
Journal Pre-proofs

A Camera to LiDAR calibration approach through the Optimization of Atom‐
ic Transformations

André Silva Pinto de Aguiar, Miguel Armando Riem de Oliveira, Eurico
Farinha Pedrosa, Filipe Baptista Neves dos Santos

PII: S0957-4174(21)00335-3
DOI: https://doi.org/10.1016/j.eswa.2021.114894
Reference: ESWA 114894

To appear in: Expert Systems with Applications

Received Date: 7 December 2020
Accepted Date: 6 March 2021

Please cite this article as: Pinto de Aguiar, A.S., Riem de Oliveira, M.A., Pedrosa, E.F., Neves dos Santos, F.B.,
A Camera to LiDAR calibration approach through the Optimization of Atomic Transformations, Expert Systems
with Applications (2021), doi: https://doi.org/10.1016/j.eswa.2021.114894

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover
page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version
will undergo additional copyediting, typesetting and review before it is published in its final form, but we are
providing this version to give early visibility of the article. Please note that, during the production process, errors
may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2021 Published by Elsevier Ltd.

https://doi.org/10.1016/j.eswa.2021.114894
https://doi.org/10.1016/j.eswa.2021.114894

A Camera to LiDAR calibration approach through the Optimization

of Atomic Transformations

André Silva Pinto de Aguiara,c, Miguel Armando Riem de Oliveirab, Eurico Farinha Pedrosab,
Filipe Baptista Neves dos Santosa

aINESC TEC - INESC Technology and Science; 4200-465, Porto, Portugal, {andre.s.aguiar, fbsantos}@inesctec.pt
bInstitute of Electronics and Informatics Engineering of Aveiro, University of Aveiro, Portugal, {mriem,

efp}@ua.pt
cSchool of Science and Technology, University of Trás-os-Montes e Alto Douro; 5000-801 Vila Real, Portugal

Preprint submitted to Expert Systems with Applications February 1, 2021

Abstract

This paper proposes a camera-to-3D Light Detection And Ranging calibration framework through

the optimization of atomic transformations. The system is able to simultaneously calibrate multiple

cameras with Light Detection And Ranging sensors, solving the problem of Bundle. In comparison

with the state-of-the-art, this work presents several novelties: the ability to simultaneously calibrate

multiple cameras and LiDARs; the support for multiple sensor modalities; the calibration through

the optimization of atomic transformations, without changing the topology of the input transfor-

mation tree; and the integration of the calibration framework within the Robot Operating System

(ROS) framework. The software pipeline allows the user to interactively position the sensors for

providing an initial estimate, to label and collect data, and visualize the calibration procedure. To

test this framework, an agricultural robot with a stereo camera and a 3D Light Detection And

Ranging sensor was used. Pairwise calibrations and a single calibration of the three sensors were

tested and evaluated. Results show that the proposed approach produces accurate calibrations

when compared to the state-of-the-art, and is robust to harsh conditions such as inaccurate initial

guesses or small amount of data used in calibration. Experiments have shown that our optimiza-

tion process can handle an angular error of approximately 20 degrees and a translation error of 0.5

meters, for each sensor. Moreover, the proposed approach is able to achieve state-of-the-art results

even when calibrating the entire system simultaneously.

Keywords: Computer Vision, Geometric Optimization, Atomic Transformations

2

1. Introduction

Nowadays, autonomous robotic systems are endowed with high-quality onboard sensors of differ-

ent modalities, i.e. sensors that output different types of data, such as cameras and Light Detection

And Ranging (LiDAR) sensors. To move autonomously while safely avoiding any kind of obsta-

cle, these vehicles need to perform complex tasks such as Simultaneous Localization and Mapping5

(Durrant-Whyte & Bailey, 2006) and Path Planning (Sariff & Buniyamin, 2006) which require cal-

ibrated sensor data. The quality of the onboard sensors data is also crucial, since the robot should

have a clear perception of the environment. For example, in agriculture, the automation of tasks

such as crop monitoring or harvesting is a complex challenge that requires data of high quality

sensors (dos Santos et al., 2016), such as, for example long-range 3D LiDARs. To perform data10

fusion, and take advantage of all the sensors present in the robotic system, it is essential to know

the spatial relationship between all sensors (Melendez-Pastor et al., 2017; Majumder & Pratihar,

2018). To do so, the most common approach is to perform extrinsic calibration, i.e., to compute

the transformation between the sensors’ reference frames. The standard approach to perform ex-

trinsic calibration is to find associations between data incoming from each sensor to be calibrated.15

Thus, a cost function that minimizes the error between associations is used. Most of the calibration

procedures use a pattern that can be detected independently of the sensor modality, so that data

correspondences can be found. Using these concepts, camera to 3D LiDAR extrinsic calibration

have been approached in several works. A minority of works perform calibration without using a

pattern. In those, the characteristics of the environment are used as features to compute intrinsic20

and extrinsic calibration. In autonomous driving, for example, lane detection and vanishing point

tracking are common approaches (Badue et al., 2021; de Paula et al., 2014; Álvarez et al., 2014).

The great majority of the works found in the literature follow a pairwise calibration between a

monocular camera and a 3D LiDAR, a concept introduced by Huang & Barth (2009). In this work,

the extrinsic coefficients are computed solving a closed-form equation, and refined with a maximum25

likelihood estimation. Similarly, Verma et al. (2019) use a standard chessboard to calibrate a

perspective/fisheye camera and a 3D LiDAR using a Genetic Algorithm. Wang et al. (2017) propose

a work where the corners of the pattern are automatically detected for both a panoramic camera

and a 3D LiDAR so that the calibration can be performed. For the LiDAR case, authors propose a

detection based on the intensity of reflectance of the beams. Fremont & Bonnifait (2008); Guindel30

et al. (2017a) use circle-based patterns to perform the extrinsic calibration. Mirzaei et al. (2012)

3

propose the estimation of a 3D LiDAR intrinsic parameters, as well as the extrinsic calibration

with a monocular camera, through the minimization of a non-linear least squares cost function.

The calibration is used to build photorealistic 3D reconstruction of indoor and outdoor scenes.

Pandey et al. (2010) calibrate a 3D LiDAR with an omnidirectional camera also using a standard35

planar pattern. To calibrate the system, the sensors should observe the pattern from at least three

different points of view. With this input, the extrinsic coefficients are calculated with a non-linear

optimization technique. With the same purpose, Huang & Grizzle (2020) use a pattern of known

dimension and geometry and estimates the pattern to LiDAR pose automatically using a fitting

algorithm.40

Although all these works perform successful extrinsic calibrations between 3D range sensors and

monocular cameras, pairwise calibration is a major shortcoming since most robotic systems present

more than two sensors to be calibrated. In a system with more than two sensors, one would have

to combine multiple pairwise calibrations. The problem is that the number of the combinations of

pairwise calibrations required grow quickly. For example, Zhou et al. (2018) presente a system with45

a 3D LiDAR and a stereo camera system. However, to calibrate the three sensors (LiDAR and two

cameras), two calibrations have to be performed: LiDAR to left camera, and LiDAR to the right

camera. In the same way, with the purpose of fusing point clouds of multiple stereo cameras, Dhall

et al. (2017) use a 3D LiDAR to perform pairwise calibration with all the cameras in the system.

Only after obtaining the transformation between the range sensor and each camera of the stereo50

system, the transformation between the stereo cameras can be found. Then the point clouds can be

fused. Similarly, su Kim & Park (2019) perform six pairwise calibrations between a 3D LiDAR and

six monocular cameras mounted in an hexagonal plate that constitute an omnidirectional camera.

To overcome this limitation, few works exist that consider multi-sensor, multi-modal calibration

in a non-pairwise fashion. For example, Zuniga-Noel et al. (2019) propose a method to estimate the55

extrinsic calibration between multiple sensors such as LiDARs, depth cameras and RGB cameras.

The calibration procedure is separated in two parts: a motion-based approach that estimates 2D

extrinsic parameters and a method that uses the observation of the ground plane to estimate the

remaining ones. It is worth noting that this framework requires the robotic platform to be moving.

Liao et al. (2017) propose a joint objective function to simultaneously calibrate three RGB cameras60

with respect to an RGB-D camera. Rehder et al. (2016), propose an approach for joint estimation

of both temporal offsets and spatial transformations between sensors. This approach is one of few

4

that is not designed for a particular set of sensors, since its methodology does not rely on unique

properties of specific sensors. It is able to calibrate systems containing both cameras and LiDARs.

Pradeep et al. (2014), present a joint calibration of the joint offsets and the sensors locations for a65

PR2 robot. This method takes sensor uncertainty into account and is modelled in a similar way to

the bundle adjustment problem.

The two major shortcomings of the state-of-the art in extrinsic calibration are: most of the

methods perform pairwise calibration, which can be exhaustive for a robotic system with many

sensors to be calibrated; and the majority of the works are focused on specific sensor modalities,70

rather than working in a more general way. To overcome these issues, this work proposes an extrinsic

calibration framework with the following contributions:

• Support for calibration of multiple sensors (i.e. N ≥ 2);

• The ability to handle multiple sensor modalities;

• Calibration without changing the topology of the input transformation tree;75

• Integration of the system within the Robot Operating System (ROS) framework, with inter-

active tools to collect data, set the initial estimates, and visualize the calibration.

Our previous works have focused on the calibration of intelligent vehicles. These platforms are

often characterized by the large amount of sensors of different modalities mounted onboard. As such,

these previous works presented a methodology based on atomic transformations for multi-sensor,80

multi-modal robotic systems (Guindel et al., 2017b; Oliveira et al., 2020a,b). In this work, we extend

our framework - Atomic Transformation Optimization Method (ATOM) 1 (Oliveira et al., 2020a) -

to also consider the calibration of 3D LiDARs along with the other supported modalities. Atomic

transformations are geometric transformations that are not aggregated, i.e., they are indivisible. As

such, this article presents the methodologies implemented to simultaneously calibrate a 3D LiDAR85

sensor with multiple cameras using a Bundle Adjustment optimization scheme (Agarwal et al.,

2010). As our approach is not focused on a single robotic platform, we present the calibration of

a different robotic platform in comparison with our previous works - the agricultural robot AgRob

V16 (de Aguiar et al., 2020; Santos et al., 2019).

1https://github.com/lardemua/atom

5

The remainder of this paper is organized as follows: Sec. 2 details the optimization procedure90

and how it is cast as a Bundle Adjustment problem; Sec. 3 describes the ROS (Quigley et al., 2009)

calibration setup, i.e., the steps from the robotic platform configuration until the data collection;

Sec. 4 details the experimental results; and finally, Sec. 5 provides conclusions and future work.

2. Proposed Approach

ATOM is a calibration framework that simultaneously calibrates sensors of different modalities95

though the optimization of atomic transformations. This concept is supported by a well-defined

optimization pipeline, that defines a set of optimization parameters and minimizes a cost function

that supports different input modalities. This function f , which depends on the optimization

parameters Φ, is known as the objective function. Our approach minimizes f to calibrate all the

sensors of generic multi-modal robotic platforms simultaneously. In this process, the definition of a100

tree graph which contains topological information about the relationship between reference frames

is required. In this tree, nodes are reference frames and edges correspond to the transformation

between nodes. This data structure allows for the definition of unique paths between the graph

nodes, i.e., enables an efficient retrieval of the transformations between any two frames in the tree.

Figure 1 represents the robotic platform to be calibrated (AgRob V16) with its respective referential105

frames, and the transformation tree considered for the calibration.

The design of the transformation tree leads to the definition of the optimization parameters to

calibrate the system. An extrinsic calibration can be viewed as a pose estimation problem, where

the pose of each sensor is estimated. Thus, the set of parameters to optimize Φ, must together

define the pose of each sensor. To perform such a calibration, we propose to maintain the initial110

structure of the transformation tree, calibrating only one atomic transformation per sensor. Since

the system contains camera sensors, it is also possible to introduce the intrinsic parameters of each

camera in the set Φ. In this way, the set of parameters will be composed of different modalities

and so, there is the need to design an objective function that is able to characterize sensors of in a

multi-modal fashion.115

As previously discussed, pairwise approaches for projecting the objective function result in com-

plex graphs with many combinations of relationship definitions. For every existing pair of sensors,

these relationships must be established according to the combined modality of the pair of sensors,

which leads to a problem of scalability for which there is no solution in the literature. To solve

6

(a)
(b)

Figure 1: (a) AgRob V16 model and the respective referential frames represented as red-green-blue axes. (b):

Transformation tree for AgRob V16 robotic platform. The majority of the frames not to be calibrated were omitted

for simplicity. Each sensor has an associated atomic transformation, denoted by the solid edges. Dashed edges

denote transformations that are not optimized (they can be static or dynamic). Each sensor has a corresponding

link to which the data it collects is attached, denoted in the figure by solid thin ellipses. Very few approaches in the

literature are capable of calibrating such a system while preserving the initial structure of the transformation graph.

this issue, we formulate our solution in Bundle Adjustment problem, in that the structure of the120

objective function is designed in a sensor to calibration pattern paradigm. Also, for every collection

of data, the transformation that takes the corners of the calibration pattern to the world is opti-

mized. In other words, the poses of the pattern are jointly estimated with the poses of the sensors.

To perform this iterative procedure, the set of optimization parameters Φ must be initialized. The

first guess for the pattern pose is obtained w.r.t. one of the cameras to be calibrated, resulting125

in a transformation camiT p, where p denotes pattern and aT b represents the transformation from

frame b to a. As will be detailed later on, our calibration framework allows the definition of an

initial guess for the pose of each sensor and, consequently, for the transformations to be calibrated.

With this definition, it is possible to compute the pose of any particular sensor j as an aggregate

homogeneous transformation wAsj , obtained from the chain of transformations for that particular130

7

sensor present in the topological transformation graph:

wAsj =
∏

i∈R

iT i+1 =
∏

i∈K

iT i+1 ·
childT̂ parent ·

∏

i∈L

iT i+1, (1)

where childT parent represents the transformation to be calibrated, iTi+1 for i ∈ K represent the

prior links to the frame parent, iTi+1 for i ∈ L the later to the frame child, and R is the set

that contains all the frames present in the chain of transformation of sensor j. So, to obtain the

homogeneous transformation from the pattern to the world, the following calculation is applied:135

wT p = wAcamm
· cammT p , (2)

where p refers to the pattern, w states for world, and camm for the mth camera sensor. So, the set

of parameters Φ to be optimized is composed of the transformation represented in (2) along with

the poses of each sensor to be calibrated, and, in the case of cameras, their intrinsics and distortion

parameters:

Φ =
[

cameras
︷ ︸︸ ︷

xm=1, rm=1, im=1,dm=1, ...,xm=M , rm=M , im=M ,dm=M ,

LiDARs
︷ ︸︸ ︷
xn=1, rn=1, ...,xn=N , rn=N ,

Other modalities
︷︸︸︷. . . ,

Calibration pattern
︷ ︸︸ ︷
xk=1, rk=1, ...,xk=K , rk=K

]

,

(3)

where m refers to the mth camera to be calibrated, n states for the nth LiDAR to be calibrated, k140

refers to the pattern detection of the kth collection of data, x is a translation vector [tx, ty, tz], r is a

rotation represented thought the angle-axis parameterization [r1, r2, r3] (where the vector r is used

to represent the axis and its norm represents the angle), i is a vector with each camera intrinsic

parameters [cx, cy, fx, fy], and d is a vector of each camera distortion coefficients [d0, d1, d2, d3, d4].

The intrinsic and distortion parameters of each camera can be initialized using any camera cali-145

bration toolbox, or in some cases, these parameters are also provided by the manufacture. The

angle-axis parameterization was chosen because it has three components and three degrees of free-

dom, which means that it does not introduce more sensitivity than the one inherent to the problem

itself (Hornegger & Tomasi, 1999), unlike the rotation matrix which has nine degrees of freedom

for the also three components, or the euler angles that loose a degree of freedom when two axis150

are aligned. Using angle-axis representation, we have six optimization parameters per sensor that

8

represent the pose of each one, i.e., the geometric transformation that will be calibrated. The op-

timization procedure, as will be explained, consists of the minimization of an objective function by

the definition of residuals that are calculated as an error (in pixels for RGB cameras and in meters

for 3D LiDARs) between the re-projected position of the calibration pattern, and the position of155

the pattern detected by each sensor.

2.1. Objective function

To be able to consider multiple modalities in the same optimization process, we propose to

structure the objective function F (Φ) as a composition of as many sub-functions fi(.) as desired

modalities. The objective function F (Φ) from (4) is minimized using a non-linear least squares160

approach2. Least-squares finds a local minimum of a scalar cost function, with bounds on variables,

by having an m-dimensional real residual function on n real variables. As such, we choose this

minimization approach as its is the best fit for our problem. So, for each new modality added

to the calibration, a sub-function associated with it is designed and incorporated in F (Φ), which

allows for the minimization of the error associated with the pose of sensor of that specific modality.165

This is one of the reasons why the proposed approach is scalable. Thus, the optimization procedure

can be defined as:

arg min
Φ

F (Φ) = arg min
Φ

1

2

∑

i

‖fi({Φi})‖
2, (4)

where fi(.) is the objective sub-function for the i-th sensor considering the set of k optimization

parameters {Φi}. Thus, the final cost to be minimized is computed by the sum of the squared

sub-function values for each set of optimization parameters. The value for all these sub-functions is170

a vector with the residuals associated to whit re-projection of the points of the calibrated pattern.

For our use-case, the goal is to calibrate a stereo camera system (two cameras) and a 3D LiDAR

sensor. So, the objective function is composed of the vector values of three sub-functions, two for

the cameras and one for the 3D LiDAR. Each sub-function is detailed in the next sub-sections.

2In this work we used the least-squares solver provided by SciPy: https://docs.scipy.org/doc/scipy/

reference/generated/scipy.optimize.least_squares.html.

9

2.1.1. Camera modality sub-function175

When the sensors to be calibrated are cameras, their calibration is performed as a bundle

adjustment (Agarwal et al., 2010), as described in our previous work, Oliveira et al. (2020b). Thus,

the created sub-function is based on the average geometric error corresponding to the image distance

(in pixels) between a projected point and a detected one. So, the goal of the cost sub-function for

camera sensors is to adjust the initial estimate for the intrinsic and distortion parameters, and180

position of the pattern corners, in order to minimize the re-projection error fcam, given by:

fcam =
[

‖xc=1 − x̂c=1‖. . . , ‖xc=C − x̂c=C‖
]

, (5)

where ‖.‖ represents the Euclidean distance between two vectors, c is the index of the pattern

corners, xc denotes the ground-truth pixel coordinates of the measured points given by the pattern

detection, and x̂ are the projected points, given by the relationship between a 3D point in the world

and its projection onto the image.185

To perform such calibration, 3D pattern points have to be found and re-projected onto the image

plane. For each collection of data, the camera(s) to be calibrated capture the pattern. By knowing

the real size of the pattern, and the size of each square that composes it, the 3D coordinates of

the corners can be found in the local pattern reference frame. Then, each corner is located in the

plane z = 0, since the corners are in the XoY plane of the local pattern reference frame. Thus,190

each corner in the local pattern referential frame pp is transformed to the camera referential frame

as follows:

pcam = camTw · wT p · p
p. (6)

Note that, pcam and pp are homogeneous vectors of the 3D corner coordinates in each reference

frame, so that (6) is valid. Finally, to re-project each 3D corner from camera’s reference frame

pcam
c=i to the image plane, taking into account each camera intrinsic and distortion parameters, the195

pinhole camera model (Sturm, 2014) is used:

x̂c=i = K · pcam′′

c=i , (7)

10

where K is the matrix that contains the intrinsic parameters i and,

pcam′

c=i = pcam
c=i ·

1

zcam
=

[xcam

zcam
,
ycam

zcam
, 1

]T

, (8)

pcam′′

c=i =

xcam′ · (1 + d0l

2 + d1l
2 + d4l

6) + 2d2 · xcam′ycam′ + d3 · (l
2 + 2x2

cam′)

ycam′ · (1 + d0l
2 + d1l

2 + d4l
6) + d2 · (l

2 + 2y2cam′) + 2d3 · xcam′ycam′

 , (9)

where l =
√

(xcam

zcam
)2 + (ycam

zcam
)2, and dj is the jth component of the distortion vector d. From (6)

to (9), it is possible to conclude that all the desired parameters to optimize are being considered:

the pattern to world transformation wT p present in (6) that can be computed as the inverse of

(2); the world to camera transformation camTw also present in (6); and finally, the intrinsic i and200

distortion parameters d considered in (7)-(9).

The use of these parameters to project the 3D corners in the image plane, together with the

minimization of the geometric re-projection error, lead to the parameter configuration that optimize

the sub-function fcam. Thus, it is expected that the re-projected points become closer to the ground-

truth corners during the optimization. Figure 2 shows the difference between the initial position of205

the pattern corners, and the final position of these same projected points, after the optimization

has been completed.

It is possible to observe that the pixels corresponding to the projection of the final position of

the points (dots in Fig. 2) almost perfectly match the ground-truth point (squares in Fig. 2).

2.1.2. 3D LiDAR sub-function210

For the case of 3D LiDARs, the sub-function flidar considers two types of residuals: orthogonal

distance and limit points distance. To compute both, this approach also uses the calibration pattern

and, in specific, its boundary points. As will be detailed later on, our calibration framework has

a semi-automatic labelling procedure that allows to save, for each collection of data, the LiDAR

3D points that are on the pattern. As in case of the camera sensor, this approach formulates the215

cost sub-function by minimizing the residuals w.r.t. some ground-truth. Here, the ground-truth 3D

points are, once again, generated in the pattern reference frame by knowing the three dimensional

structure of the pattern, such as its height and width. Thus, by knowing the size of the pattern,

the size of each pattern square, and the pattern origin (bottom left corner), the coordinates of the

boundary points defined in the local pattern’s reference frame are computed. It is important to220

note that, the size of the board between the pattern grid and the end of the physical pattern had to

11

Figure 2: Difference between the initial position of the pattern corners, and the final position of these same projected

points, after the optimization has been completed. Squares denote the position of the detected pattern corners;

crosses denote the initial position of each projected corner; points denote the current position of the projected

points.

be measured so that this step could be implemented. Also, as explained before, all the calculated

pattern limit points have coordinate z = 0, since the pattern’s reference frame is in the XoY plane.

After calculating the ground-truth boundary points of the pattern, two things are required: the

pattern boundary points observed by the 3D LiDAR sensor and the homogeneous transformation225

that converts 3D points from the LiDAR referential frame to the local pattern reference frame.

Given a set of labelled 3D LiDAR cartesian points on the pattern plidar =
[

xc=i, yc=i, zc=i

]

,

the boundary points are calculated using a spherical parameterization for each 3D point. After

computing the spherical coordinates of each 3D LiDAR point on pattern ps,lidar =
[

rc=i, θc=i, φc=i

]

,

two limit points are calculated considering the set of 3D LiDAR points on pattern belonging to a230

given horizontal scan of the original point cloud. As the labelled set of 3D LiDAR points on pattern

is an unordered point cloud, the horizontal scans are computed by clustering the points considering

their θ value. So, points with the same θ value belong to the same horizontal scan. Finally, to

extract the two limit points per horizontal scan, the φ component maximum and minimum values

12

of each set are computed, resulting in the two most distant points, corresponding to points in the235

pattern boundaries. The result of this procedure is represented in Fig. 3.

(a) (b)

Figure 3: Two examples of the pattern boundary points extraction from LiDAR data. The colored points represent

the clustered LiDAR scans considering the spherical component θ, and the crosses represent the boundary points

extracted using the maximum and minimum values of the spherical component φ, for each cluster.

The final step before computing the residuals that constitute the cost sub-function flidar is to

convert the set of labelled 3D LiDAR points on pattern, as well as the computed boundary points,

to the patterns’ reference frame. This is done using the homogeneous transformations computed in

(1) and (2):240

pp = pTw · wAlidar · p
lidar, (10)

where pTw is the transformation matrix from the world to the pattern reference frame, and wAlidar

the transformation matrix from the world to the LiDAR sensor reference frame. Similarly to the

cameras’ case, (10) shows that the optimization parameters include the sensor pose and the pattern

pose. After this, the two residual types can be computed. The first, orthogonal distance, is the

absolute z value of the coordinates of the projected 3D LiDAR points. As they are on patterns’245

referential frame, it is intended that their z coordinate is zero. Therefore, any value different from

zero means that the optimization parameters (sensor pose and pattern pose) are not yet correct.

The second residual type is the Euclidean distance of x and y components between the ground-truth

pattern boundary points, and the LiDAR 3D points on pattern boundary calculated as described

13

before. For each LiDAR point on the pattern boundary, the residual is computed as the distance250

between x and y coordinates, in the calibration pattern frame, of the respective LiDAR boundary

point and the closest point that belongs to the limit of the physical board that is being detected.

This being said, the 3D LiDAR cost sub-function is as follows:

flidar =

[
{∣
∣z

lidar,p
l=1

∣
∣, ‖pboardlimit

q=1,xy − p
p
q=1,xy‖

}

, . . . ,
{∣
∣z

lidar,p
l=L

∣
∣, ‖pboardlimit

q=Q,xy − p
p
q=Q,xy‖

}
]

, (11)

where zlidar,pl=i is the z coordinate of the ith 3D LiDAR point projected into the patterns’ referential

frame, pboardlimit
q=j,xy are the x and y coordinates of the jth 3D LiDAR boundary point on the same255

referential, and p
p
q=j,xy are the x and y coordinates of the corresponding ground-truth boundary

point.

Figure 4 shows the ground-truth pattern boundary points representation (blue lines on the left

of Fig. 4), the calculated boundary points at the start of the calibration procedure (blue circles on

the middle of Fig. 4), and the result of the optimization procedure with the ground-truth points260

and the boundary points observed by the LiDAR aligned (right representation on Fig. 4).

(a) (b) (c)

Figure 4: (a): calibration pattern and respective ground truth boundary points represented as blue lines; (b):

misaligned boundary points observed by the 3D LiDAR with the ground-truth points at the start of the calibration

procedure; (c): optimization result - ground-truth points and projected boundary points aligned. It is noteworthy

that the orthogonal distance aligned the z coordinate of the ground-truth pattern and 3D LiDAR points.

2.2. Normalization of multi-modal residuals

We propose a full calibration method where sensors of different modalities contribute to a

global vector residual of residuals. While the camera sub-function provides a set of residuals that

14

are expressed in pixels, the LiDAR sub-function provides a set of residual expressed in meters. This265

mismatch in units of measurements may display highly disparities in error magnitudes, which could

result in unwanted behaviours in the optimization processes due to differences in scale. For example,

a residual of 1 pixel has higher influence (or weight) in the optimization path than a residual of 0.5

meters. Yet, our knowledge about the system tells us that the opposite should be considered. As

result, the parameters that influence the residuals with higher scale will dominate the optimization,270

while the other parameters are perceived to already be close to their optimal state.

To handle the different scales in multi-model residuals in Equation 4, we employ a normal-

ization factor to the optimization. Let C = {c} be the set of existing residual classes (e.g C =

{pixels,meters}) and c(i) ∈ C is the residual class for the ith sensor, then the optimization is

defined as275

arg min
Φ

F (Φ) = arg min
Φ

1

2

∑

i

∥
∥
∥
∥

fi({Φi})

ηc(i)

∥
∥
∥
∥

2

, (12)

where ηc(i) is the normalization factor for residuals created by the sensor sub-function fi. Note that

the normalization factor ηc(i) is defined per residual class and not per sensor. The normalization

values per class are given by the arithmetic mean of the same class residuals before the optimization.

For example, the normalization for the class pixels, with ηc(i) = ηpixels, is given by

ηpixels =
1

n

∑

j

‖fj({Φj})‖1 : ∀fj ∈ {pixels} , (13)

where n is the total number of residuals that are part of the considered class and ‖.‖1 is the L1280

norm. Note that the normalization factors are constant values during optimization, calculated once

with the residuals that result from the initial guess.

3. Calibration framework

The ROS (Quigley et al., 2009) has become the standard framework for the development of

robotic solutions. As referenced before, the proposed calibration procedure requires the creation of285

a transformation tree, from which atomic transformations are optimized. For this purpose, ROS

provides a tree graph referred to as tf tree (Foote, 2013). With this tool, it is possible to define a data

structure as the one present in Fig. 1. Also, the Robot Operating System Visualization (RVIZ)

tool supports additional functionalities, such as robot visualization, collision detection, etc. In

15

fact, this visualization procedure is interactive, in that if any transformation between two links290

changes, the robotic platforms and sensors affected by these links change its pose accordingly.

This interactive procedure is possible since the optimizations’ cost function always recomputes the

aggregate transformations. Therefore, a change in one atomic transformation in the chain affects the

global sensor pose, and consequently, the error to minimize. So, if atomic transformations change

due to the calibration procedure, the tf tree will automatically adjust the robots and sensors poses295

accordingly. It should be emphasized that, due to all these functionalities, the calibration procedure

should not change the structure of the tf tree. Our approach preserves the predefined structure of

the tf tree, since, during optimization, only the values of some atomic transformations contained

in the chain are estimated, securing the topology of the tree. To the best of our knowledge, our

approach is one of few which maintains the structure of the transformation graph before and after300

optimization.

Given all of the above, we state an extensive integration with ROS as a key component of

the proposed approach. The ROS calibration framework is segmented in five main components:

configuration, initial estimate, data labelling, data collection, optimization procedure. Each will be

described in detail in the following sections.305

3.1. Calibration configuration

The configuration defines the parameters which will be used throughout the calibration proce-

dure, from the definition of the sensors to be calibrated to a description of the calibration pattern.

The proposed approach, detailed in Sec. 2, is based on the optimization of atomic transforma-

tions. These were combined through the use of the topological information contained in a tree.310

The transformation tree is generated from a ROS Unified Robot Description Format (URDF) .

Additional information must be given to define which, out of the set of atomic transformations, will

be optimized during the calibration procedure. Also, a description of the calibration pattern must

be provided. All this information is defined in a calibration configuration file.

3.2. Initial parameter estimation315

Optimization procedures suffer from the known problem of local minima. This problem tends

to occur when the initial solution is far from the optimal parameter configuration, and may lead

to failure in finding adequate parameter values. To avoid this, the setup of the a plausible initial

16

guess for the entire parametric optimization system is essential. Our approach supports different

modalities of parameters, as stated in (3). Thus, each modality requires a specific type of initial-320

ization. For cameras intrinsic i and distortion d parameters, the initialization is performed using

any state-of-the-art camera calibration toolbox, or using the calibration provided by the manufac-

ture. To initialize the transformations of sensors in general, we developed an interactive tool which

parses the configuration URDF file and creates a 3D visualization tool for ROS interactive marker

associated with each sensor. Figure 5 shows an example of the developed tool.325

(a) (b)

Figure 5: Example of the developed interactive tool operation for AgRob V16 system. Here, the reference frames of

the cameras that compose the stereo camera system and the 3D LiDAR sensor were moved. When the user positions

the sensors in the desired pose, the initial estimate for the pose of each sensor is saved to use in calibration.

Here, we can see the user changing each sensor reference frame, dragging the respective interac-

tive markers. With this tool the user can move and rotate the markers relative to each sensor. This

provides a simple, interactive method to easily generate plausible first guesses for the poses of the

sensors. Immediate visual feedback is provided to the user by the observation of the 3D models of

the several components of the robot model and how they are put together, e.g. where each camera330

or LiDAR is positioned w.r.t. the vehicle. Also, for multi-sensor systems, it is possible to observe

how well the data from a pair of sensors overlap. An example of this procedure can be watched at

https://youtu.be/llg8jYCeAjk.

Concerning the atomic transformations associated with the calibration pattern wT p present in

(2), these are initialized by defining a new branch in the transformation tree which connects the335

17

pattern to the frame to which it is fixed. For example, for AgRob V16 case, wT p is estimated

through (2) where cammT p is estimated solving the Perspectiva-n-Point (PnP) for the detected

pattern corners (Gao et al., 2003; Fabbri et al., 2020; Penate-Sanchez et al., 2013), and wAcamm
by

deriving its topology from the tf tree and using the initial values for each atomic transformation in

the chain.340

3.3. Labeling data

The labeling of data refers to the annotation of the portions of data which captures the calibra-

tion pattern. A labeling procedure is executed for the data of each sensor, and can be automatic,

semi-automatic or even manual in some cases. The information that is stored depends on the

modality of the sensor, but for cameras it is always the pixel coordinates of the corners observed in345

the pattern.

The standard calibration pattern that is used for camera calibration is a chessboard pattern. The

images are labelled using one of the many available image-based chessboard detectors (Czyzewski,

2017). Our system is also compatible with charuco boards (Garrido-Jurado et al., 2016). These

have the advantage of being able to detect the pattern even when it is partially occluded. Also in350

this case we make use of off the shelf detectors, e.g. Romero-Ramirez et al. (2018); Hu et al. (2019).

For the calibration of AgRob V16, a labeling algorithm for 3D LiDARs was developed. This

method is semi-automatic and is initialized by a setup of a seed point. To label the pattern points

viewed by the 3D LiDAR, the user drags an interactive marker to a point located in the pattern -

the seed point. This constitutes the non-automatic stage of the procedure. After that, the algorithm355

clusters a set of points (that are intended to belong to the pattern) using an Euclidean distance

threshold computed using the a priori known dimensions of the pattern. Despite being simple

and fast, this approach reveals lack of precision, since it includes many outliers in the labeling

procedure. The pattern used is rectangular. Thus, the Euclidean distance threshold has to be

higher than the smaller side of the rectangle. This means that, if the pattern is close to another360

object, points from this object will be labeled as pattern points. To overcome this issue, a Random

Sample Consensus (RANSAC) (Fischler & Bolles, 1981) algorithm is executed to fit the set of

labeled points in a plane (the pattern plane), eliminating the outliers. RANSAC is an iterative

algorithm, and it is performed a maximum number of times M. To find points that belong to the

18

plane, the point to plane distance is computed in each iteration i for each point j as365

Dij =

∣
∣
∣aixj + biyj + cizj + di

∣
∣
∣

√

a2i + b2i + c2i
(14)

where pj = [xj , yj , zj]
T is the jth point on the cluster. With this, a point is considered as inlier if

its distance to the plane Dij is smaller than a given threshold Dthreshold. The final set of inliers

corresponds to the one found in the iteration i that gives the higher number of points belonging to

the plane.

Figure 6 shows an example of the labeling procedure for cameras and 3D LiDARs proposed in370

ATOM.

It is worth noting that, our approach works with partial detections, as represented in the figure.

This interactive data labeling procedure is showcased in https://youtu.be/uNPIOCqxb5w.

3.4. Collecting data

In most robotic systems, the data coming from the sensors is streamed at different frequencies.375

However, to compute the associations between the data of multiple sensors, temporal synchro-

(a)

(b)

Figure 6: (a): labeling image data using a charuco pattern; (b): labeling 3D LiDAR data on pattern (solid blue

points) using the semi-automatic proposed approach. Note that, our approach works with partial detections, i.e.,

collections of data where the pattern is not fully detected. This figure presents an example of an partial detection for

each type of sensor. For the camera, only a portion of the corners of the pattern were detected. For the 3D LiDAR,

the pattern is not fully observable due to the low vertical resolution. Even though, our approach is able to calibrate

the system with these detections.

19

nization of the sensor data is required. Of course, this only becomes an issue when calibrating

multi-sensor robotic systems. For now, the synchronization problem is solved trivially by collect-

ing data (and the corresponding labels) at user defined moments in which the scene has remained

static for a certain period of time. In static scenes, the problem of data de-synchronization is380

not observable, which warrants the assumption that for each captured collection the sensor data

is “adequately” synchronized. This can be done using, for example, a tripod to held the pattern

before collecting each snapshot of data (Rehder et al., 2016; Furgale et al., 2013). In this work, the

problem is approached in a simpler way, where the pattern is hold by the user, as shown in Fig. 2,

remaining static by sufficient amount of time to ensure the synchronization between all the sensors.385

To save the scene data captured by all the sensors in the calibration system, the user can do

it with just two mouse clicks on the interactive ROS-based tool (on RVIZ) developed. We refer

to these recordings of data as data collections. Each one of them contains the values of all atomic

transformations that exist in the system at a given timestamp, a copy of the robot configuration

file, sensor data and labels, and high level information about each sensor, such as the topological390

transformation chain, extracted from the transformation tree. This information is stored in a dataset

file that will be read by the optimization procedure afterwards. Also, a video showing the procedure

for collecting data is provided for AgRob V16 calibration here https://youtu.be/p7TuhSsRMcw.

It should be pointed out that, the set of collections should contain as many different poses as

possible. As such, collections should preferably have different distances and orientations w.r.t. the395

calibration pattern, so that the calibration returns more accurate results. This concern is common

to the majority of calibration procedures.

3.5. Visualizing the optimization

The immediate visualization of the calibration is essential for several reasons: it provides the user

the necessary data so that he can detect failures on the calibration, such as outlier data collections;400

it gives feedback about the cost function residuals minimization, which can serve to detect possible

local minima, and to make sure that the optimization procedure is converging. Figure 7 shows the

three main visualization features of ATOM.

Our calibration framework provides a simultaneous visualization of all the data collections, as

well as immediate feedback of the alignment between ground-truth points and labeled points for405

optimization, images with the reprojection, robot meshes, the position of the reference frames,

20

(a) (b)

Figure 7: (a): ROS calibration configuration - simultaneous visualization of all the collections of data and respec-

tive alignment between ground-truth points and labeled points; (b): graphics representing the objective function

minimization - individual residuals value, and the total error vs iterations.

etc. Also, optimization graphics are provided with residuals values and the total error for each

iteration. This configuration is similar to the standard one which is used during the initial parameter

estimation, the data labeling and collection, but contains a couple of key distinctions. As mentioned

above, the calibration procedure uses a dataset file which contains information about each of the410

stored collections. These collections contain data gathered in a a set of sequential instants in time.

The ROS calibration configuration publishes data from all collections simultaneously, as if those

time instants were packed together and processed as if they had occurred all at the same time.

Collisions in topic names and reference frames are avoided by adding a collection related prefix to

each designation. Also, the original transformation tree is replicated for each collection. A video415

with an example of a calibration execution for AgRob V16 is provided here https://youtu.be/

HtTyTsWuMIQ.

21

4. Results

To test and validate the performance of the proposed approach, an extensive evaluation proce-

dure was developed. Our calibration framework, ATOM, was used to calibrate three configurations420

of the AgRob V16 sensing system. Two of them were pairwise calibrations between two cameras

of a stereo system, and a single camera and a 3D LiDAR, which we denote as ATOM pairwise.

The third was a calibration between all three sensors (two cameras and 3D LiDAR), which we call

ATOM full, where results for particular pairs of sensors are obtained using a full calibration. In

this procedure, three datasets were used, as represented in Tab. 1.425

Two of them (train-1, train-2) were used for training, i.e., to perform the calibrations, and the

third one (test-3) was used to test the calibration with specific metrics that will be detailed later on.

The datasets contain incomplete and partial collections, i.e., collections where the pattern is not

detected for all the sensors, and collections where the pattern is only partially visible, respectively.

This section is divided in two parts: the evaluation of ATOM’s performance against state-of-the-art430

approaches, such as OpenCV stereo calibration (Bradski, 2000), and ICP point cloud alignment

(Besl & McKay, 1992); the characterization of ATOM w.r.t. several characteristics of the datasets,

such as the number of incomplete/partial collections, and the accuracy of the initial guess. Table

2 makes a summary of the calibration experiments that were carried out.

OpenCV and the stereo camera factory calibration were used to get the camera-to-camera435

extrinsic calibration, and ICP was explored to get the camera-to-LiDAR calibration. This last

calibration was obtained by the alignment of the 3D LiDAR point cloud, and the 3D point cloud

Table 1: Description of the datasets used for train and evaluation. Two datasets were used for training (calibration)

and one for testing (evaluation). The datasets contain incomplete collections, i.e., collections were the pattern is not

detected by at least one sensor, and partial collections, i.e., collections were the pattern is partially detected by at

least one sensor.

Dataset
Nr. Collections

Observations

Total Incomplete Partial

train-1 42 5 38 Dataset contains incomplete collections.

train-2 56 0 24 The dataset does not contain the point cloud generated by the ZED camera.

test-3 15 0 8 Dataset with low number of collections, only used for test.

22

Table 2: Summary of the methods used and evaluated in the experiments.

Method Calibration Properties

OpenCV (Bradski, 2000) pairwise reprojection error, intrinsics calibration

Stereo camera factory calibration pairwise reprojection error, intrinsics calibrations

ICP average (Besl & McKay, 1992) pairwise reprojection error, average of result of all collections

ICP best (Besl & McKay, 1992) pairwise reprojection error, best result of all collections

ATOM pairwise [this paper] pairwise reprojection error, angle-axis, intrinsics calibration

ATOM full [this paper] full calibration reprojection error, angle-axis, intrinsics calibration

provided by the stereo camera software development kit. Two versions of ICP were used as camera-

to-LiDAR extrinsic calibration: the one corresponding to the collection where the fitting of point

clouds was more accurate, and the average of the transformations obtained in all collections. Finally,440

as referenced before, ATOM was calibrated both in pairwise and full modes, and both approaches

are evaluated.

4.1. Methodology

One of the key characteristics of our evaluation procedure is the use of separate datasets to

perform the calibration and generate the results. As discussed in Sec. 3, ATOM provides a data445

collection procedure, where datasets are generated and visualized on RVIZ . Datasets are composed

of several collections, each one containing data of all the sensors, initial atomic transformations,

pattern labelled points, and other information. To evaluate our calibration framework, two datasets

where initially collected - train-1 and train-2. Then, three calibrations were executed over each one

of the datasets, two pairwise and one using all the sensors to be calibrated in AgRob V16 system.450

These calibrations generate a json file similar to the one generated at the end of the data collection

procedure, but with the calibrated atomic transformations. After obtaining all these calibration

configurations, a third dataset was recorded - test-3. It was used to evaluate the accuracy of the

calibrations obtained. Using the metrics that will be described later on, the chain of transformations

of each calibration was loaded and used to compute errors using the labelled data of the test dataset.455

In this way, possible influence of using the same data to calibrate and test is eliminated, and a more

rigorous evaluation is achieved.

23

Figure 8: Chain of transformations representing the generic configuration to extract an atomic transformation from

a sensor to sensor calibration. Preserving the chain of transformation of the anchored sensor, and taking into account

the sensor to sensor calibration T̂ , we recover the atomic transformation child1T parent
1
.

Unlike ATOM, both OpenCV and ICP perform sensor-to-sensor calibration, instead of calibrat-

ing atomic transformations without changing the topology of the chain of transformations. Thus, to

evaluate these methods in the same way ATOM is evaluated, the atomic transformations set to be460

calibrated had to be recovered from the sensor-to-sensor calibrations. This problem is formulated

in Fig. 8.

Let link2T base be the entire chain of transformations from the base link to the data link of

the anchored sensor, T̂ be the sensor to sensor calibration obtained, parent1T base be the chain of

transformations from the base link to the parent link of the atomic transformation to be calibrated465

child1T parent1 , and
link1T child1

the chain of transformation from the atomic transformation child

link, to the non-anchored sensor data link. The entire chain of transformations relationships can

be formulated as follows:

T̂ · link2T base =
link1T child1

· child1T parent1 ·
parent1T base. (15)

24

So, from (15), we can extract the atomic transformation of the non-anchored sensor as follows:

child1T parent1 = (link1T child1
)−1 · T̂ · link2T base · (

parent1T base)
−1. (16)

The advantage of this approach is that it is generic. For example, from OpenCV, a camera to470

camera metric is obtained. Thus, the procedure consists in anchoring one of the cameras, and

use the obtained transformation to recover the atomic transformation marked for calibration in the

original ATOM configuration. In the same way, ICP provides a camera to LiDAR calibration. Once

again, we anchor one of these sensors, and apply the exact same routine to extract the non-anchored

sensor atomic transformation to be calibrated. In this way, we are able to obtain a calibrated system475

without changing the initial chain topology, which allows the direct comparison of these state-of-

the-art approaches with ATOM, using exactly the same metrics. These metrics are described in

the next section.

4.2. Metrics

To evaluate the camera to camera calibration performance, the methodology used is based on480

three different metrics: the mean rotation error (rad), the mean translation error (m), and the

reprojection error (px). To compute the reprojection error, the idea is to use the calibration result

to project the detected pattern corners of one camera image into the image of the second calibrated

camera image and compare the projected pixel coordinates with the ground truth pattern corners

coordinates in the image of the anchored camera. To transform pixels from one camera into another,485

we start from projecting the 3D world coordinates of the pattern corners into the image of a camera,

using (6)-(7). Since the 3D pattern corners are defined in the local pattern reference frame, they

all lie in the plane z = 0. Thus, (6)-(7) can be simplified to the following:

pcam = K · camT ′

p · p
p′

, (17)

where camT ′

p is a portion of the matrix camTw · wT p, without the component z of the rotation, as

follows:490

camT ′

p =

r11 r12 tx

r21 r22 ty

r31 r32 tz

, (18)

25

and pp′

is the pattern corner, represented as a vector in its homogeneous form, without the z

component, i.e., pp′

=
[
x y 1

]T
. Using the fact that the 3D coordinates of the pattern’s corners are

the same for both cameras, (17) can be applied to the two of them, so that we can find a relation

between both expressions. This resulted in the following formulation:

pcam2 = Kcam2 · cam2T ′

p ·
(
cam1T ′

p

)−1
·
(
Kcam1

)−1
· pcam1, (19)

where cam1 and cam2 refer to the cameras that were calibrated. This formulation provides the495

relationship between pixel coordinates of the pattern corners in both camera images. However, (19)

requires the camera to pattern transformation matrix for both cameras. This can be a problem

since, some approaches, unlike ATOM, do not estimate the camera to pattern transformation while

performing the camera to camera calibration. In addition to this, ATOM estimates these transfor-

mations for a training dataset. So, the usage of a test dataset to evaluate all the frameworks, denies500

the use of the estimated pattern pose from ATOM. To overcome this, the pattern pose w.r.t. one

of the cameras cam1Tp is computed using the PnP algorithm. Then, using the output json file from

each calibration, we recover the camera to camera transformation cam1T cam2, through the chain of

transformations. In this manner, it is possible to determine the transformation of the other camera

to the pattern, as follows:505

cam2T p =
(
cam1T cam2

)−1
· cam1T p. (20)

From this expression, we can derive cam2T ′

p and cam1T ′

p, and successfully project pixels from one

image into the other. With this information, the reprojection error is computed as follows:

exy = pprojected − pexpected. (21)

From (21), the error can be decomposed in its x and y components. Also, considering the repro-

jection error for all the N collections, the root mean square error is calculted as follows:

erms =

√

1

N

∑

e2xy. (22)

Figure 9 illustrates a resulting corner reprojection from one camera into the other using the ATOM510

full calibration.

26

Figure 9: Camera reprojection error from one camera image into the other. Squares represent the expected corner

pixel coordinates, and crosses the projected result.

For the calculation of the mean rotation and translation errors to evaluate the camera to camera

calibration, we consider the following observation: the chain of transformations from the base link

to the pattern reference frame that passes from each one of the calibrated cameras should be equal.

This happens since the calibration pattern pose in reference with the base link is fixed, and any chain515

of transformations that link these two referentials should represent the same spatial relationship.

Thus, the difference in rotation and translation can be quantified, assessing the inequality between

the two chains of transformation. Once again, this formulation requires the pattern pose w.r.t.

each one of the cameras, that is again extracted solving the PnP problem. With this information,

we can state that520

baseRcam1
basetcam1

0 1

cam1Rp
cam1tp

0 1

 =

baseRcam2
basetcam2

0 1

cam2Rp
cam2tp

0 1

 .

(23)

Now, we can define the rotation and translation difference as

∆R =
(
baseRcam1 ·

cam1Rp

)−1
· baseRcam2 ·

cam2Rp (24)

27

∆t = baseRcam1 ·
cam1tp +

basetcam1 −
baseRcam2 ·

cam2tp−
basetcam2 (25)

Finally, we can define the mean rotation error as

eR =
1

N

∑

i

||angle(∆Ri)||, (26)

where angle is the angle-axis representation of the rotation, and the mean translation error as

et =
1

N

∑

i

||∆ti||. (27)

To evaluate the 3D LiDAR to camera calibration, we used the reprojection error (px) and its

corresponding root mean square error (px) considering all the test collections N . In this case, the525

mean rotation and translation errors were not used due to the difficulty of estimating the pattern

pose w.r.t. the LiDAR sensor with precision. The process of calculating the reprojection error to

evaluate the camera to LiDAR calibration consists in three main steps:

1. Label the pixels that belong to the boundaries of the pattern in the image.

2. Reproject the pattern boundary points in the LiDAR’s referential frame (detailed in Sec. 2.1)530

pboardlimit into the image.

3. Compute root mean square between labeled and projected points.

Figure 10 shows these steps.

An annotation tool was developed to perform the labelling. This tool allows the user to manually

annotate individual points corresponding to four classes, each one representing one side of the535

pattern in each image. Then, in order to account for the image distortion, we approximate each

one of the pattern sides by a polynomial, fitting the labelled points. In this step, a simple linear

regression would not suffice because images have distortion which transforms straight ines into

curves. So, a polynomial is more suitable for modeling this phenomenon. Figures 10a and 10b show

these two steps. After having the annotations for all the images of the camera to be calibrated in the540

test dataset (test-3), the reprojection error is calculated. To do so, the 3D LiDAR labelled points

that belong to the pattern boundaries are reprojected into the image using (6)-(9). So, for each

collection, the error between each projected point and the closest ground truth point belonging

to one of the polynomial curves is calculated as in (21). Figure 10c shows an example of the

28

(a) (b) (c)

Figure 10: 3D LiDAR to camera reprojection error metric calculation. (a) represents the annotation procedure,

where four classes are annotated, each one representing a single side of the pattern; (b) red curves represent the

approximation of each one of the classes by a polynomial function, in order to account for the distortion in the

image; (c) reprojection error calculation - blue dots represent the 3D LiDAR pattern boundary reprojected points

and yellow lines the difference of each one of the points with the labelled ground truth.

reprojection result and the corresponding error for each point. Considering the reprojection errors545

calculated for each one of the N collections, the root mean square error is also calculated using

(22).

It should be emphasised that, all of these metrics are publicly available, and are integrated in

the ATOM software framework. A specific package called ATOM evaluation was created and can

be easily used by the user to evaluate the calibrations performed.550

4.3. Evaluation

The evaluation procedure applies the previously described metrics to compare ATOM with

state-of-the-art calibration methods. Note that these state-of-art methods are pairwise and as

such not able to calibrate the entire system simultaneously. The comparison with ATOM, which

is a general, full calibration approach, against specialized pairwise methods is not entirely fair.555

However, since the nature of all the metrics used in the evaluation is also pairwise, it is ATOM that

is at a disadvantage in comparison with the other methods. For the camera-to-camera calibration

scenario, two versions of ATOM were calibrated in two diffeernt training datasets, and evaluated

in the same test dataset. The first is a pairwise calibration between both cameras, and the second

a full calibration of the entire AgRob V16 system, with the same two cameras and a 3D LiDAR.560

It is worth noting that, the calibrations performed consider each camera intrinsic parameters, as

well as the pairwise extrinsic calibration between them. To compare ATOM with the state of the

29

Table 3: Performance comparison of methods for camera to camera calibration.

Method Train dataset eR (rad) et (m) ex (px) ey (px) erms (px)

OpenCV (Bradski, 2000)

train-1

Not able to calibrate due to partial pattern detections.

ATOM pairwise 0.009 0.003 0.551 ± 0.800 0.780 ± 1.090 1.049

ATOM full 0.008 0.003 0.547 ± 0.759 0.638 ± 1.034 0.974

OpenCV (Bradski, 2000)

train-2

0.006 0.003 0.582 ± 0.648 0.622 ± 0.966 0.863

ATOM pairwise 0.010 0.006 0.655 ± 1.055 0.677 ± 0.982 1.020

ATOM full 0.008 0.005 0.594 ± 0.912 0.696 ± 1.033 0.974

ZED’s factory calibration - 0.007 0.006 2.220 ± 0.765 0.486 ± 0.823 1.757

art, the OpenCV stereo calibration toolbox (Bradski, 2000) was used to calibrate exactly the same

configuration. Additionally, the factory’s intrinsic and extrinsic calibrations were evaluated. Table

3 summarizes all these experiments.565

Starting by the analysis of ATOM pairwise and ATOM full, we can see that both versions

present similar performances, with marginal differences with respect to all the metrics calculated.

For example, for the train-1 dataset, we can see a root mean square error difference of 0.075

px and for train-2 0.046 px. Thus, we can conclude that, ATOM allows to optimize an entire

robotic system without a significant loss of performance, when comparing with a specific pairwise570

calibration between the two sensors of interest. In what concerns OpenCV, Tab. 3 shows that,

for the train-1 dataset, it is not able to calibrate. This happens since this framework requires

collections where all the pattern corners are detected, i.e., non partial detections. So, since the

majority of the collections present in this dataset are partial, OpenCV is not able to calibrate. This

is a limitation since, to accomplish a dataset without partial collections, its variety can be limited575

due to the impossibility of collecting, e.g., collections with the pattern far away from the cameras.

On the other hand, for the train-2 dataset, OpenCV achieves the smaller reprojection root mean

square error. In this, the number of partial collections is low, and OpenCV, a specialized pairwise

calibrator for cameras, performs an accurate intrinsic and extrinsic calibration. Even so, ATOM

full shows errors only slightly higher than OpenCV for this dataset, showing that it is capable of580

achieving a state-of-the-art performance, even considering a non pairwise approach. Concerning

the camera factory calibration, it is clear that it presents the less accurate calibration. This can

be explained since the calibration the same for all the equipments. Finally, to analyse the impact

30

(a) (b)

Figure 11: Reprojection error dispersion for the camera to camera calibration using ATOM full configuration. Each

color represents the error associated with one individual collection. (a) is the representation of this error before

calibrating (using the initial guess), and (b) after the calibration.

of the ATOM’s calibration, Fig. 11 shows the dispersion of the reprejection error per collection,

before and after calibrating with ATOM full.585

As expected, the dispersion of the error before calibrating is higher in almost all collections. On

the contrary, after calibrating the cameras with ATOM full, the dispersion drastically reduces, with

the exception of one collection (represented in brown). This collection can represent a degenerate

of data collection, due to, for example, de-synchronization of the data from from the sensors.

In order to evaluate the camera to LiDAR calibration, ATOM was used to calibrate both590

modalities in three different manners: two ATOM pairwise versions, one between the LiDAR and

each camera, and the ATOM full version that comprises all three sensors. To compare our approach

with the state-of-the-art, ICP (Besl & McKay, 1992) was used to calibrate the left camera and the

LiDAR in two different ways: one considering the average of the calibration obtained in all the

collections, and other considering only the collection that presents the best alignment between595

the two point clouds. Note that, ICP only calibrates the left camera w.r.t. the LiDAR since the

stereo camera point cloud extracted directly using the manufacture’s API is defined in this camera

referential. Table 4 summarizes all this information.

Similarly to the camera-to-camera case, here we can verify that ATOM pairwise and ATOM full

result in a similar calibration performance, with marginal reprojection error differences. So, once600

31

Table 4: Performance comparison of methods for camera to 3D LiDAR calibration.

Method Type Train dataset ex (px) ey (px) erms (px)

ICP average (Besl & McKay, 1992) left camera - 3D LiDAR

train-1

47.210 ± 31.374 19.058 ± 28.233 44.307

ICP best (Besl & McKay, 1992) left camera - 3D LiDAR 9.111 ± 11.950 2.625 ± 7.967 10.492

ATOM pairwise right camera - 3D LiDAR 3.054 ± 4.727 1.031 ± 2.689 3.869

ATOM pairwise left camera - 3D LiDAR 3.648 ± 4.846 1.260 ± 2.869 4.101

ATOM full right camera - 3D LiDAR 3.351 ± 4.874 0.950 ± 2.279 3.811

ATOM full left camera - 3D LiDAR 3.398 ± 4.923 1.100 ± 2.602 3.942

ICP average (Besl & McKay, 1992) left camera - 3D LiDAR

train-2

- - -

ICP best (Besl & McKay, 1992) left camera - 3D LiDAR - - -

ATOM pairwise right camera - 3D LiDAR 7.574 ± 6.393 1.776 ± 3.181 6.715

ATOM pairwise left camera - 3D LiDAR 7.560 ± 5.535 1.619 ± 2.795 6.432

ATOM full right camera - 3D LiDAR 7.702 ± 5.441 1.648 ± 2.781 6.537

ATOM full left camera - 3D LiDAR 8.117 ± 5.692 1.687 ± 2.838 6.765

again, this leads to the conclusion that ATOM full can be used to calibrate all the robotic system

without any significant loss of performance while evaluating calibrations between pairs of sensors.

In this set of tests, a consistent decrease of performance of all the calibration configurations from

train-1 to train-2 dataset is observed. This consistency can be caused by synchronization errors

between sensors while collecting the calibration data. Looking for the ICP performance on train-1605

dataset, firstly, we can conclude that the ICP average is highly affected by outliers, i.e., collections

where the calibration fails. This can be inferred by the high standard deviations present in the

x and y reprojection error compoenents. ICP best, despite being significantly less accurate than

ATOM, presents a better performance than ICP average. The overall bad performance of ICP can

be explained by the difficulty of aligning a dense point cloud (provided by the stereo camera), and a610

sparse one (provided by the laser). It is worth noting that, the train-2 dataset does not contain the

stereo camera point cloud, so here ICP can not be used for calibration. To have a visual perception

of the ATOM full performance on the calibration of the left camera and the LiDAR, Fig. 12 shows

the reprojection of the LiDAR 3D points in the left camera image.

In this Fig., color represents the points depth. Here, the transitions of the objects can be sharply615

observed, which is a good indicator for the calibration performance.

32

Figure 12: Point cloud projection into the left camera image using the 3D LiDAR to camera calibration. The color

represents the points depth. It is worth noting that, this procedure was done using the ATOM full calibration result,

with a collection from the test dataset, just like in all the evaluation pipeline. If the system is accuratly calibrated,

changes in point’s color, which denotes a variation of the measured range, should coincide with transitions between

far and near objects in the image.

4.4. Impact of the number of collections used for training

One of the major questions in general for calibration procedures is the minimum amount of

data required to calibrate sensors with precision. In this section we propose an evaluation of

ATOM full calibration using different numbers of training collections. The calibration of the three620

combinations of sensors is evaluated for five different levels of collections used. Table 5 presents the

results obtained for each configuration.

Starting by the analysis of the camera-to-camera calibration, here we can see that the increase of

the number of collections leads to a increase in performance. Using a single collection, as expected,

results in higher reprojection, rotation and translation errors. While increasing the number of625

training collections, the performance increases, with the best performance being observed with the

maximum number of collections. Looking at the performance of the calibration of the LiDAR

with both cameras, we can see that, as expected using a single collection also results in a higher

reprojection error. However, in this case, this difference is not significant, and while increasing

the number of collections, the performance saturates. Thus, we can conclude that, the increase630

33

Table 5: Impact of the number of collections in ATOM’s full calibration performance. The dashed entries correspond

to results not generated since, for the camera-to-LiDAR case, the mean rotation and translation errors are not

available.

Type Nr. Collections eR (rad) et (rad) ex (px) ey (px) erms (px)

camera - camera

1 0.051 0.053 8.205 ± 7.201 16.089 ± 3.346 13.534

5 0.017 0.016 3.540 ± 4.575 1.108 ± 1.449 4.233

10 0.009 0.004 1.377 ± 1.318 0.932 ± 0.991 1.645

20 0.008 0.003 0.515 ± 0.719 0.658 ± 1.056 0.976

30 0.008 0.003 0.547 ± 0.759 0.638 ± 1.034 0.974

right camera - 3D LiDAR

1 - - 4.348 ± 6.314 1.936 ± 4.431 5.487

5 - - 4.202 ± 5.179 1.144 ± 2.342 4.466

10 - - 3.305 ± 4.742 0.984 ± 2.387 3.820

20 - - 3.355 ± 4.744 1.005 ± 2.412 3.774

30 - - 3.352 ± 4.874 0.950 ± 2.279 3.811

left camera - 3D LiDAR

1 - - 5.126 ± 6.686 1.527 ± 3.435 5.566

5 - - 3.381 ± 4.447 1.058 ± 2.503 3.730

10 - - 2.937 ± 4.430 1.115 ± 2.791 3.712

20 - - 3.411 ± 4.887 1.258 ± 2.959 4.046

30 - - 3.398 ± 4.924 1.100 ± 2.602 3.942

of the number of collections has a positive impact in the final performance of all the calibration

configurations. However, the camera-to-camera calibration is more sensible to the lower number of

collections than the camera-to-LiDAR calibration.

4.5. Impact of the number of incomplete collections used for training

The proposed calibration framework, ATOM, supports collections where the pattern is not635

detected by all the sensors in the calibration system. For example, suppose that the pattern is, for

a specific collection, is viewed by the right camera and the LiDAR but not by the left camera. The

current section intends to evaluate the impact of this type of collections, and conclude if the the

presence of incomplete collections has, or not, correlation with changes on ATOM’s performance.

Table 6 summarizes the results obtained for three sensor configurations with four different values640

of incomplete collections, maintaining the same number of training collections.

ATOM can deal with incomplete collections, as long as the pattern is detected by at least one

sensor. If not, the calibration system can not compute any residual, and that collection must be

34

Table 6: Impact of the number of incomplete collections in ATOM full calibration performance. The dashed entries

correspond to results not generated since, for the camera-to-LiDAR case, the mean rotation and translation errors

are not available.

Type
Nr. Collections

eR (rad) eR (rad) ex (px) ex (px) erms (px)

Complete Incomplete

camera - camera

10 0 0.011 0.011 1.159 ± 1.479 0.848 ± 1.182 1.457

10 2 0.006 0.003 0.821 ± 0.711 0.606 ± 0.900 1.031

10 4 0.009 0.006 1.680 ± 2.001 0.784 ± 0.945 2.017

10 5 0.010 0.005 0.778 ± 0.990 0.641 ± 0.908 1.076

right camera - 3D LiDAR

10 0 - - 5.104 ± 6.517 1.370 ± 3.085 5.496

10 2 - - 3.272 ± 4.800 1.068 ± 2.634 3.920

10 4 - - 3.414 ± 4.934 1.040 ± 2.515 3.964

10 5 - - 3.734 ± 4.956 1.111 ± 2.540 4.069

left camera - 3D LiDAR

10 0 - - 5.113 ± 6.479 1.535 ± 3.430 5.576

10 2 - - 3.112 ± 4.665 1.192 ± 2.970 3.930

10 4 - - 2.995 ± 4.541 1.137 ± 2.886 3.849

10 5 - - 3.720 ± 5.012 1.274 ± 2.907 4.169

discarded. On the other hand, if, a single sensor does not detect the pattern for a specific collection,

this leads to a reduction of the number of residuals used on the optimization procedure. This645

being said, results do not show any correlation between the increase of the number of incomplete

collections and the performance of ATOM. So, this leads to the conclusion that ATOM can deal with

the decrease of the number of residuals (as long as sufficient number of collections are provided).

This conclusion consistent with the one taken from Tab. 5, where it was shown that, ATOM can

calibrate accurately for a reasonable low number of collections.650

4.6. Impact of the accuracy of the initial estimate

The initial estimate (or initial guess) of the calibration parameters has an impact in the outcome

of the optimization. A good initial estimate provides a sufficient approximation that allows the

optimization process to find the optimal solution that best represents the real calibration of the

system. In turn, a inaccurate estimate may lead the optimization process to an unrecoverable state655

where it is not possible to achieve the optimal solution. This is known as the problem of local

minima.

35

0 5 10 15 20 25 30 35 40

angle (deg)

10
2

10
6

10
10

10
14

10
18

10
22

10
26

10
30

R
M
S
(p
ix
)

50

100

150

200

250

300

350

400

ti
m
e
(s
)

Optimization error (left axis)

Execution time (right axis)

(a)

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

distance (m)

0

25

50

75

100

125

150

175

R
M
S
(p
ix
)

50

100

150

200

250

300

350

400

ti
m
e
(s
)

Optimization error (left axis)

Execution time (right axis)

(b)

Figure 13: Impact of the initial angle (a) and distance (b) estimation error on the optimization error and execution

time. The considered optimization error is the root means squared (RMS) error.

In this section, we are interested in assessing the robustness of ATOM to the accuracy of the

initial estimate. More specifically, the angle and distance error to the optimal state that our method

can handle and the additional execution times that result from said errors. To characterize the660

robustness to the angle error, we start with the optimal angle and then add the angle error to the

the Euler components of the rotation. The sign of the error is provided by a fair binomial sampling

(Girshick et al., 2006). The tolerance to the distance error is found by sampling an uniform offset

from the optimal positions that sits on a sphere with a radius equal to the distance error. Because

random sampling is used, we run the experiment for each error 10 times and the reported values665

are the mean of the runs. By increasing the error in several steps, we can pinpoint the error at

which our optimization process will fail. Note that the error is applied to all pose parameters that

are being estimated. The results are presented in Figure 13.

The obtained results show that our optimization process can handle an angle error of approx-

imate 20 degrees and a distance error of 0.5 meters, for each sensor. In our opinion, these errors670

provide a sufficient margin of tolerance for a practical usage of our manual procedure for initial

parameter estimation, described in section 3.2. The execution times are strictly related to the

convergence of the optimization. Inside the margin of tolerance, the execution times are mostly

constant (with some fluctuations). This means the optimization process adequately handles the

imposed error with a proper convergence.675

36

5. Conclusions

This paper solves the problem of camera-to-LiDAR calibration using the optimization of atomic

transformations. To do so, this work formulates the calibration as a Bundle Adjustment problem,

minimizing the reprojection error of sensors that can have different modalities. Our approach,

ATOM, provides several advantages when compared with the current state-of-the-art: (i) it offers680

a framework to simultaneously calibrate any number of sensors; (ii) it improves the optimization

of different sensor modalities by introducing the multi-modal normalization. (iii) it maintains

the topology of the input transformation tree; (iv) it supports incomplete and partial collections

of data, which makes the detection procedure more flexible and robust; (v) it uses a common

calibration pattern, which generalizes the approach; (vi) it has seamless integration with ROS,685

setting a complete framework for camera to LIDAR calibration.

Results show that the proposed approach presents similar performance in comparison with the

state-of-the-art, even calibrating the entire robotic system simultaneously. These results demon-

strate that ATOM can achieve the same performance of specialized methods in pairwise calibration

between specific sensors, while running a complete calibration with multiple sensors of different690

modalities. Furthermore, our framework proved to be robust to inaccurate initial guesses and small

number of collections. Finally, the use of a generic calibration pattern constitutes a major advance

since, in the current state-of-the-art, many approaches use built in-house patterns.

Future work aims to test ATOM in more advanced robotic systems, with multiple 3D LiDARs.

Additionally, the problem of data synchronization while collecting data for calibration will be695

addressed thought the use of simple concepts such as data interpolation, and more advanced ones,

such as generative adversarial networks to generate synchronized sensor data.

Acknowledgements

This Research was funded by National Funds through the FCT—Foundation for Science and

Technology, in the context of the project UIDB/00127/2020.700

37

References

Agarwal, S., Snavely, N., Seitz, S. M., & Szeliski, R. (2010). Bundle adjustment in the large. In

K. Daniilidis, P. Maragos, & N. Paragios (Eds.), Computer Vision – ECCV 2010 (pp. 29–42).

Berlin, Heidelberg: Springer Berlin Heidelberg.

de Aguiar, A. S. P., dos Santos, F. B. N., dos Santos, L. C. F., de Jesus Filipe, V. M., & de Sousa, A.705

J. M. (2020). Vineyard trunk detection using deep learning – an experimental device benchmark.

Computers and Electronics in Agriculture, 175 , 105535. URL: https://doi.org/10.1016/j.

compag.2020.105535. doi:10.1016/j.compag.2020.105535.

Álvarez, S., Llorca, D., & Sotelo, M. (2014). Hierarchical camera auto-calibration for traffic surveil-

lance systems. Expert Systems with Applications, 41 , 1532–1542. URL: https://doi.org/10.710

1016/j.eswa.2013.08.050. doi:10.1016/j.eswa.2013.08.050.

Badue, C., Guidolini, R., Carneiro, R. V., Azevedo, P., Cardoso, V. B., Forechi, A., Jesus,

L., Berriel, R., Paixão, T. M., Mutz, F., de Paula Veronese, L., Oliveira-Santos, T., & De

Souza, A. F. (2021). Self-driving cars: A survey. Expert Systems with Applications, 165 ,

113816. URL: http://www.sciencedirect.com/science/article/pii/S095741742030628X.715

doi:https://doi.org/10.1016/j.eswa.2020.113816.

Besl, P., & McKay, N. D. (1992). A method for registration of 3-d shapes. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 14 , 239–256. URL: https://doi.org/10.1109/34.

121791. doi:10.1109/34.121791.

Bradski, G. (2000). The opencv library. Dr Dobb’s J. Software Tools, 25 , 120–125. URL: https:720

//ci.nii.ac.jp/naid/10028167478/en/.

Czyzewski, M. A. (2017). An extremely efficient chess-board detection for non-trivial photos. ArXiv ,

abs/1708.03898 .

Dhall, A., Chelani, K., Radhakrishnan, V., & Krishna, K. M. (2017). Lidar-camera calibration

using 3d-3d point correspondences. arXiv:arXiv:1705.09785.725

Durrant-Whyte, H., & Bailey, T. (2006). Simultaneous localization and mapping: part i. IEEE

Robotics & Automation Magazine, 13 , 99–110. URL: https://doi.org/10.1109/mra.2006.

1638022. doi:10.1109/mra.2006.1638022.

38

Fabbri, R., Giblin, P., & Kimia, B. (2020). Camera pose estimation using first-order curve differ-

ential geometry. IEEE Transactions on Pattern Analysis and Machine Intelligence, (pp. 1–1).730

URL: https://doi.org/10.1109/tpami.2020.2985310. doi:10.1109/tpami.2020.2985310.

Fischler, M. A., & Bolles, R. C. (1981). Random sample consensus: a paradigm for model fitting

with applications to image analysis and automated cartography. Communications of the ACM ,

24 , 381–395. URL: https://doi.org/10.1145/358669.358692. doi:10.1145/358669.358692.

Foote, T. (2013). tf: The transform library. In 2013 IEEE Conference on Technologies for Practical735

Robot Applications (TePRA). IEEE. URL: https://doi.org/10.1109/tepra.2013.6556373.

doi:10.1109/tepra.2013.6556373.

Fremont, V., & Bonnifait, P. (2008). Extrinsic calibration between a multi-layer lidar and a camera.

In 2008 IEEE International Conference on Multisensor Fusion and Integration for Intelligent

Systems. IEEE. URL: https://doi.org/10.1109/mfi.2008.4648067. doi:10.1109/mfi.2008.740

4648067.

Furgale, P., Rehder, J., & Siegwart, R. (2013). Unified temporal and spatial calibration for multi-

sensor systems. In 2013 IEEE/RSJ International Conference on Intelligent Robots and Sys-

tems. IEEE. URL: https://doi.org/10.1109/iros.2013.6696514. doi:10.1109/iros.2013.

6696514.745

Gao, X.-S., Hou, X.-R., Tang, J., & Cheng, H.-F. (2003). Complete solution classification for

the perspective-three-point problem. IEEE Transactions on Pattern Analysis and Machine In-

telligence, 25 , 930–943. URL: https://doi.org/10.1109/tpami.2003.1217599. doi:10.1109/

tpami.2003.1217599.

Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F., & Medina-Carnicer, R. (2016). Gener-750

ation of fiducial marker dictionaries using mixed integer linear programming. Pattern Recogni-

tion, 51 , 481–491. URL: https://doi.org/10.1016/j.patcog.2015.09.023. doi:10.1016/j.

patcog.2015.09.023.

Girshick, M. A., Mosteller, F., & Savage, L. J. (2006). Unbiased estimates for certain binomial

sampling problems with applications. In S. E. Fienberg, & D. C. Hoaglin (Eds.), Selected Papers755

of Frederick Mosteller (pp. 57–68). New York, NY: Springer New York. URL: https://doi.

org/10.1007/978-0-387-44956-2_3. doi:10.1007/978-0-387-44956-2_3.

39

Guindel, C., Beltran, J., Martin, D., & Garcia, F. (2017a). Automatic extrinsic calibration for

lidar-stereo vehicle sensor setups. In 2017 IEEE 20th International Conference on Intelligent

Transportation Systems (ITSC). IEEE. URL: https://doi.org/10.1109/itsc.2017.8317829.760

doi:10.1109/itsc.2017.8317829.

Guindel, C., Beltran, J., Martin, D., & Garcia, F. (2017b). Automatic extrinsic calibration for

lidar-stereo vehicle sensor setups. In 2017 IEEE 20th International Conference on Intelligent

Transportation Systems (ITSC). IEEE. URL: https://doi.org/10.1109/itsc.2017.8317829.

doi:10.1109/itsc.2017.8317829.765

Hornegger, J., & Tomasi, C. (1999). Representation issues in the ML estimation of camera motion.

In Proceedings of the Seventh IEEE International Conference on Computer Vision. IEEE. URL:

https://doi.org/10.1109/iccv.1999.791285. doi:10.1109/iccv.1999.791285.

Hu, D., DeTone, D., & Malisiewicz, T. (2019). Deep ChArUco: Dark ChArUco marker pose esti-

mation. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).770

IEEE. URL: https://doi.org/10.1109/cvpr.2019.00863. doi:10.1109/cvpr.2019.00863.

Huang, J.-K., & Grizzle, J. W. (2020). Improvements to target-based 3d LiDAR to camera calibra-

tion. IEEE Access , 8 , 134101–134110. URL: https://doi.org/10.1109/access.2020.3010734.

doi:10.1109/access.2020.3010734.

Huang, L., & Barth, M. (2009). A novel multi-planar LIDAR and computer vision calibration proce-775

dure using 2d patterns for automated navigation. In 2009 IEEE Intelligent Vehicles Symposium.

IEEE. URL: https://doi.org/10.1109/ivs.2009.5164263. doi:10.1109/ivs.2009.5164263.

su Kim, E., & Park, S.-Y. (2019). Extrinsic calibration between camera and LiDAR sensors by

matching multiple 3d planes. Sensors, 20 , 52. URL: https://doi.org/10.3390/s20010052.

doi:10.3390/s20010052.780

Liao, Y., Li, G., Ju, Z., Liu, H., & Jiang, D. (2017). Joint kinect and multiple external cam-

eras simultaneous calibration. In 2017 2nd International Conference on Advanced Robotics

and Mechatronics (ICARM). IEEE. URL: https://doi.org/10.1109/icarm.2017.8273179.

doi:10.1109/icarm.2017.8273179.

40

Majumder, S., & Pratihar, D. K. (2018). Multi-sensors data fusion through fuzzy cluster-785

ing and predictive tools. Expert Systems with Applications, 107 , 165 – 172. URL: http://

www.sciencedirect.com/science/article/pii/S0957417418302677. doi:https://doi.org/

10.1016/j.eswa.2018.04.026.

Melendez-Pastor, C., Ruiz-Gonzalez, R., & Gomez-Gil, J. (2017). A data fusion system of gnss data

and on-vehicle sensors data for improving car positioning precision in urban environments. Ex-790

pert Systems with Applications, 80 , 28 – 38. URL: http://www.sciencedirect.com/science/

article/pii/S0957417417301641. doi:https://doi.org/10.1016/j.eswa.2017.03.018.

Mirzaei, F. M., Kottas, D. G., & Roumeliotis, S. I. (2012). 3d LIDAR–camera intrinsic and

extrinsic calibration: Identifiability and analytical least-squares-based initialization. The In-

ternational Journal of Robotics Research, 31 , 452–467. URL: https://doi.org/10.1177/795

0278364911435689. doi:10.1177/0278364911435689.

Oliveira, M., Castro, A., Madeira, T., Dias, P., & Santos, V. (2020a). A general approach to the

extrinsic calibration of intelligent vehicles using ros. In M. F. Silva, J. Lúıs Lima, L. P. Reis,

A. Sanfeliu, & D. Tardioli (Eds.), Robot 2019: Fourth Iberian Robotics Conference (pp. 203–215).

Cham: Springer International Publishing.800

Oliveira, M., Castro, A., Madeira, T., Pedrosa, E., Dias, P., & Santos, V. (2020b). A ROS frame-

work for the extrinsic calibration of intelligent vehicles: A multi-sensor, multi-modal approach.

Robotics and Autonomous Systems, 131 , 103558. URL: https://doi.org/10.1016/j.robot.

2020.103558. doi:10.1016/j.robot.2020.103558.

Pandey, G., McBride, J., Savarese, S., & Eustice, R. (2010). Extrinsic calibration of a 3d laser805

scanner and an omnidirectional camera. IFAC Proceedings Volumes, 43 , 336–341. URL: https:

//doi.org/10.3182/20100906-3-it-2019.00059. doi:10.3182/20100906-3-it-2019.00059.

de Paula, M., Jung, C., & da Silveira, L. (2014). Automatic on-the-fly extrinsic camera calibration

of onboard vehicular cameras. Expert Systems with Applications, 41 , 1997–2007. URL: https:

//doi.org/10.1016/j.eswa.2013.08.096. doi:10.1016/j.eswa.2013.08.096.810

Penate-Sanchez, A., Andrade-Cetto, J., & Moreno-Noguer, F. (2013). Exhaustive linearization

for robust camera pose and focal length estimation. IEEE Transactions on Pattern Analysis

41

and Machine Intelligence, 35 , 2387–2400. URL: https://doi.org/10.1109/tpami.2013.36.

doi:10.1109/tpami.2013.36.

Pradeep, V., Konolige, K., & Berger, E. (2014). Calibrating a multi-arm multi-sensor robot: A815

bundle adjustment approach. In Experimental Robotics (pp. 211–225). Springer Berlin Heidelberg.

URL: https://doi.org/10.1007/978-3-642-28572-1_15. doi:10.1007/978-3-642-28572-1_

15.

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., & Ng, A. Y. (2009).

Ros: an open-source robot operating system. In ICRA workshop on open source software (p. 5).820

Kobe, Japan volume 3.

Rehder, J., Siegwart, R., & Furgale, P. (2016). A general approach to spatiotemporal calibration

in multisensor systems. IEEE Transactions on Robotics , 32 , 383–398. URL: https://doi.org/

10.1109/tro.2016.2529645. doi:10.1109/tro.2016.2529645.

Romero-Ramirez, F. J., Muñoz-Salinas, R., & Medina-Carnicer, R. (2018). Speeded up detection825

of squared fiducial markers. Image and Vision Computing , 76 , 38–47. URL: https://doi.org/

10.1016/j.imavis.2018.05.004. doi:10.1016/j.imavis.2018.05.004.

dos Santos, F. N., Sobreira, H., Campos, D., Morais, R., Moreira, A. P., & Contente, O.

(2016). Towards a reliable robot for steep slope vineyards monitoring. Journal of Intelli-

gent & Robotic Systems, 83 , 429–444. URL: https://doi.org/10.1007/s10846-016-0340-5.830

doi:10.1007/s10846-016-0340-5.

Santos, L., Santos, F., Mendes, J., Costa, P., Lima, J., Reis, R., & Shinde, P. (2019). Path

planning aware of robot’s center of mass for steep slope vineyards. Robotica, 38 , 684–698. URL:

https://doi.org/10.1017/s0263574719000961. doi:10.1017/s0263574719000961.

Sariff, N., & Buniyamin, N. (2006). An overview of autonomous mobile robot path planning835

algorithms. In 2006 4th Student Conference on Research and Development . IEEE. URL: https:

//doi.org/10.1109/scored.2006.4339335. doi:10.1109/scored.2006.4339335.

Sturm, P. (2014). Pinhole camera model. In K. Ikeuchi (Ed.), Computer Vision: A Refer-

ence Guide (pp. 610–613). Boston, MA: Springer US. URL: https://doi.org/10.1007/

978-0-387-31439-6_472. doi:10.1007/978-0-387-31439-6_472.840

42

Verma, S., Berrio, J. S., Worrall, S., & Nebot, E. (2019). Automatic extrinsic calibration between

a camera and a 3D lidar using 3D point and plane correspondences. In 2019 IEEE Intelligent

Transportation Systems Conference (ITSC) (pp. 3906–3912). Auckland, New Zealand: IEEE.

doi:10.1109/ITSC.2019.8917108.

Wang, W., Sakurada, K., & Kawaguchi, N. (2017). Reflectance intensity assisted automatic and845

accurate extrinsic calibration of 3d LiDAR and panoramic camera using a printed chessboard.

Remote Sensing , 9 , 851. URL: https://doi.org/10.3390/rs9080851. doi:10.3390/rs9080851.

Zhou, L., Li, Z., & Kaess, M. (2018). Automatic extrinsic calibration of a camera and a 3d LiDAR

using line and plane correspondences. In 2018 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS). IEEE. URL: https://doi.org/10.1109/iros.2018.8593660.850

doi:10.1109/iros.2018.8593660.

Zuniga-Noel, D., Ruiz-Sarmiento, J.-R., Gomez-Ojeda, R., & Gonzalez-Jimenez, J. (2019). Au-

tomatic multi-sensor extrinsic calibration for mobile robots. IEEE Robotics and Automation

Letters, 4 , 2862–2869. URL: https://doi.org/10.1109/lra.2019.2922618. doi:10.1109/lra.

2019.2922618.855

43

