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Abstract

Background and Objective: Recent developments in the next-generation sequencing (NGS) based on RNA-sequencing
(RNA- Seq) allow researchers to measure the expression levels of thousands of genes for multiple samples simulta-
neously. In order to analyze these kind of data sets, many classification models have been proposed in the literature.
Most of the existing classifiers assume that genes are independent; however, this is not a realistic approach for real
RNA-Seq classification problems. For this reason, some other classification methods, which incorporates the depen-
dence structure between genes into a model, are proposed. qtQDA proposed by Koçhan et al. [1] is one of those
classifiers, which estimates covariance matrix by Maximum Likelihood Estimator.
Methods: In this study, we use a another approach based on local dependence function to estimate the covariance
matrix to be used in the qtQDA classification model. We investigate the impact of different covariance estimates on
RNA-Seq data classification.
Results: The performances of qtQDA classifier based on two different covariance matrix estimates are compared over
two real RNA-Seq data sets, in terms of classification error rates. The results show that using local dependence func-
tion approach yields a better estimate of covariance matrix and increases the performance of qtQDA classifier.
Conclusion: Incorporating the true/accurate covariance matrix into the classification model is an important and cru-
cial step particularly for cancer prediction. The local covariance matrix estimate allows researchers to classify cancer
patients based on gene expression profiles more accurately. R code for local dependence function is available at
https://github.com/Necla/LocalDependence.
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1. Introduction

Dependence relation between random variables is
one of the most commonly studied subjects in statisti-
cal data analysis. It is an important task to figure out the
dependence structure of a data set and incorporate it into
a statistical model in data analysis field. Generally, one
can incorporate the dependence structure via covariance
matrices which play an important role in multivariate
statistical models, data classification, image processing,
etc. A simple way to estimate the covariance matrix
is to use Maximum Likelihood Estimator. However,
this simple estimator may not reflect the complex de-
pendence structures in medical and biological sciences
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due to the high dependence between the variables (at-
tributes) in data sets. Hence, there have been a few re-
cent approaches proposed for improving the covariance
matrix estimation [2, 3] in the literature.

Caefer and Rotman [4] developed a quasi-local co-
variance matrix estimation to be applied on spectral data
analysis. Instead of estimating the whole covariance
matrix they use the variance of neighbours surrounding
the reference point and they define dependence areas.
That is, the points in highly variable areas will have
higher variances and the points in low variable areas
will have less variances, accordingly. Similar to Caefer
and Rotman’s approach [4], Oruc and Ucer [5] proposed
a new methodology to construct local dependence map
which can identify three regions: positive, negative and
zero dependence. They applied it on real medical data
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sets and showed that local dependence is much more in-
formative in some instances.

Since it is known that RNA-Seq data sets are com-
posed of many genes which are highly correlated with
a high dependence degree, we claim that new samples
will have an individual impact on the estimation of the
covariance matrix while classifying the new samples.
For this purpose, in this study, we propose a new type of
covariance matrix estimate, which is called local covari-
ance matrix, that can be implemented in qtQDA classi-
fier. Integrating this new local covariance matrix into
the qtQDA classifier improves the performance of the
classifier. In this study, since the local covariance is up-
dated for each new sample observation with a newly
proposed method, the classifier, qtQDA, becomes an
adaptive algorithm and we call it Local-quantile trans-
formed Quadratic Discriminant Analysis (L-qtQDA).

2. Methodology

Classification of RNA-Seq data has become an im-
portant research area in the last decade. Particularly in
cancer research, true classification of the sub-type of a
patient with a particular cancer, leads a better predic-
tive and a customized treatment for that patient. There-
fore, classification of a patient to a cancer sub-type at
gene expression level has a crucial importance. Due to
the discrete structure of RNA-Seq data, classification of
these kind of data is not as simple as other classification
models that are proposed for continuous data types.

There are certain number of classifiers proposed
especially for RNA-Seq data in the literature [6].
The most recent one is qtQDA classifier proposed by
Koçhan et al. [1]. Since qtQDA incorporates the de-
pendence structure into the model, we apply qtQDA in
order to compare a differently estimated covariance ma-
trix, local covariance matrix, with the simple one used
in qtQDA model. In the following section we explain
the qtQDA classifier in details.

2.1. Negative Binomial Marginals
Suppose that we have k distinct classes and want to

classify new samples into one of those k classes on the
basis of m genes. Let X(k) = [X(k)

1 , X(k)
2 , . . . , X(k)

m ]T be a
gene expression data matrix from kth class where X(k)

i
is the number of reads (counts) for gene i. Assume that
counts are marginally negative binomial distributed, i.e.

X(k)
i ∼ NB(µ(k)

i , φ(k)
i ), (1)

where µ(k)
i = E[X(k)

i ] and φ(k)
i is the dispersion for gene

i. It can be easily calculated that

Var(X(k)
i ) = µ(k)

i + φ(k)
i (µ(k)

i )2.

If φ(k)
i is different than zero then

Var(X(k)
i ) = µ(k)

i + φ(k)
i (µ(k)

i )2 > µ(k)
i

which is consistent with known properties of RNA-seq
data when there are biological replicates (readers are re-
ferred to [7] for more details).

2.2. Quantile Transformation
In order to incorporate the dependence into the

model, a quantile transformation process is applied :

1. Let Z(k) be an m-vector from a multivariate normal
distribution: Z(k) ∼ MVN(0,Σ(k)), where Z(k)

i ∼

N(0, 1).
2. Then transform ith component of Z(k) into the ith

component of X(k)

X(k)
i = F−1

k {Φ(Z(k)
i )}, (2)

where Φ is the standard normal distribution func-
tion, X(k) is the transformed random variable and
Fk is the NB(µ(k)

i , φ(k)
i ) distribution function.

Note here that each class has its own different covari-
ance matrix which is expected to increase the perfor-
mance of the classification.

2.3. Classification
Suppose we observe a new sample x∗ =

[x∗1, x
∗
2, . . . , x

∗
m]T from unknown class y∗, where

y∗ ∈ {1, 2, . . . ,K} is the class label. Using inverse of
quantile transformation, we transform components
of the new sample x∗ to a new vector z∗(k) which is
multivariate normally distributed with parameters µ = 0
and Σ = Σ(k). It is obvious that this transformation
is applied for each class separately. Then, by Bayes
theorem, posterior probability of x∗ belonging to the
kth class is given as

P (y∗ = k|x∗) ∝ fk
(
z∗(k)

)
πk, (3)

where πk is the prior probability and fk is the density

fk(x) =
1

(2π)m/2
∣∣∣Σ(k)

∣∣∣1/2 exp
{
−

1
2

xT
(
Σ(k)

)−1
x
}
, (4)

Using Eq. (3) and Eq. (4), the quadratic discriminant
score for qtQDA can be defined as follows:

δk(x∗) = −
1
2

(
z∗(k)

)T
Σ(k)−1z∗(k) + log πk (5)

Thus we classify new sample x∗ into one of k distinct
classes which maximizes the Eq. (5).
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2.4. Parameter Estimation

In order to apply the model in practice, there exist
some parameters to be estimated in the classification
model. Now, we explain how they are estimated.

• Negative Binomial Parameters(mean and disper-
sion). Like qtQDA, we use estimateDisp function
in the R package edgeR. This function estimates
mean using maximum likelihood and calculates
a matrix of likelihoods for each gene at a set of
dispersion grid points. Then weighted likelihood
empirical Bayes method is applied to obtain
posterior dispersion estimates for each gene [7, 8].

• Covariance Matrix. We apply quantile transforma-
tion to produce multivariate normally distributed
vectors to be used in evaluating the posterior prob-
abilities. To do so, we need to estimate the covari-
ance matrix for each class. Unlike Koçhan et al.
[1], in this study we use local dependence func-
tion explained in Section 3 in order to improve
the covariance matrix estimation and we call this
estimation as local covariance matrix. Note here
that similar to Koçhan et al., we use the R package
“corpcor” to guarantee that local covariance matrix
is symmetric and positive definite for downstream
analysis.

3. Local Dependence Function

Let (X,Y) be a continuous bivariate random variable
with joint cumulative distribution function F (x, y) and
with joint probability density function f (x, y). Then the
Pearson correlation coefficient between X,Y is given as

ρ (X,Y) =
E (X − EX) (Y − EY)√

E (X − EX)2
√

E (Y − EY)2
(6)

Indeed, Eq. (6) is a way of measuring linear depen-
dence between two random variables and in some re-
searches it is called measure of association [9, 10]. But
in some cases, this strength of association between two
random variables can vary locally. In order to define a
local measure of the association between two random
variables Bairamov and Kotz [9] proposed a new local
dependency function which replaces the expectations
EX and EY by conditional expectations E (X|Y = y) and
E (Y |X = x), respectively. The Bairamov & Kotz (2000)
local dependence function is given as follows:

L (x, y) =
E (X − E (X|Y = y)) (Y − E (Y |X = x))√

E (X − E (X|Y = y))2
√

E (Y − E (Y |X = x))2
(7)

Let εX (y) = EX − E (X|Y = y) and εY (x) = EY −
E (Y |X = x). Then

L (x, y) =
σ + εX (y) εY (x)√

σX + ε2
X (y)

√
σY + ε2

Y (x)
(8)

where σ = Cov (X,Y).

Thus, local dependence function L (x, y) which
represents the dependence between X and Y at any
specific point (x, y) is more robust and accurate if there
exists a dependence in the model.

In order to estimate the covariance matrix from the
data available we need to estimate the local dependence
function from the data. Therefore, Nadaraya [11] and
Watson [12] proposed the following estimates for the
regression functions E (X|Y = y) and E (Y |X = x):

A(n)
X (y) =

∑n
i=1 XiK

( y−Yi
hn

)
∑n

i=1 K
( y−Yi

hn

) and A(n)
Y (x) =

∑n
i=1 YiK

( x−Xi
hn

)
∑n

i=1 K
( x−Xi

hn

) (9)

where K is an integrable kernel function with short
tails and hn → 0 is a width sequence tending zero at
approximate rates.

Since it is given in [13] that the optimal choice for h
is

hn =

(
4σ̂5

3n

) 1
5

≈ 1.06σ̂n−1/5 (10)

where σ̂ is the standard deviation of the samples,
we use Eq. (10) in order to estimate the conditional
expectations. Moreover, we use triangular kernel
function which is given as follows:

K(u) = 1 − |u|, |u| ≤ 1 (11)

Using those estimates given in Eq. (9), we suggest
the following estimate for local dependence function

Ln (x, y) =
σ(n) +

(
X − A(n)

X (y)
) (

Y − A(n)
Y (x)

)
sx sy

√
1 +

(
X−A(n)

X (y)
)2

s2
X

√
1 +

(
Y−A(n)

Y (x)
)2

s2
Y

(12)

where

σ(n) = Cov (X,Y),

X = 1
n
∑n

i=1 Xi,

Y = 1
n
∑n

i=1 Yi,

s2
X = 1

n−1
∑n

i=1

(
Xi − X

)2
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s2
Y = 1

n−1
∑n

i=1

(
Yi − Y

)2
.

Note here that X and Y are any two genes across sam-
ples.

4. Results

In this section, we implement qtQDA based on two
different estimates of covariance matrix. For qtQDA
classifier, we use R package ”qtQDA” which is avail-
able at https://github.com/goknurginer/qtQDA. For the
discriminant function in the qtQDA package, We use
trended dispersion estimate. Then, we compare the clas-
sification error rates using two real RNA-Seq data sets.
These are not only publicly available data sets but also
commonly used data sets in order to test the perfor-
mance of RNA-Seq classification methods.

The first data is cervical cancer data (see [14]). The
cervical cancer data is composed of 714 microRNAs
and 58 samples where 29 samples are tumor and 29
samples are non-tumor.

The second data is HapMap data (see [15, 16]). Sim-
ilar to cervical cancer data, the HapMap data also in-
cludes two groups of samples; CEU and YRI where
CEU represents Utah residents with Northern and West-
ern European Ancestry and YRI represents Yoruba in
Ibadan and Nigeria, respectively. There are 91 CEU
samples and 89 YRI samples with a total number of
52,580 genes.

It is known that RNA-Seq technology measures the
expression levels of thousands of genes for multiple
samples. However, not all genes are relevant and in-
formative. Therefore, a gene selection technique is
required not only to reduce the computing time but
also to improve the classification performance. We ap-
ply edgeR pipeline to select informative genes which
will be used in the classification algorithm. Basically,
a likelihood ratio test (LRT) is performed in edgeR
to detect differentially expressed (DE) genes between
groups. After that, DE genes are sorted according to
the value of LRT statistic and finally, the top m genes
are used for the classification process. In our study, the
top 20, 50, 100, 200, 300, 500 DE genes are selected for
both cervical cancer data and HapMap data.

After conducting gene selection procedure, we ran-
domly split the dataset into two sets: training set and
test set. 70% of the dataset is randomly assigned to the
training and the rest 30% of the dataset is assigned to
the test set. Training set is used to train the classifiers
and test set is used to measure the misclassification rate.
The whole procedure is repeated 300 times for different

number of genes and the average misclassification rate
is computed.

The comparison results are given Table 1. It is ob-
vious to see that improving the covariance matrix es-
timate, i.e using local dependence function to estimate
the covariance matrix, leads generally better results. In-
terestingly, for both data sets, qtQDA performs better
then L-qtQDA. However, for the cervical cancer data,
we obtain better performances except for 20 and 200
genes selected in gene selection process. For HapMap
data, we obtain better performances except for 200 and
500 genes selected in gene selection process. Overall
we can conclude that L-qtQDA performs generally bet-
ter than qtQDA.

Data # of genes qtQDA L-qtQDA

Cervical

20 0.0367 0.0372
50 0.0280 0.0265

100 0.0126 0.0124
200 0.0117 0.0122
300 0.0161 0.0159
500 0.0189 0.0170

HapMap

20 0.0172 0.0166
50 0.0064 0.0057

100 0.0448 0.0434
200 0.0120 0.0116
300 0.0074 0.0073
500 0.0106 0.0109

Table 1 Classification error rates for cervical cancer and HapMap
data sets

5. Discussion

It is shown in qtQDA paper that instead of assuming
independency of genes, incorporating the dependence
between genes into the model can lead better perfor-
mance [1]. Thus, in this paper, we investigated a new
estimate for covariance matrix that can capture a true
dependence structure and then can be implemented in
qtQDA. We anticipated the new covariance matrix as
local dependency of genes as the degree of dependency
between pairs of genes may vary and affect the estima-
tion of covariance matrix. We showed that estimating
covariance matrix locally can lead even better perfor-
mance in the RNA-Seq data classification. Therefore,
one should take the estimation of the covariance matrix
into account since it has a significant effect on the clas-
sification performances.
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Since we only used triangular kernel function and
Gaussian banwidth in local dependency calculation, we
note here that different kernel functions and an optimal
banwidth selection can also be implemented and may
improve the classification performances. The only dis-
advantage of the L-qtQDA is that the algorithm is com-
putationally intensive due to the estimation of the local
covariance matrix.

6. Conclusion

In this study we investigated the impact of covari-
ance matrix estimated with the help of local dependence
function on RNA-Seq data classification. This new ap-
proach assumes the dependencies between genes are lo-
cally defined rather than complete dependency. We have
shown that locally estimated covariance matrix is more
effective than simple covariance matrix on real RNA-
Seq data classification. We believe that this new estima-
tion technique will be useful for classification of RNA-
Seq profiles or other genomic studies.
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