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Abstract 

The continuous growth of technologies like 4G or 5G has led to a massive 
use of mobile devices such as smartphones and tablets. This phenomenon, 
combined with the fact that people use mobile phones for a longer period of 
time, results in mobile phones becoming the main source of creation of visual 
information. However, its reliability as a true representation of reality cannot 
be taken for granted due to the constant increase in editing software. This 
makes it easier to alter original content without leaving a noticeable trace 
in the modification. Therefore, it is essential to introduce forensic analysis 
mechanisms to guarantee the authenticity or integrity of a certain digital 
video, particularly if it may be considered as evidence in legal proceedings. 
This paper explains the branch of multimedia forensic analysis that allows to 
determine the identification of the source of acquisition of a certain video by 
exploiting the unique traces left by the camera sensor of the mobile device 
in visual content. To do this, a technique that performs the identification of 
the source of acquisition of digital videos from mobile devices is presented. 
It involves 3 stages: 1) Extraction of the sensor fingerprint by applying the 
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block-based technique. 2) Filtering the strong component of the PRNU signal 
to improve the quality of the sensor fingerprint. 3) Classification of digital 
videos in an open scenario, that is, where the forensic analyst does not need 
to have access to the device that recorded the video to find out the origin of 
the video. The main contribution of the proposed technique eliminates the 
details of the scene to improve the PRNU fingerprint. It should be noted 
that these techniques are applied to digital images and not to digital videos. 
In this work, we show that it is necessary to take this improvement into 
account to improve the identification of digital videos. Experimental results 
are also presented that support the validity of the techniques used and show 
promising results. 
Keywords: Acquisition Source Identification, Forensics Analysis, H.264, 
PRNU, Key Frame Extraction, Sensor Pattern Noise, Smartphone, Video 
Enhancement, Video Forensics Analysis, Video Source Acquisition. 

 

 
1. Introduction 

Mobile technology can be considered a success in the history of telecom- 
munications due to the fact that is has become very popular and widespread 
in our lives. Throughout history, a constant cycle of evolution has been ob- 
served when it comes to a new generation of mobile network innovation that 
is launched every decade. As shown in Figure 1 below, since the introduction 
of 1G technology in the late 1970s, there has been a fairly regular pace of 
improvements in mobile capabilities over the past four decades, plus the grad- 
ual incorporation of elements that until then were only intended for personal 
computers (processor, qwerty keyboards, larger screens ...), together with the 
integration of specific software programs for these devices. All this has made 
mobile devices a feasible alternative to desktop computers. The introduction 
of each new generation has not only improved network performance, but has 
made newer and more advanced applications and devices available. Simi- 
larly, with 5G, we expect both network improvements in terms of bandwidth 
(1+ Gbps) and ultra-low latency, as well as features such as improved en- 
ergy efficiency, cost optimization, massive IoT density, and dynamic resource 
allocation in order to enable a broad spectrum of wireless applications and 
IoT connections Cis:2022. 
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Figure 1:  Evolution of the mobile communication network 
 

Smartphones have become an indispensable companion in our day to day 
lives. At their most basic level, we use mobile devices to be connected with 
our friends and family and to access the Internet. 

However, there is a functionality that is progressively gaining importance, 
and in which manufacturers are putting more and more effort: the use of the 
camcorder. The appearance of these devices has led to an important change 
in people’s behavior and communication habits. In a very short time, these 
devices have become the focus of interest for a great majority of people, so 
that a large part of their daily activities are channeled through their smart- 
phones. Currently, there are increasingly sophisticated video manipulation 
tools that make it difficult to identify the characteristics of interest. This 
means that what a video represents cannot be taken for granted. Therefore, 
it is critical to employ techniques and research that are capable of determin- 
ing, unmistakably, if a video has been manipulated or, on the contrary, shows 
its original content. The forensic analysis of videos has proven to be more 
difficult compared to the analysis of images, since the data contained in the 
videos has higher compression formats, which can compromise the existing 
”fingerprints” and make it more difficult to recover the processing of a video 
from its origin. 

One of the first works where the compression of a video was taken into 
account was in Houten and Geradts (2009), where the use of the PRNU 
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footprint on videos coming from YouTube was analysed. To carry out their 
experiments, they used a set of webcams and codecs to record and encode 
videos. These videos were then uploaded to YouTube and downloaded. The 
results obtained were good but the codecs used have already become obsolete, 
so nowadays, this technique could not be used in a real scenario. 

For the identification of the source of acquisition there are two main 
approaches: closed and open scenarios. A scenario is considered to be closed 
when the identification of the video source is carried out on a specific set 
of camcorders known a priori. For this approach, a set of videos from each 
camcorder is usually used to train a classifier and later predict the source of 
acquisition of the videos under investigation. One of the most used techniques 
for classifying digital videos is SVM (Support Vector Machine). In an open 
scenario, the forensic analyst does not know the set of video cameras to which 
the videos to be identified belong. In this type of classification, in which there 
is no data on videos known a priori, the objective is not to identify their brand 
and model, but rather to be able to group together the frames of the videos 
that belong to the same video. 

In Meij and Geradts (2018) an attempt was made to determine the origin 
of a digital video from a mobile device that was shared by the WhatsApp 
messaging platform on both iOS and Android operating systems. They used 
videos from ten different camcorder models to carry out their experiments. 
For each of these cameras, three types of videos were recorded: one video was 
recorded in an indoor space, another one in an outdoor space, and another 
that recorded a gray surface to be used as a reference. The results indicated 
that it is possible to determine the source camera of a digital video with 
a high success rate, because the videos that come from the same camera 
show many similarities. Once these videos have been transmitted through 
WhatsApp, this precision decreases, although it is still possible to classify 
the vast majority of them with somewhat worse results in the case of iOS. 
This method is very limited to be applied in open scenarios for two reasons. 
On the one hand, the success rate decreases in iOS devices, and on the other 
hand, this method does not take into account the wide variety of platforms 
through which a video can be distributed, like in the case of video sharing 
platforms such as YouTube. 

It should be noted that in the scientific literature, the contributions that 
exist today focus on improving the sensor footprint applied to the study of 
digital images. However, this study is almost non-existent in the case of 
digital videos. This is a gap that we aim to bridge with this work, given that 
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it is possible to improve the PRNU fingerprint of the sensor in the case of 
digital videos. 

One of the initial works applied to digital images, where an improvement 
in the quality of the PRNU fingerprint of the noise was proposed, was in Li 
(2010). Their idea was based on the following hypothesis: The details of the 
scene when representing high-frequency components make their magnitude 
much greater than that of the noise pattern. For that reason, it is necessary 
to eliminate the fragments of the high-frequency scene to improve the sensor 
noise footprint. Therefore, in this work, an approach is proposed to mitigate 
the influence of scene details when calculating the noise pattern, and thus 
improve the success rate when identifying the origin of the device. 

Another work that focuses on improving the PRNU footprint applied 
to images is in Akshatha et al. (2016). After estimating the PRNU noise 
pattern of the images, they are represented according to the characteristics 
that can be used in the classification. The two sets of features are identified 
and extracted from the images. The first set includes Higher order wavelet 
statistics (HOWS) from the estimated PRNU noise. The second set consists 
of statistical features from the original images. The functions are combined 
and used to discriminate images based on their source cameras. To carry 
out their experiments, they used 4 different groups of two cameras each, and 
they obtained an average hit rate of 100%, 99.75%, 94.75% respectively for 
each of the groups. As we have already mentioned, the technique is based 
on digital images but does not take into account digital videos. Another 
limitation of this technique is that it has not been tested when an image is 
shared by WhatsApp or downloaded from the YouTube platform. 

The techniques using the PRNU sensor fingerprint to carry out identifi- 
cation processes need to analyze the content of the video. They have become 
robust and reliable techniques, yet they require a higher computational cost. 
There are other methods such as the one presented in L óp ez et al. (2020) 
where they identify the source of digital video acquisition by analyzing the 
elemental structure of a video called the atom. An atom is made up of a set 
of labels, which are values in a hierarchical way. The value of each of these 
atoms gives some clues to obtain the origin of a mobile device. For a more 
in-depth study of the container atoms, see Gloe et al. (2014). To perform 
the classification, they used a hierarchical grouping and another one based 
on density (OPTICS). With the hierarchical grouping, they achieved a coef- 
ficient of ”homogeneity” higher than 0.9% when it came to identifying the 
brand and 0.80% when it came to identifying the model. As for the OPTICS 
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density-based algorithm, they achieved a homogeneity of 0.97% grouping by 
brand and 0.87% grouping by model. This technique is much faster than 
techniques that have to go through video content to find out the origin of 
the device. 

In this work, it was necessary to use a smaller set of videos instead of 
the one proposed in L óp ez et al. (2020) due to the high computational cost 
required by the technique that processes the video content instead of the 
atoms or video labels to identify the video source. 

In the field of engineering, computer simulations are widely used to re- 
place experiments with physical models because these simulations are often 
computationally expensive. However, many model-based engineering design 
problems require numerous simulations to reach an acceptable solution. This 
can be computationally prohibitive. Often a single surrogate model or meta- 
model is used to replace a detailed simulation in design problems which 
require repeated calculations. This surrogate is obtained using information 
derived from the physical model Alizadeh et al. (2019). 

In Alizadeh et al. (2019) proposed a method based on cross-validation to 
find an ensemble of surrogates(EoS) which is created by the least possible 
number of data points. The resulting ensemble surrogate has higher accuracy 
than each individual surrogate and is less computationally intensive. To 
achieve this ensemble surrogate, we compare it with individual surrogate 
models based on three main factors: the size of the problem, precision and 
calculation time. They found that it is effective to use cross validation. 
They obtained the highest accuracy level with least required data and less 
computation time by using the right number of samples. An example of 
surrogates is relatively insensitive to the size of the sample data or number 
of data points. 

In Alizadeh et al. (2020) they created a practical guidance based on a 
trade-off among three main drivers, namely, size (how much information is 
necessary to compute the surrogate model), accuracy (how accurate the sur- 
rogate model must be) and computational time (how much time is required 
for the surrogate modeling process). To make their proposal, they reviewed 
the latest generation surrogate models on more than 200 articles from the 
most recent literature. 

The main contribution of this work is threefold: 
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1. A digital video acquisition source identification technique is proposed. 
It takes into account the effect produced by video compression to ob- 
tain the sensor noise fingerprint, by applying the block-based technique 
proposed in Kouokam and Dirik (2019). 

2. Once the blocks that have survived compression have been calculated, 
the method proposed in Li (2010) is used. It improves the PRNU noise 
pattern extracted from the videos under investigation. Therefore, in 
this work it is shown that in order to have a reliable and robust hit 
rate, it is not enough to review the effect that compression has on the 
videos, but also techniques that improve the fingerprint formed by the 
imperfections of the videosensor. Related works can be found in the 
literature that improve the sensor footprint applied to digital images 
but not to digital videos. 

3. Finally, a grouping algorithm that classifies the videos in an open set- 
ting is used. In this case, the forensic analyst does not have access to 
the specific mobile device where the criminal activity is located, since 
you can find the video under investigation on the internet. Further- 
more, it is impossible for the analyst to have access to a video from the 
vast variety of mobile devices available on the market. 

 
The remainder of the paper is structured as follows. Section 2 provides 

the reader with some background on algorithms for identifying the source of 
digital videos and provides the formal definition of the problem. Section 3 
reports all technical details about the proposed solution. Section 4 presents 
the numerical experiments carried out to validate the proposed method while 
Section 5 concludes the paper providing some conclusive remarks. 

 
2. Digital Video Source Identification Techniques 

This section details the main techniques for forensic analysis of digital 
videos, with an emphasis on the techniques for identifying the source of the 
video, as this is the branch of forensic analysis on which this work is focused. 
The section after next discusses the most important techniques related to 
video content analysis, with a special emphasis on the methods that study 
the sensor’s noise pattern. 
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According to Sandoval Orozco et al. (2013), there are five main groups: 1) 
metadata, 2) matrix defects CFA, 3) image features, 4) interpolation color, 
5) sensor imperfections combined with Wavelet transformations. 

The techniques based on sensor imperfections have gradually evolved into 
two different families: one based on pixel defects and another that analyzes 
the noise pattern in the sensor. The latter is the most used technique for 
identifying sources in both images and digital videos. This is the basis of this 
work, where the demonstrations of Lukas et al. (2006) have been taken into 
account. It was ultimately determined that the cameras generate a pattern 
of noise or SPN that can be used as a single classification method. 

 
2.1. Analysis of the Sensor Noise Pattern 

There are various sources of imperfections and noise introduced in the 
different stages of the digital video generation process. Even in the case of 
a uniform and fully lit photograph, small changes in pixel intensity can be 
observed. This is due to the shooting noise, which is random and largely 
due to the noise pattern, and is deterministic and stays roughly the same 
if multiple photos of the same scene are captured. The noise pattern in an 
image refers to any spatial pattern that does not change from one image to 
another and is composed of the spatial noise that is independent from the 
signal or fixed pattern noise FPN and the spatial noise due to the difference 
in response of each pixel to the incident signal or non-uniform response noise 
PRNU. The structure of the noise pattern is illustrated in Figure 2. 

 
 

 
Figure 2:  Sensor pattern noise. 

 
The noise FPN is generated by the darkness current and is also dependent 

on exposure and temperature. Because a fixed pattern noise is an additive 
independent noise, some cameras automatically eliminate it by subtracting 
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a dark frame from the images they produce. Noise PRNU is the dominant 
part of the noise pattern in images and is a multiplicative dependent noise 
that is mainly formed by pixel uniformity PNU and by low frequency defects 
such as zoom settings and the refraction of light in dust particles and lenses. 
The noise PNU is the difference in light sensitivity among the pixels in the 
sensor array. It is generated by the lack of homogeneity of the silicon wafers 
and imperfections during the manufacturing of sensors. Due to their nature 
and origin, it is highly unlikely that even sensors from the same wafer show 
correlated PNU patterns. This noise is not affected by room temperature 
or humidity. Noise PNU is typically more common, complex and significant 
in CMOS type of sensors due to the complexity of the pixel array circuitry 
Sandoval Orozco et al. (2015). 

The noise pattern PRNU is produced by the variation of sensitivity to 
light of the individual pixels, due to the lack of homogeneity and impurities in 
the silicon chips, and to the imperfections resulting from the manufacturing 
of the sensor. In the case of videos, it may seem that estimating the pattern 
PRNU of a video camera from a video sequence is simpler than in the case of 
still images, due to the large number of frames available in a video. However, 
this is not true for two main reasons; first, the spatial resolution of videos is 
much lower than the spatial resolution of still images. Second, video frames 
generally have higher compression ratios than images compressed in JPEG 
format. 

One of the first works in which a camcorder fingerprint was used to iden- 
tify digital images was in Kurosawa et al. (1999). They proposed a method 
called CCD Fingerprint to identify a camcorder from videotaped images. 
They recommended using defective pixels and the dark current of CCD chips 
for camcorder identification. This approach is limited because thermal noise 
can only be removed with dark frames, and the dark current property is a 
weak signal that does not survive video compression. 

Over time it has been shown that the technique developed in Fridrich 
et al. (2006) that identifies digital images using non-uniform response noise 
PRNU provides a much more robust and reliable fingerprint. 

In Chen et al. (2007) it was determined that it is not possible to use a 
single frame of the video to identify its origin since the spatial resolution of 
the video is much lower than in the case of still images, and each frame is 
subjected to complex compression systems (MPEG- X, H26X and variants). 
Therefore, they demonstrated that by taking advantage of the temporal res- 
olution of the videos, in cases of low resolution (264 × 352 pixels) and with 
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only a 10 minutes video clip, it was possible to identify the source of the 
video device. The experiments were performed with 25 video cameras and 
showed that just 40 seconds of video is enough to have reliable results. If 
the video quality is decreased (the compression ratio is increased) and the 
spatial resolution is decreased, it is necessary to increase the video clip time 
in order to obtain reliable results. With videos in Internet LP format and a 
resolution of 264 × 352 and 150 kb/sec, good results are obtained for video 
clips with a duration of 10 minutes. The experiments carried out are limited 
because they do not take into account videos from mobile devices. 

In Chuang et al. (2011) the impact of compression on the identification 
of the source camera is explored using the non-uniformity of response to the 
photo PRNU extracted from compressed videos generated by mobile devices. 
They concluded that type I frames are more trustworthy (reliable) than type 
P frames when giving an accurate PRNU estimate. They also, however, ob- 
served that the hit rate increases considerably when using all the frames that 
make up a video. However, they considered that using all the frames of a 
video has a high computational complexity. Motivated by this observation 
and by the fact that type I frames of a video have different reliability than 
type P frames, they proposed a mechanism to reorder and assign weights 
to the frames of a video by assigning weights 2 : 1 to type I and P frames 
respectively. In this way, they showed that the lower the number of frames 
plus a suitable weight assignment the better the estimation PRNU. This 
technique definitely takes into account the effect of video compression when 
obtaining the sensor fingerprint. Although the proposed method takes into 
account how video compression affects the calculation of the sensor imperfec- 
tions footprint, later techniques such as the one proposed by Kouokam and 
Dirik (2019) show that it is necessary to use all types of frames (I, B, P) that 
a video has to improve the hit rate. 

In Garc´ıa Villalba et al. (2016) a digital video source identification scheme 
based on PRNU noise and SVM classifier was proposed. The classification of 
the videos was carried out by selecting those frames with a significant scene 
change using the color histogram function. A total of 81 features, which are 
the Wavelet components of the sensor, are used to train the SVM classifier 
with training videos. A total of 5 different devices from 5 different brands 
were used to train the SVM classifier. The results obtained show a success 
rate of 87% or 90%, depending on the video resolution. Since this technique 
uses a classifier SVM, it has the following limitation: you need to have a video 
of the same brand and model of the video you want to investigate, and this 
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is almost impossible nowadays due to the wide variety of models available in 
the market. Additionally, in the extracted frames, this technique does not 
take into account the effect that compression produces when improving the 
classification. 

In Altinisik et al. (2018), a procedure is described to extract the finger- 
print that produces the sensor noise PRNU in non-stabilized videos, taking 
into account the H.264 video compression standard. This technique has two 
main goals. On the one hand, this technique tries to eliminate the filtering 
procedure that is applied in the H.264 compression process. On the other 
hand, it also tries to select the blocks that best estimate the noise pattern 
PRNU. This brings us to the conclusion that the macroblocks that are en- 
coded using intra-frame prediction and the loop filter should both be avoided 
so as not to weaken the noise PRNU. Quite the opposite occurs in type B or 
P macroblocks, where the encoder performs the prediction assuming filtered 
blocks. Therefore, it is necessary to remove the loop filter on the decoder 
as it will not produce a successful rebuild. To compensate for this behavior, 
the decoding process must be modified to rebuild both a filtered and an un- 
filtered version of each macroblock. Filtered macroblocks should be used to 
reconstruct future macroblocks, and unfiltered ones should be used for fin- 
gerprint extraction. The experiments were performed with videos converted 
from 550 photographic images with various levels of compression. 

In Kouokam and Dirik (2019) they identified the source of videos coming 
from mobile devices and downloaded from YouTube by using PRNU and 
by studying the effect that the compression of the videos produces when 
estimating the PRNU fingerprint of a digital video. For each frame of the 
video, they looked for the blocks in which the PRNU noise had not been 
completely degraded due to the effects of the compression of the video. They 
proved that the PRNU noise pattern in a block survives compression if the 
DCT-AC coefficients of the prediction residue of the block are not all zero. 
Therefore, to estimate the noise of PRNU video, only those blocks that have 
at least a non-zero DCT-AC coefficient in frames I, P and B are used, since 
they still have, at least partially, a certain amount of noise of PRNU, which 
makes the block valid to identify the source of acquisition in digital videos 
coming from mobile devices and downloaded from YouTube. 

All the techniques seen in this section only take into account the effect 
produced by the compression of a video to calculate the PRNU footprint. 
However, they do not take into consideration that it is necessary to improve 
said PRNU footprint in order to improve the classification. This work not 
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only takes into account the problem that video compression causes when 
calculating the fingerprint produced by sensor imperfections, but also those 
techniques that improve the sensor fingerprint produced by the details of the 
scene. The most relevant techniques that show how to improve the fingerprint 
of the sensor applied to digital images are detailed below. 

Sensor imperfections are due to the lack of uniformity in the photographic 
response (PRNU), which contains important information about the sensor 
in terms of frequency content. This information makes it appropriate for 
different forensic applications of videos and digital images. The main incon- 
venience of existing methods for the PRNU extraction is the fact that the 
extracted PRNU fingerprint has fine details of the image, such as high fre- 
quency details (textures, edges). To fix this problem, it is necessary to apply 
some techniques to remove those details from the scenes in order to improve 
the quality of the PRNU fingerprint. 

As mentioned in the introduction section, one of the initial works in which 
the technique for the improvement of the sensor fingerprint was used was in 
Li (2010). It should be noted that this technique is based on the suppression 
of the content of high-frequency details from the scene. Following this hy- 

pothesis, Li (2010), developed five models and two of them yielded the best 
results applied to digital images. Later it was found that Lis improvement 

model Li (2010) also suppresses useful PRNU components Kang et al. (2011). 
In Gupta and Tiwari (2018), a pre-processing step is applied to PRNU 

extraction filters widely accepted within the scientific community for low- 
frequency and high-frequency components of the image separately. The best 
results are obtained when using the Mihcak filter. They call their tech- 

nique pMihack filter, this pMihcak filter contains the least amount of high- 
frequency details of the image. As seen in this section, in the case of digital 

videos, there are techniques which try to identify the origin of a video by 
applying the technique of PRNU sensor imperfections and how this affects 

video compression. On the other hand, in the literature we find that in the 
case of images, the PRNU fingerprint obtained is not sufficient if an improve- 
ment to that fingerprint is not applied. Therefore, in this study we suggest 
a technique that takes into account both approaches to identify the source 
of a digital video. 

The classification algorithm used in this work, combines a hierarchical 
clustering and a flat clustering for the separation of the groups. The use of 
the silhouette coefficient for the validation of the results has proved to yield 
good results since high TPRs were obtained.  To compare the convergence 
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rate of this algorithm with the rest of algorithms in the literature, you need to 
consider the references below: Giri and Bardhan (2014), Dubey et al. (2015), 
Tsao (2015), Yin et al. (2016), Kazemi et al. (2018), Duan et al. (2018), 
Hoseini S. et al. (2019), Gharaei et al. (2019a), Shah et al. (2020), Rabbani 
et al. (2020), Sarkar and Giri (2020), Giri and Masanta (2020), Sayyadi 
and Awasthi (2020), Shah et al. (2020), Gharaei et al. (2020), Awasthi and 
Omrani (2019), Gharaei et al. (2019b) 

 
3. Technique Description 

To address the issue of identifying the source of a video, the most promis- 
ing methods take advantage of the unique noise traces that the camera sen- 
sors produce in the acquired videos. As observed in the previous section, to 
identify the source of a digital video produced by a mobile device, most of 
the proposed techniques only take into account the effects that compression 
produces in the calculation of the noise fingerprint of the said video Chen 
et al. (2007), Houten and Geradts (2009), Chuang et al. (2011) Altinisik et al. 
(2018). 

The main contribution of this work is to identify the source of digital video 
acquisition, which focuses on the impact of video compression to obtain the 
trace left by the sensor noise pattern. Conversely, the proposal takes into 
account the fact that the magnitude of the details of the scene that a video 
has tends to be much greater than the fingerprint generated by the sensor 
noise pattern. This makes the fingerprint less reliable and, consequently, it 
should be removed to improve the quality of the noise pattern. 

In addition, it must be considered that most of the techniques proposed 
in the scientific community consider improving the sensor noise fingerprint 
adapted to digital images Sandoval Orozco et al. (2015). There are few works 
that adapt the improvement of the fingerprint in the case of digital videos 
from mobile devices. This last point is the one addressed in the our research 
work. 

Regarding video clustering, this is done in real life scenarios using the 
standard correlation as a measure of similarity to achieve a correct classifi- 
cation of digital videos by device. 

In order to identify the source of digital videos, this proposal has taken 
into account the effect produced by the high compression ratios that a video 
contains due to the redundancy that a video contains. To obtain the fin- 
gerprint of the sensor noise pattern, the hypothesis proposed by Li (2010) 
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has been considered. Here it is indicated that the images may be severely 
contaminated by the details of the scene. This proposal has also dealt with 
the particular case of digital videos. The overall scheme of the proposed 
technique is shown in Figure 3. The proposed algorithm is divided into 3 
main phases that are detailed below: 

 

 
Figure 3:  Diagram of the proposed algorithm 

 
 

1. PRNU noise is stochastic in nature and unique to each sensor. Its 
high dimensionality and robustness in the processing make it an ideal 
candidate for forensic applications such as the identification of digital 
cameras. The extraction of the PRNU noise is done at the macroblocks 
level as proposed in Kouokam and Dirik (2019). This extraction of noise 
based on macroblocks takes into account that for each of the frames 
that make up the video, only those macroblocks are used in which the 
PRNU noise has not been completely degraded by the compression that 
a digital video contains are used. 
As it was demonstrated in the work Kouokam and Dirik (2019), the 
content of a decoded macrblock depends, to a large extent, on the in- 
verse transform DCT of the prediction residual of the block. Therefore 
the first step that must be performed to To estimate the PRNU fin- 
gerprint, is to decode the input video with the version of jm.16.1 used 
in Kouokam and Dirik (2019). The result is a XML file format that 
contains all the information of the macroblocks that make up the set of 
frames that belong to a digital video. Figure 4 you can see an extract 
from the XML file. 
The Picture label refers to a frame in the video. The MacroBlock tag 
corresponds to all macroblocks of size 16x16 that exist in the frame. 
The Position label indicates the start and end (x, y) coordinates of 
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Figure 4:  Output file of the decoder stage of a digital video. 
 

the macroblock within the frame. Finally, the Coeffs tag indicates the 
pixel value of the macroblock to be processed. 
The macroblocks-based noise extraction used in this work has consid- 
ered that for each of the frames contained in a video, only those mac- 
roblocks are used in which the noise PRNU has not been completely 
degraded by the compression it contains a digital video. 
In consideration of PRNU noise of a macroblock survives compression 
if the residual coefficients of the macroblock DCT-AC are not all zero, 
as proposed in Kouokam and Dirik (2019). Only those macroblocks 
that contain at least a non-zero coefficient DCT-AC will be used in 
any of the type I, B or P frames that make up the video, otherwise it is 
discarded the macroblocks. Therefore, a binary matrix will be created 
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with values 0 or 1, whose value is equal to 1 if the macroblocks contains 
at least a non-null coefficient DCT-AC and 0 in another case. The zeros 
in the mask mask of the frame indicate the location of pixels or macro 
bolts where noise estimation PRNU is not feasible. For each of the 
frames that make up the video, a matrix called mask Mj is obtained. 
Each of its elements at the location of the pixel (p; q) is calculated 
according to the Equation 1. 

M (p, q) =
  

0,  if the DCT-AC coefficients are all zero 
 

(1) 
 

Therefore, the fingerprint of the K camera and the video noise of the 
video Wj are calculated according to the equation 2 where it is obtained 
from the noise of the video and therefore the fingerprint of the camera. 

n 
j=1 WjIjMj 

K = L.n (I M )2 + L (2) 
 

where Ij, is the decoded image of the j-th frame of the video, Wj is the 
noise PRNU estimated from Ij, Mj is the mask of the frame j − th, 
n is the number of frames of the video to identify and finally, L is an 
array with all its elements with a value of 1 whose dimension coincides 
with the resolution of the video to identify. It is necessary to use this 
matrix, to avoid division by zero in case Mj(p, q) = 0 ∀j. This matrix 
called mask is a three-dimensional matrix that includes the dimensions 
of the input video and another additional dimension, whose value is 
the number of frames the video has. That is to say, if the video has 
a dimension of 1920x1080 pixels and a total of 302 frames, then the 
dimension of the mask array Mj will be 1920x1080x320 elements. This 
matrix is filled with the number 1 if there is at least a coefficient other 
than 0 in its positions DCT- AC and with the data 0 in another case. 
As an example, in Figure 4 it can be seen that the macroblock number 
0 contains the coefficient 0 in all positions DCT-AC of the macroblock. 
Therefore, the mask values for those 16 elements are all filled with 
the number 0, while the macroblock number 47 contains more than 
one non-zero data point in their positions DCT-AC, as visible in the 
second row of the Row tag that contains the coefficients (6, 6, 7, 6). In 

j=1 
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this case, the values of the mask matrix are filled with the coefficient 
1. 
This step is computationally expensive due to the large amount of 
information that the algorithm must process. The calculations that 
it has made in algorithm with the experiments were carried out on 
a computer with a 9 − th generation processor of the Intel Core i7 
processor family equipped with 6 cores. Likewise, as can be seen in 
Figure 4, not all type I frames survive compression. Therefore, it is 
necessary to use all types of frames (I, B and P) and not only the type 
I frames, as suggested in other literature proposals. 

2. The next step is to improve the PRNU noise fingerprint calculated in 
the previous step. The details of the scene when representing the high- 
frequency components make its magnitude much greater than that of 
the noise pattern. For this reason, it is necessary to remove fragments 
from the high-frequency scene to improve the sensor noise fingerprint. 
Subsequently, in Li (2010) an approach is proposed to mitigate the in- 
fluence of scene details when calculating the noise pattern. In this way 
Hence, the hit rate is improved when identifying the device on which 
the proposed algorithm is based. The hypothesis proposed in Li (2010) 
suggests that an improved fingerprint Kenh can be obtained by assign- 
ing less significant weighting factors to the strong components of the 
signal in the domain of the wavelet transform to attenuate the inter- 
ference of scene details. To test the hypothesis proposed in Li (2010), 
five models identified as enhancer models (2 - 6) were proposed. Re- 
sults are detailed in the Experiments section. The enhancer model that 
obtained the best results in this work was the model called Non-linear 
Exponential Transformation (Model 3), whose equation is detailed in 
Equation 3. 

 
 

Kenh(i, j) = 

1 − e−K(i,j) 0 ≤ K(i, j) ≤ α 
� (1 − e−α)eα−K(i,j) K(i, j) > α 
�� (−1 + e−α)eα+K(i,j) K(i, j) < −α 

 
 

(3) 

 

where the value of the parameter α determines the attenuation of the 
noise. In order to decide the value of α, various experiments were 
carried out on videos with different values of α selected at random and 
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that dealt with the majority of possible cases, therefore the following 
values α ∈ [2, 5, 7, 20, 50]. The value chosen was 20 as it stated to 
be a prototype value for all the proposed enhancer models and with 
which desirable results were obtained in the enhancer models used. The 
output of this step is a two-dimensional matrix containing the improved 
noises for each of the input videos under investigation. The general 
scheme of block-based noise extraction together with the enhancement 
function is shown in Figure 5. 

 

 
Figure 5:  Enhanced algorithm structure. 

 
For each of the improved PRNU noises calculated in the previous step 
(Kenh1 , ..., Kenhn ), the correlation value is obtained using the result of 
Equation 4. 
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corr(n , n ) = (ni − ni) 0 (nj − nj)  (4) 
i j ||n − n || · ||n − n || 

i j j 
 

where ni y nj represent the mean of the vector, ni0nj is the dot product 
of two vectors, and ||ni|| is the norm L2. Since the sensor noise pattern 
is a two-dimensional matrix, prior to the application of the correlation 
function, a transformation of the matrix to a one-dimensional vector is 
performed. 

3. Finally, clustering using an unsupervised agglomerative clustering algo- 
rithm proposed in some works such as Caldelli et al. (2010), Garc´ıa Vil- 
lalba et al. (2015). To determine the similarity between videos that be- 
long to the same device, there are distance measures such as: Euclidean 
distance, Manhattan or Chebychev distance, among others. One of the 
measures widely used in identifying the source of digital images can be 
found Caldelli et al. (2010), Garc´ıa Villalba et al. (2015). 
To decide how to calculate the correlation value iteratively, it is nec- 
essary to define a measure of similarity between the clusters, so that 
similar clusters are cataloged before different clusters. To carry out this 
union, a linkage criteria function is performed. This function measures 
the similarity between two clusters in which at least one of them is 
made up of more than one sample or video. For this work, tests were 
carried out with various linkage criteria functions that are simple, av- 
erage and complete criteria. After conducting several experiments, the 
linkage criteria function that showed the best results was the average 
linkage criteria, as in the case of the works related to images Caldelli 
et al. (2010) and Garc´ıa Villalba et al. (2015). The Equation 5 shows 
the average linkage criteria function between two groups u and v. 

 
 

d(u, v) = 
i∈u,j∈v 

corr(Kenhi, Kenhj ) 
 

 

|u||v| 

 
(5) 

 

where, |u|and |v|is the cardinality of the groups of u and v respectively. 
The value of corr(Kenh1 , Kenhn ) determines the similarity that exists 
between two objects of the same group, reaching its highest value the 
more similar Kenhi and Kenhj . The value of corr is calculated in the 
Equation 4. 
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In traditional hierarchical clustering algorithms, the final result is that 
all the elements belong to the same group, but in this work we need 
each group to represent a model at the end of the execution. In order to 
validate the groups, the silhouette coefficient has been used as a group 
validation measure. For each observation x there are two measures that 
are: 

 
• Cohesion a(x): it is obtained as the average distance of x to all 

the points in the same class. 
• Separation b(x): measures the average distance of a point from 

one of the groups to all other nearby groups. The most used 
separation is the average distance between x and all the elements 
in the closest group, although other measures are also used to 
value the separation. 

 
The coefficient s(x) takes the values in the range [1,1]], where1 corre- 
sponds to a bad choice of the number of classes and 1 indicates well 
defined classes. The silhouette coefficient for x is illustrated in the 
Equation 6. 

 
b(x) − a(x) 

sx = max{a(x), b(x)} (6) 

and for all the clustering is determined by the Equation 7. 
 

SC = 1 s(x) (7) 
n 

x 
 

where n is the number of observations. 
To assess the quality of the clustering resulting from the clustering al- 
gorithm, the precision, the curve ROC and the area AUC are described. 
The complexity of the algorithm increases as the resolution of the video 
increases. In the case of a 1920x1080 resolution, a total of 2.73.600 it- 
erations will be necessary, resulting in a high computational cost. The 
time complexity is O(n2). 
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4. Experiments and Results 

This section details the experiments carried out regarding the identifi- 
cation of the source of digital videos. The first experiment involves finding 
out which enhancer function of those proposed in Li (2010) is the one that 
obtains the best results by varying the parameter of α. The following exper- 
iment is performed on a different data set than the first to prove that the 
choice of the enhancement model and the parameter α are not linked to a 
specific video set. This second set of videos used takes into account that the 
videos have been downloaded from social media platforms such as YouTube 
or WhatsApp. We must take into account that when a video is uploaded or 
downloaded from this type of platform, the video undergoes another com- 
pression process limiting the quality of the extracted sensor fingerprint. 

To evaluate the effectiveness of the smartphone device source identifica- 
tion algorithm, a subset of the public repository ACID Hosler et al. (2019) 
has been used. In this work, models from smartphone devices have been 
selected because that is the case study that has been analysed in this paper. 
Table 1 shows the summary of the video set used. 

 
Table 1: Composition of the ACID video set 

 
Brand Model ID #Videos Resolution 
Huawei Honor 6X Pixel 2 M12 10 1920x1080p 
LG X Charge M17 10 1920x1080p 

 Galaxy J7 Pro M27 10 1920x1080p 
 Galaxy S3 M28 10 1920x1080p 

Samsung 
Galaxy S5 
Galaxy S7 

M29 
M30 

10 
10 

1920x1080p 
1920x1080p 

 Galaxy Tab A M31 10 1920x1080p 
 J5-6 M32 10 1920x1080p 

 
 
 

4.1. Influence of the parameter α on the TPR 
The first experiment that has been conducted involves testing all the 

enhancer models proposed in Li (2010). Table 2 shows the summary of the 
experiments carried out. It can be seen that when α = 20, all the enhancer 
models (γ2, γ3, γ4, γ5, γ6) have the highest success rate, reaching over 81% 
in almost all the proposed models. The model with the worst average rate is 
γ4, function that never exceeds 25% in TPR. 
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Table 2: Average TPR by model and with different values of α 
 

Enhancer Model 
Values of α TPR 

Average 2 5 7 20 50 
γ2 72% 70% 70% 70% 60% 68,4% 
γ3 56% 81,25% 70% 81,25% 81,25% 73,95% 
γ4 25% 20% 22 % 25 % 20% 20,44% 
γ5 55% 65% 56,4% 81,25% 55,4% 62,61% 
γ6 60% 69% 81,25% 81,25% 81,25% 74,75% 

 
 

In Tables 3, 4 and 5 respectively, we can see, in detail, the result of 
clustering the γ2, γ3 and γ6 functions, since they are the models that have 
achieved the best average rate when α = 20, as can be seen in Table 2. 

To calculate the completeness or TPR of each group, it is necessary to 
see in the group the smartphone model that contains the largest number of 
videos compared to the total number of videos per model, since that is the 
predominant model within the group. Next, the percentage of videos that 
have been correctly classified for that model within a group is calculated. 
The vast majority of cases can be evaluated as a group associated with one 
or more devices. In some cases, there are groups in which no device prevails, 
as can be seen in 3. Its TPR is considered to be 0. Finally, the percentage of 
videos that have been appropriately classified for that device in that group 
is calculated. 

For the γ2 with α = 20 function, it can be observed that the groups G8 
have TPR = 0, because there is no distinction between the M17 and M32 
models respectively. It can be seen that the γ3 with α = 20 function has a 
higher average TPR than the γ2 with α = 20 function. No group that has 
obtained this average by implementing this enhancer has a TPR = 0, as was 
observed in the γ2 with α = 20 function that had a group with TPR = 0. 
The M12, M27, M28, M29 and M31 devices have the same behavior in both 
models and they achieve a value of TPR = 100%. 

It should be noted that γ2 and γ6 functions with α = 20 value generate 
the same behavior and the same number of clusters. In order to measure 
the performance of the clustering proposed in this technique, a curve ROC 
has been used that shows the productivity of the classification model at all 
clustering thresholds, in the case of γ3 with α = 20 function as shown in 
Figure 6. 
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Table 3: Clustering result with γ2 with α = 20 function 
 

Brand-Model G1 G2 G3 G4 G5 G6 G7 G8 G9 
M17 8 0 0 0 0 0 0 2 0 
M32 0 5 0 0 0 0 0 2 3 
M31 0 0 10 0 0 0 0 0 0 
M12 0 0 0 10 0 0 0 0 0 
M29 0 0 0 0 10 0 0 0 0 
M28 0 0 0 0 0 10 0 0 0 
M27 0 0 0 0 0 0 10 0 0 

 

Table 4: Clustering result with γ3 with α = 20 function 
 

Brand-Model G1 G2 G3 G4 G5 G6 G7 G8 G9 
M32 7 0 0 0 0 0 0 3 0 
M27 0 10 0 0 0 0 0 0 0 
M31 0 0 10 0 0 0 0 0 0 
M28 0 0 0 10 0 0 0 0 0 
M17 0 0 0 0 8 0 0 0 2 
M29 0 0 0 0 0 10 0 0 0 
M12 0 0 0 0 0 0 10 0 0 

 

Table 5: Clustering result with γ6 with α = 20 function 
 

Brand-Model G1 G2 G3 G4 G5 G6 G7 G8 G9 
M32 7 0 0 0 0 0 0 3 0 
M27 0 10 0 0 0 0 0 0 0 
M31 0 0 10 0 0 0 0 0 0 
M28 0 0 0 10 0 0 0 0 0 
M17 0 0 0 0 8 0 0 0 2 
M29 0 0 0 0 0 10 0 0 0 
M12 0 0 0 0 0 0 10 0 0 



24  

 
 
 
 

 
 

Figure 6: ROC curve for γ3 with α = 20 function for ACID video dataset 
 

The value of AUC for the area of the curve ROC in Figure 6 is 0.929980. 
 

4.2. Comparison between γ3 with α = 20 function and block-based method 
In this section we are going to compare the block-based Kouokam and 

Dirik (2019) proposal where we only look at the effect that compression has 
when calculating the PRNU fingerprint - with the contribution proposed in 
this work, where in addition to taking into account the block-based method, 
the function has been included enhancer that gave the best results in the 
previous section, that is, γ3 with α = 20 function. On the one hand, if we 
use the videos in Table 1, the same TPR results are obtained, generating 
the same groups, for the case of the function without improvement (the one 
proposed in block-based) as the function proposed by this work. The result 
of both proposals can be seen in Table 4. 

On the other hand, if we use of videos in Table 6, where the M00 model, 
an Apple device, is added, the clusters, seen in Tables 7 and 8, are obtained. 
In Table 8, it can be observed that, if we do not apply only the block-based 
method, groups G8 and G9 have a TPR = 0, because there is a mix between 
the M00, M17 and M32 models in group G8. Additionally, it must be taken 
into account that the Apple brand M00 model cannot be identified with this 
proposal. 
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Table 6: Composition of the ACID video set with M00 model is included 
 

Brand Model ID #Videos Resolution 
Apple iPhone 8 Plus M00 8 1920x1080p 
Huawei Honor 6X Pixel 2 M12 10 1920x1080p 
LG X Charge M17 10 1920x1080p 

 Galaxy J7 Pro M27 10 1920x1080p 
 Galaxy S3 M28 10 1920x1080p 

Samsung 
Galaxy S5 
Galaxy S7 

M29 
M30 

10 
10 

1920x1080p 
1920x1080p 

 Galaxy Tab A M31 10 1920x1080p 
 J5-6 M32 10 1920x1080p 

 
 
 

Table 7: Clustering result with γ3 with α = 20 function 
 

Brand-Model G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 Average TPR 
M32 7 0 0 0 0 0 0 3 0 0  

M27 0 10 0 0 0 0 0 0 0 0 
M31 0 0 10 0 0 0 0 0 0 0 
M28 0 0 0 10 0 0 0 0 0 0 
M17 0 0 0 0 8 0 0 0 0 2 
M29 0 0 0 0 0 10 0 0 0 0 
M12 0 0 0 0 0 0 10 0 0 0 
M00 0 0 0 0 0 0 0 3 5 0 

TPR-Group 70 100 100 100 80 100 100 0 50 20 72% 

 
 
 

Table 8: Clustering result with block-based method 
 

Brand-Model G1 G2 G3 G4 G5 G6 G7 G8 G9 Average TPR 
M32 5 0 0 0 0 0 0 2 3  
M27 0 10 0 0 0 0 0 0 0 
M31 0 0 10 0 0 0 0 0 0 
M28 0 0 0 10 0 0 0 0 0 
M17 0 0 0 0 7 0 0 3 0 
M29 0 0 0 0 0 10 0 0 0 
M12 0 0 0 0 0 0 10 0 0 
M00 0 0 0 0 0 0 0 2 6 

TPR-Group 50 100 100 100 70 100 100 0 0 68% 
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Therefore, we can conclude that the technique proposed in this contri- 
bution improves or equals the average TPR, as compared to only using the 
block-based method, but does not worsen the TPR obtained with the work 
done with the block-based method. 

 
4.3. Average TPR with Videos from Youtube and WhatsApp Social Platforms 

To carry out this experiment, another set of videos available in the scien- 
tific community called VISION Shullani et al. (2017) has been used. Unlike 
the data set used in the previous experiment, this set of videos contains mod- 
els of mobile devices that have been uploaded to the YouTube and WhatsApp 
social media platforms, in addition to videos from mobile devices. 

A forensic analyst cannot always access the mobile device that gener- 
ated the multimedia video to identify the source of the video, since most of 
the videos that show a crime are uploaded on the Internet. To tackle this 
problem, it is necessary to implement techniques that materialize the identi- 
fication of videos from social platforms and verify that the fingerprint PRNU 
remains reliable in this type of situations. 

Also in an open stage, it is not very common to have the same number 
of videos for each device be identified. For this reason, experiments were 
carried out where the video sets of each of the models have an asymmetric 
distribution. These experiments were able to determine if the algorithm 
adapts to real life scenarios. 

Table 9 shows the set of videos that has been used for this experiment. 
Table 10 summarizes the experimental conditions used in this experiment. 
As for the enhancer model to be used, the γ3 with α = 20 function has 

been chosen. This model gave us the best results in the previous experiment. 
As such, when testing this model in another data set, it will be shown that 
these values do not depend on the specific dataset. 

As can be seen in Table 11, the number of videos per device is varied, and 
yet all the videos have been classified in a single group with the exception of 
device D03, which has needed 2 groups to be classified correctly. 

Figure 7 shows the ROC curve for this dataset. 



27  

 
 
 

Table 9: Composition of the VISION dataset sample 
 

ID Brand Resolution # Videos 
D01 Samsung Galaxy S3 Mini 1280x720 27 
D03 Huawei P9 1920x 1080 11 
D04 LG D290 800x480 7 
D07 Lenovo P70A 1280x720 4 
D09 Apple iPhone 4 1280x720 3 
D13 Apple iPad2 1280x720 3 
D16 Huawei P9Lite 1920x1080 3 
D17 Microsoft Lumia 640 1920x1080 3 
D21 Wiko Ridge 4G 1920x1080 3 
D22 Samsung Galaxy Trend Plus 1280x720 3 
D24 Xiaomi RedmiNote3 1920x1080 3 
D25 OnePlus A3000 1920x1080 3 
D33 Huawei Ascend 1280x720 3 

 

Table 10: Experimental conditions 
 

Parameter Value 
Minimum number of videos from Social Platforms (YouTube, WhatsApp) 3 

Enhancer model γ3 
Value of α 20 

 
 

The value of the curve AUC for the area of the curve ROC in Figure 6 is 
0.956802. 

As seen in the experiments section, the highest success rate is achieved 
with the improvement model γ3 with α = 20. It is demonstrated that it 
is necessary to apply techniques that improve the PRNU fingerprint of the 
sensor in the case of digital videos to improve the hit rate. 
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Table 11: TPR with devices from social platforms 
 

ID G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 
D01 27 0 0 0 0 0 0 0 0 0 0 0 0 0 
D03 0 2 9 0 0 0 0 0 0 0 0 0 0 0 
D04 0 0 0 7 0 0 0 0 0 0 0 0 0 0 
D07 0 0 0 0 4 0 0 0 0 0 0 0 0 0 
D09 0 0 0 0 0 3 0 0 0 0 0 0 0 0 
D13 0 0 0 0 0 0 3 0 0 0 0 0 0 0 
D16 0 0 0 0 0 0 0 3 0 0 0 0 0 0 
D17 0 0 0 0 0 0 0 0 3 0 0 0 0 0 
D21 0 0 0 0 0 0 0 0 0 3 0 0 0 0 
D22 0 0 0 0 0 0 0 0 0 0 3 0 0 0 
D24 0 0 0 0 0 0 0 0 0 0 0 3 0 0 
D25 0 0 0 0 0 0 0 0 0 0 0 0 3 0 
D33 0 0 0 0 0 0 0 0 0 0 0 0 0 3 

 

 
Figure 7: ROC curve the γ3 with α = 20 function for VISION video dataset 
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5. Conclusions and Future Work 

The general conclusion is that the presented technique is valid and achieves 
good results. The algorithm that extracts the sensor fingerprint takes into ac- 
count the effect of video compression as well as the removal of high-frequency 
details contained in the scenes of the frames to improve the hit rate. It should 
be noted that in the most recent literature, techniques can be found that im- 
prove the fingerprint pattern of sensor imperfections applied to digital images 
but not to digital videos. This work shows that it is necessary to improve 
the sensor footprint also in the case of digital videos. 

The proposed clustering algorithm is based on the combination of a hi- 
erarchical and a flat clustering. Most of the groups that have been obtained 
are pure, that is, they are made up o a single mobile device. The percentage 
of success when using a smaller clipping size reduces the hit rate. But on 
the other hand, the calculation time is smaller, so a balance should be found 
between the clipping size and the calculation time. 

The unsupervised grouping technique used is carried out on a wide variety 
of videos, that is, videos from mobile devices (native videos) and videos 
downloaded from the main video- sharing platforms such as WhatsApp and 
YouTube. Results higher than 90% in the hit rate were achieved. Therefore, 
this technique can be used in real scenarios because the analyst does not 
need to have access to the mobile device that generated the video since the 
technique also works with videos downloaded from the main multimedia video 
sharing platforms such as WhatsApp and YouTube. 

As future work, the most recent works in the literature dealing with digital 
images such as Gupta and Tiwari (2018) and Kang et al. (2011) could be 
applied to videos to see if better results are achieved than those obtained 
with the Li (2010) technique. Finally, another future line of work that is 
proposed is associated with the high computational cost of the proposed 
technique. It is necessary to use metamodels or surrogate models that reduce 
this computational complexity and help increase the number of videos used 
in the experiments such as Alizadeh et al. (2019) and Alizadeh et al. (2020). 
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