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 13 

Abstract Prediction of protein-protein interactions (PPIs) helps to grasp molecular roots of 14 

disease. However, web-lab experiments to predict PPIs are limited and costly. Using 15 

machine-learning-based frameworks can not only automatically identify PPIs, but also 16 

provide new ideas for drug research and development from a promising alternative. We 17 

present a novel deep-forest-based method for PPIs prediction. First, pseudo amino acid 18 

composition (PAAC), autocorrelation descriptor (Auto), multivariate mutual information 19 

(MMI), composition-transition-distribution (CTD), and amino acid composition PSSM 20 

(AAC-PSSM), and dipeptide composition PSSM (DPC-PSSM) are adopted to extract and 21 

construct the pattern of PPIs. Secondly, elastic net is utilized to optimize the initial feature 22 

vectors and boost the predictive performance. Finally, GcForest-PPI model based on deep 23 

forest is built up. Benchmark experiments reveal that the accuracy values of Saccharomyces 24 

cerevisiae and Helicobacter pylori are 95.44% and 89.26%. We also apply GcForest-PPI on 25 

independent test sets and CD9-core network, crossover network, and cancer-specific network. 26 

The evaluation shows that GcForest-PPI can boost the prediction accuracy, complement 27 

experiments and improve drug discovery. The datasets and code of GcForest-PPI could be 28 

downloaded at https://github.com/QUST-AIBBDRC/GcForest-PPI/. 29 

Keywords: Protein-protein interactions; Multi-information fusion; Elastic net; Deep forest. 30 

 31 

1. Introduction 32 

The study of the protein-protein interactions (PPIs) of molecular mechanisms is essential 33 

(Alberts, 1998; Amar, Hait, Izraeli & Shamir, 2015; Schadt, 2009). The disorder of the PPI 34 

network structure can cause abnormalities in cell life activities. Because of the progress of 35 

high-throughput technologies, lots of PPIs via web-lab experimental verification have 36 

emerged. Multiple PPIs sources lead to the generation of PPIs databases, containing the DIP 37 
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(Xenarios, et al., 2002), and HPRD (Peri, Navarro, Amanchy & Kristiansen, 2003). The 38 

detection of PPIs relied on computational methods could reduce the web-lab limitations and 39 

an effective, accurate, useful machine learning algorithm can predict large scale PPIs. 40 

Several genomic features have been used in PPIs prediction based on machine learning 41 

technologies, including but not limited to, protein structure information, gene neighbors, 42 

sequence composition information, gene expression, physicochemical information, position 43 

information, and evolutionary information (Deng, et al., 2014; Guo, Yu, Wen & Li, 2008; Yu, 44 

et al., 2016). Zhang et al. (Zhang & Tang, 2016) proposed a PPI prediction method based on 45 

gene ontology. However, when structure information cannot be in hand, the domain-based 46 

method does not work. Kovács et al. (Kovács, et al., 2019) used network paths of length three 47 

to perform link prediction. This approach can offer structural and evolutionary reference to 48 

detect protein-protein interactions. Lian et al. (Lian, Yang, Li, Fu & Zhang, 2019) proposed a 49 

machine-learning-based predictor for human-bacteria PPIs. This approach introduced two 50 

network-property-related feature extraction methods. Then, individual random forest model 51 

was constructed for each feature encoding scheme. Finally, the noisy-OR algorithm was 52 

employed to predict human-bacteria PPIs. The results on benchmark datasets reveal that the 53 

introduced NetTP and NetSS encoding methods could represent important network topology 54 

properties. Zahiri et al. (Zahiri, Yaghoubi, Mohammad-Noori, Ebrahimpour & Masoudi-Nejad, 55 

2013) extracted evolutionary information via PPIevo from the position-specific scoring 56 

matrix (PSSM) and received better performance and robustness on the HPRD dataset. Hamp 57 

et al. (Hamp & Rost, 2015) inferred PPIs based on evolutionary information and SVM. 58 

To improve the PPIs prediction, it is necessary to integrate multiple features mentioned 59 

above. Zhang et al. (Zhang, Yu, Xia & Wang, 2019) integrated different descriptors to obtain 60 

complimentary information. The constructed ensemble predictor was valid for interactions 61 

prediction. Yadav et al. (Yadav, Ekbal, Saha, Kumar & Bhattacharyya, 2019) constructed 62 

Bi-LSTM model based on stacked algorithm for the identification of PPIs, which combined 63 

multiple levels features using shortest dependency path. Then the information via embedding 64 

layer were input into the stacked Bi-LSTM model. The dimensional reduction methods were 65 

also performed for effective feature selection, and prediction accuracy improvement since too 66 

many features usually bring in additional noise and increase the time complexity in practical 67 

problems. You et al. (You, et al., 2014) utilized multi-scale continuous and discrete and 68 

minimum redundancy maximum relevance (mRMR) to characterize PPIs coding information. 69 

Evaluation indicates mRMR did enhance the success of PPIs prediction and reduce the 70 

computation complexity.  71 

Recently, Hashemifar et al. (Hashemifar, Neyshabur, Khan & Xu, 2018) proposed 72 

sequence-based convolutional neural networks learning to infer PPIs called DPPI, and deep 73 

learning (DL) obtained the high-level and essential feature representations from PSSM. Lei et 74 

al. (Lei, et al., 2019) presented a multimodal deep polynomial network called MDPN. For the 75 

first stage, high-level features were produced using deep polynomial network based on 76 

BLOSUM62, hydrophobic. For the second stage, extreme leaning machine was to predict 77 

PPIs through layer-by-layer training. Chen et al (Chen, et al., 2019) presented a PPIs 78 

predictive framework PIPR using siamese residual RCNN. This architecture can extract local 79 

and contextualized information. However, DL also has the following limitations: (i) the 80 

number of layers and the number of nodes of the neural network need to be determined before 81 
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training the DL model (Krizhevsky, Sutskever & Hinton, 2012); (ii) the to-be-optimized 82 

parameters of DL are diverse on different data, requiring substantial efforts in adjusting the 83 

parameters (Krizhevsky, Sutskever & Hinton, 2012; Lecun, Bottou, Bengio & Haffner, 1998; 84 

Simonyan & Zisserman, 2015); and (iii) DL requires a lot of data for training (Silver, et al., 85 

2018). 86 

Tree ensemble methods have good properties and achieve excellent performance. For 87 

example, Feng et al. (Feng & Zhou, 2017) proposed a tree ensemble AutoEncoder (eforest), 88 

which can do backward reconstruction using tree-based approach (maximal compatible rule). 89 

They utilized forest to perform the process of encoding and decoding for the first time. The 90 

experimental results showed that eforest can effectively eliminate noisy information 91 

compared with the autoencoder network. Feng et al. (Feng, Yu & Zhou, 2018) proposed a 92 

multi-layered GBDT (mGBDT), which can effectively learn hierarchical features through 93 

stacking multiple layers. The deep forest (DF) model had fewer hyper-parameters setting and 94 

higher flexibility than DL (Zhou & Feng, 2017; Zhou & Feng, 2018). It can deal with 95 

non-differential issues without requiring backpropagation algorithms and learn high-level 96 

feature information through cascade structure to avoid overfitting. The cascade structure of 97 

DF can extract high-level feature information from raw PPIs feature space, and the 98 

probability output of upper level with raw features are used as the input of the next level. 99 

Specifically, the multi-grained cascade forest is great and robust, hence, can be effectively 100 

used to handle machine learning problems such as classification in PPI prediction. 101 

We propose a new PPI prediction method based on DF, so-called GcForest-PPI, where 102 

GcForest represents multi-Grained Cascade Forest. The physicochemical information, 103 

sequence information, and evolutionary information are retrieved by PAAC, Auto, MMI, 104 

CTD, AAC-PSSM, and DPC-PSSM. What is more, elastic net is used to select variables 105 

highly relevant to the category labels and GcForest is implemented to identify PPIs based on 106 

the known PPIs. Finally, the five-fold cross-validation shows that GcForest-PPI achieves 107 

higher accuracy than the state-of-the-art predictors. Cross-species prediction is performed 108 

using Caenorhabditis elegans, Escherichia coli, Homo sapiens, and Mus musculus as 109 

independent datasets with the accuracy of 98.58%, 99.04%, 96.01%, and 96.30%, respectively. 110 

We also found that (i) the PPIs of a CD9-core network are all predicted successfully; (ii) 111 

GcForest-PPI can predict PPIs in a crossover network and can reveal the biological functions 112 

for the Wnt-related pathway; and (iii) the PPIs of the cancer-specific network are also all 113 

predicted successfully, providing new ideas for studying the associations of drug-disease and 114 

drug-target for developing new drugs of cancer treatment. 115 

2. Materials and methods 116 

2.1. Datasets 117 

Nine PPIs benchmark datasets are utilized to test GcForest-PPI model. The first set was 118 

S. cerevisiae from DIP core database (Xenarios, et al., 2002). And all protein pairs were 119 

identified by the tool CD-HIT (Li, Jaroszewski & Godzik, 2001). The protein sequences with 120 

50  residues were removed, and sequence similarity 40%  were filtered. So golden 121 

standard positive (GSP) set includes 5,594 protein pairs, which have been tested for reliability 122 

by the expression profile reliability (EPR) and paralogous verification method (PVM) (Deane, 123 
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Salwinski, Xenarios & Eisenberg, 2002). A total of 5,594 protein pairs with different 124 

subcellular location were selected as golden standard negative (GSN). 125 

The H. pylori dataset was validated using the yeast two-hybrid technique (Rain, et al., 126 

2001) and built up by Martin et al. (Martin, Roe & Faulon, 2005), where 1,458 interacting 127 

pairs were set as GSP, and 1,458 non-interacting pairs were set as GSN. Caenorhabditis 128 

elegans (4,013 interacting protein pairs), Escherichia coli (6,954 interacting protein pairs), 129 

Homo sapiens (1,412 interacting protein pairs) and Mus musculus (313 interacting protein 130 

pairs) were employed as PPIs independent datasets (Zhou, Gao & Zheng, 2011). A one-core 131 

network (16 interacting protein pairs) (Yang, et al., 2006), a Wnt-related pathway crossover 132 

network (96 interacting protein pairs) (Stelzl, et al., 2005), and cancer-specific network 133 

dataset (108 interacting protein pairs) (Amar, Hait, Izraeli & Shamir, 2015) were adopted to 134 

predict PPIs networks based on GcForest-PPI. 135 

2.2. Feature extraction 136 

The protein structure can be predicted based on sequence, and then to predict its function. 137 

Hence, it is feasible that PPIs can be predicted using sequence-based methods via machine 138 

learning. We use six feature coding schemes to obtain the physicochemical information, 139 

sequence information and evolutionary information, including pseudo amino acid 140 

composition (PAAC), autocorrelation descriptor (Auto), multivariate mutual information 141 

(MMI), composition-transition-distribution (CTD), amino acid composition PSSM 142 

(AAC-PSSM) and dipeptide composition PSSM (DPC-PSSM). 143 

2.2.1. Physicochemical information 144 

Pseudo-amino acid composition (PAAC) and autocorrelation descriptor (Auto) are 145 

utilized to extract the physicochemical and composition information. At present, PAAC has 146 

shown good properties in proteomics field (Cui, et al., 2019; Qiu, et al., 2018; Yu, et al., 147 

2017a; Yu, et al., 2017b; Yu, et al., 2018; Yu, et al., 2017c). Auto includes Morean-Broto, 148 

Moran, and Geary (Chen, Zhang, Ma & Yu, 2019; Chen, et al., 2018). It represents the 149 

physicochemical, position information, and the seven physicochemical properties in Auto can 150 

be obtained in Supplementary Table S1. The PAAC encoding feature vector 
ux  can be 151 

defined as: 152 
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                   (1) 153 

where if  represents amino acid composition information, j  represents layer sequence 154 

correlation factor calculated using hydrophobicity, hydrophilicity, and side-chain mass, 155 

=0.05  (Chou, 2001). The shortest length of protein in benchmark PPIs dataset is 12. So the 156 

  must satisfy 12   and the dimension of PAAC is 20  . 157 

We use 
iA  to characterize the -i th  amino acids and ( )iP A  represents the normalized 158 

physicochemical values. The P  can be employed as the mean value for specific 159 
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physicochemical property in whole protein sequence. The equation (2), (3), (4) represent 160 

Moreau-Broto, Moran, Geary, respectively. 161 
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where 
1

( ) ( ) ( )
N l

i i l

i

MBA l P A P A






 , lag  is the parameter that needs to be adjusted. The 165 

dimension of Auto is 3 7 lag  . 166 

2.2.2. Sequence information 167 

Multivariate mutual information (MMI) (Ding, Tang & Guo, 2016; Ding, Tang & Guo, 168 

2017) and composition-transition-distribution (CTD) are utilized to obtain sequence 169 

information (Zhang, Yu, Xia & Wang, 2019). MMI can represent the information entropy and 170 

group features. CTD can obtain the distribution pattern and effective sequence information. 171 

The groups of amino acids are listed in Supplementary Table S2. 172 

For MMI, the amino acid residues can be classified into seven classes according to 173 

Supplementary Table S3. The algorithm flowchart of MMI is shown in the Supplementary 174 

Fig. S1. For a given protein sequence, we can define various 2-gram ( , )I a b  and 3-gram 175 

( , , )I a b c  features. Take 
0 0 0 0 0 1 6 6 6" "," ", ," "C C C C C C C C C  for example. The information 176 

entropy can be expressed as: 177 

( , )
( , ) ( , ) ln( )

( ) ( )

f a b
I a b f a b

f a f b
                            (5) 178 

where ( , )f a b  represents frequency 2-gram (a, b) for given sequence. ( )f a  represents 179 

frequency of a . 180 

( , , ) ( , ) ( , | )I a b c I a b I a b c                             (6) 181 

where , ,a b c  are types of amino acid in triplet, and ( , | )= ( | )- ( | , )I a b c H a c H a b c  which 182 

could be described as: 183 

( , ) ( , )
( | ) ln( )

( ) ( )

f a c f a c
H a c

f c f c
                             (7) 184 

( , , ) ( , , )
( | , ) ln( )

( , ) ( , )

f a b c f a b c
H a b c

f b c f b c
                          (8) 185 

Finally, each protein sequence yields 84-dimensional 3-gram features and 186 

28-dimensional 2-gram features. The dimension of MMI is 119. 187 

In CTD (Chen, et al., 2018), amino acids are grouped into three groups based on 188 

hydrophobicity: polar (P), neutral (N), and hydrophobic (H). Using ( )N r  represents the 189 

character type r  in the replaced sequence, and N  is sequence length. Given sequence 190 

MTTTVPKVFAFHEF. It can be represented as '32223213323213' according to 191 
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Hydrophobicity_PRAM900101. '1' represents polar, '2' represents neutral, '3' represents 192 

hydrophobicity. 193 

( )
( ) , { , , }

N r
Composition r r P N H

N
                           (9) 194 

The composition generate grouped information, the frequency of '1' is 2 /14 0.1429 , 195 

the frequency of '2' is 6 /14 0.4286 , the frequency of '3' is 6 /14 0.4286 . 196 

The T descriptor first converts the original sequence into a replacement sequence, and T 197 

includes three characteristics, the dipeptide composition frequency from the polar group to the 198 

neutral group and the composition frequency from the neutral group to the polar group. 199 

Transitions between the neutral group and the hydrophobicity and these between hydrophobic 200 

group and the polar group are defined in the same way.  201 

The T descriptor is defined as follows: 202 

( , ) ( , )
( , ) , , {( , ), ( , ), ( , )}

1

N r s N s r
T r s r s P N N H H P

N


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
            (10) 203 

where ( , )N r s  represents dipeptide frequency, the value of ( , )P N  is 2 /13 0.1538 , the 204 

value of ( , )N H  is 6 /13 0.4615 , the value of ( , )H P  is 2 /13 0.1538 . 205 

For each group (P, N and H), we obtain the pattern information of the first, 25%, 50%, 206 

75% and 100% of the encoded grouped sequence. Take '3' for example, there are 6 residues 207 

encoded '3'. The first '3' is 1. The second '3' is 25% 6 1  . The third '3' is 50% 6 3  . The 208 

fourth '3' is 75% 6 4  . The fifth '3 is 100% 6 6  . The position in the first, the second, the 209 

third, the fourth, the fifth '3' of whole sequence are 1, 1, 8, 9, 14, respectively. So the 210 

distribution descriptor for '3' are (1/14) , (1/14) , (8 /14) , (9 /14) , (14 /14) . 211 

The Composition generates a 39-dimensional sample numeric vector, the Transition 212 

generates a 39-dimensional sample numeric vector, and the Distribution generates a 213 

195-dimensional sample numeric vector. In summary, the CTD generates a 273-dimensional 214 

sample numeric vector. 215 

2.2.3. Evolutionary information  216 

Evolutionary information in the position-specific scoring matrix (PSSM) is essential in 217 

proteomics (Supplementary File S1). The amino acid composition PSSM (AAC-PSSM) and 218 

dipeptide composition PSSM (DPC-PSSM) are utilized to generate evolutionary information. 219 

Some researchers have used PSSM to leverage encoding information, including the 220 

identification of drug-target interaction (Shi, et al., 2019), detecting protein-protein 221 

interaction site (Wang, et al., 2019; Wei, Han, Yang, Shen & Yu, 2016; Zhang, Li, Quan, 222 

Chen & Q. Lü, 2019).  223 

PSSM are converted to feature vector by AAC-PSSM via equation (11) 224 

1 2 20( , , , , ) ( 1,2, , 20)T

AAC jP p p p p j                          (11) 225 

where 
1

1
( 1, 2, 20)

L

j ij

i

P p j
L 

   , 
jp  represents the composition evolutionary information 226 

of the j  amino acid residue. And the dimension of AAC-PSSM is 20. 227 

ACC-PSSM only represents the composition information from PSSM, and loses the 228 

position information, which is insufficient to fully represent the evolutionary information. 229 

DPC-PSSM can reflect the sequence-order information of PSSM, the encoding feature vector 230 

can be expressed as 231 
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1
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1

1

1

L
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k

D p p
L







 

 , the dimension of DPC-PSSM is 400. 233 

2.3. Elastic net 234 

Elastic Net (EN) (Zou & Hastie, 2005) is a feature selection method based on 235 

regularization term. EN not only keeps the sparse model of LASSO but also maintains the 236 

regularization properties of the ridge regression. ,   are penalty terms, which represent a 237 

compromise strategy between LASSO and ridge regression. The objective function of the 238 

elastic net is 239 

2 2

2 1 2

1 1
min * *(1 )

2* 2w
y Xw w w

n
                      (13) 240 

where X  is the sample matrix, y  is the category label, n  represents sample number, and 241 

w  indicates the regression coefficient. The L1 regular term is used to generate the sparse 242 

model (LASSO), and the L2 regularization can produce a group effect. 243 

2.4. Deep forest 244 

Deep forest (DF) is a forest-based ensemble learning method for trees (Zhou & Feng, 245 

2017; Zhou & Feng, 2018), which can represent high-level feature information by cascade 246 

structure. Zhou et al. used two random forest (RF) (Breiman, 2001), and two extremely 247 

randomized trees (Extra-Trees) (Geurts, Ernst & Wehenkel, 2006) to construct the deep forest. 248 

Considering the boosting algorithm achieves higher computation accuracy and better model 249 

generation ability. Especially the XGBoost (Chen & Guestrin, 2016), which combines the 250 

linear model, regularized objective and second-order approximation via boosting algorithm to 251 

avoid over-fitting, reduce computational costs, enhance predictive performance. Meanwhile, 252 

sub-samples speed up the parallel computing in the process of tree learning. So we develop a 253 

new deep forest architecture to implement GcForest, which is composed of four XGBoost, 254 

four RF and four Extra-Trees. XGBoost is a variant of gradient boosting decision tree whose 255 

base classifier is regression tree. The base classifiers of the RF and Extra-Trees are decision 256 

tree. In this way, an outstanding deep forest contain good and diverse base classifier. Then the 257 

deep layer architecture GcForest can obtain complementary advantages and essential features. 258 

XGBoost is an ensemble algorithm. Given dataset    , , ,m

i i i iD x y D n x R y R    , 259 

the loss function of XGBoost is shown as 260 

  ˆ( , ) ( )i i k

i k

L l y y f                            (14) 261 

where L  is the convex objective function,   penalizes the complexity of XGBoost, kf  262 

represents the -k th  regression tree. Then, second-order Taylor is adopted to enhance the 263 

predictive performance: 264 

( ) ( 1) 2

1

1
ˆ[ ( , ) ( ) ( )] ( )
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i
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where  

 
1

1ˆ( , )t

t

i iy
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
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 
1
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t

i iy
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
  represents the first order and second order 266 

gradient statistics. 267 
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RF is a bagging ensemble classifier using random bootstrap. Gini coefficient is 268 

employed as the evaluation to split the node for tree learning. There are two main differences 269 

between Extra-Trees and RF. (i) Extra-Trees uses all training set to generate decision tree. (ii) 270 

Each tree is segmented and grown at each node by randomly selecting a feature. 271 

The levels include four XGBoost, four RF, and four Extra-Trees. The cascade structure is 272 

shown in Fig. 1A. Suppose there are two classes to predict, each forest will output a 273 

two-dimensional class vector, and each layer will generate a 24-dimensional new class vector.  274 

The newly generated class vectors are concatenated with the raw protein feature vectors to 275 

produce multi-level features. The output class probability score of the last layer is shown in 276 

Fig. 1B.  277 

 278 
Fig. 1. The GcForest structure and the generation of a class vector. (A) Illustration of 279 

GcForest structure. (B) The generation of class vector. Different marks in leaf nodes represent 280 

different classes. 281 

 282 

As illustrated in Fig. 1, given an instance, each forest can produce an estimate of class 283 

distribution by calculating the percentage of different types of training samples at the leaf 284 

node. The number of iterations on XGBoost is set to 500. The RF includes 500 decision trees 285 

and randomly selects d  features as candidate subsets ( d  is the dimension of dataset). The 286 

Extra-Trees consist of 500 trees. 287 

To reduce overfitting of GcForest, the class vector generated by each forest using 288 

five-fold cross-validation. Specifically, each sample will be employed as training set twelve 289 

times. Then, the class vectors are concatenated to produce augmented class vectors. The 290 

feature information is obtained from known sequences in the previous study, but they may 291 

generate noisy data inputs. It is reasonable to extract high-level feature information for 292 

prediction, and the probability output is employed as the next level of the forest. So, DF has 293 

good generalization ability, and the deep structure can exploit potential information from 294 

PPIs. 295 

2.5. Performance evaluation and model construction 296 
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In order to evaluate the GcForest-PPI model, the evaluation indicators included Recall, 297 

Precision, Accuracy (ACC) and Matthews correlation coefficient (MCC) (Cui, et al., 2019; 298 

Du, et al., 2017; Tian, et al., 2019; Yu, et al., 2018). 299 

 

  

TP
Recall

TP FN



                                  (16) 300 

 
  

TP
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


                                (17) 301 
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

  
                           (18)  302 

( )( )( )( )
MCC

TP FP T

TP T

N FN TP FN

N FP FN

TN FP


 










                   (19)  303 

where TP, TN, FP, and FN represent true positive, true negative, false positive, and false 304 

negative, respectively. Receiver operating characteristic (ROC) curve (Shi, et al., 2019; Wang, 305 

et al., 2019) and AUC, Precision recall curve (PR) (Davis & Goadrich, 2006) and AUPR are 306 

also indicators to assess the predictive performance of GcForest-PPI. The workflow of 307 

GcForest-PPI is shown in Fig. 2 with detailed steps described as follows. 308 

Step 1: Protein pairs. We collect six PPIs dataset. Input interacting pairs and 309 

non-interacting pairs. 310 

Step 2: Feature extraction. The effective initial coding information of PPIs could be 311 

obtained by PAAC, Auto, MMI, CTD, AAC-PSSM and DPC-PSSM. These descriptors can 312 

produce complimentary information by integrating physicochemical, position, sequence, 313 

composition and evolutionary information. 314 

Step 3: Feature selection. The elastic net based on L1 and L2 regularization can 315 

eliminate redundancy and retain essential variables. Adjusting the parameters   and   via 316 

five-fold cross-validation to generate effective subset for identifying PPIs. The comparison 317 

indicates elastic net obviously outperforms other dimensional reduction approaches. 318 

Step 4: Deep forest and model construction. The important feature representations can 319 

be obtained for binary PPIs prediction task via Step 2 and Step 3. Then ensemble XGBoost, 320 

RF and Extra-Trees via cascade architecture to implement the task, and the predictive tool 321 

GcForest-PPI for PPIs based on deep forest is built up. 322 

Step 5: Model evaluation. We apply GcForest-PPI on four cross-species datasets, 323 

CD9-core network, crossover network and cancer-specific network. Then list the comparison 324 

of GcForest-PPI with the state-of-the-art predictors and plot the three types of protein-protein 325 

interactions networks. 326 
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Fig. 2. The overall framework of GcForest-PPI. First, input the protein pairs and utilize 328 

PAAC, Auto, MMI, CTD, AAC-PSSM and DPC-PSSM to encode feature values. Then using 329 

elastic net to find effective, significant, and valuable feature subset. Finally, the GcForest-PPI 330 

model is constructed based on deep forest. The output of GcForest-PPI should decide whether 331 

protein pairs are PPIs or non-PPIs. 332 

3. Results and discussion 333 

All simulation results of GcForest-PPI were performed on Windows Server 2012R2 with 334 

32.0GB of RAM, GcForest-PPI was implemented by Python 3.6 and MATLAB. 335 

3.1. Parameter selection of the feature extraction 336 

The parameter   in PAAC indicates the order information in the coding process. The 337 

parameter lag  represents the interval of two residues in the computational process of AD. 338 

For different   and lag  values, deep forest is adopted to construct the predictor. The 339 

prediction results are listed in Supplementary Table S4 and Supplementary Table S5. The 340 

intuitive parameter changes of accuracy are shown in Fig. 3. 341 

 342 

Fig. 3. The parameter optimization of PAAC and Auto for S. cerevisiae and H. pylori. The   343 
represents the parameter need to be adjusted in PAAC. The lag  represents the parameter 344 

need to be adjusted in AD. 345 
As shown in Fig. 3, we can notice that the changes of   and lag  can effect the 346 

prediction condition. For the PAAC, the peaks of the S. cerevisiae and H. pylori datasets are 347 

same. Hence, we determine 11   in PAAC. For the Auto algorithm, the peak point of S. 348 

cerevisiae is 11, and the peak point of H. pylori is 5. Considering that we use the S. cerevisiae 349 

dataset as the train set to predict the independent test set, we set =11lag  to unify the 350 

parameter lag . PAAC and Auto can mine the sequence physicochemical information. MMI 351 

and CTD obtain sequence and composition pattern through grouping amino acids. The PSSM 352 

can be converted to important evolutionary representation related to PPIs through 353 

AAC-PSSM and DPC-PSSM. For each protein sequence, six feature coding schemes are 354 

combined to obtain 1,074 features. Then protein pair vectors are concatenated to fully 355 

characterize pairwise relations whose dimension is 2148. 356 
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3.2. Elastic net performs better than other dimensionality reduction method 357 

The elastic net feature selection was employed to optimize the feature set. From 358 

Supplementary File S2, we can see the parameters of the elastic net are =0.03  and =0.1 . 359 

The numbers of optimal features are 476 and 516 on S. cerevisiae and H. pylori, respectively. 360 

And the raw features and optimal features from different feature information are shown in 361 

Supplementary Fig. S2. What is more, we also use principal component analysis (PCA) (Wold, 362 

Esbensen & Geladi, 1987), kernel principal component analysis (KPCA) (Schölkopf, Smola 363 

& Müller, 1998), local linear embedding (LLE) (Roweis & Saul, 2000), spectral embedding 364 

(SE) (Ng, Jordan & Weiss, 2002), singular value decomposition (SVD) (Wall, Rechtsteiner & 365 

Rocha, 2002), semi-supervised dimensionality reduction (SSDR) (Zhang, Zhou & Chen, 2007) 366 

to eliminate redundant information. Then construct the GcForest-PPI framework based on 367 

deep forest via five-fold cross-validation. The main experimental results of S. cerevisiae, and 368 

H. pylori are shown in Supplementary Table S8. The ROC curves, PR curves and AUC values, 369 

AUPR values are shown in Fig. 4. and Supplementary Table S9, respectively. 370 

 371 

Fig. 4. Predictive performance of PCA, KPCA, LLE, SE, SVD, SSDR and EN via five-fold 372 

cross-validation. (A-B) The ROC curves of S. cerevisiae and H. pylori. (C-D) The PR curves 373 

of S. cerevisiae and H. pylori. 374 

 375 

It is noticed that from Fig. 4A, the accuracy of EN exceeds the PCA, KPCA, LLE, SE, 376 

SVD, SSDR (0.9864 vs. 0.9603, 0.9497, 0.9302, 0.9243, 0.9664, 0.8425) for S. cerevisiae. 377 

EN is 2.61% higher than PCA (0.9864 vs. 0.9603) and 14.39% higher than SSDR (0.9864 vs. 378 

0.8425). As Fig. 4B shows compared with other methods, the robustness of the elastic net is 379 

optimal. The AUC value of EN outperforms PCA, KPCA, LLE, SE, SVD, SSDR (0.9816 vs. 380 

0.9545, 0.9402, 0.9088, 0.9172, 0.9605, 0.7999). From the PR curve of Fig. 4C, EN achieves 381 

relatively high accuracy compared with PCA, KPCA, LLE, SE, SVD, SSDR (0.9485 vs. 382 

0.9019, 0.9230, 0.8888, 0.8509, 0.9129, 0.8560) in terms of AUPR. Fig. 4D plots the PR 383 

curve and the AUPR of EN is 2.4%-11.95% higher than PCA, KPCA, LLE, SE, SVD, SSDR 384 
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(0.9449 vs. 0.8873, 0.9209, 0.8845, 0.8356, 0.9007, 0.8254) on the H. pylori. And the AUPR 385 

of EN is 5.76% higher than PCA (0.9449 vs. 0.8873). Therefore, EN can effectively eliminate 386 

redundant information that has little correlation with PPIs, and retain important feature subset 387 

information, which provides effective feature fusion information for deep forest. 388 

3.3. GcForest performs better than other classifiers 389 

To verify the effectiveness of DF, we also use logistic regression (LR) (Yu, Huang & Lin, 390 

2011), Naïve Bayes (NB) (Friedman, Geiger & Pazzanzi, 1997), K nearest neighbors (KNN) 391 

(Nigsch, et al., 2006), AdaBoost (Freund & Schapire, 1997), random forest (RF) (Breiman, 392 

2001) and SVM (Cortes & Vapnik, 1995) six classifiers to predict PPIs. The main prediction 393 

results of the five-fold cross-validation on the S. cerevisiae and H. pylori datasets are shown 394 

in Supplementary Table S10. The results of the ROC curves and the PR curves, AUC and 395 

AUPR are shown in Fig. 5, Table S11, respectively. 396 

 397 

Fig. 5. Predictive performance of LR, NB, KNN, AdaBoost, RF, SVM, and GcForest via 398 

five-fold cross-validation. (A-B) The ROC curves illustrating the prediction of S. cerevisiae 399 

and H. pylori. (C-D) The PR curves representing the performance on the S. cerevisiae and H. 400 

pylori. 401 

 402 

From Fig. 5A, the ROC curve of DF performs the best on S. cerevisiae compared with 403 

LR, NB, KNN, AdaBoost, RF, SVM classifiers (0.9864 vs. 0.9298, 0.7914, 0.9503, 0.9750, 404 

0.9762, 0.9653). The AUC of GcForest is increased by 2.11% over SVM (0.9864 vs. 0.9653). 405 

From Fig. 5B, the AUC value of GcForest is higher than LR, NB, KNN, AdaBoost, RF, SVM 406 

(0.9816 vs. 0.9189, 0.7721, 0.9270, 0.9693, 0.9704, 0.9616). GcForest is 1.12%-20.95% 407 

higher than the other six machine-learning-based algorithms. From Fig. 5C, the PR curve 408 

indicates that GcForest is superior to LR, NB, KNN, AdaBoost, RF, SVM for predicting PPIs 409 

(0.9485 vs. 0.8996, 0.8022, 0.8722, 0.9225, 0.9427, 0.9264) in terms of AUPR on S. 410 

cerevisiae. GcForest is 0.58%-14.63% higher than the other six classifiers. Fig. 5D indicates 411 
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the AUPR of GcForest is higher than LR, NB, KNN, AdaBoost, RF, SVM (0.9449 vs. 0.9091, 412 

0.7653, 0.8764, 0.9229, 0.9447, 0.9246). GcForest is 3.58%, 2.03% higher than LR, SVM 413 

(0.9449 vs. 0.9091), (0.9449 vs. 0.9246). 414 

We use DF to predict PPIs using XGBoost, random forest and extremely randomized 415 

trees to construct cascade forest for the first time. The high-level feature information can be 416 

extracted, and probability output from the previous layer is input into the next level. The 417 

experimental results show that GcForest is superior to LR, NB, KNN, AdaBoost, RF and 418 

SVM classifiers. Tree-ensemble methods can mine the potential feature information of protein 419 

interaction pairs through layer-by-layer learning, and thus it can fit the non-linear relationship 420 

to determine whether a pair is interacting or non-interacting. DF can have flexible 421 

hyperparameter adjustment, high efficiency, and good scalability. 422 

3.4. Comparison with other state-of-the-art PPIs prediction methods 423 

To verify the validity of the GcForest-PPI model, we listed the results of ACC+SVM 424 

(Guo, Yu, Wen & Li, 2008), Code4+KNN (Yang, Xia & Gui, 2010), LD+SVM (Zhou, Gao 425 

& Zheng, 2011), MCD+SVM (You, et al., 2014), LRA+RF (You, Li & Chan, 2017), 426 

DeepPPI (Du, et al., 2017), DPPI (Hashemifar, Neyshabur, Khan & Xu, 2018) on S. 427 

cerevisiae in Table1, and the results of SVM (Martin, Roe & Faulon, 2005), Ensemble of 428 

HKNN (Nanni & Lumini, 2006), DCT+WSRC (Huang, You, Xin, Leon & Wang, 2015), 429 

MCD+SVM  (You, et al., 2014), MIMI+ NMBAC+RF (Ding, Tang & Guo, 2016), 430 

PCA-EELM (You, Lei, Zhu, Xia & Wang, 2013), DeepPPI (Du, et al., 2017) on H. pylori in 431 

Table 2. 432 

From Table 1, we can see the GcForest-PPI model achieves the best prediction 433 

performance with an ACC of 95.44%, Recall of 92.72%, Precision of 98.05%, and MCC of 434 

0.9102. The ACC and Recall based on GcForest-PPI, DPPI (Hashemifar, Neyshabur, Khan & 435 

Xu, 2018), DeepPPI (Du, et al., 2017) and ACC+SVM (Guo, Yu, Wen & Li, 2008) are (95.44% 436 

and 92.72%), (94.55% and 92.24%), (94.43% and 92.06%) and (89.33% and 89.93%). The 437 

ACC of GcForest-PPI is 1.01% higher than DeepPPI (Du, et al., 2017) (95.44% vs. 94.43%). 438 

On Recall, GcForest-PPI is 1.5% higher than the LRA+RF (You, Li & Chan, 2017) (92.72% 439 

vs. 91.22%). On Precision, GcForest-PPI is 9.18% higher than the ACC+SVM (Guo, Yu, 440 

Wen & Li, 2008) (98.05% vs. 88.87%). In summary, our proposed method GcForest-PPI is 441 

powerful on S. cerevisiae for PPIs identification. 442 

Table 1 443 

Comparison of different PPIs prediction methods on S. cerevisiae dataset. 444 

Method ACC (%) Recall (%) Precision (%) MCC 

ACC+SVM a 89.33 ± 2.67 89.93 ± 3.68 88.87 ± 6.16 N/A 

Code4+KNN b 86.15±1.17 81.03±1.74 90.24±1.34 N/A 

LD+SVM c 88.56±0.33 87.37±0.22 89.50±0.60 0.7715±0.0068 

MCD+SVM d 91.36 ±0.36 90.67 ±0.69 91.94 ±0.62 0.8421 ±0.0059 

LRA+RF e 94.14±1.8 91.22±1.6 97.10±2.1 0.8896±0.026 

DeepPPI f 94.43±0.30 92.06±0.36 96.65±0.59 0.8897±0.0062 

DPPI g 94.55 92.24 96.68 N/A 

GcForest-PPI 95.44±0.18 92.72±0.44 98.05±0.25 0.9102±0.0035 

Note: N/A means not available. The values behind ± represent the standard deviation. a 445 
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Results reported by (Guo, Yu, Wen & Li, 2008) and the paper uses the holdout validation. b 446 

Results reported by (Yang, Xia & Gui, 2010). c Results reported by (Zhou, Gao & Zheng, 447 

2011). d Results reported by (You, et al., 2014). e Results reported by (You, Li & Chan, 2017). 448 
f Results reported by (Du, et al., 2017). g Results reported by (Hashemifar, Neyshabur, Khan 449 

& Xu, 2018). 450 

 451 

Table 2  452 

Comparison of different PPIs prediction methods on H. pylori dataset. 453 

Method ACC (%) Recall (%) Precision (%) MCC 

SVM a 83.40 79.90 85.70 N/A 

Ensemble of HKNN b 86.60 86.70 85.00 N/A 

DCT+WSRC c 86.74 86.43 87.01 0.7699 

MCD+SVM d 84.91 83.24 86.12 0.7440 

MIMI+ NMBAC+RF 
e 

87.59 86.81 88.23 0.7524 

PCA-EELM f 87.50 88.95 86.15 0.7813 

DeepPPI g 86.23 89.44 84.32 0.7263 

GcForest-PPI 89.26±1.07 89.71±2.26 88.95±1.36 0.7857±0.0212 

Note: N/A means not available. The values behind ± represent the standard deviation. a 454 

Results reported by (Martin, Roe & Faulon, 2005) and this paper uses ten-fold 455 

cross-validation. b Results reported by (Nanni & Lumini, 2006) and this paper uses ten-fold 456 

cross-validation. c Results reported by (Huang, You, Xin, Leon & Wang, 2015), and this paper 457 

used ten-fold cross-validation. d Results reported by (You, et al., 2014). e Results reported by 458 

(Ding, Tang & Guo, 2016). f Results reported by (You, Lei, Zhu, Xia & Wang, 2013). g 459 

Results reported by (Du, et al., 2017). 460 

 461 

From Table 2, we can see that on the H. pylori, The ACC and Recall of GcForest-PPI, 462 

PCA-EELM (You, Lei, Zhu, Xia & Wang, 2013), MCD+SVM (You, et al., 2014), 463 

DCT+WSRC (Huang, You, Xin, Leon & Wang, 2015), are (89.26% and 89.71%), (87.50% 464 

and 88.95%), (84.91% and 83.24%) and (86.74% and 86.43%). The ACC of GcForest-PPI is 465 

3.03%, 5.86%, 1.67% higher than DeepPPI (Du, et al., 2017), SVM (Martin, Roe & Faulon, 466 

2005) and MIMI+ NMBAC+RF (Ding, Tang & Guo, 2016), respectively (89.26% vs 86.23%, 467 

83.40%, 87.59%). From Recall, we can see GcForest-PPI is 3.28% higher than DCT+WSRC 468 

(Huang, You, Xin, Leon & Wang, 2015) (89.71% vs. 86.43%). The Precision and MCC of 469 

GcForest-PPI, DeepPPI (Du, et al., 2017), MMI+NMBAC+RF  (Ding, Tang & Guo, 2016) 470 

are (88.95% and 0.7857), (84.32% and 0.7263) and (88.23% and 0.7524). On MCC, 471 

GcForest-PPI is 0.44%-5.94% higher than other PPIs prediction tools. GcForest-PPI is 5.94% 472 

higher than DeepPPI (Du, et al., 2017) (0.7857 vs. 0.7263). 473 

3.5. Prediction results on four independent species 474 

The pros and cons of GcForest-PPI are further evaluated on C. elegans (4,013 interacting 475 

protein pairs), E. coli (6,954 interacting protein pairs), H. sapiens (1,412 interacting protein 476 

pairs), and M. musculus (313 interacting protein pairs) and the whole samples of the S. 477 

cerevisiae are regarded as training set. The results of GcForest-PPI and DPPI (Hashemifar, 478 
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Neyshabur, Khan & Xu, 2018), DeepPPI (Du, et al., 2017), MLD+RF (You, Chan & Hu, 479 

2015), DCT+WSRC (Huang, You, Xin, Leon & Wang, 2015) are shown in Table3. 480 

Table 3 481 

Comparison of performance of the proposed method with other state-of-the-art predictors on 482 

the independent dataset. 483 

Species ACC (%) 

GcForest-PPI DPPI a DeepPPI b MLD+RF c DCT+WSRC d 

H. sapiens 98.58 96.24 94.84 94.19 82.22 

M. musculus 99.04 95.84 92.19 91.96 79.87 

C. elegans 96.01 95.51 93.77 87.71 81.19 

E. coli 96.30 96.66 91.37 89.30 66.08 

Note: a Results reported by (Hashemifar, Neyshabur, Khan & Xu, 2018). b Results reported by 484 

(Du, et al., 2017). c Results reported by (You, Chan & Hu, 2015). d Results reported by (Huang, 485 

You, Xin, Leon & Wang, 2015). 486 

 487 

From Table 3, we can know that the ACC of GcForest-PPI on H. sapiens, M. musculus, 488 

C. elegans, and E. coli are 98.58%, 99.04%, 96.01%, and 96.30%, respectively. GcForest-PPI 489 

is superior to the DPPI on H. sapiens, M. musculus and C. elegans (98.58% vs. 96.24%), 490 

(99.04% vs. 95.84%), and (96.01% vs. 95.51%). At the same time, the GcForest-PPI performs 491 

better than DeepPPI (Du, et al., 2017), MLD+RF (You, Chan & Hu, 2015), and DCT+WSRC 492 

(Huang, You, Xin, Leon & Wang, 2015). This shows that GcForest-PPI model characterizes 493 

PPIs information using S. cerevisiae dataset. In other words, it is possible that PPIs of one 494 

species can predict cross-species and the co-evolved relationship can be mined via cascade 495 

structure based on XGBoost, RF and Extra-Trees. 496 

3.6. PPIs network prediction  497 

We use the one-core network, Wnt-related pathway network and cancer-specific network 498 

to evaluate the advantages and disadvantages of the GcForest-PPI model. It provides some 499 

reference for identifying PPIs from unknown PPIs networks. The one-core network is a 500 

simple CD9-core network including 17 genes. The second is a crossover network for 501 

Wnt-related pathway. This network has 78 genes consisting of 96 PPI pairs. The 502 

cancer-specific network (Amar, Hait, Izraeli & Shamir, 2015) consists of 78 genes, which are 503 

of importance in DNA replication and cancer pathways. The interaction pairs in the 504 

cancer-specific network are derived from the IntAct database (Kerrien, et al., 2007). 505 

The GcForest-PPI prediction model is constructed using the S. cerevisiae dataset to 506 

predict the one-core network with CD9 as the core protein, the Wnt-related pathway network 507 

and the cancer-specific network. According to the discussion in Section 3.1, the protein pairs 508 

are converted to 2,148-dimensional feature vector by PAAC, Auto, MMI, CTD, AAC-PSSM, 509 

and DPC-PSSM (where   is 11 in PAAC and lag  is 11 in Auto).Then we select 476 510 

important features via elastic net. Finally, deep-forest-based model GcForest-PPI using 511 

random forest, Extra-trees and XGBoost is constructed. The results of three types PPIs 512 

networks are shown in Fig. 6. 513 
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 514 

Fig. 6. Predicted results on the three types PPIs networks. (A) Predicted results of PPIs 515 

networks of a one-core network for CD9. All 16 PPIs are truly predicted. (B) The predicted 516 

results of a crossover network, where WNT9A, CXXC4, AXIN1 and ANP32A are linked in 517 

the Wnt-related pathway. The solid lines are the interactions of true prediction, and the dotted 518 

lines are the interactions of false prediction. (C) Predicted results of PPIs networks of the 519 

cancer-specific differential genes. The network is composed of two components. The first 520 

component is marked in red and the second component is marked in blue. NDEL1 and 521 

GABARAPL1 connect the first component. TP53 is the main hub in the second component of 522 

this network. All 108 PPIs are truly predicted. 523 

 524 

As shown in Fig. 6A, when using the GcForest-PPI model to predict a one-core network, 525 

all PPIs of the network are predicted successfully (16/16). The accuracy of GcForest-PPI is 526 

superior to Shen et al. (Shen, et al., 2007) and Ding et al. (Ding, Tang & Guo, 2016) (100% vs. 527 

81.25%, 87.50%). CD9 plays a crucial role in sperm egg fusion, and myoblast fusion (Yang, 528 

et al., 2006). The palmitoylation of CD9 contributed to the interaction between CD81 and 529 

CD53 (Charrin, et al., 2002).  530 

From Fig. 6B, we successfully predicted interacting protein pairs with accuracy of 97.92% 531 

on crossover network (94/96). GcForest-PPI is 21.88% higher than Shen et al. (Shen, et al., 532 

2007) (97.92% vs. 76.04%). GcForest-PPI is 3.13% higher than that of Ding et al. (Ding, 533 

Tang & Guo, 2016) (97.92% vs. 94.79%). However, the relationship between ROCK1 and 534 

CRMP1 is not identified successfully. This maybe because ROCK1 is part of the 535 

noncanonical Wnt pathway, and GcForest-PPI is not very applicative to predict PPIs in this 536 

case. AXIN1 interacts with a variety of proteins and regulates multiple pathways (Luo & Lin, 537 

2004). GcForest-PPI can truly predict the relationships between AXIN1 and its neighboring 538 

B

C

A
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proteins. This means that the GcForest-PPI can be utilized to predict protein-protein signaling 539 

pathway networks, helping to gain insight into the significance of biology. 540 

All PPIs in the cancer-specific network are successfully predicted (108/108). The 541 

cancer-specific network is composed of two sub-networks (Fig. 6C). The first sub-network is 542 

composed of 14 genes, where TP53 is the main hub. At the molecular level, TP53 is a gene 543 

associated with breast cancer (Andrysik, et al., 2017). The second subnetwork is a PPIs 544 

network consisting of 64 genes, where two down-regulated genes NDEL1 and GABARAPL1 545 

link to two sub-modules (Wynne & Vallee, 2018). NDEL1 and LIS1 are essential for 546 

development, and they are thought to relate with cytoplasmic dynein (Hebbar, et al., 2008). 547 

NDEL1 contains phosphorylation sites for CDK1, CDK5 (Mori, et al., 2007). CDK5 548 

phosphorylation of NDEL1 affects lysosome motility in axons, indicating CDK5 is important 549 

in cell growth and development (Klinman & Holzbaur, 2015; Pandey & Smith, 2011). 550 

NDEL1 is also closely related to the development of some diseases (Doobin, Kemal, Dantas 551 

& Vallee, 2016). All PPIs are predicted successfully on the cancer-specific network, 552 

indicating that the GcForest-PPI can provide new ideas to elucidate disease mechanisms, and 553 

design of new drugs. 554 

4. Conclusion 555 

With the rapid development of big data mining technology, the study of well-established 556 

computational predictive framework based on proteomics data is necessary. Using machine 557 

learning to automatically predict PPIs can provide reference for grasping disease pathogenesis, 558 

drug discovery and repositioning. We present a novel approach Gcforest-PPI for identifying 559 

PPIs, which uses PAAC, Auto, MMI, CTD, AAC-PSSM and DPC-PSSM to extract 560 

physicochemical features, sequence features and evolutionary features of PPIs. Then we use 561 

the elastic net to eliminate noise from extracted vectors, which could combine the advantages 562 

of L1 and L2 regularization and generate a sparse model and group effects. The comparison 563 

between raw features and optimal feature subset indicates the sequence information is more 564 

effective than physicochemical and evolutionary information when detecting PPIs. At the 565 

same time, deep forest is employed to predict PPIs for the first time, which uses XGBoost, RF 566 

and Extra-Trees to construct GcForest-PPI model. The cascade structure can mine nonlinear 567 

relationship to distinguish interacting and non-interacting samples. The results of S. cerevisiae 568 

and H. pylori indicate that GcForest-PPI can effectively identify PPIs. The prediction results 569 

of C. elegans, E. coli, H. sapiens, and M. musculus show that GcForest-PPI is capable of 570 

cross-species prediction and PPIs in S. cerevisiae include representation information of other 571 

species. Finally, the satisfactory scalability of the model is demonstrated by the one-core 572 

network, crossover network and cancer-specific network dataset, which can provide new 573 

ideas for exploring disease pathogenesis. In summary, GcForest-PPI can be a useful 574 

predictive tool for bioinformatics and proteomics. 575 

Feature extraction from protein sequences is a key step based on machine learning. 576 

Although we combine the physicochemical and position information, sequence and 577 

composition information, and evolutionary information from primary interacting protein pairs, 578 

the comprehensive important features related to PPIs is still not elucidated. We are developing 579 

a python tool for feature extraction and feature selection to provide an online platform for the 580 
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effective fusion of multiple feature information. DL has powerful representation learning 581 

ability and can mine more abstract essential features. Capsule neural network is a new deep 582 

learning framework. How to use capsule neural network is the next research direction. 583 
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