
Stratified Opposition-Based Initialization for
Variable-Length Chromosome Shortest Path Problem

Evolutionary Algorithms ?

Aiman Ghannami1,∗, Jing Li1, Ammar Hawbani1, Ahmed Al-Dubai2

Abstract

Initialization is the first and a major step in the implementation of evolutionary

algorithms (EAs). Although there are many common general methods to ini-

tialize EAs such as the pseudo-random number generator (PRNG), there is no

single method that can fit every problem. This study provides a new, flexible,

diversity-aware, and easy-to-implement initialization method for a genetic algo-

rithm for the shortest path problem. The proposed algorithm, called stratified

opposition-based sampling (SOBS), considers phenotype and genotype diver-

sity while striving to achieve the best fitness for the initialization population.

SOBS does not depend on a specific type of sampling, because the main goal

is to stratify the sampling space. SOBS aims at an initial population with

higher fitness and diversity in the phenotype and genotype. To investigate the

performance of SOBS, four network models were used to simulate real-world

networks. Compared with the most frequently used initialization method, that

is, PRNG, SOBS provides more accurate solutions, better running time with

less memory usage, and an initial population with higher fitness. Statistical

analysis showed that SOBS yields solutions with higher accuracy in 68%–100%

of the time. Although this study was focused on the genetic algorithm, it can

?This work was supported by the Strategic Priority Research Program of Chinese Academy
of Sciences (A Class) No. XDA19020102.

∗Corresponding author
Email addresses: aiman@mail.ustc.edu.cn (Aiman Ghannami), lj@ustc.edu.cn (Jing

Li), anmande@ustc.edu.cn (Ammar Hawbani), a.al-dubai@napier.ac.uk (Ahmed Al-Dubai)
1University of Science and Technology of China,JinZhai 96, Hefei,China.
2University of Edinburgh,South Bridge, Edinburgh EH8 9YL, United Kingdom.

Preprint submitted to Journal of LATEX Templates November 14, 2020

be applied to other population-based EAs that solve the shortest path prob-

lem and use the same direct population representation such as particle swarm

optimization (PSO).

Keywords: Shortest Path Problem; Initialization ; Genetic Algorithm;

Network Kriging;

1. Introduction

A genetic algorithm (GA) for the shortest path problem (SP) (Ahn & Ra-

makrishna, 2002) aims to find the shortest path between a pair of nodes in a

given network. There are many applications of the SP in different fields, in-

cluding routing communication networks (Moy, 1994), transportation (Zhan &

Noon, 1998), robotic path planning (Desaulniers & Soumis, 1995), and the de-

sign of very large-scale integrated circuits (Cong et al., 1998). A GA is typically

a population-based stochastic search algorithm. The first step of the search

process is to have an initial guess: the initialization population. The quality of

the initial population is related directly to the quality of the solution obtained

by the GA. A good initial guess gives the GA a better chance of finding a good

solution (Burke et al., 2004) (Rahnamayan et al., 2007)(Clerc, 2008), and a bad

initial guess may hinder the ability of the algorithm to find the optimal solution

(Maaranen et al., 2004). The definition of a good and bad initial population is

a problem-specific matter, as there is no general rule of initialization that can

be applied to every type of problem (Lunacek & Whitley, 2006). In general, ac-

cording to (Kazimipour et al., 2014), the initialization methods in evolutionary

algorithms (EAs) can be classified into three main groups.

1. Randomness: a random method that generates different individuals using

a pseudo-random number generator (PRNG) (Kazimipour et al., 2014).

2. Generality can be divided into two main groups: generic and application-

specific techniques.

3. Compositionality, whereby the number of standalone procedures used to

generate initial individuals is one or more. It is considered non-compositional

2

if it consists of more than one step, such as opposition-based learning (OBL)

(Tizhoosh, 2005); otherwise, it is considered compositional.

Throughout the GA SP literature, random initialization (using a PRNG)

is used, as suggested by (Ahn & Ramakrishna, 2002). PRNG is commonly

used because the problems solved with EAs are black-box optimization prob-

lems (Kazimipour et al., 2012) (i.e., there is no prior knowledge regarding the

search landscape). This is also applicable to the GA SP, where there is no prior

information about the length/cost of the optimal path. However, in this type of

searching problems, it is impossible to have the best initial guess (Rahnamayan

et al., 2008), but it is possible to have a better guess using the OBL (Tizhoosh,

2005) concept. The basic idea of OBL is to obtain complementary candidate

solutions for a set of solutions. As most EAs start by randomly guessing the

solutions, OBL suggests guessing a solution and its “opposite.” According to

OBL, the opposite of number x can be calculated using x̆ = a + b − x. Fig. 1

illustrates the relationship between x and its opposite, x̆, in interval [a, b] ac-

cording to OBL. There are two ways of employing OBL in searching: defining

a function that maps every solution to its opposite solution; searching for so-

lutions with opposite characteristic(s) (Rojas-Morales et al., 2017). The latter

approach is used in this study, based on the path length as the main solution

characteristic.

This study presents a stratified opposition-based sampling (SOBS) initial-

ization method for the GA SP with variable-length chromosomes. SOBS aims to

obtain the initial population with a good fitness and high length-level diversity

without ignoring genotype diversity.

The remainder of this paper is organized as follows. Section 2 provides a

review of the GA SP applications and initialization algorithms in EAs. Section

3 introduces the proposed algorithm, followed by the experiment and the simu-

lation results in Section 4. The initial population diversity metrics and results

are presented in Section 5. Section 6 details the statistical tests. Section 7

explains the effect of the repair function on the length-level diversity. Section 8

concludes this paper.

3

Figure 1: OBL concept (Tizhoosh, 2005)

2. Related Work

2.1. GA SP Applications

Even though GAs with variable-length chromosomes have found widespread

applications in many fields, the research on this field is unsatisfactory (Qiong-

bing & Lixin, 2016). There are a few examples of studies on GAs with variable-

length chromosomes, including most of the work in the last four years. In traffic

and congestion planning, the GA SP is one of the most widely used algorithms

(Mohamed et al., 2018). It has been used in vehicle routing optimization in

(Miao et al., 2018)(Tiwari & Chang, 2015) (Khankhour et al., 2019). In irriga-

tion systems, the GA SP is used to optimize pipe network paths (Zhao et al.,

2019). In urban planning, the GA SP is used in pedestrian navigation sys-

tems (Zhou et al., 2019), personal navigation systems (Maruyama et al., 2004),

and optimizing road networks in transportation (Chen et al., 2018). In cyber-

physical power systems, it has been used for risk assessment (Dong et al., 2018)

as a quick method that can reconstruct alternative routes. In(Chen et al., 2020)

(Shafiee & Berglund, 2016), the GA SP was used in rescue planning to opti-

mize the road selection between fire stations and destinations to identify the

shortest routes for emergency vehicles to minimize the tour time and cost. In

(Chen et al., 2017), the GA SP was used for urban areas for rescue planning

in disasters such as earthquakes. In (Ayo et al., 2017), the GA SP was used

in air transportation as a quick method to suggest flight paths when rerouting

was needed. In (Vignesh & Premalatha, 2019), the GA SP was used in military

information system optimization. In (Balta et al., 2017), the GA SP was used in

small batch manufacturing to connect users with small batch production needs.

4

In (Vignesh & Premalatha, 2019), the GA SP was used in computer networks

to create an energy-aware routing algorithm for software-defined networks, and

in (Rastgoo & Sattari-Naeini, 2018), it was used to create a quality-of-service

(QoS)-aware routing method. To the best of our knowledge, all of these ap-

plications use random initialization, except (Rastgoo & Sattari-Naeini, 2018),

in which a problem-specific method that relies on an underlying QoS routing

protocol was used to initialize the GA. Moreover, to the best of our knowledge,

no previous work has reported a modification in the algorithm design, except

(Qiongbing & Lixin, 2016), in which a new crossover method was proposed.

2.2. EA Initialization Methods

PRNG is the most commonly used method in EA initialization(Elsayed et al.,

2016). PRNG generates a sequence of numbers that characteristically approx-

imates a sequence of random numbers, but is not truly random (Kazimipour

et al., 2014). That is, it depends on a set of initial seeds to generate the se-

quence (Park & Miller, 1988). The popularity of PRNG stems from the fact

that it is simple and uniform. In addition, it can be easily implemented because

it is available with any programming language (Kazimipour et al., 2014). The

main problem with PRNG is that it suffers from the curse of dimensionality

(Maaranen et al., 2004). In the SP, the number of feasible solutions can be very

high. For example, the number of feasible solutions for source–destination pair

1 and 20 in the topology shown in Fig. 2 can be as high as 301600 (i.e., the

total number of simple paths between nodes 1 and 20). Moreover, PRNG gen-

erates points that are not distributed properly (Kazimipour et al., 2014)(Helwig

& Wanka, 2008). A chaotic number generator (CNG) studies the behavior of

dynamic systems and uses chaos theory (Schuster & Just, 2006) to produce a

stochastic initialization population. Sensitivity to initial conditions/populations

is a common characteristic between dynamic systems and EAs; thus, CNGs

have been adopted in many EAs (Ozer, 2010)(Dong et al., 2012)(Gao & Wang,

2007)(Akay & Karaboga, 2012)(Gao et al., 2012)(Gutiérrez et al., 2011). To

produce a chaotic-like initialization population, the CNG needs a map. The

5

mapping function in its basic form is as follows.

xG(i,j) = f(xG(i,j)) (1)

Here, xG(i,j) is the jth variable of the ith individual at the Gth generation. Map-

ping function f is not limited to one type; different functions can be employed,

such as circle, sinus, ten, and logistic (Ozer, 2010). Mapping functions of CNGs

are designed for problems with one to three decision variables (Senkerik et al.,

2013), making the chaotic property advantageous in problems with low dimen-

sionality. Compared with the aforementioned stochastic techniques, determin-

istic methods (also known as low-discrepancy methods (Uy et al., 2007)) do

not prioritize unpredictability or randomness, and they prioritize the coverage

of the search space. That is, the population should cover the entire search

space (Kazimipour et al., 2013). Regardless of the initial seed, deterministic

techniques generate the same population. Quasi-random sequence (QRS) and

uniform experimental design (UED) are both deterministic initialization tech-

niques. Despite its name, QRS is a completely deterministic method (Maaranen

et al., 2007). QRS assumes that the objective function value and the initial

population discrepancy are positively correlated, making it difficult to satisfy

this assumption in practice (Kazimipour et al., 2014). Moreover, QRS assumes

that the initial population covers the entire searching space, and this is difficult

to satisfy in high-dimensional problems (Kazimipour et al., 2013), similar to

the SP. Furthermore, QRS requires a measurement algorithm to measure dis-

crepancies (Wang & Sloan, 2008). In addition, QRSs were originally designed

for continuous spaces. UED is a type of space-filling technique (WangYuan &

KaiTai, 1981), which searches for points that are distributed uniformly in a

specific range. UED defines a D-dimensional array with q different levels and

then searches a population size of qD. Theoretically, q is a perfectly uniform

population; thus, it is impossible to feed an algorithm with a population of this

number to be evaluated. This is because the population should be sufficiently

large to cover the entire array and increase exponentially.

6

3. Proposed Method

This section introduces the proposed algorithm. First, we derive a pheno-

type space probability stratification analysis, followed by the interpretation of

genotype space probability stratification.

3.1. Stratifying Phenotype Space

In a given graph, G, many edges are traversed by many paths. For example,

taking vertices v1 and v20 in Fig. 2 as the source and destination, respectively,

paths {1 → 4 → 10 → 19 → 20} and {1 → 4 → 10 → 15 → 20} traverse the

same two edges, (1, 4) and (4, 10). As these paths share edges, these common

edges among paths are reflected in path costs. This concept is well known in

network kriging and may be used to obtain end-to-end estimation on a graph

(Chua et al., 2006).

Moreover, the degree of vertex v1 is deg(v1) = 4; therefore, as long as the

randomly initialized population number, n, is > 4, then at least one edge is

traversed by at least two paths (by the Pigeonhole principle). For destination

vertex v20, deg(v20) = 3; therefore, if n > 3, then at least one edge(s) is traversed

by at least two paths. Taking the initial population number n = V , where V is

the total number of vertices in the network, then each edge connected to source

v1 is traversed by h paths, where 1 ≤ h ≤ 17 and the n initial paths terminate at

the same destination (vertex v20), with the edges of v20 traversed by 1 ≤ h ≤ 18

paths.

Consequently, the difference in path costs reflects the cost of edges that

are not shared (Hand, 2010). This difference can be measured using a string

metric. Because paths vary in length, the Levenshtein distance (Wagner &

Fischer, 1974) is a suitable metric as it provides an accurate pairwise and order-

aware measurement of the distance between a pair of strings. The recursive

function of the Levenshtein distance between two given chromosomes, x and

y, with lengths of |x| and |y|, respectively, is defined as follows. (Levenshtein,

7

Figure 2: Typical 20-node random network (Ahn & Ramakrishna, 2002)

1966)

levx,y(i, j) =



max(i, j) if min(i, j) = 0

min


levx,y(i− 1, j) +1

levx,y(i, j − 1) +1

levx,y(i− 1, j − 1) +1(xi 6=yj)

otherwise
(2)

Here, 1(xi 6=yj) is the characteristic function equal to 0 when xi = yj (i.e., nodes

i and j are the same) and equal to 1 otherwise.

The inputs of Algorithm 1 are the N population from which the initial popu-

lation is taken, the sample size (population size) and the number of individuals

are taken from strata . Those N individuals are then stratified according to

their length into M strata (line 1), and the resulting strata are sorted according

to the length of the individuals they contain (line 3). Algorithm 1 begins by

checking whether the population size is already satisfied (line 8); if not, the

leftmost and rightmost strata are chosen in lines 11–12. Before taking a sample

of size θ, the stratum size is evaluated to ensure that θ is not larger than the

number of individuals in the stratum (lines 13 and 18). In the next iteration,

Algorithm 1 chooses the next leftmost and next rightmost stratum (lines 11–12)

to select new individuals, and this continues until the population size is met.

8

Note that it does not matter whether the strata are ascending or descending. In

addition, it is important to have sampling without replacement. If one iteration

is not sufficient to obtain the required population number, we may have a sec-

ond iteration (a complete iteration is when all strata have been visited). In this

case, to ensure sampling without replacement, after adding the selected individ-

uals to the initial population (lines 23–24), those individuals should be removed

(lines 25–26). Finally, Algorithm 1 increases the strata index, C, (line 28) to

ensure that we visit the next leftmost and rightmost strata. Thus, Algorithm

1 stratifies the phenotype space by stratifying paths according to their length.

The maximum intra-stratum Levenshtein distance is limited to the length of

paths in that stratum, as follows.

Given a sample space, S, with N individuals stratified according to their

length into M disjoint subsets (strata) such that Ωk, k = 1, 2, 3, . . . ,M , with⋃M
k=1 Ωk = S and Ωp ∩ Ωq = ∅; p 6= q.

Let each stratum be identified by the path/individual(s) length it contains

(e.g., Ωi is the stratum containing individuals of length i). These strata are

sorted by their identifier such that Ωi < Ωi+1 < · · · < Ωm−1 < Ωm, where Ωi

is the stratum that contains the shortest individual(s), and Ωm is the stratum

with the longest individual(s).

Let levmax
k,k be the maximum Levenshtein distance between any given paths,

Px and Py, in a given stratum, Ωk. Then, levmax
k,k is as follows:

levmax
k,k = lev(Px,Py) = k − 2, (3)

where k is the length of the individuals in Ωk. The maximum number of different

edges between any two given paths in Ωk is levmax
k,k + 1. Constant 2 in Eq. (3) is

used to exclude the source and destination vertices. According to the problem

encoding, every chromosome starts with the source node and terminates with

the destination node (i.e., the GA SP uses direct encoding/representation; there

is no mapping between genotype and phenotype spaces (Rothlauf, 2006). A

node can be referred to as a gene in this context. Consequently, paths and

chromosomes are different names for the same entity. Throughout the paper,

9

we use the terms chromosome, solution, and path interchangeably). Thus, the

minimum common vertices between any given two paths is min(Px ∩ Py) = 2.

In contrast, in the unstratified space, levmax
i,m is obtained for any given path,

Pi and Pm, in strata Ωi and Ωm, respectively, as follows:

levmax
i,m = lev(Pi,Pm) = max(length(Pi,Pm))− 2 = m− 2, (4)

with (levmax
i,m + 1) of different edges.

Using an intuitive distance-based explanation of OBL for one-dimensional

space (Rahnamayan et al., 2012), we can replace the Euclidean distance of

(Rahnamayan et al., 2012) by the Levenshtein distance as explained previously.

Then, SOBS obtains an initial population with better fitness compared with

pure PRNG as follows.

We assume the following.

(a) We know nothing about the cost/length of the optimal solution, xp. This

is a black-box optimization problem. In addition, there exists one optimal

solution for the problem.

(b) Let each stratum be identified by the chromosome(s) length it contains.

These strata are sorted by their identifier such that Ωi < Ωi+1 < · · · <

Ωm−1 < Ωm, where Ωi is the stratum that contains the shortest chromo-

some(s), and Ωm is the stratum with the longest chromosome(s).

(c) The opposite of xi ∈ Ωi is defined as xm ∈ Ωm, the opposite of xi+1 ∈ Ωi+1

is defined as xm−1 ∈ Ωm−1, and so on, such that Ωi < Ωi+1 < · · · <

Ωm−1 < Ωm, where i is the length of the solutions that belong to stratum

Ωi.

(d) Let Disx,y be the number of the different edges between two given so-

lutions, x and y, in strata Ωx and Ωy, respectively. It is defined as

Disx,y = lev(Px,Py) + 1, where lev(Px,Py) is the Levenshtein distance

between Px and Py.

(e) Let Ωx̃ be the median strata as in Fig. 3.

10

Figure 3: Illustration of sorted strata and SOBS sampling

To concisely exhaust the possibilities for the location of xp, we refer to the

strata on the left as ΩLeft and those on the right as ΩRight, as illustrated in

Fig. 3. Now, we have the following expected scenarios.

1. Algorithm 1 has visited ΩLeft strata and Ωp ∈ ΩLeft; then, intuitively,

Disxp,xL
is minimized. That is, the maximum Levenshtein distance between the

unknown optimal solution, xp, and a selected solution, xL, is minimized. Simi-

larly, if Ωp ∈ ΩRight and ΩRight have been visited, Disxp,xR
is at its minimum.

Moreover, suppose xp ∈ Ωm−1 and strata Ωm and Ωm−2 have been visited.

Because Ωm and Ωm−2 are the direct neighbors of Ωm−1, the possible max-

imum distance between any solutions from these strata and xp is minimized

from both sides. For instance, if Ωm−2 and Ωm in Fig. 3 contain solutions

with lengths of 8 and 10, respectively, then the length of xp is 9. In this case,

Dism−2,m−1 = 9− 2 + 1 = 8 and Dism,m−1 = 10− 2 + 1 = 9.

2. Owing to the constraints on the size of the initial population, Algorithm

1 has stopped before visiting Ωmid. In this case, as explained previously, the

possible maximum distance is minimized from both sides because ΩLeft and

ΩRight have been visited. Another important factor is that the lengths in the

middle can be produced by the repair function. This is because the repair

function job removes loops (i.e., shrinks solutions) and completes the repaired

chromosomes by acting directly on the topology. The experimental verification

of this effect of the repair function is described in Section 7.

11

12

Algorithm 1: GA SP initialization (SOBS)

Input: N Population, Sample size, θ number individual(s) per stratum.

Output: n sample of population (Pop).

1 Strata ← stratify(N);// Stratify chromosomes

2 M ← len(Strata);// Get the number of strata

3 Sort(Strata);

4 Pop←[];

5 C←0;

6 while C < Sample size do

7 LeftStratum,RightStratum,LeftSample,RightSample=[];

8 if length (Pop)= Sample size or length (Pop)=M then

9 Return Pop;

10 end

11 LeftStratum ← Strata[C];// Get lefmost stratum population

12 RightStratum ← Strata(M -C);// Rightmost stratum

13 if length (LeftStratum)≥ 2 then

14 LeftSample ← (pick(LeftStratum, θ));// pick θ individuals

15 else

16 LeftSample ← (pick(LeftStratum,1));// Add a single

individual

17 end

18 if length (RightStratum)≥ 2 then

19 RightSample ←(pick(RightStratum, θ));

20 else

21 RightSample ← (pick(RightStratum,1));

22 end

23 Pop.add(LeftSample);

24 Pop.add(RightSample);

25 LeftStratum.del(LeftSample);// Delete picked individuals

26 RightStratum.del(RightSample);

27 C ← C+1;

28 end
13

3.2. Stratifying Genotype Space

Section 3.1 shows how stratifying paths by lengths reduces variance in terms

of phenotype diversity and how OBL can be used to minimize the difference

(described by Levenshtein distance) between the initial guess and the optimal

solution. In terms of genotype diversity, and by sampling from the opposite

extreme side strata, Algorithm 1 moves the sampling pointer from the stratum

with the fewest genes per chromosome to the stratum with most genes per

chromosome. By definition, a feasible solution is a solution without any repeated

genes (i.e., a path with no loops). Thus, in terms of genotype diversity, a

chromosome from Ωi is less diverse than a chromosome from Ωi+1. Formally,

let divi be the genotype diversity of any path Pi, Pi ∈ Ωi, and let divi+1 be

the genotype diversity of Pi+1 ∈ Ωi+1, and so on, where i is the length of

chromosomes in Ωi, then

divi < divi+1 < · · · < divm−1 < divm. (5)

Parameter θ in Algorithm 1 can be viewed as an initial population genotype

diversity tuner. Inherently from Eq. (2) and Eq. (3), the larger the sample from

a stratum with individuals of longest length (ΩRight), the greater the genotype

diversity in the initial population. As diversity is directly related to exploration

(Gupta et al., 2006), more diversity means more exploration time. If θ = 1, then

we obtain a more diverse population than if θ = 2 (assuming sampling without

replacement).

4. Experiment

Unless stated otherwise, the algorithm parameters used in this section are

listed in Table 1. The fitness function used is as follows (Ahn & Ramakrishna,

2002).

fi =
1∑li−1

j=1 Cgi(j), gi(j + 1)
(6)

Here, fi is the fitness of the ith chromosome, li is its length, gi(j) is the

gene/node in the jth locus of the ith chromosome, and C is the link cost be-

14

tween nodes. The objective is to maximize fi. For the detailed design of the

GA SP and the parameters in Table 1, refer to (Ahn & Ramakrishna, 2002).

Table 1: Algorithm parameters

Selection type Tournament selection

Selection pressure 2

Mutation rate 0.01

Crossover 1-point crossover

Population size Number of nodes

Sampling Random

Elitism None

Number of generations 100

4.1. Results of the Deterministic Network

The first test involves a fixed 20-node network, with the topology illustrated

in Fig. 2. The population size is the same as the number of nodes in the

network. The chosen source and destination nodes are 1 and 20, respectively.

The dashed line in Fig. 4. shows the optimal solution cost obtained by using

the Dijkstra algorithm. Fig. 4. shows SOBS versus PRNG with 1000 samples.

Each experiment was terminated at 100 generations. The box plots depict the

spread of the obtained data. The lines inside the boxes denote the median. The

upper line of the box is the upper quartile, and 75% of the obtained values fall

below this line. The lower line of the box represents the lower quartile, and 25%

of the data fall below this line. Based on the description given previously, it

is obvious that most of the obtained values of SOBS are closer to the optimal

solution fitness (dashed line). The closer the obtained values are to the optimal

solution, the better.

15

Figure 4: Summary of the best values achieved using the topology in Fig. 2 between nodes 1

and 20

4.2. Random Networks

In this test, four models are used to generate different types of random net-

works. The first and second models are Watts–Strogatz (WS) for small-world

networks, and Erdős—Rényi (ER) is used to generate general random networks.

Numerous network systems exhibit small-world network properties such as so-

cial networks, neuroscience, medicine and bio-engineering (She et al., 2016), bio-

chemical pathways (Telesford et al., 2011), and professional footballers’ move-

ments (Gama et al., 2015). Parameters in the ER(n, p) model were set to p = 0.2

for every random network generated, where n is the number of vertices and p

is the probability of edge creation. For WS(n, k, p), k = 4 and p = 0.1, where n

is the number of vertices, k is the mean that each vertex is connected with its

k nearest neighbors in a ring topology, and p is the probability of rewiring each

edge.

The third model is the Waxman model, which is commonly used to simu-

late topologies that resemble communications networks and intra-domain net-

works and to evaluate routing performance (Van Mieghem, 2001)(Verma et al.,

1998)(De Neve & Van Mieghem, 2000)(Shaikh et al., 2001)(Guo & Matta, 2003).

16

The parameter values of the Waxman model, Waxman(n, α, β), used in this ex-

periment were set as α = β = 0.4, where n is the number of vertices and α and

β are the model parameters.

Finally, the fourth model is the Barabási–Albert (BA) model (Barabási &

Albert, 1999) used to generate scale-free networks. Parameter m in BA(n,m)

was set as m = 2, where n is the number of vertices and m is the number of

edges to attach from a new vertex to existing vertices.

In each model, a network size of V , V ∈ {16, 24, 32, 40, 48, 56, 64, 72}, was

generated with random integer weights between 1 and 100 for each edge. For

each V , a random pair of source–destination was chosen; then the algorithm

ran for 100 generations (to prevent the algorithm from converging before 100

generations, the optimal path was removed if found in the initial population),

and the returned best solution achieved was recorded. This was repeated 1000

times to obtain 1000 samples. The mean of the best solution achieved over 1000

samples is shown in Fig. 5, where the x-axis represents the path costs (fi
−1),

and the lower the obtained path cost, the better. The algorithm parameters in

this experiment are listed in Table 1. The value of θ in Algorithm 1 was set as

θ = 2.

17

(a) Watts–Strogatz model (b) Erdős—Rényi model

(c) Waxman model (d) Barabási–Albert model

Figure 5: Accuracy of PRNG and SOBS with different network sizes. Accuracy is the mean

cost of the best solution achieved over 1000 samples for each network size, with a constant

number of generations of 100.

For every random network generated, the population size for PRNG was

set to the number of network nodes. For the proposed initialization method,

according to Algorithm 1, it cannot exceed the number of network nodes, but

can be less than that if all the strata have been visited and sampled. Fig. 5

shows the means of the best solutions achieved against the optimal values. In

all models and for each network size, SOBS solutions were closer to the optimal

values than were the solutions of PRNG. Fig. 6 shows the fitness means of

the initial population for each model. That is, the fitness of all individuals in

the initial population was evaluated using fitness function fi, and the mean

value was selected and depicted in Fig. 6. The higher the obtained values, the

better. Each violin plot presents 8000 data samples of the fitness mean across

the eight different network sizes. Wider sections of the violin plots represent a

higher probability that the data points take on the given x-axis value. Thus,

18

the density of fitness means shows that SOBS has a higher probability of having

higher (better) fitness values.

Figure 6: Initialization population fitness mean over 8000 samples (1000 samples for each

network size)

In terms of the running time (initialization time is included), Fig. 7 illustrates

the average running time over 1000 samples for each network size.

19

(a) Watts–Strogatz model (b) Erdős—Rényi model

(c) Waxman model (d) Barabási–Albert model

Figure 7: Mean execution time over 1000 samples

Although the SOBS initialization method strives for diversity in terms of

gene-level diversity by selecting the longest chromosomes, it does not allow too

much diversity. Too much diversity in EAs means too much exploration (Gupta

et al., 2006), resulting in a longer searching time that hinders the ability of the

algorithm to reach a better solution in a small number of generations.

The memory usage of all models and the network size are shown in Fig. 8.

Although the population number in many networks was the same (SOBS popu-

lation number is reported in Table 2; for PRNG, the population number is the

number of nodes in the network), except in a few cases, the memory usage was

less than that of PRNG in many network sizes. This is because longer chromo-

somes occupy more memory locations than shorter chromosomes do. When the

number of longer chromosomes is dominant in the sample space, they dominate

the initial population in PRNG. In contrast, SOBS is not affected by the dom-

inance of one length because the sampling inside any stratum with respect to

20

the chromosome length is uniform.

Table 2: SOBS initial population number for each network model/size (note that for PRNG,

the size of population is set to the network size)

Network Size Watts–Strogatz Erdős—Rényi Waxman Barabási–Albert

16 16 16 16 15

24 24 23 24 23

32 32 31 32 32

40 40 40 39 40

48 40 38 47 47

56 56 36 55 56

64 64 28 64 64

72 72 34 72 71

(a) Watts–Strogatz model (b) Erdős—Rényi model

(c) Waxman model (d) Barabási–Albert model

Figure 8: Mean of memory usage of the initial population, with sample size of 1000

21

5. Initial Population Diversity Comparison

This section details the experimental verification of the diversity values for

both initialization methods. The goal was to compare the diversity of the ini-

tial population in terms of genotype and chromosome length level. First, we

introduce the diversity metrics used to implement this test, and then the tested

diversity results are reported.

5.1. Length-Level Diversity Metrics

For length-based diversity, we used two metrics. The first was used to mea-

sure the richness in terms of chromosome lengths. Richness is the number of

different lengths available in the initial population. The greater the number of

different lengths, the richer is the initial population in terms of length. Formally,

given a sampling space, S, with N chromosomes satisfied into M different strata

according to their homogeneous length, such that Ωk, k = 1, 2, 3, . . . ,M, with⋃M
k=1 Ωk = S and Ωp ∩ Ωq = ∅, p 6= q, then richness ϑ is

ϑ = M. (7)

To measure diversity among the available lengths, the Simpson index (Magur-

ran, 2013) was chosen. The Simpson index provides a measurement of domi-

nance among a group of populations. The dominance measurement indicates

whether the population is dominated by one or more types. Evenness among

the population can also be inferred from the same metric, as dominance and

evenness are complementary factors. That is, it indicates whether the popula-

tion is dominated by some lengths. The Simpson index of diversity is given by

D = 1−
∑ n(n− 1)

N(N − 1)
, (8)

where n is the total number of a particular type (length) and N is the total

number of all types (lengths). For more clarification of how D is applied on the

length level, please refer to Algorithm 2. The first line in Algorithm 2 takes the

set of lengths as an input. Line 3 counts the total number of lengths, and the

remaining lines are the formula in Eq. (8).

22

Algorithm 2: Calculating the Simpson diversity index on chromosome

lengths.

Input: A set of the available lengths in the initial population, L.

Output: D in Eq. (8).

1 NumeratorList ← [];

2 Numerator ← 0;

3 L sum ← Sum(L);

4 for i← 0 to len(L) do

5 n ← L[i];

6 NumeratorList.append (n*(n-1));

7 end

8 Numerator ← Sum (NumeratorList);

9 Denominator ← (L sum*(L sum -1));

10 D ← 1-((Numerator)/Denominator);

11 Return D ;

5.2. Initial Population Genotype Diversity Metric

For gene-level diversity, the Levenshtein distance was used. As a pairwise

distance metric between chromosomes x and y, the Levenshtein distance is de-

fined as follows.

Ld =
2 ∗

∑N−1
i=1

∑N
j=i+1NLD(x,y)

N(N − 1)
(9)

Here, N is the size of the initial population and NLD(x,y) is the normalized

Levenshtein distance, calculated as follows.

NLD(x,y) =
Lev(x,y)

Max(length(x), length(y))
(10)

5.3. Experimental Results of Diversity

Fig. 9 shows diversity at the length and gene levels. The gene-level diversity

is measured by the pairwise Levenshtein Distance in Eq. (8). Each violin plot in

Fig. 9 depicts the distribution of 8000 samples of diversity values (1000 samples

for each network size). For the length-level diversity, SOBS provided a richer

23

(Fig. 9(a)) and more diverse (Fig. 9(b)) initial population, even with a smaller

population size, as indicated by the results in Table 2. In terms of genotype

diversity, Fig. 9(c) shows SOBS diversity values as well as those of PRNG. In

the ER and WS models, SOBS has less diversity, whereas in the Waxman and

BA models, the diversity value distribution is similar to that of PRNG.

(a) Richness (length-based diversity) (b) Simpson index (length-based diversity)

(c) Genotype diversity (Levenshtein distance)

Figure 9: Diversity comparison of both initialization methods with each network model, where

each violin plot contains 8000 samples

6. Statistical Tests

6.1. Verifying Eq. (3) and Eq. (4)

To recap, Eq. (3) and Eq. (4) in Section 3 suggest that, when sampling from

strata where each stratum has only paths of the same length, the variability

in terms of costs of those paths should be less than the variability of paths

24

that are not stratified (i.e., as in pure PRNG). A dispersion measurement on

intra-stratum and inter-stratum levels can provide a good indication of this

variability. For example, the topology shown in Fig. 2. We can select the first

and the last nodes, nodes 1 and 20, then exhaust all the possible solutions, count

every solution cost, and then measure the dispersion of all solutions. Then, the

solutions are stratified, cost of each solution is counted, and dispersion of each

stratum (intra-stratum) is measured. Because the number of strata can be large

(for example, after exhausting all the solutions between nodes 1 and 20 in Fig. 2,

the number of strata is 16), to present the results in a comprehensible manner,

we decided, after measuring the dispersion of each stratum, to report only the

maximum and minimum dispersion values.

Exhausting the search space between every source and destination pair in a

graph is very computationally expensive and time-consuming. Moreover, it is

difficult to report the results of such a large number of possibilities in a table.

A good way to solve this problem is to choose a source–destination pair and use

their search space for the measurement. To measure dispersion, the interquartile

range (IQR) measure of variability was used. The IQR is resistant to outliers and

skewness of data. Table 3 presents the results of this test, and Algorithm 3 shows

the detailed implementation of this test. The first entry in the table is dedicated

to the topology shown in Fig. 2. with the source and destination nodes, 1 and

20, respectively. With the other models, a generated random network with a

network size of 20 nodes was chosen, and the parameters of each model are

presented in Section 4. From Table 3, we can see that, with stratification, we

can always obtain paths that are closer to the optimal solution, in terms of

their costs, than those that can be obtained in the case of an unstratified space

being used (i.e., the maximum IQR of intra-stratum is less than the IQR of

inter-stratum). This means that the SOBS selects a population that is more

similar to the optimal solution than PRNG does, as expressed by Eq. (3) and

Eq. (4).

25

Table 3: Dispersion (IQR) results among costs of paths at the intra-stratum and inter-stratum

level.

Network type

Intra-stratum IQR

Inter-stratum IQR S size Number of strataMin Max

Deterministic

(Fig. 2)

108 289 359 301600 16

WS model 38 118 212 44216 15

ER model 11 114 169 116592 17

Waxman

model

0 115 126.25 1192 13

BA model 0 107 208 1433 16

26

Algorithm 3: Statistical test to verify Eq. (2) and Eq. (3).

Input: S; List of all solutions in the search space between a pair of

Src-Dst.

Output: Min Intra StratumIQR, Max Intra StratumIQR,

Inter StartaIQR.

1 Inter StartaIQR ← 0;

2 Max Intra StratumIQR ← 0;

3 Min Intra StratumIQR ← 0;

4 Inter StrataCosts ← [];

5 Intra StratumCosts ← [];

6 Strata IQR ← [];

7 Strata ← { } ;// A dictionary, keys are strata IDs, and values are paths

of each stratum.;

8 for i← 0 to len(S) do

9 Inter StrataCosts.Append(Cost(S[i])); // Obtain the cost of each

path;

10 end

11 Inter StartaIQR=IQR(Inter StrataCosts);//Obtain Inter-stratum

dispersion;

12 Strata ← Stratify S ;

13 for j ← 0 to len(Strata) do

14 Paths← Strata[j] ; //Get all the paths of each stratum separately.;

15 Intra StratumCosts← [];

16 for p← 0 to len(Paths) do

17 Intra StratumCosts.Append(Cost(Paths[p]));

18 end

19 Strata IQR.Append(IQR(Intra StratumCosts));

20 end

21 Max Intra StratumIQR ← max(Strata IQR); //Maximum IQR ;

22 Min Intra StratumIQR ← min(Strata IQR);

27

6.2. Significance Tests

To compare the results of both algorithms, Vargha and Delaney statistics

and Mann–Whitney U test were used based on the practical guidelines provided

by (Arcuri & Briand, 2011) for testing and reporting randomized algorithms.

The sample size used for each test was 1000.

Â12: Vargha and Delaney statistics are non-parametric effect size measures.

We have a performance measure, M, (fitness function fi, in Eq. (6)) of two

algorithms, A (SOBS) and B (PRNG). The value of Â12 is a measure of the

probability that algorithm A yields higher values of M than algorithm B does.

For example, if Â12 = 0.8, then, 80% of the time, algorithm A will produce

better results of M than algorithm B will. If Â12 is 0.5, both algorithms are

equivalent. Based on this description, the reported Â12 values in Table 4 indicate

that in every network size and model, the performance of SOBS is better than

that of PRNG. The effsize package (Torchiano, 2020) was used for this test.

p-value: This value was calculated using the Mann–Whitney U test, which is

a non-parametric test used to determine whether there is a significant difference

between the algorithms. Given a performance measure, M, (fitness function

fi) of two algorithms, A (SOBS) and B (PRNG), and a significance level, α

(we set α = 0.05 in this test), if the obtained p-value is less than α, then there

is a significant difference in the performance of the algorithms. The p-value

obtained from this test is p = 0.000 for each network size and model. This means

that there is a significant difference in the performance of the algorithms. To

implement this test, we used the mannwhitneyu method of the SciPy (Virtanen

et al., 2020) package in Python.

28

Table 4: Results of Â12 for comparing SOBS and PRNG

Model
Network Size

16 24 32 40 48 56 64 72

WS 0.990 0.998 0.999 0.995 0.999 0.997 0.997 0.999

ER 0.715 0.786 0.998 1.0 0.999 0.996 0.981 1.0

Waxman 0.972 0.995 0.999 1.0 1.0 1.0 1.0 1.0

BA 0.901 0.684 1.0 0.998 0.999 0.999 1.0 0.999

7. Effect of the Repair Function on Solution Lengths

The main objective of the repair function is to repair impaired chromosomes

that may appear after the crossover. As designed in (Ahn & Ramakrishna,

2002), the repair function removes the upper part of a chromosome where a

loop is discovered and replaces it with a randomly chosen part from the topol-

ogy. That is, it depends on the topology directly to repair infeasible solutions

and obtain other feasible solutions. Without going any further into the de-

sign details of the repair function, which is beyond the scope of this work (see

Ahn & Ramakrishna, 2002 for details), we justify why Algorithm 1 starts from

extreme ends and not from the middle. The following test was designed to

clarify the effect of the repair function on the solution length diversity. The

typical deterministic network topology shown in Fig. 2 was chosen for this test.

The solutions between nodes 1 and 20 were exhausted (301600 solutions ob-

tained); then chromosomes in the middle, namely chromosomes with lengths

{11, 12, 13, 14}, were removed (that is, 69259 removed chromosomes). Then,

two chromosomes (parents) were randomly chosen from the remaining 232341

solutions (301600− 69259 = 232341) to be fed to the crossover and repair func-

tions. The lengths of the produced offspring were recorded. This was repeated

1000 times to obtain a sample of 1000.

Fig. 10(a) shows 1000 samples. This indicates that even if chromosomes of

lengths {11, 12, 13, 14} never occur in the parent chromosomes, those chromo-

29

somes repeatedly appear among the offspring. That is, as mentioned previously,

the repair function depends directly on the topology to fix the infeasible solu-

tions, and even if some lengths, specifically those in the middle of the initial

population lengths set, never occur, the repair function can produce those new

lengths. The relationship between the parent chromosome mean length and the

offspring mean length when the offspring are repaired or not is shown in the

kernel density plot in Fig. 10(b). Data in Fig. 10(b) were obtained as explained

earlier, except that no chromosomes were removed before taking a sample of

1000. Fig. 10(b) shows that when a chromosome has not been repaired, the

relationship between parent and offspring lengths is perfectly linear.

(a) Parents versus offspring length density. (b) Relationship between parents and offspring mean length

,

Figure 10: Effect of the repair function on the produced solution lengths during the optimiza-

tion process

8. Conclusion

In this study, we presented a new initialization algorithm, called SOBS, for

a variable-length chromosome GA for the SP. Diversity metrics were provided.

The effect of the repair function on solution lengths was also studied.

SOBS provides an initial population with better fitness and balanced geno-

type diversity and target more phenotype diversity. By using the OBL concept,

30

SOBS provided a good initial guess (initial population with better fitness). By

using stratification and exploiting the direct representation of the population,

SOBS distinguished between solutions with less genotype diversity and those

with higher genotype diversity. Stratification also allowed SOBS to achieve

more phenotypic diversity. Having higher length-level diversity is preferable be-

cause the first characteristic of the optimal solution is its length. The simulation

results with a deterministic network and four random-graph models showed that

SOBS provides a population with higher fitness than PRNG does and achieves

solutions with higher accuracy. According to the Vargha and Delaney statistical

tests, the probability that SOBS yields better results is between 68% and 100%.

There were only three values that were less than 90%. However, SOBS does not

provide a better running time in many cases because SOBS is a compositional

method and requires more than one step to select the initial population.

The suggested length-based metric (Simpson index) provided an indication of

the diversity of initial population in terms of their lengths. The repair function

also helped in this type of diversity during the optimization process. However,

the effect of the repair function on population diversity needs to be investigated

further. Another aspect that deserves further research is the relationship be-

tween the graph model and the quality of the initial population produced with

SOBS. For instance, small-world networks tend to have higher clustering coeffi-

cients and small average shortest path lengths; the relationship of these graph

metrics (and perhaps other metrics) with the quality of the initial population

when stratification is used deserves further attention.

References

Ahn, C. W., & Ramakrishna, R. S. (2002). A genetic algorithm for shortest

path routing problem and the sizing of populations. IEEE transactions on

evolutionary computation, 6 , 566–579.

Akay, B., & Karaboga, D. (2012). A modified artificial bee colony algorithm for

real-parameter optimization. Information sciences, 192 , 120–142.

31

Arcuri, A., & Briand, L. (2011). A practical guide for using statistical tests to

assess randomized algorithms in software engineering. In 2011 33rd Interna-

tional Conference on Software Engineering (ICSE) (pp. 1–10). IEEE.

Ayo, B. S. et al. (2017). An improved genetic algorithm for flight path re-routes

with reduced passenger impact. Journal of Computer and Communications,

5 , 65.

Balta, E. C., Jain, K., Lin, Y., Tilbury, D., Barton, K., & Mao, Z. M. (2017).

Production as a service: A centralized framework for small batch manufactur-

ing. In 2017 13th IEEE Conference on Automation Science and Engineering

(CASE) (pp. 382–389). IEEE.

Barabási, A.-L., & Albert, R. (1999). Emergence of scaling in random networks.

science, 286 , 509–512.

Burke, E. K., Gustafson, S., & Kendall, G. (2004). Diversity in genetic program-

ming: An analysis of measures and correlation with fitness. IEEE Transac-

tions on Evolutionary Computation, 8 , 47–62.

Chen, M., Wang, K., Dong, X., & Li, H. (2020). Emergency rescue capability

evaluation on urban fire stations in china. Process Safety and Environmental

Protection, 135 , 59–69.

Chen, P., Tong, R., Lu, G., & Wang, Y. (2018). The α-reliable path problem in

stochastic road networks with link correlations: A moment-matching-based

path finding algorithm. Expert Systems with Applications, 110 , 20–32.

Chen, Y., Zeng, X., & Yuan, T. (2017). Design and development of earth-

quake emergency rescue command system based on gis and gps. In Inter-

national Symposium for Intelligent Transportation and Smart City (pp. 126–

138). Springer.

Chua, D. B., Kolaczyk, E. D., & Crovella, M. (2006). Network kriging. IEEE

Journal on Selected Areas in Communications, 24 , 2263–2272.

32

Clerc, M. (2008). Initialisations for particle swarm optimisation. Online at

http://clerc. maurice. free. fr/pso, .

Cong, J., Kahng, A. B., & Leung, K.-S. (1998). Efficient algorithms for the

minimum shortest path steiner arborescence problem with applications to vlsi

physical design. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 17 , 24–39.

De Neve, H., & Van Mieghem, P. (2000). Tamcra: a tunable accuracy multiple

constraints routing algorithm. Computer communications, 23 , 667–679.

Desaulniers, G., & Soumis, F. (1995). An efficient algorithm to find a shortest

path for a car-like robot. IEEE Transactions on Robotics and Automation,

11 , 819–828.

Dong, N., Wu, C.-H., Ip, W.-H., Chen, Z.-Q., Chan, C.-Y., & Yung, K.-L.

(2012). An opposition-based chaotic ga/pso hybrid algorithm and its appli-

cation in circle detection. Computers & Mathematics with Applications, 64 ,

1886–1902.

Dong, O., Yu, P., Liu, H., Feng, L., Li, W., Chen, F., & Shi, L. (2018). A

service routing reconstruction approach in cyber-physical power system based

on risk balance. In NOMS 2018-2018 IEEE/IFIP Network Operations and

Management Symposium (pp. 1–6). IEEE.

Elsayed, S., Sarker, R., & Coello, C. A. C. (2016). Sequence-based deterministic

initialization for evolutionary algorithms. IEEE transactions on cybernetics,

47 , 2911–2923.

Gama, J., Couceiro, M., Dias, G., & Vaz, V. (2015). Small-world networks

in professional football: conceptual model and data. European Journal of

Human Movement , 35 , 85–113.

Gao, W.-f., Liu, S.-y., & Huang, L.-l. (2012). Particle swarm optimization

with chaotic opposition-based population initialization and stochastic search

33

technique. Communications in Nonlinear Science and Numerical Simulation,

17 , 4316–4327.

Gao, Y., & Wang, Y.-J. (2007). A memetic differential evolutionary algorithm

for high dimensional functions’ optimization. In Third International Confer-

ence on Natural Computation (ICNC 2007) (pp. 188–192). IEEE volume 4.

Guo, L., & Matta, I. (2003). Search space reduction in qos routing. Computer

Networks, 41 , 73–88.

Gupta, A. K., Smith, K. G., & Shalley, C. E. (2006). The interplay between

exploration and exploitation. Academy of management journal , 49 , 693–706.

Gutiérrez, A., Lanza, M., Barriuso, I., Valle, L., Domingo, M., Perez, J., &

Basterrechea, J. (2011). Comparison of different pso initialization techniques

for high dimensional search space problems: A test with fss and antenna ar-

rays. In Proceedings of the 5th European Conference on Antennas and Prop-

agation (EUCAP) (pp. 965–969). IEEE.

Hand, D. J. (2010). Statistical analysis of network data: Methods and models

by eric d. kolaczyk. International Statistical Review , 78 , 135–135.

Helwig, S., & Wanka, R. (2008). Theoretical analysis of initial particle swarm

behavior. In International conference on parallel problem solving from nature

(pp. 889–898). Springer.

Kazimipour, B., Li, X., & Qin, A. K. (2013). Initialization methods for large

scale global optimization. In 2013 IEEE Congress on Evolutionary Compu-

tation (pp. 2750–2757). IEEE.

Kazimipour, B., Li, X., & Qin, A. K. (2014). A review of population initial-

ization techniques for evolutionary algorithms. In 2014 IEEE Congress on

Evolutionary Computation (CEC) (pp. 2585–2592). IEEE.

Kazimipour, B., Salehi, B., & Jahromi, M. Z. (2012). A novel genetic-based

instance selection method: Using a divide and conquer approach. In The 16th

34

CSI International Symposium on Artificial Intelligence and Signal Processing

(AISP 2012) (pp. 397–402). IEEE.

Khankhour, H., Abouchabaka, J., & Abdoun, O. (2019). Genetic algorithm for

shortest path in ad hoc networks. In International Conference on Artificial

Intelligence and Symbolic Computation (pp. 145–154). Springer.

Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, inser-

tions, and reversals. In Soviet physics doklady (pp. 707–710). volume 10.

Lunacek, M., & Whitley, D. (2006). The dispersion metric and the cma evo-

lution strategy. In Proceedings of the 8th annual conference on Genetic and

evolutionary computation (pp. 477–484).

Maaranen, H., Miettinen, K., & Mäkelä, M. M. (2004). Quasi-random initial

population for genetic algorithms. Computers & Mathematics with Applica-

tions, 47 , 1885–1895.

Maaranen, H., Miettinen, K., & Penttinen, A. (2007). On initial populations of

a genetic algorithm for continuous optimization problems. Journal of Global

Optimization, 37 , 405.

Magurran, A. E. (2013). Measuring biological diversity . John Wiley & Sons.

Maruyama, A., Shibata, N., Murata, Y., Yasumoto, K., & Ito, M. (2004). A

personal tourism navigation system to support traveling multiple destinations

with time restrictions. In 18th International Conference on Advanced Infor-

mation Networking and Applications, 2004. AINA 2004. (pp. 18–21). IEEE

volume 2.

Miao, C., Liu, H., Zhu, G. G., & Chen, H. (2018). Connectivity-based optimiza-

tion of vehicle route and speed for improved fuel economy. Transportation

Research Part C: Emerging Technologies, 91 , 353–368.

Mohamed, R. E., Saleh, A. I., Abdelrazzak, M., & Samra, A. S. (2018). Survey

on wireless sensor network applications and energy efficient routing protocols.

Wireless Personal Communications, 101 , 1019–1055.

35

Moy, J. (1994). Open shortest path first version 2. rfq 1583. Internet Engineering

Task Force, .

Ozer, A. B. (2010). Cide: chaotically initialized differential evolution. Expert

Systems with Applications, 37 , 4632–4641.

Park, S. K., & Miller, K. W. (1988). Random number generators: good ones

are hard to find. Communications of the ACM , 31 , 1192–1201.

Qiongbing, Z., & Lixin, D. (2016). A new crossover mechanism for genetic

algorithms with variable-length chromosomes for path optimization problems.

Expert Systems with Applications, 60 , 183–189.

Rahnamayan, S., Tizhoosh, H. R., & Salama, M. M. (2007). Quasi-oppositional

differential evolution. In 2007 IEEE congress on evolutionary computation

(pp. 2229–2236). IEEE.

Rahnamayan, S., Tizhoosh, H. R., & Salama, M. M. (2008). Opposition versus

randomness in soft computing techniques. Applied Soft Computing , 8 , 906–

918.

Rahnamayan, S., Wang, G. G., & Ventresca, M. (2012). An intuitive distance-

based explanation of opposition-based sampling. Applied Soft Computing , 12 ,

2828–2839.

Rastgoo, R., & Sattari-Naeini, V. (2018). Gsomcr: Multi-constraint genetic-

optimized qos-aware routing protocol for smart grids. Iranian Journal of

Science and Technology, Transactions of Electrical Engineering , 42 , 185–194.

Rojas-Morales, N., Rojas, M.-C. R., & Ureta, E. M. (2017). A survey and clas-

sification of opposition-based metaheuristics. Computers & Industrial Engi-

neering , 110 , 424–435.

Rothlauf, F. (2006). Representations for genetic and evolutionary algorithms.

In Representations for Genetic and Evolutionary Algorithms (pp. 9–32).

Springer.

36

Schuster, H. G., & Just, W. (2006). Deterministic chaos: an introduction. John

Wiley & Sons.

Senkerik, R., Pluhacek, M., Oplatkova, Z. K., Davendra, D., & Zelinka, I. (2013).

Investigation on the differential evolution driven by selected six chaotic sys-

tems in the task of reactor geometry optimization. In 2013 IEEE Congress

on Evolutionary Computation (pp. 3087–3094). IEEE.

Shafiee, M. E., & Berglund, E. Z. (2016). Agent-based modeling and evolution-

ary computation for disseminating public advisories about hazardous material

emergencies. Computers, Environment and Urban Systems, 57 , 12–25.

Shaikh, A., Rexford, J., & Shin, K. G. (2001). Evaluating the impact of stale link

state on quality-of-service routing. IEEE/ACM Transactions On Networking ,

9 , 162–176.

She, Q., Chen, G., & Chan, R. H. (2016). Evaluating the small-world-ness

of a sampled network: Functional connectivity of entorhinal-hippocampal

circuitry. Scientific reports, 6 , 21468.

Telesford, Q. K., Joyce, K. E., Hayasaka, S., Burdette, J. H., & Laurienti, P. J.

(2011). The ubiquity of small-world networks. Brain connectivity , 1 , 367–375.

Tiwari, A., & Chang, P.-C. (2015). A block recombination approach to solve

green vehicle routing problem. International Journal of Production Eco-

nomics, 164 , 379–387.

Tizhoosh, H. R. (2005). Opposition-based learning: a new scheme for ma-

chine intelligence. In International Conference on Computational Intelli-

gence for Modelling, Control and Automation and International Conference

on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-

IAWTIC’06) (pp. 695–701). IEEE volume 1.

Torchiano, M. (2020). effsize: Efficient Effect Size Computation. URL: https:

//CRAN.R-project.org/package=effsize. doi:10.5281/zenodo.1480624 r

package version 0.8.0.

37

https://CRAN.R-project.org/package=effsize
https://CRAN.R-project.org/package=effsize
http://dx.doi.org/10.5281/zenodo.1480624

Uy, N. Q., Hoai, N. X., McKay, R. I., & Tuan, P. M. (2007). Initialising pso

with randomised low-discrepancy sequences: the comparative results. In 2007

IEEE Congress on Evolutionary Computation (pp. 1985–1992). IEEE.

Van Mieghem, P. (2001). Paths in the simple random graph and the waxman

graph. Probability in the Engineering and Informational Sciences, 15 , 535–

555.

Verma, S., Pankaj, R. K., & Leon-Garcia, A. (1998). Qos based multicast

routing algorithms for real time applications. Performance Evaluation, 34 ,

273–294.

Vignesh, V., & Premalatha, K. (2019). Optimal route path sustainability in

military information system with reduced interference effect. The Journal of

Supercomputing , 75 , 6106–6117.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cour-

napeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der

Walt, S. J., Brett, M., Wilson, J., Jarrod Millman, K., Mayorov, N., Nel-

son, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C., Polat, İ., Feng, Y.,

Moore, E. W., Vand erPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Hen-

riksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H.,

Pedregosa, F., van Mulbregt, P., & Contributors, S. . . (2020). SciPy 1.0: Fun-

damental Algorithms for Scientific Computing in Python. Nature Methods,

17 , 261–272. doi:https://doi.org/10.1038/s41592-019-0686-2.

Wagner, R. A., & Fischer, M. J. (1974). The string-to-string correction problem.

Journal of the ACM (JACM), 21 , 168–173.

Wang, X., & Sloan, I. H. (2008). Low discrepancy sequences in high dimensions:

How well are their projections distributed? Journal of Computational and

Applied Mathematics, 213 , 366–386.

WangYuan, & KaiTai, F. (1981). A note on uniform distribution and experi-

mental design. Ph.D. thesis.

38

http://dx.doi.org/https://doi.org/10.1038/s41592-019-0686-2

Zhan, F. B., & Noon, C. E. (1998). Shortest path algorithms: an evaluation

using real road networks. Transportation science, 32 , 65–73.

Zhao, R.-H., He, W.-Q., Lou, Z.-K., Nie, W.-B., & Ma, X.-Y. (2019). Syn-

chronization optimization of pipeline layout and pipe diameter selection in a

self-pressurized drip irrigation network system based on the genetic algorithm.

Water , 11 , 489.

Zhou, S., Wang, R., Ding, J., Pan, X., Zhou, S., Fang, F., & Zhen, W. (2019).

An approach for computing routes without complicated decision points in

landmark-based pedestrian navigation. International Journal of Geographical

Information Science, 33 , 1829–1846.

39

	Introduction
	Related Work
	GA SP Applications
	EA Initialization Methods

	Proposed Method
	Stratifying Phenotype Space
	Stratifying Genotype Space

	Experiment
	Results of the Deterministic Network
	Random Networks

	Initial Population Diversity Comparison
	Length-Level Diversity Metrics
	Initial Population Genotype Diversity Metric
	Experimental Results of Diversity

	Statistical Tests
	Verifying Eq. (3) and Eq. (4)
	Significance Tests

	Effect of the Repair Function on Solution Lengths
	Conclusion

