
Expert Systems With Applications 177 (2021) 114857

Available online 16 March 2021
0957-4174/© 2021 Elsevier Ltd. All rights reserved.

Flexible runtime support of business processes under rolling 
planning horizons 

Irene Barba a,*, Andrés Jiménez-Ramírez a, Manfred Reichert b, Carmelo Del Valle a, 
Barbara Weber c 

a Departamento de Lenguajes y Sistemas Informáticos, Universidad de Sevilla, Spain 
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A B S T R A C T   

This work has been motivated by the needs we discovered when analyzing real-world processes from the 
healthcare domain that have revealed high flexibility demands and complex temporal constraints. When trying 
to model these processes with existing languages, we learned that none of the latter was able to fully address 
these needs. This motivated us to design TConDec-R, a declarative process modeling language enabling the 
specification of complex temporal constraints. Enacting business processes based on declarative process models, 
however, introduces a high complexity due to the required optimization of objective functions, the handling of 
various temporal constraints, the concurrent execution of multiple process instances, the management of cross- 
instance constraints, and complex resource allocations. Consequently, advanced user support through optimized 
schedules is required when executing the instances of such models. In previous work, we suggested a method for 
generating an optimized enactment plan for a given set of process instances created from a TConDec-R model. 
However, this approach was not applicable to scenarios with uncertain demands in which the enactment of 
newly created process instances starts continuously over time, as in the considered healthcare scenarios. Here, 
the process instances to be planned within a specific timeframe cannot be considered in isolation from the ones 
planned for future timeframes. To be able to support such scenarios, this article significantly extends our pre
vious work by generating optimized enactment plans under a rolling planning horizon. We evaluate the approach 
by applying it to a particularly challenging healthcare process scenario, i.e., the diagnostic procedures required 
for treating patients with ovarian carcinoma in a Woman Hospital. The application of the approach to this so
phisticated scenario allows avoiding constraint violations and effectively managing shared resources, which 
contributes to reduce the length of patient stays in the hospital.   

1. Introduction 

For more than a decade, there has been an increasing interest in 
aligning information systems in a process-oriented way (Reichert and 
Weber, 2012; Weske, 2019). A business process (BP) consists of a set of 
activities, which jointly realize a specific business goal and whose 
execution needs to be coordinated in an organizational and/or technical 
environment (Weske, 2019). Usually, a BP faces numerous constraints to 
be obeyed during its enactment. 

To provide operational support in contemporary process-aware in
formation systems, a business process is usually modeled in an 

imperative way, i.e., by defining a schema that provides information on 
how a given set of activities shall be performed. However, imperative 
approaches to business process management are often too rigid to meet 
real-world flexibility requirements. As an alternative, providing 
inherent flexibility, declarative process models have been suggested 
(van der Aalst et al., 2009; Reichert and Weber, 2012; Debois and Hil
debrandt, 2017; Montali, 2010). 

1.1. Motivation 

The current work has been motivated by the needs we discovered 
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when analyzing sophisticated real-world processes from the healthcare 
domain, e.g., the diagnostic and therapeutic procedures required in the 
context of healing patient ovarian carcinoma in a Woman Hospital 
(Schultheiß et al., 1996; Ovarian cancer (CG122), 2011). In these pro
cedures multiple units (e.g., wards, outpatient department, surgery, 
labs, radiology, etc.) are involved. When trying to model these processes 
with existing languages, we learned that none of the latter was able to 
fully address the needs of patient treatment processes, as detailed in our 
previous work (Jiménez-Ramírez et al., 2018). To be more precise, we 
could not find any modelling language that was able to properly deal 
with both the flexibility demands and the complex temporal constraints 
set out by considered healthcare processes. This motivated us to design 
TConDec-R (Barba et al., 2012; Barba et al., 2016), a declarative process 
modeling language enabling the specification of complex temporal 
constraints. 

On one hand, a declarative process model offers a high degree of 
execution flexibility to users. On the other, executing a declarative 
model entails larger efforts for users compared to imperative models 
(Reichert and Weber, 2012; Schonenberg et al., 2008). While rather few 
decisions have to be made when executing an imperative model (cf. 
Steps 1a + b in Fig. 1), for a declarative process model, users may choose 
among numerous ways of executing it (cf. Steps 2a + b in Fig. 1). 
Consequently, the decision on how to execute a declarative model is 
more complex (Haisjackl et al., 2016; Zugal et al., 2015). This 
complexity further increases for business processes that (1) comprise 
temporal or cross-instance constraints, (2) require an efficient man
agement of shared resources, and (3) need to optimize objective func
tions in an uncertain evolving environment (cf. Business Process in 
Fig. 1), as in the scenarios considered. As this might result in sub-optimal 
enactment plans, advanced user support (cf. Step 2e in Fig. 1) is indis
pensable when executing declarative models. To enable such runtime 
support, in previous work we proposed a constraint-based approach for 
automatically generating optimized enactment plans (cf. Step 2c in 
Fig. 1) from TConDec-R process models (Barba et al., 2012; Jiménez- 
Ramírez et al., 2018). Moreover, as explained in Barba et al. (2013), 
during process enactment this approach allows flexibly adapting the 
plans if required, considering run-time information as well (cf. Step 2d 
in Fig. 1). 

Many processes can be managed considering our previously pro
posed approach (e.g., Jiménez-Ramírez et al., 2018). However, it 

revealed several limitations when applying it to certain real-world sce
narios. To be more precise, in many real-world scenarios, like the ones 
we investigated in the healthcare domain, the enactment of process in
stances starts continuously over time and the planning horizon can 
therefore be considered as infinite as there always exist running in
stances. Generating optimized enactment plans in such scenarios is both 
challenging and highly complicated as the information required for 
generating the plans might be unknown, making it necessary to rely on 
forecasts when making planning decisions (Xie et al., 2003). Note that 
planning decisions related to later periods need to be generated based on 
data that might change later (forecasted information) (Tiacci and Saetta, 
2012). 

1.2. Contribution 

To enable the support of scenarios that can be modelled with 
TConDec-R and for which the enactment of process instances may start 
continuously over time, we propose the generation of optimized enact
ment plans on a rolling horizon basis with a finite planning horizon 
(Karimi et al., 2003; Tiacci and Saetta, 2012) (cf. Fig. 2). At a specific 
point in time T, there exists a set of running process instances. Moreover, 
there are instances that will potentially start after T and, hence, need to 
be considered when generating the optimized enactment plans at T 
taking the planning horizon length (PHL for short) into account. For 
both instance sets, required future information might be already known 
(e.g., activities being mandatory for any process instance) and, in 
addition, unknown future information might exist. Regarding unknown 
information, forecasts are provided based on previous process instances 
(Zhao et al., 1995; Tiacci and Saetta, 2012). 

When generating an enactment plan for a given planning horizon, at 
planning point T, both known and forecasted information are consid
ered. The plan is then generated by optimizing the enactment of all in
stances (cf. sets a and b in Fig. 2) according to a given objective function 
and fulfilling the specification of the process behavior (i.e., the declar
ative BP model). Although a plan for the complete planning horizon is 
created, usually, only certain decisions are carried out short term, while 
others are deferred to future planning points. The time spent between 
two successive planning points is determined by the replanning period 
(i.e., RP). This way, at planning point T + RP, the planning horizon is 
rolled forward and the same procedure is repeated considering the 

Fig. 1. Overview of our previous related work.  

Fig. 2. Replanning under rolling planning horizons.  
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updated information in the event log, the information that is known, and 
the forecasts. Thereby, decisions of the planning horizon related to T, 
which were not taken before T + RP, are free to be replanned at T + RP. 

To validate the approach, we apply it to a particularly challenging 
scenario from the investigated ones, i.e., the diagnostic and therapeutic 
procedures required for treating patients with ovarian carcinoma in a 
Woman Hospital (Schultheiß et al., 1996; Ovarian cancer (CG122), 
2011). Note that the approach is not restricted to healthcare, but can be 
applied in other domains (e.g., engineering processes that imply high 
demands regarding flexibility and temporal constraint management) as 
well. To be more precise, the proposed approach targets at scenarios 
characterized by (1) their flexible nature, (2) cross-process constraints 
involving the time and resource perspectives, and (3) the need to effi
ciently manage shared resources in accordance with a given optimiza
tion criterion. Note that our approach can be only applied to scenarios 
that allow performing estimates on activity durations, resource avail
ability, and the number of process instances started within a specific 
timeframe. Moreover, it must be possible to properly model the 
respective processes with TConDec-R (cf. Fig. 3). 

This article enhances our previous work by addressing a fundamental 
primary research question (PRQ) not considered so far: 

(PRQ) Is the proposed approach useful for coping with real process sce
narios in which the enactment of process instances starts continuously over 
time? 

With the goal of answering PRQ, this paper significantly extends and 
improves our previous work by (1) enabling run-time flexibility under 
rolling planning horizons, (2) improving the applicability of the approach 
to real-world scenarios, and (3) performing an empirical evaluation 
along a particularly challenging healthcare process scenario. On one 
hand, these extensions significantly broaden the applicability of the 
proposed approach; on the other, they show that the approach can be 
successfully applied to complex scenarios that present characteristics 
similar to the ones we observed in healthcare scenarios. 

The remainder of this paper is organized as follows: Section 2 dis
cusses related work, while Section 3 gives background on our previous 
works. Section 4 formalizes the addressed problem. Section 5 summa
rizes the original contribution of the paper, i.e., it shows how the 

optimized enactment plans are generated under rolling planning hori
zons. Section 6 then discusses how the generated optimized enactment 
plans can be used for improving process support. Section 7 describes the 
performed evaluation that is based on the application of the proposed 
approach to the real-world scenario from healthcare. Section 8 discusses 
the current state of our research, including its limitations, and, finally, 
Section 9 concludes the paper. 

2. Related Work 

This section presents related work on (1) declarative process 
modeling languages that support temporal constraints, (2) scheduling, 
(3) decision support systems, and (4) process enactment. The main 
findings are summarized in Table 1. 

There exist several proposals for managing temporal constraints in 
various domains. In Jiménez-Ramírez et al. (2018), we reviewed 
declarative process modeling languages that support the temporal con
straints necessary for modeling a sophisticated real-world process sce
nario from healthcare trough the analysis of supported time patterns. The 
latter are solutions for representing commonly occurring temporal 
constraints in Process-Aware Information Systems (PAISs), cf. Table 2 
(Lanz et al., 2014; Lanz et al., 2016). To be more precise, several works 
(Montali et al., 2013; Hildebrandt et al., 2013; Maggi and Westergaard, 
2014; Maggi, 2014; Zeising et al., 2014; Jiang et al., 2016; Burattin 
et al., 2016; Schönig et al., 2016; Barba et al., 2012; Mans et al., 2010; 
Borrego et al., 2020; Käppel et al., 2019; Mertens et al., 2017; Xu et al., 
2020) were identified as relevant in the context of our research. In 
particular, the current work considers 4 of the 10 time patterns sug
gested in Lanz et al. (2014) as they refer to aspects directly related to the 
considered healthcare processes (Jiménez-Ramírez et al., 2018). We 
concluded that (1) time patterns TP1 and TP2 (cf. Table 2) are well 
supported, (2) time pattern TP5 (cf. Table 2) is only supported by Mans 
et al. (2010), Barba et al. (2012), Mertens et al. (2017) and Borrego et al. 

Fig. 3. Scenarios in which the proposed approach can be successfully applied.  

Table 1 
Comparison with related work.  

Topic Main contributions of the current work 

Temporal declarative process modeling languages (Montali et al., 2013; Hildebrandt et al., 
2013; Maggi and Westergaard, 2014; Maggi, 2014; Zeising et al., 2014; Jiang et al., 2016; 
Burattin et al., 2016; Schönig et al., 2016; Mans et al., 2010; Borrego et al., 2020; Käppel 
et al., 2019; Slaats et al., 2013; Mertens et al., 2017; Xu et al., 2020) 

The proposed approach allows for time-based constraints, restricting the number of 
times a particular process element may be executed within a pre-specified timeframe. 

Scheduling (Hoenisch et al., 2013; Berbner et al., 2007; Oh et al., 2011; Masdari et al., 2016; 
Karimi et al., 2003; Xie et al., 2003; De Araujo et al., 2007; Tiacci and Saetta, 2012) 

The proposed approach allows allocating resources at regular intervals, taking the 
current process context into account. 
The proposed approach supports complex temporal constraints and cross-instance 
coordination. 

Decision support systems (Lanz et al., 2013; Eder et al., 2003; Eder and Pichler, 2005; van 
Dongen et al., 2008; van der Aalst et al., 2011; Pesic et al., 2007) 

The proposed approach considers the optimization of given objective functions. 

Enactment of declarative process models (Carvalho et al., 2013; Goedertier et al., 2008; 
Schönig et al., 2018; Marquard et al., 2015; Ackermann et al., 2018; Montali et al., 2013; 
Pesic, 2008; Westergaard and Maggi, 2012; Mertens et al., 2019) 

The proposed approach allows for an efficient replanning during process enactment 
while guiding users based on the optimization of a given objective function.  

Table 2 
Selected process time patterns (adopted from Lanz et al. (2014), Lanz et al. 
(2016)).  

Time pattern (TP) Example 

TP1 (Time Lags between two Activities) 
enables the definition of different kinds 
of time lags between two activities. 

The time lag between subscribing to a 
Master thesis project and submitting the 
thesis must not exceed 6 months. 

TP2 (Durations) allows specifying the 
duration of process activities. 

Processing 100 requests must not take 
longer than 1 s. 

TP5 (Schedule Restricted Element) allows 
restricting the enactment of a 
particular activity by a schedule. 

In a hospital, full lab tests may solely be 
ordered from Monday to Friday between 8 
am and 5 pm. 

TP6 (Time-based Restrictions) restricts the 
number of times a specific process 
element (e.g., activities or instances) 
may be executed within a given 
timeframe. 

For a specific lab test, at least 5 different 
blood samples have to be taken from the 
patient within 24 h.  
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(2020), and (3) TConDec-R (Barba et al., 2012) is the only approach 
supporting time pattern TP6 (cf. Table 2).1 To the best of our knowledge, 
therefore, only TConDec-R supports the modeling of business processes 
enhanced with the temporal constraints related to the time patterns. 

While existing scheduling proposals (e.g., Hoenisch et al., 2013; 
Berbner et al., 2007; Oh et al., 2011; Masdari et al., 2016) mainly 
consider partial information for assigning resources to activities at run- 
time (i.e., dynamic scheduling), we suggest allocating resources at regular 
intervals, taking the current process context into account as well. Note 
that this allows us to improve overall process enactment as global in
formation can be analyzed. Moreover, there exist proposals related to 
scheduling in lot sizing scenarios with uncertain demand (e.g., Karimi 
et al., 2003; Xie et al., 2003; De Araujo et al., 2007; Tiacci and Saetta, 
2012). Unlike our approach, these works neither consider complex 
temporal constraints nor cross-instance process coordination, ensuring 
constraints across different process instances. 

Regarding decision support systems, Lanz et al. (2013) presents an 
approach for enabling the proper visualization of personal schedules 
from well-structured process models with temporal constraints. Unlike 
our approach, Lanz et al. (2013) starts from an imperative model in such 
a way that the generated schedules just reflect the source imperative 
model. Moreover, Lanz et al. (2013) does not consider the optimization 
of any objective function. Similarly, Eder et al. (2003) presents an 
approach for providing actors with personalized schedules, which is 
based on a probabilistic time-aware workflow system that uses duration 
histograms. Unlike our approach, Eder et al. (2003) uses the personal 
schedules only for workload prediction (e.g., detecting future bottle
necks and upcoming violations of time constraints as early as possible), 
but not for providing directives to the process participants (Eder et al., 
2003). In a related way, a probabilistic workflow system for time pre
diction is presented in Eder and Pichler (2005). Similarly, van Dongen 
et al. (2008) proposes a service that predicts the completion time of 
process instances using non-parametric regression. However, the focus 
of Eder and Pichler (2005) is more on scheduling and escalation; unlike 
our approach, Eder and Pichler (2005) assumes that the workflow is 
known beforehand and is stable (van der Aalst et al., 2011). Moreover, 
both Eder et al. (2003) and Eder and Pichler (2005) provide design-time 
support, whereas our approach enables run-time support as well. Pesic 
et al. (2007) provides run-time support for dynamic changes in the 
context of constraint-based business process models. Unlike the pro
posed approach, Pesic et al. (2007) neither directly supports the selected 
time patterns (cf. Table 2) nor optimization of objective functions. 

Optimizing a given objective function fosters decision support when 
executing declarative process models. Note that this complements other 
decision support approaches that utilize the data perspective (Montali, 
2010; Montali et al., 2013; Maggi et al., 2013; Borrego and Barba, 2014; 
Mertens et al., 2017; Slaats et al., 2013). 

Additionally, there exist proposals that foster the enactment of 
declarative process models. For the Declare family of languages (to 
which TConDec-R belongs), for example, Pesic (2008) proposed the 
generation of a non-deterministic finite state automaton from declara
tive specifications based on linear temporal logic (LTL), which exactly 
represents those traces satisfying the LTL formulas. Later, this approach 
was extended to include the time (Westergaard and Maggi, 2012) and 
data (Montali et al., 2013) perspectives as well. As a drawback, the 
automatic generation of state automaton from declarative specifications 
is NP-complete and, unlike to our approach, no heuristics have been 
used. Similarly, CLIMB generates quality traces from declarative speci
fications (Montali, 2010). Then, the best traces are selected for enact
ment. Unlike our approach, CLIMB does not consider the resource 
perspective. Its features were integrated into MP-Declare whose 

enactment is supported by Ackermann et al. (2018) through the use of 
Alloy and its satisfiability solver. In Carvalho et al. (2013), the graph- 
based approach ReFlex is proposed to improve the enactment capabil
ities of Declare. All these approaches neither provide an efficient 
replanning feature nor do they support the optimization of a given 
objective function when guiding users during process enactment. 

There exist other declarative approaches that support process 
enactment as well. The EM-BrA2CE textual framework (Goedertier et al., 
2008) extends the semantics of business vocabularies and business rules 
for declarative process models, enabling their enactment in a service- 
oriented architecture. Similarly, DPIL Navigator (Schönig et al., 2018) 
enables the enactment of textual DPIL models, including the support of 
certain workflow resource and data patterns. A more human- 
understandable approach is presented by Marquard et al. (2015), 
which proposes a process engine for DCR Graphs. This engine supports 
the enactment of declarative models in a collaborative environment. 
Although the engine can be used to generate traces, it lacks a more 
extensive support for the data and resource perspectives. More recently, 
Mertens et al. (2019) introduced the generic declarative process engine 
DeciClareEngine-tool, which does not enforce the use of any particular 
declarative language. This engine supports data, resource and deadline 
constraints. Unlike our proposal, however, it lacks support for more 
complex time constraints. 

In a nutshell, the primary aim of all these approaches resides on 
calculating the possible next actions, while satisfying the constraints of 
the declarative specification. Although this article does not elaborate 
deeply on this specific feature, unlike these related approaches, it pro
vides advanced features like replanning (during process enactment), 
optimizing an objective function, and supporting sophisticated time and 
cross-instance constraints that, to the best of our knowledge, have not 
been considered by existing approaches for declarative process 
enactment. 

3. Backgrounds 

This section presents backgrounds needed for understanding this 
work. Section 3.1 presents the declarative process modeling language 
TConDec-R (Barba et al., 2012), whereas Section 3.2 shows how opti
mized enactment plans can be obtained from TConDec-R models 
(Jiménez-Ramírez et al., 2018). Finally, Section 3.3 introduces a so
phisticated real-world process scenario from healthcare and shows how 
it can be modeled with TConDec-R (Jiménez-Ramírez et al., 2018). 

3.1. The TConDec-R language 

Fundamental to TConDec-R is Declare (Pesic, 2008), i.e., a declara
tive modeling language that allows specifying a set of activities together 
with the constraints to be obeyed during process enactment such that 
business goal achievement can be ensured. We use TConDec-R for 
specifying activities, their behavioral constraints and temporal con
straints (with the latter allowing for the coverage of fundamental time 
patterns, cf. Table 2). TConDec-R process models are denoted as 
constraint-based as they comprise information about (1) the activities 
that may be performed during process enactment and (2) the constraints 
to be obeyed in this context. Note that TConDec-R is a constraint-based 
language and, hence, enables loosely specified process models (van der 
Aalst, 2009) allowing users to defer modeling decisions to the run-time 
(Reichert and Weber, 2012). 

Definition 1. (TConDec-R activity) A TConDec-R activity act = (a,
dur, role) refers to a process activity a with its estimated duration dur and 
the role of the required resource. 

Definition 2. (TConDec-R process model) A TConDec-R process 
model TCRM= (Acts, CT, Res) is an extended constraint-based process 
model, where Acts corresponds to a set of TConDec-R activities, CT 
corresponds to a set of constraints, which may include any control-flow 

1 Note that some of these proposals (e.g., Mertens et al., 2019; Borrego et al., 
2020) partially address TP6. In general, the scope of TP6 includes both activity 
and process instance, whereas these proposals only consider the activity scope. 
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constraint supported by Declare as well as any temporal constraint 
related to the time patterns from Table 2, and Res corresponds to the 
resources available for process execution. 

TConDec-R constraints are specified according to the graphical no
tation introduced by Declare (Pesic, 2008) and the one proposed in Lanz 
et al. (2016) for visualizing temporal constraints.2 For creating 
TConDec-R models, a web-based tool was implemented (Jiménez- 
Ramírez et al., 2013; Barba et al., 2012).3 

A process instance (cf. Definition 3) represents the concrete execution 
of a TConDec-R process model (i.e., a business case) and its execution 
state reflected by the execution trace (cf. Definition 4). 

Definition 3. (Process instance) Let TCRM= (Acts, CT, Res) be a 
TConDec-R process model. Then: A process instance PIid = (TCRM, σid)

on TCRM has a unique identifier id and is defined by TCRM as well as a 
corresponding trace σid (cf. Def. 4). 

Definition 4. (Trace) Let TCRM= (Acts, CT, Res) be a TConDec-R 
process model. Then: A trace σid is composed of a sequence of (1) 
start and completion events related to activity executions aid

i , a ∈ Acts of 
process instance id, and (2) events related to a resource becoming 
available or unavailable, i.e., events can be  

• start(aid
i ,Rjk,T), i.e., the i-th execution of activity a in the context of 

process instance id, using the k-th resource with role j, was started at 
time T.  

• comp(aid
i , T), i.e., the i-th execution of activity a in the context of 

process instance id was completed at time T.  
• available(Rjk,T), i.e., the k-th resource with role j became available at 

time T. 
• unavailable(Rjk, T), i.e., the k-th resource with role j became un

available at time T. 

When proceeding with the execution of a TConDec-R process model, 
information regarding the executed activities is recorded in an event log 
(cf. Definition 5). In general, an event log comprises a set of execution 
traces. 

Definition 5. (Event Log) An event log is composed of the traces 
related to the execution of a set of process instances. 

3.2. From TConDec-R models to optimized enactment plans 

To generate optimized enactment plans for a specific TConDec-R 
process model (i.e., plans that consider the optimization of the given 
objective function), we proposed a constraint-based approach in previ
ous work (Jiménez-Ramírez et al., 2018). This approach utilizes the 
constraint programming (CP) paradigm for modelling and solving 
planning and scheduling problems in an effective way (Rossi et al., 
2006). As core idea of the CP paradigm, the user defines the problem as a 
set of decision variables and a set of constraints between these variables 
and the input data. Then, a constraint-solver is used to find the values of 
the decision variables meeting the constraints and, when required, 
leading to the optimization of the given objective function. To be more 
precise, the goal of the proposed approach is to determine a plan (i.e., 
start times of process activities) taking into account (1) all process 
constraints, (2) the shared resources, and (3) an optimization criterion. 
Since the generation of optimal plans has NP-complexity (Garey and 
Johnson, 1979), it is not possible to ensure the optimality of the 
generated plans for all cases. 

To solve a problem through constraint programming, it needs to be 

modelled as a constraint satisfaction problem (CSP, cf. Def. 6). 

Definition 6. (Constraint Satisfaction Problem) A CSP P = (V,D,
CCSP) is composed of a set of variables V, a set of domains of values D for 
all variables, and a set of constraints CCSP between variables, such that 
each constraint (1) represents a relation between a subset of variables 
and (2) specifies the allowed combinations of values for these variables. 

A solution to a CSP consists of assigning values to CSP variables, such 
that the assignments satisfy all constraints. Similar to CSPs, constraint 
optimization problems (COPs, cf. Def. 8) require solutions that optimize 
certain objective functions (cf. Def. 7). 

Definition 7. (Objective Function) An objective function OF is a 
function whose maximum or minimum shall be determined. 

Example 1. (Objective function) The objective function to be opti
mized in the considered healthcare scenario is defined as minimizing the 
length of patient hospital stays. 

Definition 8. (Constraint Optimization Problem) A COP POF = (V,
D,CCSP,OF) is a CSP P = (V,D,CCSP) including the objective function OF 
to be optimized. 

In the proposed constraint-based approach, each TConDec-R activity 
(cf. Def. 1) is modeled as a repeating activity (cf. Def. 9). 

Definition 9. (Repeating and scheduling activities) Let TCRM =

(Acts,CT,Res) be a TConDec-R process model and PIid = (TCRM, σid) be a 
related process instance. Then: A repeating activity raid = (a, dur, role,
nt, sacts) related to PIid corresponds to a TConDec-R activity act = (a,
dur, role) that may be executed several times during instance enactment. 
Such repeating activity is described in terms of the estimated duration of 
the process activity (dur), the role of the resource required for activity 
enactment (role), and a CSP variable nt specifying the number of times 
the process activity may be executed (i.e., the number of scheduling 
activities related to raid)4. Moreover, sacts corresponds to the sequence 
of scheduling activities related to this repeating activity. Thereby, a 
scheduling activity aid

i = (raid, st, et, sel, res) corresponds to the i-th 
enactment of repeating activity raid with st/et constituting CSP variables 
that indicate the start/end time of activity enactment. Moreover, sel 
corresponds to a binary CSP variable that indicates whether such ac
tivity is selected for execution5. Moreover, res corresponds to a CSP 
variable representing the resource used for activity enactment. 

Based on these definitions, TConDec-R models are represented as 
constraint optimization problems (i.e., COPs), resulting in COP- 
TConDec-R problems (cf. Def. 10). 

Definition 10. (COP-TConDec-R problem) Let TCRM = (Acts,CT,Res)
be a TConDec-R process model (cf. Def. 2), #inst be the number of planned 
process instances, and RActs be the set of repeating activities related to 
TCRM and #inst (i.e., RActs= {raid, ∀id∈[1, #inst]|raid= (a, dur, role, nt,
sacts), with (a, dur, role)∈Acts}). Then: A COP-TConDec-R problem 
related to TCRM,#inst, and RActs corresponds to a CSP 

2 A complete formalization of the TConDec-R constraints can be obtained via 
the following URL: https://doi.org/10.5281/zenodo.4387184  

3 Available via http://azarias.lsi.us.es/TCR/ModelChecker. 

4 Note that the value of nt (as for any CSP variable) will be determined by the 
solution to the CSP/COP. As for any CSP variable, lower and upper bounds of 
the variable domain (i.e., minimum and maximum value, respectively, that can 
be assigned to nt in a valid solution for the CSP) need to be established in the 
CSP/COP. As detailed in Definition 10, the lower bound for nt is always set to 0, 
whereas the upper bound is set to the maximum cardinality the related process 
activity may have (denoted as MAXNT in Definition 10). Initially, the latter is 
established through a rough estimate that considers the maximum mandatory 
cardinality of all process activities (stated by the existence constraints in the 
constraint-based process model).  

5 Note that whether a scheduling activity aid
i is selected for enactment is 

directly related to the nt variable of the associated repeating activity raid, i.e., 
(1⩽i⩽raid.nt→aid

i .sel = 1)Λ(i > raid.nt→aid
i .sel = 0). 
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POF = (V,D,CCSP,OF) with  

• V being a set that comprises all variables of the CSP model, i.e., 
V≡{raid.nt|raid∈RActs}∪{aid

i .st, aid
i .et, aid

i .sel, aid
i .res |aid

i ∈raid.sacts,
raid∈RActs}.  

• D being a set that covers all value domains of the respective variables 
from V, i.e., D≡{D(raid.nt), D(aid

i .st), D(aid
i .et), D(aid

i .sel), D(aid
i .res)|aid

i 

∈raid.sacts, 
raid∈RActs}, where  
– D(raid.nt) = [0,MAXNT(raid)] with MAXNT(raid) being an upper 

bound for the number of times raid may be executed,  
– D(aid

i .st) = [0,MAXOCT] with MAXOCT being an upper bound for 
the overall completion time of the process,  

– D(aid
i .et) = [0,MAXOCT] with MAXOCT being an upper bound for 

the overall completion time of the process,  
– D(aid

i .sel) = {0,1}, and  
– D(aid

i .res) = [0, |Res(a.role)| − 1] with |Res(a.role)| being the number 
of resources with role a.role in the process model TCRM.  

• CCSP being a set that comprises the resource constraints as well as the 
TConDec-R constraints included in CT (cf. Def. 2). Furthermore, CCSP 

states that a specific enactment of a repeating activity raid ∈ RActs 
precedes the next enactment of the same activity, i.e., ∀aid

i ∈

raid.sacts : aid
i .et⩽aid

i+1.st. Moreover, variable nt is directly related to the 
variable sel of the associated scheduling activities, i.e., ∀aid

i ∈ raid.sacts :
(1⩽i⩽raid.nt→aid

i .sel = 1)Λ(i > raid.nt→aid
i .sel = 0) for each repeating 

activity raid ∈ RActs.  
• OF is the objective function to be optimized.6 

Based on this COP, we implemented a constraint-based approach 
that generates an optimized enactment plan (cf. Def. 11) for a given 
TConDec-R process model, as detailed in our previous work (Jiménez- 
Ramírez et al., 2018). 

Definition 11. (Enactment plan) Let TCRM = (Acts,CT,Res) be a 
TConDec-R process model (cf. Def. 2), #inst be the number of process 
instances planned from TCRM, RActs be the set of repeating activities 
related to TCRM and #inst, and POF = (V,D,CCSP,OF) be the COP- 
TConDec-R problem related to TCRM and #inst. Then: An enactment 
plan 

EP = {(raid.nt’
⃒
⃒raid ∈ RActs, id ∈ [1,#inst])∪

(aid
i .st′,aid

i .et′,aid
i .res′,aid

i .sel
′, with aid

i ∈ raid.sacts)} is a specific way to 
execute a number #inst of process instances of the TCRM model. In the 
proposed approach, EP is generated by solving P, i.e., by instantiating all 
CSP variables of P. This way, raid.nt′ is the instantiation of raid.nt in the 
solution to P, aid

i .st′ is the instantiation of aid
i .st in the solution to P, and so 

on. Thus, for each planned process instance an enactment plan com
prises (1) the number of times each activity is executed, (2) the start and 
completion times of each activity enactment (i.e., activity instance), and 
(3) the resource used for each activity enactment. 

3.3. Healthcare process scenario 

This section details a selected real-world process scenario from 
healthcare that we consider in the following. Section 3.3.1 introduces 
the scenario and discusses related challenges, whereas Section 3.3.2 
provides further details and the way this scenario can be modeled with 
TConDec-R. 

3.3.1. Scenario context 
The selected scenario (Jiménez-Ramírez et al., 2018) deals with the 

scheduling of surgeries and their preparations in the context of ovarian 
carcinoma (Schultheiß et al., 1996; Ovarian cancer (CG122), 2011). 
Patients with ovarian carcinoma are treated in the Women’s Hospital 
(WH). In this context, the available resources of the Women’s Hospital 
(i.e., staff and medical equipment) need to be efficiently and effectively 
allocated. Currently, the planning and scheduling of the diagnostic in
vestigations is done manually (i.e., by phone calls) by ward staff, 
resulting in frequent constraint violations in practice. For example, if a 
required time lag between two medical examinations, Ex1 and Ex2, is 
not considered at planning time, which happens rather often in clinical 
practice, this is only detected when trying to perform Ex2. Without 
obeying the required time lag, however, Ex2 would not yield any 
meaningful result and, hence, would have to be aborted and resched
uled. As a consequence, Ex2 might be delayed for some time, which, in 
turn, delays the surgery. Furthermore, patient waiting times are rather 
high as appointments are not fixed beforehand. Therefore, the patient is 
taken to the respective department at 8 am and, worst case, then might 
have to wait the entire morning until her examination starts (at 11 am or 
later). 

Usually, it is not sufficient to schedule examinations in a way satis
fying all constraints. Additionally, it must be ensured that surgeries take 
place as soon as possible after admitting the patient; i.e., the length of 
patient stays shall be minimized, which should be covered by a corre
sponding objective function. Note that this consitutes a challenging task 
when considering the schedules of all patients, often resulting in sub- 
optimal schedules. The latter often lead to unnecessarily long hospital 
stays and, thus, costs, e.g., due to waiting times caused by bad planning. 

Regarding flexibility needs, the planned schedules might become 
inappropriate during process enactment, e.g., due to inaccurate esti
mates, process participants not obeying the schedule, or unexpected 
absence of resources. Moreover, scheduled patient examinations within 
a given timeframe must not be treated in isolation from other patients as 
the latter are continuously admitted to the WH. Note that the situation 
becomes aggravated due to the fact that the Women’s Hospital does not 
exactly know all future information, but has to rely on forecasts instead 
when planning decisions. 

In the considered scenario, preparing of patients for the surgery may 
also require examinations not carried out in the WH itself, but in 
external departments, e.g., Radiology department. These examinations 
need to be considered in the context of scheduling as well. Moreover, 
when a medical examination is performed at such an external location, a 
shuttle service needs to be organized for transporting the patient. 
Currently, the shuttle service for the trip back is requested after finishing 
the patient’s examination, i.e., the patient needs to wait for the shuttle, 
which takes around 15–20 min. Usually, this delays other examinations 
as well as the surgery itself. 

3.3.2. Scenario details and TConDec-R model for the scenario 
On average, two patients with the diagnosis of ovarian carcinoma are 

admitted to the WH per day. Each process instance corresponds to the set 
of activities related to the treatment of one particular patient, as 
described in the following. After admitting a patient to the gynecological 
ward, one of the two ward physicians visits and examines the patient. 
Afterwards, the physician orders and schedules a number of medical 
examinations, which need to be performed before the surgery may take 
place. Additionally, the patient needs to be examined by an anesthetist 
who may then request additional medical examinations before the sur
gery if required. Some of the examinations are not carried out by the WH 
itself, but are provided by other clinical departments, which may be 
either internal or external (i.e., placed at a different location) to the WH. 
In the given scenario, five external departments – Endoscopy Depart
ment (ED), Radiology Department (RD), Comprehensive Cancer Centre 
(CCC), Otolaryngology Department (OD), and Neurology Department 
(ND) – are involved as well as an internal department with two units, i. 
e., Ultrasound Unit (UU) and Laparoscopy Unit (LU). Each department 
has limited resources and provides services to many other departments 

6 As an example consider minimizing the overall completion time of all 
process instances. 
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and clinics respectively (including WH). In order to ensure a fair use of 
the shared resources, a particular department may only order a 
maximum number of a specific examination from the respective pro
vider per day. 

All relevant processes and activities of the considered scenario are 
summarized in Table 3: Column ID corresponds to the identifier of the 
activity, Dur to its average duration, and Unit/Dept to the unit/depart
ment the activity is performed at. Finally, %Req expresses the frequency 
with which the respective examination is requested for a particular 
patient. For example, %Req = 100 expresses that the examination is 
ordered once for every patient. 

Concerning the surgery of a particular patient and the preparations 
required for this surgery, several constraints need to be obeyed. As 
detailed in Jiménez-Ramírez et al. (2018), the considered scenario can 
be properly described with TConDec-R resulting in the model shown in 
Fig. 4 (Jiménez-Ramírez et al., 2018). As can be seen in Fig. 4, each 
activity is depicted together with its unary constraints (e.g., existence 
constraint) as well as its properties (i.e., duration and unit or department 
where it is performed). For example, Ex6 (i.e., colonoscopy) needs to be 
performed exactly once for each patient and must occur after 8:00 and 
before 12:00. Additionally, some binary constraints are depicted. For 
example, Ex6 has a precedence constraint with Ex7 (i.e., colon contrast 
imaging) that establishes a time lag of at least 6 days between both 
examinations. 

4. Problem formalization 

In many real-world scenarios, the requested services (e.g., medical 
examinations to be performed) may vary over time. Scenarios with 
uncertain demands are often related to lot sizing problems (Tiacci and 
Saetta, 2012; Karimi et al., 2003), i.e., the process instances to be 
planned and scheduled within a specific timeframe must not be 
considered in isolation from the instances planned for future time
frames. This situation occurs if the enactment of process instances starts 
continuously over time. In this scenario, the planning horizon length (cf. 
Def. 13) may be considered as infinite at any planning point (cf. Def. 12) 
as there always exist running process instances. 

Definition 12. (Planning point) A planning point T is defined as a 
temporal point during the execution of a business process in which an 
optimized enactment plan is generated, i.e., planning is performed at T. 

Definition 13. (Planning horizon length) Let T be a planning point. 
Then: The planning horizon length PHL can be defined as the length of 
the time period to be planned at a specific planning point T. 

Table 3 
Processes relevant in the context of the considered clinical scenario.  

ID Description Dur Unit/Dep  %Req  

Ex0 First visit and examination of the patient 30 m WH 100 

Ex1 Pelvic Ultra-sound Imaging 30 m UU 100 
Ex2 Cystoscopy & Rectoscopy 2h30m ED 100 
Ex3 Uretero Pyelography 1h30m RD 100 
Ex4 CT scanning 45 m RD 60 
Ex5 Magnetic Resonance Imaging 1h15m RD 40 
Ex6 Colonoscopy 2h15m CCC 100 
Ex7 Colon Contrast Imaging 3h30m CCC 40 
Ex8 X-ray of the gastrointestinal tract 1h15m RD 35 
Ex9 Chest X-ray 30 m RD 85 
Ex10 Blood test 10 m WH 70 
Ex11 Laparoscopy 1 h LU 100 
Ex12 Doppler examinations 30 m UU 20 
Ex13 Medical council with the OD 60 m OD 20 
Ex14 Medical council with the ND 30 m ND 10 
AN The patient is examined and interviewed  

by an anesthetist 
1 h WH 100 

SU The surgery is performed 2–6 h WH 75    

h = hour(s), m = minutes   

Fig. 4. Simplified TConDec-R model for the scenario.  
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Generally, running process instances differ from each other 
regarding their respective enactment state, e.g., at time T, a particular 
instance may have just been started, whereas another one may be almost 
finished or be expected to start soon. Generating optimized enactment 
plans in such scenarios is challenging and complicated. While there are 
confirmed activities regarding already known process instances, the 
requirement of some activities might be unknown, making it necessary 
to rely on forecasts when making planning decisions (Xie et al., 2003). 
To be more precise, there is a set of process instances to be considered at 
T for performing the planning. Therefore, some information related to 
these process instances is required (cf. Def. 14). This required informa
tion is either known or unknown at T. The unknown information is 
forecasted based on data that might change during the next periods 
(Tiacci and Saetta, 2012). 

Definition 14. (Required information) Let TCRM = (Acts, CT, Res) 
be a TConDec-R process model and PIid = (TCRM, σid) be a related 
process instance. Then: 

The required information of process instance PIid, ReqInf id
=

(ESTid,ReqInfActsid
), can be defined as the information that is required 

related to.  

• the expected start time of process instance PIid (i.e., ESTid) and  
• whether or not the activities of process instance PIid need to be executed, 

i.e., ReqInfActsid, where ReqInfActsid
= {(aid

i , Label), a ∈ Acts, i ∈ [1,
MAXNT(raid)]}, and Label ∈ {Yes, Not, Unknown}.7 Note that the 
execution of each activity is either needed (i.e., Yes) or not needed 
(i.e., Not) or unknown at the moment (i.e., Unknown). 

Example 2. (Required information) The patient corresponding to 

process instance PIid is expected to be admitted to the WH on Monday at 
10:30am. Whether or not this patient requires a Doopler examination 
(related to process activity Ex12id

1 , cf. Table 3) is usually known after 
meeting the anesthetist, i.e., some time before actually performing the 
examination. Accordingly, we obtainReqInf id 

= (Mon
day10:30am,ReqInfActsid

), (Ex12id
1 ,Unknown) ∈ ReqInfActsid. 

5. Generating optimized enactment plans under rolling 
planning horizons 

This section details the proposed approach. Section 5.1 provides 
preliminary definitions and setup parameters required to explain how 
planning under rolling planning horizons is performed (cf. Section 5.2). 

5.1. Preliminary definitions 

To be able to support scenarios in which the enactment of process 
instances starts continuously over time, we propose the generation of 
optimized enactment plans on a rolling horizon basis with a finite 
planning horizon (Karimi et al., 2003; Tiacci and Saetta, 2012) (cf. 
Fig. 5). At a specific planning point T, some process instances need to be 
considered for generating the optimized plan, i.e., the ones that are (or 
are expected to be) executed at any moment during the planning horizon 
(cf. process instances PI1 to PI8 in Fig. 5). For these process instances 
there may be known as well as unknown required information (cf. Def. 
14) that needs to be accessed (known information) or forecasted (un
known information). The forecasts are provided based on previously 
executed process instances in the considered scenario, similar to the 
mechanisms described in Zhao et al. (1995), Tiacci and Saetta (2012). 

Planning at T implies making decisions for all activities related to 
instances that have been already started as well as instances to be started 
in close future. Those activities which are expected to start before the 
end of the fixed timeframe (FT, cf. Def. 15) are fixed for future plannings, 
i.e., they will not be replanned (cf. black rectangles in Fig. 5). This way 

Fig. 5. Planning process instances under a rolling planning horizon.  

Fig. 6. Planning under rolling planning horizons.  

7 As mentioned in Section 3.2, MAXNT(raid) refers to the upper bound of the 
domain of CSP variable raid.nt. 
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we can avoid that the activities, which are planned to be executed in 
near future, are replanned at future planning points. 

Definition 15. (Fixed timeframe & Fixed timeframe length) Let T 
be a planning point. Then: The fixed timeframe FT defines the temporal 
window that embraces the activities of an enactment plan which are 
considered being confirmed activities (i.e., these activities will not be 
replanned at future planning points). Note that such temporal window 
starts at T and finishes at T + FTL, with FTL being the fixed timeframe 
length. 

There are activities that are, although planned at T, free to be 
replanned at future planning points as they are supposed to start after 
the considered fixed timeframe, i.e., after T+FTL (see the lined rect
angles in Fig. 5). In the proposed approach, we consider a sequence of 
planning points according to a replanning periodicity (RP, cf. Def. 16). 
That is, each successive planning point differs from the previous one in 
RP time units. 

Definition 16. (Replanning periodicity) The replanning period
icity RP states the time spent between two successive planning points 
when performing planning under rolling planning horizons. 

This way, at planning point T + RP, process instances PI1 to PI10 
in Fig. 5 are considered as all of them are inside the forward rolled 
planning horizon. At T + RP, some of the previously planned activ
ities may have to be replanned (see the lined rectangles in Fig. 5), 
whereas other activities are planned for the first time (see the white 
rectangles in Fig. 5). In the scenario from Fig. 5, the activities 

planned for the first time are the ones related to PI9 and PI10. Note 
that these two process instances are supposed to start after T + PHL, 
but before T + RP + PHL. 

5.2. Planning under rolling planning horizons 

The proposed approach for performing planning under rolling 
planning horizons is detailed in Alg. 1 and illustrated in Fig. 6. For 
performing such planning, the required input data includes: (a) the 
TConDec-R process model (cf. Def. 2), (b) the initial planning point (cf. 
Def. 12), (c) the fixed timeframe length (cf. Def. 15), (d) the replanning 
periodicity (cf. Def. 16), and (e) the planning horizon length (cf. Def. 
13). 

First, the initial COP-TConDec-R problem as well as the initial plan 
are generated (cf. Lines 1–3 of Alg. 1, cf. Alg. 2). For this, the process 
instances considered when generating the optimized enactment plan (i. 
e., the ones that are or are expected to be executed during the planning 
horizon) are retrieved (cf. Line 1 of Alg. 2). Following this, the required 
information on these instances (cf. Def. 14) is accessed or forecasted (cf. 
Line 2 of Alg. 2). Then, the COP-TConDec-R problem is derived from the 
TConDec-R process model, required information, and current event log 
(that is initially empty), as explained later (cf. Line 3 of Alg. 2). After
wards, the optimized enactment plan is generated by considering the 
previously created COP-TConDec-R problem, the current planning 
point, the defined fixed timeframe length (that takes value 0 when 
generating the initial plan), and the information related to the consid
ered process instances (cf. Line 4 of Alg. 2). 

Algorithm 1: Generating optimized enactment plans under rolling planning horizons 

Algorithm 2: generateInitialPlan 
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When proceeding with the execution of the process, it becomes 
necessary to check whether replanning is required (cf. Line 5 of Alg. 1). 
Replanning might be required when either (1) reaching a replanning 
point or (2) a deviation from the optimized enactment plan occurs in the 
current execution. To cope with the latter, progress of the process as well 
as the resource availabilities are monitored during process enactment. If 
certain events occur (e.g., activities get started/completed or resources 
become (un) available) the event log is updated accordingly. Whenever 
updating the event log, the Replanning Module analyzes the previously 
generated optimized plan as well as the events related to process 
enactment. In particular, the Replanning Module checks whether the 
current enactment matches the plan. If this does not apply, replanning 
will be required. In general, the latter becomes necessary to cope with 
(1) users deviating from the original plan, (2) incorrect estimates (e.g., 
activity enactments taking longer or shorter than estimated), and (3) 
changes regarding resource availability (e.g., a resource might become 
unavailable during runtime). Note that not every deviation requires 
replanning. In particular, no replanning becomes necessary if there is 
enough slack time between activities to withstand the deviation without 
invalidating the enactment plan, i.e., the amount of time such activities 
can be delayed without causing another activity to be delayed or 
impacting the completion time of the enactment plan. 

In case replanning is required, the current event log is retrieved (cf. 
Line 7 of Alg. 1) to check whether the TConDec-R process model needs to 
be updated (cf. Line 8 of Alg. 1). The latter becomes necessary when the 
estimates of activity durations or resource availability are changed un
expectedly. Then, the replanning is performed (cf. Line 9 of Alg. 1). 

For the replanning step (cf. Alg. 3), the following input data is required: 
(a) the TConDec-R process model (cf. Def. 2), (b) the planning point (cf. Def. 
12), (c) the fixed timeframe length (cf. Def. 15), (d) the planning horizon 
length (cf. Def. 13), (e) the previously created COP-TConDec-R problem (cf. 
Def. 10), (f) the current event log (cf. Def. 5), and (g) the current enactment 
plan (cf. Def. 11). As output of Alg. 3, the updated COP-TConDec-R problem 
as well as the updated optimized enactment plan are generated. In Algo
rithms2 and 3, first of all, the process instances that are or are expected to be 
executed during the planning horizon are retrieved (cf. Lines 1–2 of Alg. 3). 
In case replanning became necessary due to a substantial deviation (i.e., not 
just because reaching a replanning point) (cf. Line 3 of Alg. 3), it must be 
checked whether the previously generated COP-TConDec-R problem needs 
to be updated (cf. Line 4 of Alg. 3). Note that the estimates, initially used for 
generating the COP-TConDec-R problem, might have to be updated as well. 
As last step, the updated enactment plan is generated (cf. Line 7 of Alg. 3). 

The createCSP function is based on our previous work for generating 
optimized enactment plans from TConDec-R process models (Barba 
et al., 2012; Jiménez-Ramírez et al., 2018). Therefore, the COP- 
TConDec-R problem is initially created as explained in Def. 10. How
ever, several extensions are required to cope with the challenging rolling 
planning horizons. To be more precise, the initial COP-TConDec-R 

problem is extended as follows:  

• For each process instance PIid, 

- the start time of all corresponding activities must be greater or 
equal to the expected start time of PIid (i.e., ESTid). This requires the 
addition of constraints to the CSP (i.e., aid

i .st⩾ESTid | aid
i ∈ raid.sacts,

raid ∈ RActs), 
- the CSP variable sel of all corresponding activities must be set ac
cording to the required information of the process instance. 

ReqInfActsid
={(aid

i ,Label)} (i.e., aid
i .sel= f(Label)|{aid

i ∈raid.sacts, raid 

∈RActs}), with: 

f (Label) =

⎧
⎨

⎩

0 if Label = “Not”
1 if Label = “Yes”
{0, 1} otherwise    

• At planning point T, 

- all CSP variables related to events are considered as fixed with the 
value recorded in the event log, and 
- all temporal CSP variables (i.e., st and et), which are instantiated to 
values that are placed within the temporal window [T,T + FTL], are 
considered fixed according to the fixed timeframe length (cf. Def. 
15). 

In Jiménez-Ramírez and Barba (2018), we formalized TConDec-R 
constraints based on a catalogue of well-known global constraints. 
Moreover, the equivalent low-level constraints of this formalization 
were provided. Based on this information, two equivalent implementa
tions can be obtained, one based on global constraints and another one 
based on low-level constraints. The implementation of the proposed 
approach and, therefore, the generation of optimized enactment plans, is 
based on global constraints. In this respect, given a TConDec-R model, 
we used the implementation based on low-level constraints to ensure 
that the generated plans fulfil all low-level constraints related to the 
TConDec-R constraints of such a model. 

6. Improving process support through optimized enactment 
plans 

The proposed approach focuses on flexible scenarios modeled in 
terms of a declarative process modeling language (i.e., TConDec-R). On 
one hand, declarative languages offer a high degree of flexibility; on the 
other, executing a declarative model entails larger efforts for users 
compared to imperative models (Haisjackl et al., 2016). With the goal of 

Algorithm 3: generateReplanning 
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supporting users in such a flexible context, we propose the generation of 
optimized enactment plans based on TConDec-R specifications. Such 
plans enable process support (cf. Fig. 7), e.g., predicting enactment 
times of future activities (cf. Section 6.1) Jiménez-Ramírez et al., 2018), 
generating personal schedules (cf. Section 6.2), and recommending ap
pointments to process stakeholders (e.g., customers or patients) (cf. 
Section 6.3). 

6.1. Time prediction 

There exist many process scenarios for which time is of utmost 
importance (Westergaard and Maggi, 2012) and, hence, reliable time 
predictions are crucial for any PAIS (van der Aalst et al., 2011). For 
example, in collaborative scenarios, it is often required to negotiate and 
agree upon future enactment times. In particular, such prediction should 
not be based on a single process instance in isolation, but consider all 
process instances and resources being concurrently executed (Schel
lekens, 2009). The optimized enactment plans generated by the pro
posed approach enable this use case as time information becomes 
available based on the estimated duration of the activities (Jiménez- 
Ramírez et al., 2018). For a given state of a particular process instance, 
the expected completion time of this instance and its activities can be 
calculated based on the expected end time of the remaining activities of 
the respective optimized enactment plan. 

Definition 17. (Time prediction) Let TCRM = (Acts,CT,Res) be a 
TConDec-R process model (cf. Def. 2), #inst be the number of planned 
process instances, RActs be the set of repeating activities related to TCRM 
(cf. Def. 9), EP ={(raid.nt′|raid ∈ RActs) ∪ (aid

i .st′,aid
i .et′,aid

i .res′,aid
i .sel

′, with 
aid

i ∈ raid.sacts} be an enactment plan related to TCRM (cf. Def. 11), activity 
aid

i be a specific process activity of TCRM, and id be a specific process 
instance of TCRM. Then: The time prediction related to (EP,aid

i ,id) consists 
of the tuple (aid

i , aid
i .st′, aid

i .et′) meaning that for process instance id, activity 
aid

i is expected to start at time aid
i .st′ and expected to finish at time aid

i .et′. 

Example 3. (Time Prediction) Regarding the plan depicted in Fig. 7a, 
activity A1

1 (i.e., first execution of activity A of process instance 1) is 
expected to be started at 8am and be completed at 8.50 pm (cf. Fig. 7b1). 

With the proposed approach, predictions of resource allocations also 
become possible as resource allocations can be observed in the plan as 
well. 

Generally, predictions are quite reliable as they consider global 
process information on multiple instances as well as cross-instance 
constraints. Finally, predictions may be continuously updated during 
process enactment through replanning considering the actual enactment 
status of the process. 

The ability to predict the start/completion times of both activities 
and process instances based on optimized enactment plans offers several 
advantages. First, constraint violations can be foreseen and avoided by 
detecting inconsistencies in models prior to as well as during their 
enactment. Second, coordination in collaborative scenarios, where 
contracts among multiple parties need to be adhered to, can be 
improved as realistic deadlines can be established and response times be 
optimized. 

6.2. Personal schedules 

Usually, the actors involved in process enactment are unaware of the 
next activities they shall perform as long as these activities have not 
become enabled (i.e., all preceding activities have been completed Eder 
et al., 2003). As users do not have any information on upcoming activ
ities, they cannot plan their work ahead. With the proposed approach 
this drawback is overcome by generating a set of personal schedules 
based on the given optimized enactment plan (Eder et al., 2003). 

Definition 18. (Personal schedule) Let TCRM=(Acts,CT,Res) be a 
TConDec-R process model (cf. Def. 2), #inst be the number of planned 
process instances, RActs be the set of repeating activities related to TCRM 
(cf. Def. 9), EP ={(raid.nt′|raid ∈RActs)∪(aid

i .st′,aid
i .et′,aid

i .res′,aid
i .sel

′
), with 

aid
i ∈ raid.sacts} be an enactment plan related to TCRM (cf. Def. 11), and w be 

a specific actor that represents a resource of TCRM. Then: A personal 
schedule related to enactment plan EP and actor w consists of a set of tuples 
{(aid

i ,aid
i .st′,aid

i .et′)|aid
i .res′ =w} meaning that w shall start the enactment of 

activity aid
i of process instance id at time aid

i .st′, and this enactment is ex
pected to be finished at time aid

i .et′. 

Example 4. (Personal schedule) Consider Fig. 7b2). The personal 
schedule of actor w1 corresponds to {(A1

1,8.00,8.50), (A1
3,8.50,9.40),(D1

2,

9.40,10.50), (A1
7,10.50,11.40), (B1

6,11.40,13.20)}. 

Equipping actors with personal schedules based on optimized 
enactment plans allows: 

Fig. 7. Optimized enactment plans for improving process support.  
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1. reducing the retention period of activities in worklists before they are 
started as the actor already knows the work items lying ahead,  

2. avoiding latency or deadline violations as all generated plans meet 
the constraints imposed by the declarative specification,  

3. completing the enactment of the process, while not violating any 
constraint and optimizing given objective functions, and  

4. organizing work better within working hours as the optimized plans 
are generated in a way such that all activities are scheduled within a 
specific timeframe, i.e., if actors follow their schedule, they will 
probably finish their working day at the expected time. 

For each actor involved in the execution of a given enactment plan, 
there exists exactly one optimized personal schedule. For example, as 
the enactment plan of Fig. 7a involves 6 actors (i.e., w1 − w6), there are 6 
personal schedules. 

Each time the optimized plan is updated during process enactment 
due to a replanning, the personal schedules of all actors need to be 
updated according to the resulting plan. Note that when generating a 
new plan through replanning, the partial enactment traces of the 
respective instances (i.e., the activities started or completed by the 
respective actors) are considered (i.e., migrated to the new plan). 
Consequently, the newly generated plans are always compliant with 
those traces as the current process enactment state is reflected in the new 
plans. In this way, the adaptation of the personal schedules to the newly 
selected plan can be addressed correctly. 

6.3. Process stakeholder appointments 

In many environments, the enactment of processes entails the coor
dination with process stakeholders (e.g., customers or patients). 
Consequently, bad planning usually causes several shortcomings: (1) 
process stakeholder appointments can be only announced very late, (2) 
waiting times of process stakeholders are increased, and (3) frequent 
constraint violations might force certain activities to be aborted and 
rescheduled later. All these shortcomings are annoying for process 
stakeholders, cause unnecessary costs and efforts, and additionally 
threaten future appointments. 

To overcome these problems, we propose the use of optimized 
enactment plans for suggesting process stakeholder appointments. 

Definition 19. (Process stakeholder appointment) Let TCRM =

(Acts,CT ,Res) be a TConDec-R process model (cf. Def. 2), #inst be 
the number of planned process instances, RActs be the set of repeating 
activities related to TCRM (cf. Def. 9), EP= {(raid.nt′ |raid∈RActs)}
∪{(aid

i .st′, aid
i .et′, aid

i .res′, aid
i .sel

′
), with aid

i ∈raid.sacts} be an enactment 
plan related to TCRM (cf. Def. 11), and id be the identification of a 
specific process stakeholder that represents an instance of TCRM. Then: 

The process stakeholder appointments related to (EP,id) consist of a 
set of tuples {(aid

i ,aid
i .st′)} meaning that activity ai shall start at time aid

i .

st′ for process stakeholder id. 

According to Def. 19, for each activity of any process instance, an 
appointment is generated for the corresponding process stakeholder 
taking the start time of the activity into account. 

Example 5. (Process stakeholder appointments) Consider the 
enactment plan depicted in Fig. 7a according to which the appointments 
{(A1,8.00), (B1,8.50), (C1,12.10), (D1,9.50)} will be suggested to pro
cess stakeholder 1 (cf. Fig. 7b3). 

After replanning, the updated plan is compliant with the partial 
traces of the respective process instances (cf. Section 6.2). Hence, the 
process stakeholder appointments can be always adapted correctly to 
the new plan. However, changing appointments that have already been 
communicated to the process stakeholders implies the re-notification of 
the latter. Usually, it is desirable to avoid changes in stakeholder ap
pointments if possible. This can be accomplished by considering the 
minimization of changes regarding previous plans as an additional 
objective function when generating the enactment plans. 

7. Evaluation 

As motivated in Section 1, the primary research question (PRQ) 
addressed in our work is as follows: Is the proposed approach useful for 
coping with real process scenarios in which the enactment of process instances 
starts continuously over time? To answer PRQ, a more specific research 
question is investigated in the following (i.e., RQ1 in Table 4). Section 

Table 6 
Resource availabilities.  

Role Activities requiring that role Av. res 

StaffEx0 Ex0 2 

EquipEx1Ex12 Ex1 and Ex12 1 
EquipEx2 Ex2 1 
EquipEx3 Ex3 1 
EquipEx4 Ex4 2 
EquipEx5 Ex5 1 
EquipEx6 Ex6 1 
EquipEx7 Ex7 1 
EquipEx8Ex9 Ex8 and Ex9 2 
EquipEx11 Ex11 1 
StaffEx13 Ex13 1 
StaffEx14 Ex14 1 
EquipSU SU 2  

Table 4 
Evaluation design.  

(a) Research question 

Title Description 

RQ1: How does the proposed approach 
behave when considering different 
settings for the rolling planning 
horizon parameters in a real-world 
scenario? 

This research question is related to how 
the rolling planning horizon parameters 
affect the quality of the generated 
optimized enactment plans as well as 
the quality of resource allocations. 

(b) Independent variables 
Description Values 

FTL: Length of the fixed timeframe (days) {2,5,10,15,20}
RP: Replanning periodicity (days) {1,2,3}

(c) Response variables 
Description 

StayLength: Average duration (in days) of patient stays in WH before the surgery 
%Used: Percentage of time each resource is used in relation to its total availability  

Table 5 
Additional run-time information for the activities.  

ID CritRes CompWith 

Ex0 Staff – 

Ex1 Equipment Ex12 
Ex2 Equipment – 
Ex3 Equipment – 
Ex4 Equipment – 
Ex5 Equipment – 
Ex6 Equipment – 
Ex7 Equipment – 
Ex8 Equipment Ex9 
Ex9 Equipment Ex8 
Ex10 – – 
Ex11 Equipment – 
Ex12 Equipment Ex1 
Ex13 Staff – 
Ex14 Staff – 
AN – – 
SU Equipment –  
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7.1 motivates why the scenario introduced in Section 3.3 is selected for 
demonstrating and evaluating our approach. Section 7.2 details addi
tional run-time information about the scenario, which is required to 
apply the proposed approach. Section 7.3 explains the study design. 
Section 7.4 describes the data collection, while Section 7.5 analyzes the 
obtained results. Finally, Section 7.6 discusses the plan validity and 
Section 7.7 the lessons learned. 

7.1. Case selection 

We evaluate our approach by applying it to a particularly chal
lenging healthcare process scenario, i.e., the diagnostic and therapeutic 
procedures required for treating patients with ovarian carcinoma in a 
Woman Hospital (Schultheiß et al., 1996; Ovarian cancer (CG122), 
2011). This scenario is selected as it is the most challenging one of the 
healthcare scenarios we analyzed. Moreover, this scenario is well suited 
as (1) it presents (a) a flexible nature, (b) (cross-instance) constraints 
related to the time and resource perspectives, and (c) the need of an 
efficient management of shared resources according to an optimization 
criterion, (2) it can be modelled with TConDec-R (cf. Fig. 4), and (3) it 
allows estimating activity durations, resource availability, and the 
number of process instances being started within a specific timeframe. 

Note that we did not consider the presence of repeating activities as a 
strong requirement for the scenario selection since in our previous work 
(Jiménez-Ramírez et al., 2018) we already checked the correctness and 
efficiency of the proposed constraint-based approach when managing 
processes with activities that are performed multiple times per process 
instance. In particular, repeating activities are supported by the pro
posed formalization and have been considered since we have initially 
proposed the TConDec-R process modeling language. 

7.2. Run-time information for the scenario 

To be able to apply the proposed approach to the scenario additional 
run-time information, which has not been considered in Section 3.3, is 
required (cf. Table 5): column ID contains the identifier of the activity, 
column CritRes indicates whether the critical resource for performing 
the respective activity is staff or medical equipment, and column 
CompWith contains other examinations requiring the same critical 
resource and, hence, competing with the present activity for this limited 
resource. According to Table 5, there are 13 types of critical resources (i. 
e., 13 roles), with restricted availabilities in the considered scenario (cf. 
Table 6). Regarding resource EquipSU, there are 2 operating theatres in 
the Women’s Hospital (with respective teams), which are run 5 days per 
week and 8 h per day (6,5 h on Friday). These two operating theatres not 
only deal with the considered surgeries, but with other kinds of surgeries 
(e.g., minimum invasive surgery, mastectomy, breast ablation) as well. 
The two operating theatres are usually available to deal with the 

considered surgeries except in about 15–20% of the working days of a 
year in which only 1 operating theatre is available to deal with the 
considered surgeries. Note that the number of available non-critical 
resources is not relevant in the considered scenario.8 

7.3. Design 

The measures we use for investigating research question RQ1 (cf. 
Table 4), i.e., the response variables, are explained in Table 4. 

In order to answer RQ1, we consider two response variables. 

1. The average duration (in days) of patient stays in the Women’s Hos
pital before the surgery takes place – this information is directly 
related to the quality of the generated optimized enactment plans. 
The shorter the patient stays in WH are, the higher the quality of the 
plans is.  

2. The percentage of time each resource is used in relation to its total 
availability is related to the quality of resource allocation in the 
generated plans. The greater the percentage of time each resource is 
used become, the higher is the quality of resource allocation. 

Initially, over a period of 15 days, patient treatment performance in 
the WH is simulated, considering real data with the goal of mimicking 
the ordinary state of the WH. Then, the approach is applied over a period 
of 2 months. In the given scenario, the planning horizon length (PHL) is 
fixed to one week as the information about patients arriving at the WH is 
known one week in advance. To check the behavior of the proposed 
approach when facing problems of different complexity, results are 
generated considering different values for the length of the fixed time
frame FTL (cf. Def. 15) and for the replanning periodicity RP (cf. Def. 16) 
as detailed in Table 4. This way, the proposed approach is tested over 15 
different configurations. Moreover, to average results over a collection 
of diversified datasets, 30 case datasets are randomly generated. The 
response variables are then calculated by considering the average 
values, which are obtained for the tests related to the 45 intermediate 
days. Note that the results obtained for the first and the last fifteen days 
are discarded as the goal consists of analyzing the behavior of the 
approach in the ordinary WH state (i.e., when there is already an ordi
nary number of patients staying in the WH, while other patients are 
arriving). 

As machine, we use an Intel Core i7, 3 GHz, 6 GB memory running on 
Windows 7. For the experiments, the search algorithm is run until 
reaching a 300-s CPU time limit. To implement the constraint-based 
problems and algorithms, we use CPLEX, which is able to generate 
high-quality solutions for highly constrained problems in an efficient 
way. CPLEX provides a scheduling module offering high-level constraint 
modeling as well as search abstraction, of which both are specific to 
scheduling. 

7.4. Data collection 

Table 7 shows the average number of activities to be planned (i.e., 
#Acts) and the number of considered constraints (i.e., #Constraints) to 
solve the problem as well as the average duration (in days) of patient 
hospital stays (i.e, StayLength) for each specific problem (i.e., stated by 
pair {FTL, RP}). Furthermore, Fig. 8 shows the average percentage of 
time each resource is used (compared to its overall availability) against 
FTL and RP, whereas Fig. 9 depicts the minimum, average, and 
maximum percentage of resource utilization to show which resources 
are most critical. As detailed in Section 7.2, the critical resource for 
performing each activity in the considered scenario can be staff or 
medical equipment. 

Table 7 
Experimental results regarding the quality of the generated plans.  

FTL RP #Acts  #Constraints  StayLength 

2 1 161,23 1343,37 41,3 
2 2 173,37 1436,77 41,8 
2 3 186,96 1572,16 42,2 
5 1 126,81 1051,72 36,6 
5 2 135,98 1132,55 37,1 
5 3 139,45 1163,25 36,8 
10 1 80,56 673,23 31,9 
10 2 87,43 741,04 32,3 
10 3 110,55 921,25 33,4 
15 1 73,35 609,68 31,9 
15 2 75,38 631,40 32,3 
15 3 85,13 714,02 33,2 
20 1 69,69 578,21 31,7 
20 2 70,92 583,45 32,1 
20 3 75,52 627,52 32,3  

8 An example of the different processes involving 14 patients for the 
considered scenario is depicted in https://doi.org/10.5281/zenodo.4387200. 
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7.5. Analysis 

In the following, the case study findings are interpreted with the goal 
of answering research question RQ1. 

As can be observed in Table 7, the greater the length of the fixed 
timeframe (FTL) becomes the more activities are fixed and, therefore, 
the fewer decision variables of the related COP-TConDec-R problem 
need to be instantiated (cf. column #Acts in Table 7). On one hand, this 
reduces the complexity of the problem and, hence, allows for a better 
optimization when setting a time limit. On the other, the fewer decision 
variables are free to be instantiated, the fewer improvements can be 
performed through replanning and, hence, the lower optimizations 
become. To obtain good results for a given time limit, FTL must be high 
enough to reduce the complexity of the problems to be solved; at the 
same time, FTL must be small enough to allow for improvements over 
the plans. As shown in Table 7, for the considered scenario, the average 
duration of patient hospital stays decreases noticeable as FTL increases 
until reaching value 10. An additional increase of FTL seems to have no 
influence on the quality of the plans obtained. This can be explained 
with the fact that the plans obtained for FTL = 20 are rather good and 
similar to the ones obtained after freeing more variables (i.e., for FTL =

10). Hence, 10 seems to be the best FTL value as this is the one with the 
greatest number of free decision variables. 

As another aspect, the schedules of patients and staff become more 
stable as FTL increases. Therefore, FTL should be established in such a 
way that high satisfaction of the involved process stakeholders is ob
tained. Additionally, for the same FTL, the quality of the found plans 
slightly increases since #Acts and #Constraints decrease due to the 
decrease of RP. Note that this makes sense –the more often replannings 
are performed, the fewer activities should be replanned and the greater 
the probability of improving plans becomes. Moreover, the considered 

problems are highly constrained entailing a great complexity. When 
applying the approach to a real-world scenario, only one case needs to 
be managed at each planning point and, therefore, the time limit could 
be much greater than the one established for this evaluation. 

As shown in Fig. 8, FTL seems to be much more influential than RP. 
This makes sense as the percentage of time a resource is used in relation 
to its total availability increases with growing plan quality. In Fig. 9 the 
depicted values are related to the percentage of times the corresponding 
examinations are requested and the duration of these examinations. As a 
result, we can conclude that the most critical resource is EquipEx6 (note 
that EquipEx6 is required for performing Ex6, and the latter examination 
is requested for all patients and lasts 2h15min, cf. Table 3). In turn, 
StaffEx14 is used least often as it is required for performing Ex14, which 
is only requested for 10% of the patients and lasts only 30 min (cf. 
Table 3). 

Note that the scenario is highly constrained and the constraints do 
not allow for a high usage of certain resources. To be more precise, cross- 
instance constraints greatly influence the use of certain resources, 
whereas time-based exclusive constraints forbid the execution of certain 
activities for a certain period of time regardless of resource availabili
ties. Furthermore, there are resources only required for a low percentage 
of cases, e.g., StaffEx13 is required for performing Ex13, which lasts 60 
min, but is requested only for 20% of the patients, while its availability is 
10 h a day. 

Considering all this information, RQ1 can be answered as follows (1) 
FTL seems to be much more influential than RP regarding the quality of 
both the generated optimized enactment plans and the allocated re
sources; (2) For the same FTL, the quality of the found plans slightly 
increases when RP decreases; (3) To obtain good results for a given time 
limit, FTL must be high enough to reduce complexity of the problems to 
be solved and small enough to allow for improvements over the plans; 

Fig. 9. Minimum, average, and maximum percentage of time each resource is used when compared to its overall availability (%Used).  

Fig. 8. Average percentage of use of resources (%Used) against FTL (left) and RP (right).  
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(4) For the considered scenario, 10 seems to be the best FTL value; and 
(5) The schedules of patients and staff become more stable with 
increasing FTL. 

7.6. Threats to validity 

Regarding the construct validity of the presented evaluation, we 
have learned that the proposed plan is suitable for reaching the intended 
goal (i.e., analyzing the behavior of the approach in the context of a 
sophisticated process scenario from the real world). To be more precise, 
the proposed response variables and the generated cases are considered 
as appropriate for answering research question RQ1. This way, the 
values obtained for the response variables are analyzed with the goal of 
checking the behavior of the proposed approach in a real-world scenario 
(cf. Section 7.5). However, additional response variables and experi
ments could be defined to broaden the analysis as well as the related 
findings. 

Regarding external validity (i.e., the domains to which study findings 
may be generalized), the study findings can be generalized to scenarios 
that (1) can be modelled with TConDec-R, (2) allow estimating activity 
durations, resource availability, and the number of process instances 
being started within a specific timeframe, and (3) present (a) a flexible 
nature, (b) (cross-instance) constraints related to the time and resource 
perspectives, and (c) the need for an efficient management of shared 
resources according to an optimization criterion. 

We are aware that our empirical evaluation is based on the simula
tion of a real-world process scenario, but was not performed in a real 
environment. The latter could reveal practical issues, like missing con
straints, and even constraints not covered by TConDec-R yet. We admit 
that this constitutes a limitation, and we are aware that the evaluation of 
the proposed approach in a practical setting would be desirable to make 
results more realistic. However, the study findings may be generalized to 
other scenarios presenting characteristics similar to the ones of the 
Women Hospital scenario. Evaluating the proposed approach with 
another real process scenario (that shows different features, e.g., activ
ities performed multiple times per process instance) would further 
generalize our study findings. 

7.7. Lessons learned 

As empirically demonstrated, the quality of both the generated 
optimized enactment plans and the resource allocation largely depends 
on the selection of the rolling planning horizon parameters. To be more 
precise, FTL seems to be much more influential than RP. As an additional 
finding, it could be observed that the stability of the schedules of both 
patients and staff, which is considered as crucial in the scenario, mostly 
depends on the FTL parameter. 

We can conclude that the evaluation goals are achieved, i.e., the 
effectiveness of applying the proposed approach in a real and complex 
scenario as well as the behavior of the proposed approach under rolling 
planning horizons have been successfully tested and analyzed. 

8. Discussion 

The current work has been motivated by the needs we discovered 
when analyzing sophisticated process scenarios from the healthcare 
domain. When modeling the particularly challenging scenario consid
ered in Section 3.3, we were aware that no process modeling proposal 
was able to address its requirements, as detailed in our previous work 
(Jiménez-Ramírez et al., 2018). This led us to propose the TConDec-R 
language for modeling scenarios that present similar characteristics to 
the one considered. Moreover, considering the complexity of the sce
nario constraints as well as the high number of activities, resources and 
patients to be managed, a more advanced support of ward staff in 
planning the patients’ examinations and surgeries is urgently needed, as 
detailed in Section 3.3.1. For this purpose, we have proposed a 

constraint-based approach that focuses on reducing the length of patient 
stays in the hospital (Jiménez-Ramírez et al., 2018). 

To make the proposed approach applicable to the considered sce
nario, replanning and rolling planning horizons needed to be considered 
and, hence, our approach needed to be extended in this direction. 

Altogether, we carried out an empirical evaluation by performing 
different simulations over the considered healthcare scenario. We 
believe that the application of the proposed approach can substantially 
improve its management by (1) avoiding constraint violations, (2) 
managing shared resources in an effective way, (3) improving and 
automating (cross-process) coordination between different departments 
and even hospitals, (4) reducing waiting times of patients as the 
schedules become known beforehand, and (5) minimizing the length of 
patient stays in the hospital (i.e., speeding up the many diagnostic 
procedures required before surgery). Hence, we believe that the pro
posed approach can be successfully applied to many other knowledge- 
intensive scenarios presenting similar characteristics. However, we did 
not run the approach at the operational level of the Women Hospital, 
which constitutes a limitation of our evaluation. 

The proposed approach has revealed certain other limitations. First, 
the TConDec-R language was proposed after considering a large number 
of scenarios, particularly from the healthcare domain, but additional 
extensions could be required when analyzing further scenarios from 
other domains. In a similar way, such extensions would be required in 
the constraint-based approach when generating the optimized enact
ment plans. Considering the high expressive power of the constraint 
programming paradigm, however, we are confident that the new con
straints could be easily integrated in our approach, i.e., we consider the 
proposed approach as being extensible. 

The generated plans are denoted as optimized instead of optimal as the 
generation of optimal plans presents NP-complexity (Garey and John
son, 1979) and, hence, it is not possible to ensure optimality for all cases. 
However, our results indicate that the approach allows solving the 
considered problems in an efficient way, leading to substantial duration 
reductions of patient stays. 

The constraint-based approach has been developed in such a way 
that its efficiency, which we consider as a key success factor, can be 
ensured. For example, global constraints are implemented through 
efficient filtering rules (Jiménez-Ramírez and Barba, 2018). Note that 
the efficiency of the proposed approach is crucial as we need to enforce a 
time limit for executing the algorithm that generates the optimized 
enactment plan. Given a specific time limit, the greater the efficiency of 
the proposed constraint-based approach is, the higher the probability of 
finding good solutions (according the objective function defined) be
comes. Moreover, no deadlock scenarios will occur later during process 
execution as the generated plans consider all scenario constraints and, 
therefore, feasible solutions are always obtained. 

As explained, the optimized enactment plans are generated with the 
goal of supporting users during enactment. We are aware that declara
tive approaches are usually applied to allow for a high degree of freedom 
during process execution. Therefore, the generated plans are recom
mendations on how to proceed, but the user is completely free to decide 
how to actually execute the process. To be more precise, at any point 
during the execution of a process instance, users may decide what to do 
next; i.e., they may select the next activity from the set of enabled ac
tivities (i.e., the activities that may be currently started not violating the 
instance constraints afterwards Reichert and Weber, 2012; Barba et al., 
2013). However, to guide the user in optimizing the overall process 
goals, recommendations (i.e., suggesting to start a specific activity using 
a specific resource) can be provided by a recommendation system that is 
based on the optimized enactment plans, as detailed in Barba et al. 
(2013). Note that the user is not obliged to follow the recommendations, 
but may select any of the enabled activities, i.e., the flexibility of the 
constraint-based specification is kept. The deviations between the actual 
enactment of the process instances on the one hand and the optimized 
enactment plans on the other are addressed through replanning. 
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Moreover, there may be errors in the estimates that might invalidate the 
optimized enactment plans. Again, the deviations between actual 
enactment of the process instances and optimized enactment plans are 
addressed through replanning. Not every deviation requires replanning. 
In particular, no replanning becomes necessary if there is enough slack 
time between activities to withstand the deviation without invalidating 
the enactment plan. 

It is noteworthy that only few decisions are taken at each planning 
point, while the other decisions are reconsidered at future planning 
points. To be more precise, those activities which are planned to start 
before the end of the fixed timeframe (FT) remain fixed for future 
plannings, i.e., they will not be replanned anymore. The remaining ac
tivities, however, may be replanned when reaching at future planning 
points. 

We are aware that factoring out the data perspective of the processes 
during decision support constitutes a limitation of the proposed 
approach to specific classes of processes. However, to set a focus, this 
paper mainly deals with the time perspective and thus complements 
existing works that have utilized the data perspective for improving 
decision support (Montali, 2010; Montali et al., 2013; Maggi et al., 2013; 
Borrego and Barba, 2014; Mertens et al., 2017; Slaats et al., 2013). We 
plan to co-consider both the time and the data perspective in future 
work. 

Altogether, the proposed approach has implications for practice. We 
could show that we can model complex real-world scenarios in a 
declarative manner. Moreover, we could demonstrate that these models, 
when being used with a constraint-based approach for planning and 
scheduling process activities, can help organizations to improve their 
business processes (e.g., substantial reductions of the duration of patient 
stays). Furthermore, although there are some real-world process sce
nario modelled in a declarative way (e.g., Debois and Slaats, 2015; 
Strømsted et al., 2018), to the best of our knowledge, this is the first 
sophisticated real-world process scenario with complex temporal con
straints as well as cross-instance constraints modelled in a declarative 
way. 

9. Summary and outlook 

This paper built upon previous work (i.e., generating optimized 
enactment plans from temporal declarative process models) with the 
goal of making our approach applicable to a large class of real-world 
scenarios. To be more precise, we consider scenarios where the enact
ment of process instances starts continuously over time and propose an 
approach for planning under rolling planning horizons. To validate the 
proposed approach we perform an evaluation over a sophisticated pro
cess scenario from the healthcare domain. Results indicate that the 
approach allows solving the considered problems in an efficient way 
leading to substantial reductions of the duration of patient stays. 

We are aware that we need to consider certain aspects to broaden the 
applicability of the proposed approach. First, we intend to analyze 
further scenarios from other domains presenting different characteris
tics to check which extensions would be required to be able to apply the 
proposed approach to these scenarios as well. Second, we will consider 
other real-world scenarios for which it is possible to conduct an 
empirical evaluation in a real environment. Third, we intend to develop 
a tool based on the proposed approach. Fourth, we intend to consider the 
data perspective of processes when providing decision support as well as 
generating different optimized enactment plans at each decision point. 
We will consider these aspects in future work. 
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