommended number of A1,

A3 and A4 are equal. The decision ensemble will select the smallest code activity (A1) rather than

random selection to avoid instability of decision ensemble in each scheduling. Next, when the

optimal activity A1 is obtained, it will be added to the final sequence and removed from each PR

corresponding sequence because the activity has been decided, and the result is shown in Fig.7 (b).

In Fig.7 (b), the A3 recommended by PR2 in the first round is not added to the final sequence, so

PR2 will continue to recommend activity A3. PR1 and PR3 will recommend the highest priority

activity in the sequence after removing A1, i.e., A4 and A3, respectively. By analogy, the decision

set will be selected again in a new set of recommended activities in such a cycle until all activities

are selected to generate the final sequence as shown in (d) of Fig.7.

PR1 PR2 PR3PR1

A1

A4

A3

A2

PR2

A3

A1

A4

A2

PR3

A1

A3

A2

A4

A4

A3

A2

A3

A4

A2

A3

A2

A4

final

sequence
A1 A3 A4 A2

(a) (b)

(d)

A1 A3

PR1 PR2 PR3

A4

A2

A4

A2

A2

A4

(c)

A4

Fig.7 The sequence voting mechanism

5 Computational experiments

5.1 Experimental setup

All experiments are performed on an Intel Core i5-4200 quadcore processor computer with

2.50 gigahertz clock speed and 8 gigabyte RAM, and all HH-EGP related programs are coded in

Java using MyEclipse 2017 CI. The parameters of HH-EGP mainly refer to Chand et al. (2019),

and the related values are shown in Table 3, where value is the parameter value of HH-EGP, and

valueR is the parameter value in Chand et al. (2019). Since it is not an ensemble scheduling

problem in Chand et al. (2019), there are no values of Subnum and SubSize.

Table 3 The parameters of HH-EGP

Name Symbol value valueR

subpopulation number Subnum 6
N/A

subpopulation size SubSize 40

mutation rate RPm 0.2 0.1

crossover rate RPc 0.9 0.9

maximum number of iterations Maxgen 25 25

By referring to Ballestín (2007), Ballestin and Leus (2009), Ashtiani et al. (2011), Fang et al.

(2015), Chen et al. (2018) and Rostami et al. (2018), the main verified data in this paper are the

J120 set in PSPLIB, which contains the largest activity number in PSPLIB and includes 600

different instances (obtain at http://www.om-db.wi.tum.de/psplib/ library.html). In addition, the

J30, the J60 and the J90 of PSPLIB, all of which include 480 instances, are also used to verify the

generalisation performance of HH-EGP compared with traditional PRs. The five different

distributions are adopted as shown in Table 4, including two low variance distributions, two

medium variance distributions and one high variance distribution. Under each distribution, the

expected activity duration is equal to the deterministic activity duration in PSPLIB, and the

generation of random number with different distributions depends on math3.jar in Java.

Table 4 five distributions of activity duration

Distribution type Code Range Variance

Uniform distribution

U1
' ' ' 'U(,)pa pa pa pad d d d− +

d’

pa/3

U2
'U(0, 2)pad

(d’

pa)2/3

Beta distribution

B1
' ' ' 'B(/ 2,2 , / 2 1/ 3, 2 / 3)pa pa pa pad d d d− −

d’

pa/3

B2
' 'B(/ 2,2 ,1/ 6,1/ 3)pa pad d

(d’

pa)2/3

Exponential distribution E
'E()pad

(d’

pa)2

As described in Section 4, a training set should be selected for participating in the evolution

of HH-EGP, while PSPLIB divides every 10 instances into a group according to similar design

parameters (Sprecher & Kolisch, 1996), so we choose the first 50% of each group in the J120 to

form a training set including 300 instances to meet more different conditions. At the same time,

the test set used to obtain the experimental results in Section 5.2 to Section 5.4 consists of four

parts, which are composed of all instances in the J30, the J60, the J90 and the J120, respectively.

In each part, the performance evaluation of different methods depends on Eq.(1), in which E(d) is

replaced by means of 1000 simulations to achieve sufficient accuracy (Chen et al., 2018).

http://www.om-db.wi.tum.de/psplib/%20library.html

5.2 Comparison with heuristics and meta-heuristics

5.2.1 Objective value comparison under the J120

Because there are no hyper-heuristic methods to solve SRCPSP, in this part, we chose the

existing heuristic and meta-heuristic methods for comparison. In heuristics, 17 PRs are derived

from Chen et al. (2018), including 12 direct PRs and 5 simulation-based PRs, and their results

tested under the J120 are shown in Table 5. In addition, HH-EGP is executed 10 times to train 10

decision ensembles, and the scheduling objective values tested under the J120 are shown in Table

6, where Num represents the number of experiments. The objective values of the optimal direct PR

(LFT) and simulation-based PR (SLFT) and the average objective values of HH-EGP under

different variance distributions are shown in Fig.8.

Table 5 The objective values of 17 PRs under the J120

PR U1 U2 B1 B2 E

LFT 48.05 55.59 48.05 55.56 70.95

LST 48.38 55.93 48.38 55.93 71.40

OGRPW 48.93 56.25 48.95 56.16 71.30

MTS 49.83 56.93 49.85 56.85 71.74

WCS 50.94 58.75 50.94 58.71 73.96

ACS 51.04 58.89 51.02 58.82 74.03

IRSM 53.79 61.56 53.78 61.45 76.32

MIS 54.90 61.57 54.88 61.45 75.65

RSM 57.78 64.70 57.75 64.56 78.59

GRPW 59.68 66.07 59.66 65.91 79.58

SPT 61.63 68.10 61.63 67.94 81.51

GRD 62.11 68.61 62.09 68.53 82.35

SLFT 48.04 55.48 48.04 55.45 70.76

SLST 48.41 55.79 48.40 55.73 71.01

CI 54.29 62.82 54.33 62.82 78.66

SMSLK 55.96 62.65 55.91 62.54 76.61

MAV 63.84 70.23 63.85 70.12 83.61

Table 6 The objective values of HH-EGP under the J120

Num U1 U2 B1 B2 E

1 44.27 50.86 44.82 52.87 64.56

2 44.22 50.80 44.76 52.8 64.52

3 46.03 52.38 46.59 54.59 66.04

4 45.03 51.66 45.59 53.83 65.45

5 44.21 50.78 44.75 52.78 64.38

6 44.54 51.12 45.08 53.19 64.81

7 44.09 50.75 44.63 52.73 64.52

8 44.48 51.16 45.04 53.19 65.06

9 45.24 51.93 45.81 54.16 66.12

10 44.19 50.82 44.71 52.75 64.51

avg 44.63 51.226 45.178 53.289 64.997

Fig.8 The objective values of PRs and HH-EGP under the J120

By comparing Table 5 and Table 6, regardless of the variance distribution, the objective

values of HH-EGP are superior to those of all PR, including direct PRs and simulation-based PRs.

Moreover, it can be seen from Fig.8 that the differences of objective values between optimal PRs

and HH-EGP do not decrease with the distribution variance increasing, even approaches to 6%

under high variance distribution. It shows that PR has no optimisation ability and the PR evolution

and collaborative decision-making are very effective in solving SRCPSP compared with a single

PR, thus proving the superiority of this method.

Meanwhile, five meta-heuristics were selected, which are the genetic algorithm with

AB-policies (GA-AB) proposed by Ballestín (2007), the greedy adaptive search procedure based

on AB-policies (GS-AB) described by Ballestin and Leus (2009), the two-phase genetic algorithm

with PP-policies (GA-PP) implemented by Ashtiani et al. (2011), the estimation of distribution

algorithm with RB-policies (ED-RB) developed by Fang et al. (2015) and the two-stage hybrid

meta-heuristic based on GP-policies (HM-GP) proposed by Rostami et al. (2018). The relevant

objective values under the J120 are shown in Table 7, where Schedules represents the scheduling

number, while the values in Table 7 are the optimal objective values of 5000 or 25000 schedules

performed in the above literature. The objective growth trend of HH-EGP and different

meta-heuristics with the increase of distribution variance is shown in Fig.9.

Note that the other two policies introduced in Section 2.2.2 in terms of ES-policies and

PS-policies, they are not listed in Table 7 for comparison with two main reasons. First, to the best of

our knowledge, we have not found the results of the two policies in PSPLIB. Secondly, the two

policies are based on the minimum forbidden set. As described in Section 3.2, the computational

complexity of the minimal forbidden set increases nonlinearly with the increasing scale of the

0

10

20

30

40

50

60

70

80

U1 U2 B1 B2 E

o
b

je
ct

iv
e

v
al

u
e

LFT SLFT HH-EGP

problem. Therefore, we believe that these two policies have little potential in practical application.

Table 7 The objective values of five meta-heuristics under the J120

Method Schedules U1 U2 B1 B2 E

GA-AB
5000 51.49 78.65 / / 120.22

25000 49.63 75.38 / / 116.83

GS-AB
5000 56.84 72.58 47.17 75.97 114.42

25000 45.21 70.95 45.60 74.17 112.37

GA-PP
5000 48.86 58.91 49.01 58.82 76.03

25000 47.21 58.07 47.25 57.95 74.56

ED-RB
5000 47.29 56.54 47.65 58.29 72.50

25000 46.66 56.07 47.04 57.82 72.05

HM-GP
5000 46.71 55.95 46.87 55.95 71.71

25000 44.98 55.37 45.12 55.42 71.29

Fig.9 The objective growth trend of HH-EGP and meta-heuristics under different distribution

It can be seen from Table 6 and Table 7 that even under multiple schedules (such as 5000 or

even 25000), the objective values of five meta-heuristics are still inferior to that of HH-EGP,

which only needs to be scheduled once in one instance. At the same time, it can be seen from Fig.9

that although some meta-heuristics can approach the accuracy of HH-EGP under the low variance

distribution, with the distribution variance increasing, the objective gap between them and

HH-EGP is gradually widening due to the large number of random operations in meta-heuristics. It

is worth mentioning that Table 7 shows the optimal rather than the average value under multiple

scheduling, and the mate-heuristics need to search again in the face of new data, resulting in a lot

of computation time waste. Thus, the superiority of HH-EGP is proved again, and the potential of

meta-heuristic is weaker than that of hyper-heuristic in dynamic problems.

40

50

60

70

80

90

100

110

120

U1 U2 E

o
b

je
ct

iv
e

v
al

u
e

GA-AB GS-AB GA-PP ED-RB HM-GP HH-EGP

5.2.2 Generalisation performance verification

In addition, in order to further verify the generalisation ability of HH-EGP, the J30, J60 and

J90 are used to test the training results in J120. The objective values of two optimal traditional

PRs (Chen et al., 2018) and HH-EGP are shown in Table 8, where Ins represents the instances, Dis

represents the distribution, and Numz represents the zth training result of HH-EGP. Because Chen

et al. (2018) did not carry out the traditional PR experiment in the J90, only the objective values of

HH-EGP in J90 are given. Under the J30 and the J60, the objective values of LFT and SLFT and

the average objective values of HH-EGP are shown in Fig.10 and Fig.11, respectively.

Table 8 The objective values of HH-EGP and traditional PRs under other instances

Ins Dis LFT SLFT Num1 Num2 Num3 Num4 Num5 Num6 Num7 Num8 Num9 Num10 Numavg

J30

U1 21.60 21.60 20.61 20.66 21.16 20.87 20.57 20.67 20.69 20.96 20.99 20.65 20.783

U2 30.89 30.83 29.53 29.64 29.98 20.83 29.47 29.58 29.68 30.03 29.86 29.60 28.82

B1 21.59 21.60 20.97 21.04 21.52 21.22 20.94 21.06 21.05 21.35 21.34 21.00 21.149

B2 30.87 30.76 31.07 31.11 31.58 31.25 30.98 31.05 31.19 31.58 31.46 31.06 31.233

E 46.47 46.32 44.61 44.67 44.95 44.76 44.43 44.58 44.73 45.10 44.89 44.56 44.728

J60

U1 19.94 19.89 18.53 18.50 19.14 18.83 18.53 18.63 18.47 18.66 18.94 18.48 18.671

U2 28.49 28.42 26.85 26.82 27.36 27.06 26.80 26.87 26.75 27.04 27.17 26.81 26.953

B1 19.95 19.90 18.88 18.85 19.51 19.17 18.88 18.96 18.81 19.01 19.27 18.81 19.015

B2 28.63 28.55 28.42 28.37 29.05 28.70 28.44 28.47 28.44 28.61 28.84 28.41 28.575

E 44.97 44.94 42.66 42.66 43.24 42.90 42.56 42.73 42.74 42.92 43.12 42.68 42.821

J90

U1 / / 17.04 17.00 17.69 17.27 17.05 17.11 16.98 17.17 17.35 16.98 17.164

U2 / / 24.81 24.75 25.38 24.97 24.78 24.86 24.73 24.95 25.13 24.73 24.909

B1 / / 17.34 17.31 18.02 17.57 17.34 17.42 17.29 17.49 17.66 17.30 17.474

B2 / / 26.36 26.33 26.99 26.61 26.38 26.42 26.31 26.50 26.80 26.31 26.501

E / / 40.47 40.42 41.02 40.65 40.37 40.54 40.36 40.67 40.92 40.38 40.58

As can be seen from Table 8, Fig.10 and Fig.11, when the decision ensemble trained under

the J120 is used to make decisions on the J30 and the J60, the objective values of other conditions

are better than the optimal traditional PRs except that the effect under B2 distribution is similar to

that of LFT and SLFT, which proves that HH-EGP has good generalisation performance. Despite

the lack of comparison, we also believe that the objective values of HH-EGP under the J90 is not

weaker than that of LFT and SLFT, because all subsets of PSPLIB depend on "ProGen" (Sprecher

& Kolisch, 1996) with different parameters.

Moreover, by comparing Fig.8, Fig.10 and Fig.11, it can be found that with the increase of

the activity number in the instances, the objective value gap between HH-EGP and traditional PRs

gradually increases (which is better than the traditional PRs under B2 distribution in the J120).

Thus, it can be proved that HH-EGP is more effective in dealing with large-scale SRCPSP.

Fig.10 The objective values of PRs and HH-EGP under the J30

Fig.11 The objective values of PRs and HH-EGP under the J60

5.3 Comparison with Single hyper-heuristic

In order to further explore the effectiveness of collaborative decision-making, we use a single

hyper-heuristic to compare with HH-EGP. Since there is no research on the use of hyper-heuristic

to solve SRCPSP, we adopt Fig.4 and algorithm III without collaborative decision to implement

0

5

10

15

20

25

30

35

40

45

50

U1 U2 B1 B2 E

o
b

je
ct

iv
e

v
al

u
e

LFT SLFT HH-EGP

0

5

10

15

20

25

30

35

40

45

50

U1 U2 B1 B2 E

o
b

je
ct

iv
e

v
al

u
e

LFT SLFT HH-EGP

the single hyper-heuristic for evolving rules. From Section 5.1, it can be seen that HH-EGP is

evolved from six subpopulations under the condition that the SubSize is equal to 40. In order to

ensure the same search amount in each generation, the single hyper-heuristic SubSize is 240 and

Table 9 shows the results of 10 evolutionary PRs (EPRs) obtained through 10 trainings. At the

same time, the fluctuating lines of HH-EGP and single hyper-heuristic (single-HH) under all

distributions in 10 training times are shown in Fig.12.

Table 9 The objective values of single hyper-heuristic under the J120

Num U1 U2 B1 B2 E

1 44.51 51.17 45.03 53.26 65.32

2 52.73 58.67 53.47 61.22 71.68

3 44.32 50.92 44.85 52.88 64.58

4 51.39 57.16 52.11 59.54 69.76

5 44.27 50.95 44.81 52.88 64.71

6 44.26 50.88 44.83 52.90 64.67

7 45.02 51.60 45.58 53.73 65.31

8 46.94 53.19 47.54 55.30 66.43

9 55.10 62.12 55.85 64.52 75.52

10 44.61 51.31 45.17 53.27 65.00

avg 47.315 53.797 47.924 55.95 67.298

Fig.12 The fluctuation lines of HH-EGP and single hyper-heuristic under all distributions

It can be seen from Table 9 that the average objective value of the single hyper-heuristic

under the same searches can be closer to HH-EGP than that of heuristics or meta-heuristics.

However, the fluctuation curve in Fig.12 shows that the single hyper-heuristic in the way of

evolving PR is unstable, and some EPRs are even worse than traditional PRs or meta-heuristics,

which can prove that the training of single hyper-heuristic has a certain degree of risk. On the

contrary, HH-EGP is very stable, which will reduce this risk, and further prove the effectiveness of

collaborative decision-making with multiple-heuristics and the superiority of HH-EGP.

In addition, each subpopulation in HH-EGP can be regarded as an independent single

40

45

50

55

60

65

70

75

1 2 3 4 5 6 7 8 9 10

O
b

je
ct

iv
e

av
lu

e

Training number

HH-EGP(U1)

single HH(U1)

HH-EGP(U2)

single HH(U2)

HH-EGP(E)

single HH(E)

HH-EGP(B1)

single-HH(B1)

HH-EGP(B2)

single-HH(B2)

hyper-heuristic. Then, HH-EGP can be described as a group of EPRs participating in collaborative

decision-making after Subnum training times under the condition that SubSize is equal to 40. In order

to explore whether this collaborative decision-making can improve the scheduling ability of single

EPRs, we took the first training result of HH-EGP as an example and scheduled the 6 EPRs that

made up HH-EGP separately. The results are shown in Table 10, where EPR1 to EPR6 represent

the EPRs in decision ensemble of HH-EGP.

Table 10 The objective values of EPRs under the J120

 U1 U2 B1 B2 E

EPR1 45.10 51.82 45.64 53.99 66.42

EPR2 44.84 51.54 45.38 53.65 65.7

EPR3 46.25 53.76 46.84 56.41 70.12

EPR4 45.43 52.25 46.00 54.26 66.08

EPR5 45.18 51.89 45.76 53.91 65.74

EPR6 48.99 55.05 49.68 57.36 67.94

HH-EGP 44.27 50.86 44.82 52.87 64.56

By comparing Table 9 and Table 10, we can see that the scheduling ability of evolved EPRs

from the single hyper-heuristic becomes weaker when the SubSize decreases, which leads to

insufficient search. However, it can be seen from Table 10 that when 6 EPRs make collaborative

decisions, the objective values will be better optimised, especially in the case of EPRs with poor

scheduling ability, such as EPR6, which can be made up by the help of other ERPs. The instability

of the single hyper-heuristic in Table 9 can be improved, thus verifying the effectiveness of

collaborative decision-making and HH-EGP.

5.4 Effects of SubSize and Subnum in HH-EGP

The validity and superiority of HH-EGP are verified by the above experiments. The influence

of parameters Subnum and SubSize on the HH-EGP performance is worthy of further exploration,

that is, when HH-EGP is used to solve different SRCPSP under the expected search amount, more

attention should be paid to let more EPRs participate in ensemble decision by weakening the

evolution ability of each subpopulation or allocating more calculation to let each subpopulation

evolve better EPR. Therefore, we designed five groups of experiments while keeping the total

search amount unchanged: Subnum=4 & SubSize=60, Subnum=5 & SubSize=48, Subnum=6 &

SubSize=40, Subnum=8 & SubSize=30 and Subnum=10 & SubSize=24, to reduce SubSize by expanding

Subnum, while keeping the total search (Subnum* SubSize) unchanged. The reason that two or three

subpopulations are not involved in the experiment is that they will produce a lot of couple ties in

the collaborative decision-making. According to the strategy described in Section 4.2, when the

Subnum are two or three, it is more likely to be the scheduling result of the first EPR in the

ensemble. After training 10 times under all conditions, the objective values are shown in Table 11

(when Subnum is 6, the results are shown in Table 6), and the mean values of different conditions

under low variance (U1) and high variance (E) are shown in Fig.13 and Fig.14.

Table 11 The objective values of HH-EGP with different parameters under the J120

Condition Num U1 U2 B1 B2 E

Subnum=4

SubSize=60

1 56.04 63.13 56.74 65.68 76.93

2 45.28 51.87 45.83 53.97 65.89

3 51.19 57.63 51.89 60.06 70.86

4 44.42 51.04 44.95 53.14 65.13

5 44.87 51.43 45.43 53.45 65.02

6 45.23 51.93 45.81 54.14 66.14

7 46.03 52.68 46.62 54.96 66.70

8 44.65 51.20 45.23 53.25 64.82

9 44.71 51.34 45.26 53.35 64.99

10 44.43 51.03 44.97 52.98 64.68

avg 46.685 53.328 47.273 55.498 67.116

Subnum=5

SubSize=48

1 44.69 51.32 45.22 53.27 65.05

2 46.53 53.36 47.11 55.35 67.16

3 44.25 50.80 44.79 52.80 64.47

4 45.30 51.78 45.88 53.87 65.28

5 44.88 51.44 45.45 53.58 65.04

6 44.43 51.03 45.00 53.09 64.77

7 44.22 50.77 44.75 52.74 64.55

8 44.81 51.49 45.36 53.59 65.62

9 45.73 52.12 46.33 54.23 65.56

10 44.39 50.99 44.96 53.1 64.98

avg 44.923 51.51 45.485 53.562 65.248

Subnum=8

SubSize=30

1 44.71 51.31 45.27 53.39 65.01

2 44.32 50.99 44.87 53.17 65.2

3 45.14 51.75 45.71 53.82 65.64

4 44.55 51.12 45.09 53.14 64.76

5 45.43 52.26 46.05 54.28 66.07

6 44.70 51.25 45.25 53.27 64.83

7 44.45 51.17 45.01 53.25 65.22

8 44.41 51.10 44.95 53.18 65.06

9 44.19 50.83 44.74 52.85 64.61

10 44.19 50.74 44.74 52.77 64.48

avg 44.609 51.252 45.168 53.312 65.088

Subnum=10

SubSize=24

1 44.55 51.17 45.1 53.31 65.1

2 44.23 50.80 44.75 52.76 64.45

3 44.88 51.50 45.45 53.58 65.25

4 45.25 51.99 45.83 54.04 65.71

5 44.95 51.48 45.53 53.51 65.01

6 44.25 50.86 44.8 52.86 64.65

7 44.72 51.38 45.26 53.51 65.55

8 46.54 53.11 47.18 55.17 66.57

9 44.99 51.65 45.57 53.63 65.27

10 45.17 51.85 45.75 54.08 65.96

avg 44.953 51.579 45.522 53.645 65.352

Fig.13 The mean value of HH-EGP with different Subnum under low variance distribution

Fig.14 The mean value of HH-EGP with different Subnum under high variance distribution

From the data in Table 6, Table 11 and Fig.13, it can be seen that the objective mean value

curve of HH-EGP is similar to parabola, which will degrade the scheduling performance when

Subnum is too small or too large. The reason for this phenomenon is that when Subnum is too small,

the probability of tie will increase at each decision time, so the actual scheduling is more inclined

to the first EPR in the ensemble and the voting proportion of a single EPR will be large. If there is

44.5

45

45.5

46

46.5

47

4 5 6 8 10

o
b

je
ct

iv
e

v
al

u
e

number of subpopulation

64.5

65

65.5

66

66.5

67

67.5

4 5 6 8 10

o
b
je

ct
iv

e
v
al

u
e

number of subpopulation

a poor EPR in the decision ensemble, the possibility that other EPRs can make up will be reduced.

On the contrary, if Subnum is too large, then SubSize of each subpopulation will be very small, so the

amount of searching is insufficient, resulting in the inability to provide better EPRs. At the same

time, by comparing Fig.13 and Fig.14, when the distribution instability increases, the lowest point

of the curve will move to the left, which can prove that in the face of very unstable problem

solving, too many EPRs in the decision set will have a bad impact on the decision.

To sum up, our experiment shows two characteristics of HH-EGP: 1) when Subnum is too

small or too large, the performance of HH-EGP will be reduced due to the insufficient number of

ERPs participating in ensemble decision or the insufficient search amount of each sub population.

Therefore, in the case of the same search amount, Subnum tends to the median as much as possible;

2) in the case of high variance distribution, the optimal point of Subnum is more to the left than that

of low variance distribution. Therefore, it can be seen that the number of EPRs involved in

ensemble needs to be reduced by using HH-EGP in the case of high variance distribution. Note

that whether the two characteristics are consistent with all common distributions (such as triangle

distribution) needs to be further verified in the future.

6 Conclusion

In this paper, an HH-EGP method is proposed to solve SRCPSP. To the best of our

knowledge, this is the first time to apply the idea of hyper-heuristic scheduling and ensemble

decision scheduling to SRCPSP. In order to achieve this goal, we have investigated the novel ways

of implementing the proposed framework of HH-EGP, namely adopting RB-policies combined

with the critical path method, modifying the function set, attribute set and coding structure

applicable to SRCPSP, improving the genetic programming evolution and designing a sequence

voting mechanism for collaborative scheduling. The effectiveness and superiority of this method

are verified by experiments, and the influence of subpopulation number and subpopulation size on

HH-EGP are analysed and explored. This method can not only improve the non-optimisation

ability of PRs, but also do not need a lot of meta-heuristic iterations in the decision-making

process, so it has a strong potential for future research.

At the same time, it can be seen from the experiments that HH-EGP has better effect than the

single hyper-heuristic in the case that each subpopulation search is less than that of the single

hyper-heuristic. Therefore, if HH-EGP can combine distributed computing technology such as

multi-agent, it has a potential advantage. Since the evolution of each subpopulation in HH-EGP is

independent, an agent can be assigned to each subpopulation to control the evolution, then

HH-EGP with multi-agents can get better SRCPSP results in the same training time. Accordingly,

if only the result of the single hyper-heuristic scheduling is needed, then HH-EGP can be allocated

with small population size, so that the computing time is less under multi-agent than the single

hyper-heuristic. Therefore, our future research on HH-EGP will focus on following two aspects.

First, we will expand the problem by adding more dynamic factors, so as to more widely verify

the performance of HH-EGP. Secondly, we will add distributed technology and machine learning

to HH-EGP, the latter is to play the role of data analysis and feature extraction, so as to replace the

existing known mathematical distribution. These technologies can provide some technical support

for the intelligent manufacturing and even digital twin.

Acknowledgements

This research is supported by the Major State Basic Research Program in Sichuan Province of China

(Grant number 20YYJC4377).The authors would like to thank the anonymous reviewers for their

valuable comments and constructive suggestions.

References

Anagnostopoulos, K., & Koulinas, G. (2012). Resource-constrained critical path scheduling by a

GRASP-based hyperheuristic. Journal of Computing in Civil Engineering, 26(2), 204-213.

Arkhipov, D., Battaïa, O., & Lazarev, A. (2019). An efficient pseudo-polynomial algorithm for

finding a lower bound on the makespan for the Resource Constrained Project Scheduling Problem.

European Journal of Operational Research, 275(1), 35-44.

Ashtiani, B., Leus, R., & Aryanezhad, M. B. (2011). New competitive results for the stochastic

resource-constrained project scheduling problem: exploring the benefits of

pre-processing. Journal of Scheduling, 14(2), 157-171.

Ballestín, F. (2007). When it is worthwhile to work with the stochastic RCPSP? Journal of

Scheduling, 10(3), 153-166.

Ballestin, F., & Leus, R. (2009). Resource‐constrained project scheduling for timely project

completion with stochastic activity durations. Production and Operations Management, 18(4),

459-474.

Bettemir, Ö. H., & Sonmez, R. (2015). Hybrid genetic algorithm with simulated annealing for

resource-constrained project scheduling. Journal of Management in Engineering, 31(5),

04014082.

Blazewicz, J., Lenstra, J. K., & Kan, A. R. (1983). Scheduling subject to resource constraints:

classification and complexity. Discrete Applied Mathematics, 5(1), 11-24.

Boctor, F. F. (1996). Resource-constrained project scheduling by simulated

annealing. International Journal of Production Research, 34(8), 2335-2351.

Browning, T. R., & Yassine, A. A. (2010). Resource-constrained multi-project scheduling: Priority

rule performance revisited. International Journal of Production Economics, 126(2), 212-228.

Brucker, P., Knust, S., Schoo, A., & Thiele, O. (1998). A branch and bound algorithm for the

resource-constrained project scheduling problem. European Journal of Operational

Research, 107(2), 272-288.

Burke, E. K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., & Qu, R. (2013).

Hyper-heuristics: A survey of the state of the art. Journal of the Operational Research Society,

64(12), 1695-1724.

Chakrabortty, R. K., Sarker, R. A., & Essam, D. L. (2017). Resource constrained project

scheduling with uncertain activity durations. Computers & Industrial Engineering, 112(Oct.),

537-550.

Chakrabortty, R. K., Sarker, R., & Essam, D. (2015). Resource constrained project scheduling: A

branch and cut approach. In Proceedings of the 45th international conference on computers and

industrial engineering Metz (Vol. 132).

Chand, S., Huynh, Q., Singh, H., Ray, T., & Wagner, M. (2018). On the use of genetic

programming to evolve priority rules for resource constrained project scheduling

problems. Information Sciences, 432, 146-163.

Chand, S., Singh, H., & Ray, T. (2019). Evolving heuristics for the resource constrained project

scheduling problem with dynamic resource disruptions. Swarm and evolutionary computation, 44,

897-912.

Chen, Z., Demeulemeester, E., Bai, S., & Guo, Y. (2018). Efficient priority rules for the stochastic

resource-constrained project scheduling problem. European Journal of Operational

Research, 270(3), 957-967.

Chen, H., Ding, G., Zhang, J., & Qin, S. (2019). Research on priority rules for the stochastic

resource constrained multi-project scheduling problem with new project arrival. Computers &

Industrial Engineering, 137, 106060.

Chen, W., Shi, Y. J., Teng, H. F., Lan, X. P., & Hu, L. C. (2010). An efficient hybrid algorithm for

resource-constrained project scheduling. Information Sciences, 180(6), 1031-1039.

Chen, W. N., & Zhang, J. (2013). Ant colony optimization for software project scheduling and

staffing with an event-based scheduler. IEEE Transactions on Software Engineering, 39(1), 1-17.

Creemers, S. (2015). Minimizing the expected makespan of a project with stochastic activity

durations under resource constraints. Journal of Scheduling, 18(3), 263-273.

Davari, M., & Demeulemeester, E. (2019). The proactive and reactive resource-constrained

project scheduling problem. Journal of Scheduling, 22(2), 211-237.

Fang, C., Kolisch, R., Wang, L., & Mu, C. (2015). An estimation of distribution algorithm and

new computational results for the stochastic resource-constrained project scheduling

problem. Flexible Services and Manufacturing Journal, 27(4), 585-605.

Golenko-Ginzburg, D., & Gonik, A. (1997). Stochastic network project scheduling with

non-consumable limited resources. International Journal of Production Economics, 48(1), 29-37.

Graham, R. L. (1969). Bounds on multiprocessing timing anomalies. SIAM Journal on Applied

Mathematics, 17(2), 416-429.

Hart, E., & Sim, K. (2016). A hyper-heuristic ensemble method for static job-shop

scheduling. Evolutionary Computation, 24(4), 609-635.

Hartmann, S., & Briskorn, D. (2010). A survey of variants and extensions of the

resource-constrained project scheduling problem. European Journal of Operational

Research, 207(1), 1-14.

Igelmund, G., & Radermacher, F. J. (1983). Preselective strategies for the optimization of

stochastic project networks under resource constraints. Networks, 13(1), 1-28.

Jia, Q., & Seo, Y. (2013). An improved particle swarm optimization for the resource-constrained

project scheduling problem. The International Journal of Advanced Manufacturing

Technology, 67(9-12), 2627-2638.

Kadri, R. L., & Boctor, F. F. (2018). An efficient genetic algorithm to solve the

resource-constrained project scheduling problem with transfer times: The single mode

case. European Journal of Operational Research, 265(2), 454-462.

Kolisch, R. (1996a). Serial and parallel resource-constrained project scheduling methods revisited:

Theory and computation. European Journal of Operational Research, 90(2), 320-333.

Kolisch, R. (1996b). Efficient priority rules for the resource‐constrained project scheduling

problem. Journal of Operations Management, 14(3), 179-192.

Koulinas, G. K., & Anagnostopoulos, K. P. (2012). Construction resource allocation and leveling

using a threshold accepting–based hyperheuristic algorithm. Journal of Construction Engineering

and Management, 138(7), 854-863.

Koulinas, G., Kotsikas, L., & Anagnostopoulos, K. (2014). A particle swarm optimization based

hyper-heuristic algorithm for the classic resource constrained project scheduling problem.

Information Sciences, 277, 680-693.

Lamas, P., & Demeulemeester, E. (2016). A purely proactive scheduling procedure for the

resource-constrained project scheduling problem with stochastic activity durations. Journal of

Scheduling, 19(4), 409-428.

Li, H., & Womer, N. K. (2015). Solving stochastic resource-constrained project scheduling

problems by closed-loop approximate dynamic programming. European Journal of Operational

Research, 246(1), 20-33.

Lin, J., Zhu, L., & Gao, K. (2020). A genetic programming hyper-heuristic approach for the

multi-skill resource constrained project scheduling problem. Expert Systems with

Applications, 140, 112915.

Luke, S., & Panait, L. (2001, July). A survey and comparison of tree generation algorithms.

In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001) (pp.

81-88). Morgan Kaufmann San Francisco, California, USA.

Mendes, J. J., Gonçalves, J. F., & Resende, M. G. (2009). A random key based genetic algorithm

for the resource constrained project scheduling problem. Computers & Operations

Research, 36(1), 92-109.

Möhring, R. H., Radermacher, F. J., & Weiss, G. (1985). Stochastic scheduling problems II-set

strategies. Mathematical Methods of Operations Research, 29(3),

65–104.

Moukrim, A., Quilliot, A., & Toussaint, H. (2015). An effective branch-and-price algorithm for the

Preemptive Resource Constrained Project Scheduling Problem based on minimal Interval Order

Enumeration. European Journal of Operational Research, 244(2), 360-368.

Nguyen, S., Zhang, M., Johnston, M., & Tan, K. C. (2012). A computational study of

representations in genetic programming to evolve dispatching rules for the job shop scheduling

problem. IEEE Transactions on Evolutionary Computation, 17(5), 621-639.

Park, J., Nguyen, S., Zhang, M., & Johnston, M. (2015, April). Evolving ensembles of dispatching

rules using genetic programming for job shop scheduling. In European Conference on Genetic

Programming (pp. 92-104). Cham: Springer.

Park, J., Mei, Y., Nguyen, S., Chen, G., & Zhang, M. (2018). An investigation of ensemble

combination schemes for genetic programming based hyper-heuristic approaches to dynamic job

shop scheduling. Applied Soft Computing, 63, 72-86.

Polikar, R. (2006). Ensemble based systems in decision making. IEEE Circuits and Systems

Magazine, 6(3), 21-45.

Radermacher, F. J. (1981). Cost-dependent essential systems of ES-strategies for stochastic

scheduling problems. Methods of Operations Research, 42, 17-31.

Rostami, S., Creemers, S., & Leus, R. (2018). New strategies for stochastic resource-constrained

project scheduling. Journal of Scheduling, 21(3), 349-365.

Shan, S., Hu, Z., Liu, Z., Shi, J., Wang, L., & Bi, Z. (2017). An adaptive genetic algorithm for

demand-driven and resource-constrained project scheduling in aircraft assembly. Information

Technology and Management, 18(1), 41-53.

Sprecher, A., & Kolisch, R. (1996). PSPLIB—a project scheduling problem library. European

Journal of Operational Research, 96, 205-216.

Stork, F. (2001). Stochastic resource-constrained project scheduling (Ph.D. thesis). Technical

University of Berlin

Tahooneh, A., & Ziarati, K. (2011, June). Using artificial bee colony to solve stochastic resource

constrained project scheduling problem. In International Conference in Swarm Intelligence (pp.

293-302). Berlin, Heidelberg: Springer.

Tsai, Y. W., & Gemmill, D. D. (1998). Using tabu search to schedule activities of stochastic

resource-constrained projects. European Journal of Operational Research, 111(1), 129-141.

Villafáñez, F., Poza, D., López-Paredes, A., Pajares, J., & del Olmo, R. (2019). A generic heuristic

for multi-project scheduling problems with global and local resource constraints (RCMPSP). Soft

Computing, 23(10), 3465-3479.

Wang, J., Zhang, J., & Wang, X. (2018). A data driven cycle time prediction with feature selection

in a semiconductor wafer fabrication system. IEEE Transactions on Semiconductor

Manufacturing, 31(1), 173-182.

Wang, Y., He, Z., Kerkhove, L. P., & Vanhoucke, M. (2017). On the performance of priority rules

for the stochastic resource constrained multi-project scheduling problem. Computers & Industrial

Engineering, 114, 223-234.

Zhou, Y., Yang, J. J., & Zheng, L. Y. (2019). Multi-agent based hyper-heuristics for

multi-objective flexible job shop scheduling: A case study in an aero-engine blade manufacturing

plant. IEEE Access, 7, 21147-21176.

