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Abstract: Many machine learning algorithms and models have been proposed in the literature for predicting the 
remaining useful life (RUL) of systems and components that are subject to condition monitoring (CM). However, in 
cases where data is ubiquitous, identifying the most suitable equipment for life-extension based on CM data and RUL 
predictions is a rather challenging task. This paper proposes a technique for determining and prioritizing high-value 
assets for life-extension treatments when they reach the end of their useful life. The technique exploits the use of key 
concepts in machine learning (such as data mining and k-means clustering) in combination with an important tool from 
reliability-centered maintenance (RCM) called the potential-failure (P-F) curve. The RCM process identifies essential 
equipment within a plant which are worth monitoring, and then derives the P-F curves for equipment using CM and 
operational data. Afterwards, a new index called the potential failure interval factor (PFIF) is calculated for each 
equipment or unit, serving as a health indicator. Subsequently, the units are grouped in two ways: (i) a regression model 
in combination with suitably defined PFIF window boundaries, (ii) a k-means clustering algorithm based on equipment 
with similar data features. The most suitable equipment for life-extension are identified in groups in order to aid in 
planning, decision-making and deployment of maintenance resources. Finally, the technique is empirically tested on 
NASA’s Commercial Modular Aero-Propulsion System Simulation datasets and the results are discussed in detail.  

Keywords: Machine learning; Data mining; Potential failure interval factor; k-means clustering; Life-extension; 
Remaining useful life; Condition monitoring.

1. Introduction

Engineering plants and systems have evolved progressively and have become significantly more intelligent 
in recent years and so have the demands made from these systems in terms of human dependence on their 
uptime and functionality. For instance, human activity is so dependent on power, as only few hours of 
downtime on the power grid will pose serious economic as well as safety risks (Shafiee, 2016). Similarly, 
failure of offshore infrastructure such as oil and gas production facilities, marine renewable energy assets and 
other ship vessels and structures will affect not only the businesses but also a long trail of people along the 
value chain. This helps to emphasize the utmost importance of the need to ensure the safety and reliability of 
these systems. Therefore, as the evolution into the era of industry 4.0 continues, with an abundance of data 
being generated from engineering plants and installations, new ways of analyzing these data to make 
meaningful impacts, especially as regards asset life and integrity management, is exigent.

In practice, not all pieces of equipment within an engineering plant will benefit from tight inspection and 
maintenance regimes or life-extension treatments. As a practice, some equipment can actually be run until they 
fail because the safety, environmental and economic consequences of their failures are negligible. However, 
some other equipment might be incident-critical and, therefore, it will not be efficient to run them until they 
fail because of the huge safety and economic implications. For a plant with hundreds of equipment within its 
assets register, identifying the most vulnerable equipment for life-extension is a challenging task that, if carried 
out effectively, will help to ensure safe and cost-effective operations in later life of the facility. This is 
important for asset managers as it helps them assign resources towards life-extension in a more efficient and 
effective manner. This study therefore directly contributes to the process of making life-extension decisions in 
a data-driven context, given an ecosystem where lots of operational, environmental and condition monitoring 
(CM) data are constantly gathered from plant operations.

An important development in the industry 4.0 era is the recent rapid advancement in sensor technologies 
and an attendant increase in the amount of data being collected from equipment on an operational facility. The 
resultant ease of collecting data from engineering assets has led to an increase in new ways of exploiting these 
data for asset monitoring purposes. One of the most popular approaches in recent time is the use of machine 
learning techniques and algorithms to develop models that provide insight into the underlying condition of 
equipment, based on data. This approach has proven to be popular because modern systems are complex and 
their failures cannot be simply modelled via physics of failure approaches. 
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The literature is awash with studies that use machine learning (ML) algorithms for remaining useful life 
(RUL) prediction. However, most of the proposed algorithms predict RUL with the intent of optimizing asset 
maintenance strategies and to aid in logistics support planning (Lei et al., 2018). Furthermore, the existing 
methods have mainly been applied to structures and static mechanical equipment and include carrying out 
structural integrity assessments to determine the choice of a life extension strategy. Such approaches typically 
implement a life-extension program as a stand-alone project at the end of an asset’s initial design life. A model 
that relates RUL prediction directly to life-extension decision-making was proposed by Vaidya & Rausand 
(2011). The model considered various factors such as future loading, system design information and expert 
opinions; however, the RUL prediction model was physics-based. Our study, instead, proposes the use of data-
driven ML techniques to determine and prioritize the equipment for life-extension activities, strictly using 
sensor data gathered during operations as well as CM data, and not based on a formal structural integrity 
assessment. To the best of the authors’ knowledge, and based on findings from literature search, this is the first 
attempt of looking at asset life extension as an ongoing series of activities and proposing strategies from a ML 
perspective, along with the use of tools from reliability centered maintenance (RCM). In that regard, the major 
contribution of this paper includes a unique attempt at combining a tool from RCM called the potential failure 
(P-F) curve and ML algorithms (e.g. data mining, k-means clustering) to prioritize vulnerable equipment for 
life-extension under an era of ubiquitous data. The study suggests a new technique of visualizing and exploiting 
P-F curves derived from CM data by assessing P-F curves from multiple equipment simultaneously, and then 
clustering equipment with similar degradation profiles, similar effort required during life-extension actions, 
similar spares philosophy and similar performance requirements in terms of safety and reliability. A novel 
index, called the potential failure interval factor (PFIF), is proposed to measure the health state of equipment. 
This new index, which has no unit, will enable the comparison of disparate pieces of equipment with dissimilar 
ranges of total lifetime, thereby fully exploiting the massive sensor data available to engineers in order to 
optimize life-extension planning and implementation.

The remaining part of this paper is organized as follows. Section 2 provides the theoretical background for 
P-F curves in CM and data mining, culminating in the choice of k-means clustering as the preferred algorithm. 
Section 3 provides details of the proposed technique, including data preprocessing and features selection, 
algorithm for fitting a regression model to processed data and applying a clustering algorithm to obtain groups. 
A demonstration of the applicability of the technique is presented in Section 4. Section 5 discusses the results 
obtained; and finally, Section 6 presents the conclusion and suggestions for further work.

2. Theoretical background

Different strategies for implementing life-extension actions in ageing engineering assets have been 
deployed by practitioners within different industry sectors as well as researchers in academia. Sharp et al., 
(2011) proposed a framework that involved dividing the equipment on an offshore oil and gas facility into 
different functional groups such as structural components, process systems, marine systems and safety 
equipment, and then developing performance indicators to determine an acceptable threshold for triggering 
life-extension actions. Essentially, the life-extension activities or remediation schemes proposed were under 
the broad category of repair, replace or upgrade. Some other approaches were proposed by Shafiee & Animah 
(2017), which include replacement/repowering, reconditioning, restoration (repair, remanufacture or 
retrofitting), reclaiming, retro-filling and use-up. In light of the diversity of the various life-extension strategies 
that have been proposed and implemented, it is important to establish a framework for prioritizing equipment 
under consideration for life-extension that not only fits into the operational philosophy of asset owners, but 
also duly takes into account the peculiarities of the information available to asset operators about the various 
pieces of equipment within the plant. Ersdal et al., (2011) recognized that end-of-life assets can be grouped 
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into four categories, namely: parts that cannot be inspected or maintained; parts with missing or incomplete 
inspection or maintenance data; parts with widespread deterioration; and technologically obsolete parts.  

Irrespective of the approach used, the major considerations during asset life-extension include: safety, 
economics, regulatory requirements, serviceability, practicality of life-extension strategy implementation and, 
more recently, convergence with the new era of “smart systems”. Pérez Ramírez et al., (2013) proposed a 
systems engineering approach to the management of ageing oil and gas facilities such that the end-of-life 
strategies are incorporated into the maintenance philosophy of a facility with the overall aim of making 
equipment function well beyond their original design life. In another study, Shafiee et al., (2016) proposed a 
techno-economic feasibility assessment framework for prioritizing safety critical elements (SCEs) within a 
plant for life-extension purposes. They showed that cost is a major driver in choosing a suitable end-of-life 
strategy by most asset managers. Animah et al., (2018) developed a life-cycle cost-benefit approach that takes 
into account several categories of expenditures during the extended phase of operation of offshore assets, thus 
aiding asset managers to make informed choices based on calculated costs and benefits.

Most of the approaches mentioned so far ride on conventional methods of implementing a life-extension 
program which involves a project-like approach executed at the end of asset design life. This work takes a 
unique approach by viewing life-extension activities as an on-going series of activities, since different 
equipment within a fleet typically have varying design lives. The proposed approach involves mining data 
from each unit within the fleet and, based on strictly data, grouping units with similar time-to-failure indicators 
together for life-extension action. In the following subsections, a detailed background of the key tools used in 
this work are presented. This, in addition to relevant references, will aid easy understanding of the concepts 
used throughout the study.

2.1 Reliability-centered maintenance (RCM)

RCM, as a concept, was first proposed in the work by Nowlan (1972), where they studied a fleet of aircraft 
at United Airlines and proposed changes to the existing maintenance program at the time. With RCM, they put 
forth a program that attempts to answer critical questions surrounding how failures occur, what the 
consequences of failures are, and what type of maintenance actions can prevent failures from occurring. 
Although the fundamental concepts have remained the same, the practice has evolved since then and has been 
adopted by maintenance engineers and asset managers across various industries. RCM was defined by 
Moubray (1997) as a set of practices which must be carried out to ensure that any physical asset continues to 
perform its desired function. Failure of an equipment to meet pre-defined performance standards, within a 
given operational context, is therefore defined as a functional failure. The role of RCM is therefore to ensure 
that maintenance practices keep the identified equipment in such a state as to ensure that functional failure, 
with its attendant undesired consequences, is avoided. RCM practice asks the following key questions (Shafiee, 
2015):

i. Within an operational context, what are the functions of each equipment and the associated 
performance standards?

ii. In what ways does each equipment fail to perform its specified functions?
iii. What are the causes of each functional failure?
iv. What are the consequences of each failure?
v. What can be done to predict or prevent each failure?

vi. What should be done if a suitable proactive task cannot be found?

Questions (v) and (vi) are directly related to remaining useful life (RUL) estimation and life-extension 
considerations. This paper will therefore draw from the RCM concepts related to these two questions to help 
identify equipment for life-extension. The logical flow of the RCM decision process is illustrated in Fig. 1. 
This flow process specifies activities that intend to answer the key RCM questions mentioned above. The 
process involves a collection of all the assets within a plant in the form of an asset register/database, along 
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with accompanying operational records and maintenance history for each equipment. The entire plant is then 
divided into systems, sub-systems and components, along with a definition of their operating contexts. 
Functional analyses are then carried out in order to define functional requirements and performance standards, 
thereby helping to establish what functional failure entails for each equipment. Based on the functional 
analyses and subsequent Failure Modes, Effects and Criticality Analyses (FMECA), the equipment are 
categorised, according to their criticalities, into different maintenance strategies. Table 1 specifies the 
categorization of the maintenance strategies and the application scenarios.

**Figure 1**

Fig. 1. RCM decision logic flowchart – adapted from Liang et al. (2012).

**Table 1**

Table 1. RCM strategies and their associated application scenarios.

Obviously, there is no added benefit of extending the life of non-critical equipment or the ones designated 
for redesign. Thus, only equipment categorized under failure finding, scheduled restoration, scheduled discard 
and on-condition maintenance will typically be the focus for life-extension. In this study, the data from such 
equipment is mined, in combination with their potential failure curves, and a clustering algorithm is then 
applied to obtain clusters of equipment with similar health states. The ultimate aim of grouping equipment 
according to health states is to focus on the vulnerable groups which are likely to fail first, thereby aiding 
maintenance decision-making and the subsequent application of life-extension actions to equipment within the 
vulnerable groups.

2.1.1 Predictive testing and inspection

Equipment condition can be monitored through non-intrusive testing, supervisory control and data 
acquisition (SCADA), visual inspection and other testing methods, depending on the failure modes for the 
equipment being monitored. This practice is also referred to as condition monitoring (CM). Some important 
predictive testing and inspections, which are vital to the detection of incipient faults and performance 
deterioration, include vibration monitoring, infrared thermography, ultrasonic noise (acoustics) measurements, 
lubricant (oil) analyses, temperature measurements, flow characteristics, ultrasonic thickness measurements, 
eddy current testing and motor current signature analysis, amongst others. A detailed coverage of CM 
techniques is covered in the work by Moubray (1997). Data from these inspections, when collected 
continuously or at intervals, and in combination with the baseline data, can be plotted against time to help 
reveal the performance characteristics. With enough historical data, the performance plot can be used to detect 
the point of incipient failure, also known as potential failure point. This point can only be detected when 
performance has started declining and potential failure is possible, hence the name potential failure (or P-F) 
curve.

 There are a few papers in the literature which have used the P-F curve as a tool for evaluating performance 
and modelling degradation of equipment. Van Horenbeek et al., (2013) studied the added value of 
implementing an imperfectly performing CM system into a wind turbine gearbox by using the P-F curve. The 
associated secondary damage, which can be prevented with early detection of potential failures, was also 
factored into the model. The methodology was tested on a wind turbine gearbox dataset selected from a 
manufacturer with a fleet of more than 800 onshore wind turbines operating over a time span of eight years. 
The approach can be extended to offshore wind energy applications but with more stringent detectability and 
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efficiency parameters due to the logistical complexities of maintaining offshore assets. Lorenzoni et al., (2017) 
modeled the degradation of components using Dynamic Bayesian Networks, with the P-F curve representing 
the degradation pattern which was modeled as a reversed exponential function. The characteristic of the P-F 
curve in the study was susceptible to maintenance activities as well as operating conditions, thus factoring 
these uncertainties in to derive the health state of equipment. Five different health states were used in their 
study to characterize operating equipment, including: new or as good as new, very slight indication of 
degradation, serious degradation, stage of rapid decline, and finally, stage with very high probability of failure.

2.1.2 Potential failure curve (P-F curve)

Based on the information gathered from predictive testing and inspection tasks, the condition of an 
equipment when plotted against time will yield the potential failure or P-F curve. Fig. 2 shows typical P-F 
curves.

**Figure 2**

 Fig. 2. (a) A typical P-F curve, (b) A P-F curve for fatigue crack propagation (adapted from Regan (2012)).

The P-F curve is so named because it indicates the point at which the failure of an equipment being 
monitored becomes detectable. This point is indicated as the potential failure point, P, in Fig. 2(a). From 
commencement of the service life of an equipment up to a certain point, failure is undetectable because all the 
parameters of the equipment being monitored, like temperature, vibration, lube oil analysis, etc., indicate that 
the equipment is in a health state that is devoid of detectable faults. However, incipient failure becomes 
detectable at a certain time when deviations start to occur. The time from the actual point of detection of 
potential failure to the point of functional failure is referred to as the P-F interval. It is desirable that the P-F 
interval is sufficient for both decision-making and actual maintenance and life-extension activity, in order for 
the whole endeavor to be worthwhile.

2.1.3 P-F interval determination

Fig. 2(b) vividly illustrates how equipment performance degrades over time for a single failure mode and 
also how different CM techniques can detect the failure at different stages. If a visual inspection is conducted 
at point P2, the exact size of the crack will not be detected. If, however, an appropriate and more accurate 
inspection technique, say radiography, is performed just after point P2 but before point P3, then it gives a P-F 
interval within the range (t – t2) to (t – t3), during which a maintenance intervention should be planned and 
implemented. Hence, for critical equipment, continuous monitoring using the right technologies and 
techniques is essential, in order to ensure early detection. The right data acquisition frequencies are also 
important in order for the P-F curve to serve as an effective tool to identify equipment undergoing deterioration 
in health state. In simple terms, it is desirable for the inspection interval to be less than the P-F interval in order 
for faulty conditions to be captured before failure occurs.

In practice, it is difficult to determine the P-F interval for most equipment. For some age-related 
degradations, the P-F curve could be linear from the point of occurrence of incipient failure to the point of 
functional failure. For such cases, determination of the P-F interval can be performed by a straightforward 
extrapolation using the slope of the straight line degradation curve. However, in reality, most equipment exhibit 
non-linear degradation characteristics. Thus, estimating time-to-failure becomes an arduous but critical 
exercise.

2.1.4 Relationship between P-F interval, useful life and asset life

Moubray (1997) defined useful life, , as the period from commencement of service to the age at which 𝐿𝑢

the conditional probability of failure significantly increases. This may or may not coincide with the point at 
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which incipient failure is first noticed. Jardine et al., (2006) defined RUL as “the time left before observing a 
failure given current machine age and condition, and past operation profile”. Fundamentally, an asset’s lifetime 
can be subdivided into the useful life (normal operating state) and the faulty state during which the asset 
operates with an existing fault. Goode et al., (2000) termed these two operating zones as “stable zone” and 
“failure zone” respectively. The entire asset life, , is therefore defined as the sum of the times when the asset 𝐿𝑎

is in a good health state and the time when it operates in an unhealthy state until it fails. This is illustrated in 
Fig. 3. The asset life is therefore given by Eq. (1):

(1)𝐴𝑠𝑠𝑒𝑡 𝑙𝑖𝑓𝑒 =  𝑈𝑠𝑒𝑓𝑢𝑙 𝑙𝑖𝑓𝑒 + 𝑓𝑎𝑢𝑙𝑡𝑦 𝑧𝑜𝑛𝑒

In Fig. 3, the faulty zone comprises the P-F interval (PFint) and , which represents the time difference 𝑡𝑑

between when the incipient failure actually started and when it is detected using sensor devices. So, the asset 
life is given in Eq (2) as:

(2)𝐿𝑎 =  𝐿𝑢 +(𝑡𝑑 + 𝑃𝐹𝑖𝑛𝑡)

The ultimate goal of life-extension actions is to extend the service life of an asset beyond its original design 
lifetime. Upon detection of a fault, a life-extension action is carried out (labelled as on-condition maintenance 
in Fig. 3.) and the condition of the equipment returns to almost as good as new condition. This action potentially 
increases the lifetime of the equipment from “averted failure point 1” to “averted failure point 2”. Effective 
monitoring and life-extension can therefore potentially continue in such cycles until a cut-off point called 
maximum lifetime, Lmax, is reached, beyond which the asset owner, either as a matter of policy or for some 
other reasons, decommissions the equipment or plant.

**Figure 3**

Fig. 3. Effect of a life-extension action on P-F curve.

2.1.5 P-F interval factor (PFIF)
In this study, we define an index, called the P-F interval factor, for degrading components. This index is 

given by Eq. (3):

(3)𝑃 ― 𝐹 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝐹𝑎𝑐𝑡𝑜𝑟𝑖,𝑡 =   
𝑃 ― 𝐹 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑖,𝑡

𝑈𝑛𝑖𝑡 𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒𝑖

where   is the P-F interval factor of the unit i at time t,  is the P-F 𝑃 ― 𝐹 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝐹𝑎𝑐𝑡𝑜𝑟𝑖,𝑡 𝑃 ― 𝐹 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑖,𝑡

interval of unit i at time t, and  is the operational or design life of the unit i. This indicator is 𝑈𝑛𝑖𝑡 𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒𝑖

important because by normalizing the P-F interval with the lifetime of each unit, a scale-independent value is 
obtained, which enables the grouping of disparate pieces of equipment with different ranges of total lifetime 
or P-F intervals. This is a very useful index that will also be used for health stage division, thereby serving as 
an indicator of the state of health of any unit under operation. For illustration purposes, consider a hypothetical 
case where one equipment, A, has a typical lifetime duration of 20 years and another, B, a lifetime duration of 
6 months. In order to group these equipment for life-extension action, if CM and sensor data suggest that A 
has two years left (which is the P-F interval) and B has half a month left, using the P-F interval alone produces 
two different timelines, which will not be useful for the purpose of grouping them together as equipment that 
are soon-to-fail. However, the PFIF index in case A is 0.1 and in case B is 0.083. Thus, depending on the 
clustering criteria, the ML algorithm will cluster both equipment in the same group: soon-to-fail.
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2.2 Data mining concepts and cluster analysis

Data mining involves the extraction of embedded, hitherto unknown but essentially insightful and valuable 
information from data. Key features in data mining include the use of computer-based tools and algorithms, 
and the availability of big data, such that conventional methods of statistical analysis become unreasonable to 
implement. Two practical goals of data mining are prediction and description (Kantardzic, 2011). In the context 
of this paper, clustering will be used as a descriptive function to help group equipment that are at a similar 
stage of health with the aim of subsequently performing proactive or predictive tasks on the derived groups.  

Cluster analysis generally entails using a set of methodologies to automatically group or classify 
observations using linkage rules such that observations similar to each other are in the same group while 
dissimilar observations come under different groups (Myatt, 2006). Cluster analyses are of two broad types, 
hierarchical and partitional clustering. Other clustering types are density-based, grid-based or model-based 
(Han et al., 2012). The two broad types are briefly discussed below and the rational for using k-means 
clustering for this work is thereby highlighted.

2.2.1 Hierarchical clustering
Hierarchical clustering groups data using a cluster tree or dendrogram. It is subdivided into agglomerative 

hierarchical clustering and divisive clustering, as shown in Fig. 4. Hierarchical agglomerative clustering is a 
bottom-up approach that starts with each data point as a member of a cluster and recursively merges clusters 
until a final single cluster is obtained. On the other hand, the divisive clustering process, which is a top-down 
approach, is procedurally the direct opposite of agglomerative clustering. It begins with the entire dataset as 
one cluster and progresses by dividing each cluster until a final stage where each data point stands on its own.

**Figure 4**
Fig. 4. Dendrogram for the two types of hierarchical clustering – adapted from Han et al. (2012).

For both methods, similarity rules are applied to merge data points into clusters. Zhao et al. (2018) extracted 
latent variables that are not directly measured by sensors and also their correlation coefficients. An 
agglomerative hierarchical clustering algorithm was then used to group the extracted variables as well as the 
sensor readings using similarity measures, with the aim of identifying equipment for predictive maintenance. 
The method was applied to an electrical generator and its subsystems. Abdelhadi (2019) used an agglomerative 
hierarchical clustering approach to cluster repairable machines into virtual cells for maintenance tasks. The 
study developed a machine failure incidence matrix from which an eigenvector for each failure is derived. 
Afterwards, a similarity matrix was generated such that the relation between failures and equipment in terms 
of relative weights were captured. Machine cells were then developed and failures were assigned to suitable 
cells via a complete linkage agglomerative algorithm.

2.2.2 Partitional clustering

The main type of partitional clustering is the k-means clustering, and its variants. The k-means clustering 
groups the points in a dataset by assigning observations to a predefined number of clusters. The step-by-step 
procedure for a typical k-means clustering algorithm is given below:

i. Initialize by determining number of clusters (i.e. k) containing randomly allocated data points or 
observations.

ii. Compute the centroids of each cluster in step (i) and compare all data points to the centroids by the 
use of a distance metric, moving data points to the closest centroids thereby adjusting the initial 
clusters.

iii. Compute the new centroids.
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iv. Repeat steps (ii) and (iii) until there is no further movement of data points between clusters.

Three important parameters in the k-means algorithm are the number of clusters, k, cluster initialization and 
a distance metric (Jain, 2010). While a number of distance measures like Euclidean distance, the Jaccard 
distance, the Mahalanobis distance, Manhattan distance, cosine distance, and so on, have been used for k-
means and other clustering algorithms, the Euclidean distance is the most commonly used for the k-means 
algorithm. This is because, amongst other reasons, the k-means algorithm clusters data points represented in a 
multidimensional Euclidean space. So, the algorithm takes input parameter, k, and partitions m data points so 
that the resulting intra-cluster similarity is high but the inter-cluster similarity is low. This objective is achieved 
by minimizing the squared error in the distance between each data point in a cluster and its centroid. Given m 
samples of multidimensional data in a multidimensional space, which are to be partitioned into k clusters, the 
sum of squared errors is given by:

 (4)𝐸2 =  ∑𝑘
𝑗 = 1

∑𝑛(𝐶𝑗 ) 
𝑖 = 1 ‖𝑝𝑖,𝑗 ― 𝜇𝑗‖2

where  is the number of data points in cluster , where  ranges from 1 to ,   is a vector representing 𝑛(𝐶𝑗 ) 𝐶𝑗 𝑗 𝑘 𝑝𝑖,𝑗

the ith data point within cluster (i.e. ) and  is the mean vector representing the centroid of cluster 𝐶𝑗 𝑝𝑖,𝑗 ∈ 𝐶𝑗 𝜇𝑗

, which is obtained as:𝐶𝑗

(5)𝜇𝑗 =
1

𝑛(𝐶𝑗 )
∑𝑛(𝐶𝑗 ) 

𝑖 = 1 𝑝𝑖,𝑗 

and

(6)∑𝑘 
𝑗 = 1𝑛(𝐶𝑗 ) = 𝑚

As opposed to k-means clustering where each data point is assigned to a single cluster (hard assignment), 
a variation where each data point can be a member of multiple clusters with a membership value (soft 
assignment) is referred to as the fuzzy c-means clustering. Other variations of k-means clustering are 
highlighted in the work by Jain (2010). Table 2 provides the pros and cons of the two broad types of clustering.

**Table 2**

Table 2. Pros, cons and application cases for the two broad classes of clustering algorithms.

Regarding research in the area of maintenance scheduling, Gholami & Hafezalkotob (2018) used k-means 
clustering to group equipment based on similarity of maintenance activities and then the rules were extracted 
to characterize the derived clusters. The method was applied to data from ten pumps under functional failure 
conditions. The data comprised pump factor values for the ten pumps for 250 different failures recorded. 
Lahrache et al., (2017) used both k-means and hierarchical clustering to group faulty and unfaulty knives in a 
cutting tool machine. Also, Abdelhadi (2017) proposed a method to use k-means clustering to group repairable 
machines into virtual groups based on their need for maintenance according to the time to failure and according 
to the location of the machines. Wakiru et al. (2018) used a fuzzy cluster analysis to group multiple engines 
exhibiting similar lubricant performance characteristics based on the data collected from lubricant oil analysis 
for 17 medium speed engines of a thermal power plant.

3. Methodology

The proposed technique is intended to group equipment within a fleet into clusters with similar health states, 
enabling life-extension engineers to prioritize equipment approaching their end-of-life. A fleet may consist of 
a collection of several units of whole systems, or a collection of several units of subsystems or components. 
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Units within a fleet may be identical, similar or heterogeneous (Medina-Oliva et al., 2014). Identical units 
imply the same system with identical technical features and under the same usage and operational conditions; 
similar units share almost identical technical features and operational conditions but may have slightly varying 
usage; while heterogeneous units have varying technical features, usages and operational conditions albeit they 
share some similarity in data traits that can be exploited for decision-making. This section describes the steps 
involved in the technique which was developed for a homogenous fleet (i.e. identical and similar units under 
the same operational conditions). The steps are broken down into two broad parts, phase 1 and phase 2.

3.1 Phase 1 – data preparation and sensor selection

Given a dataset of run-to-failure data for  units or pieces of equipment within a homogeneous fleet, let  𝑚
 represent the run-to-failure data for the ith unit, where . Since each unit will have a distinct lifetime, 𝑋𝑖 𝑖 = 1,….𝑚
, the data  is an array of the order  by , where  represents the number of variables or sensor 𝑇𝑖 𝑋𝑖 𝑇𝑖 𝑁 𝑁

measurements from each unit. The followings are the steps involved in phase 1 of the methodology:
i. For ease of application of the algorithm, the data is prepared as an ensemble, containing the data for 

each unit vertically concatenated on each other, to give an overall dataset array, . The combined dataset 𝑋
 will be an  by  array where  is given by:𝑋 𝑀 𝑁 𝑀

(7)𝑀 =   ∑𝑚
𝑖 = 1𝑇𝑖

ii. The raw run-to-failure data, , which is taken in bulk as the training data, is then cleaned, pre-processed 𝑋
and useful features are extracted. Data preprocessing and feature engineering techniques depend on the 
nature of the data and the use for which the data is intended (Ramírez-Gallego et al., 2017). Features 
can be extracted in the time domain, the frequency domain or the time-frequency domain, depending on 
the nature of the signals and the specific application. For simple time-domain degradation data, the mean 
and standard deviation or variance of a signal may change progressively as the equipment degrades. For 
rotating machinery such as gears, bearings and shafts, common features extracted for health state 
construction include root-mean-square error (RMSE), kurtosis, peak-to-peak, crest factor, skewness, etc. 
(Zhu et al., 2014). Features extraction does not only help to determine which signals are useful indicators 
of degradation, but also help in dimensionality reduction for the multivariate data. Other techniques of 
dimensionality reduction like principal component analysis (PCA) can also be used to reduce the 
dimension of the data from the fleet (Liu et al. 2019). Signals with constant values (i.e. no variance) are 
not useful indicators and are as such eliminated, resulting in a reduced dataset, .𝑋𝑟𝑒𝑑𝑢𝑐𝑒𝑑

iii. Next, the reduced data is normalized, unit-wise, so as to make the attributes from the different sensors 
comparable to one another. One approach is standardization. For that purpose, let  be the index 𝑠
representing the sensor number, with  ranging from 1 to ; and, let  be the index corresponding to the 𝑠 𝑁 𝓁
number of data points for unit , with  ranging from 1 to . If the  sensor for data  for the 𝑖 𝓁 𝑇𝑖 𝑠𝑡ℎ 𝑋𝑖𝑟𝑒𝑑𝑢𝑐𝑒𝑑

unit  has a mean value  and standard deviation , then each value  of each data point of  𝑖 𝜇𝑖,𝑠 𝜎𝑖,𝑠 𝑥𝓁,𝑠 𝑋𝑖𝑟𝑒𝑑𝑢𝑐𝑒𝑑

is transformed to:

(8)𝑧𝓁,𝑠 =   
𝑥𝓁,𝑠 ―  𝜇𝑖,𝑠 

𝜎𝑖,𝑠

Another approach is the min-max scaling, which maps the attributes to the range [0,1] using the 
transformation given in Eq. (9):

(9)𝑥𝓁,𝑠 → 
𝑥𝓁,𝑠 ―  min (𝑥𝑖,𝑠 )

max(𝑥𝑖,𝑠) ―  min(𝑥𝑖,𝑠)
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where  and  are the minimum and maximum values, respectively, of the  sensor or min(𝑥𝑖,𝑠) max(𝑥𝑖,𝑠) 𝑠𝑡ℎ

feature for unit . Standardization is used for this work as it is more robust and not susceptible to outliers 𝑖
or extreme values (Aggarwal, 2015).

iv. The normalized data is smoothed using a suitable algorithm, depending on the characteristics of the data 
such as noise level, presence of outliers, etc. For this work, we adopt a local regression smoothing 
algorithm, called the robust locally weighted scatterplot smoothing (RLOWESS) (Cleveland, 1979; 
Cleveland et al., 1988), due to its effectiveness in handling outliers.

v. To gain further insight into the data , monotonicity, trendability and prognosability metrics are 𝑋𝑟𝑒𝑑𝑢𝑐𝑒𝑑

computed as presented in the work of Coble and Hines (Coble & Hines, 2009a; Coble &  Hines, 2009b). 
The fundamental concept is that features of data important for degradation prediction must be 
monotonically increasing or decreasing and, in addition, be trendable. This assumption of continuous 
degradation is mostly true for systems with a combination of electronic and mechanical components and 
may not be entirely correct for systems that exhibit some level of self-restoration when left temporarily 
without use, e.g. batteries (Guo et al., 2017). Monotonicity, which characterizes the underlying positive 
or negative trend of a feature, is obtained as the average difference of the fraction of positive and 
negative derivatives for each run-to-failure data or trajectory. This is given by Eq. (10):

()𝑀𝑜𝑛𝑜𝑡𝑜𝑛𝑖𝑐𝑖𝑡𝑦 = 𝑚𝑒𝑎𝑛(|𝑛𝑜.  𝑜𝑓 𝑑 𝑑𝑥 > 0

𝑇𝑖 ― 1 ―  
𝑛𝑜.  𝑜𝑓 𝑑 𝑑𝑥 < 0

𝑇𝑖 ― 1 |)
In more precise mathematical terms, it can be expressed as follows:

(10)𝑀𝑜𝑛𝑜𝑡𝑜𝑛𝑖𝑐𝑖𝑡𝑦 =
1
𝑚∑𝑚

𝑖 = 1|∑𝑇𝑖 ― 1
𝓁 = 1

𝑠𝑔𝑛(𝑥𝑖,𝑠 (𝓁 + 1) ―  𝑥𝑖,𝑠 (𝓁))
𝑇𝑖 ― 1 |

All symbols are as previously defined while  represents the value of the  sensor or feature for 𝑥𝑖,𝑠 (𝓁) 𝑠𝑡ℎ

unit  corresponding to the index . The trendability metric is calculated as:𝑖 𝓁

(11)𝑇𝑟𝑒𝑛𝑑𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  𝑚𝑖𝑛
𝑖,ℎ

|𝑐𝑜𝑟𝑟(𝑥𝑖,𝑠,𝑥ℎ,𝑠)|,    𝑖,ℎ =  1,…,𝑚

where  represents any pair of vectors for the data from the  sensor or feature for units  and  𝑥𝑖,𝑠, 𝑥ℎ,𝑠 𝑠𝑡ℎ 𝑖 ℎ
respectively. 
The prognosability metric gives a measure of the variance of the features towards end-of-life. This is an 
intuitive metric since a wide variance towards end-of-life can make it difficult to extrapolate a feature 
to the failure point. Prognosability is calculated by Eq. (13):

  (12)𝑃𝑟𝑜𝑔𝑛𝑜𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  exp( ― 
𝑠𝑡𝑑(𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑣𝑎𝑙𝑢𝑒𝑠 )

mean(|𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑒𝑛𝑑 ―  𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑡𝑎𝑟𝑡|))
where  imply the population of the values of all the features at failure and 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑣𝑎𝑙𝑢𝑒𝑠

 stand for the difference between the start and end values of each |𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑒𝑛𝑑 ―  𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑡𝑎𝑟𝑡|
individual feature. This is given in precise mathematical terms as:

(13)𝑃𝑟𝑜𝑔𝑛𝑜𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  exp( ― 
𝑠𝑡𝑑𝑖(𝑥𝑖( 𝑇𝑖))

𝑚𝑒𝑎𝑛𝑖|𝑥𝑖 (𝑇𝑖) ―  𝑥𝑖 (1)|)
where is a vector of the last data values from each sensor for unit  (i.e. just before unit  fails) 𝑥𝑖 (𝑇𝑖) 𝑖 𝑖
and  is a vector of the first data values from corresponding sensors for the same unit (i.e. at the 𝑥𝑖 (1)
beginning of operations).
To select the optimal set of features, the three metrics are combined to obtain a fitness value defined as:

(14)𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑜𝑟 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =  𝑤𝑚𝑀𝑜𝑛𝑜𝑡𝑜𝑛𝑖𝑐𝑖𝑡𝑦 +  𝑤𝑡𝑇𝑟𝑒𝑛𝑑𝑎𝑏𝑖𝑙𝑖𝑡𝑦 +  𝑤𝑝𝑃𝑟𝑜𝑔𝑛𝑜𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦
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The weights ,  and  indicate the importance of each metric and should sum up to one. For this 𝑤𝑚 𝑤𝑡 𝑤𝑝

work, each metric is weighted equally. The exclusion criterion for each feature is then defined as fitness 
> τ, where τ is a carefully selected threshold based on the values of the three metrics. Values for 
monotonicity, trendability and prognosability all lie in the range [0, 1], with 0 representing non-trendable 
features and 1 representing perfectly trendable features. The individual algorithms are implemented as 
MATLAB in-built functions and subsequently combined, thus selecting the most trendable sensors and 
obtaining a further reduced dataset, , which is ready for use in phase 2 of this methodology.𝑋𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑑𝑎𝑡𝑎

3.2 Phase 2, route 1 – fit linear model, construct health indicator and implement health stage division 

To obtain a single health indicator, the selected features are fused together to produce a single degradation 
trend that represents the instantaneous health states of each unit. There are various studies that propose different 
methods of doing this (Atamuradov et al., 2020; D. Wang et al., 2017). Other methods are presented in a 
review by (Lei et al., 2018). Fundamentally, the process involves two stages: health indicator (HI) construction 
and health stage (HS) division. HI construction can be further categorized into two: physics HI, which is related 
to the physics of failure and virtual HI, which involves fusing multiple sensor signals together to give a virtual 
description of the degradation trends of complex systems based on data. Having established a suitable HI, the 
HI profile is then subdivided into different health stages. Again, there are two broad ways of achieving this: a 
two-stage division into healthy and faulty states and a multi-stage division which assigns different health states 
as the unit progressively degrades from a healthy towards a failed state. Figure 5 shows the overall 
classification described in this section.

**Figure 5**

Fig. 5. Broad classification of health indicator construction and health stage division approaches.

Although it is useful to extract features from the data in order to gain insight into underlying trends, some 
original data can be used as features if they exhibit good trendability and monotonicity traits (T. Wang et al., 
2008). Bektas et al. (2017) established a single health indicator trajectory by fitting a linear model using 
multiple linear regression directly on multi-regime degradation data, thereby performing features selection, 
dimensionality reduction and sensor fusion in one step. For this work, a linear model is fit onto the data output 
from phase 1, described in Section 3.1. To achieve this, we will calculate the PFIF, which essentially provides 
information regarding the state of health of each unit at any time instance, . For this purpose,  corresponds 𝑡 𝑡
to , the index of any given data point as operation progresses from  until failure at . For any 𝓁 𝓁 = 1 𝓁 =  𝑇𝑖

run-to-failure data, the PFIF for unit  at any time index, , is therefore given by Eq. (16):𝑖 𝓁

                        (15)𝑃𝐹𝐼𝐹𝑖,𝓁 =  
𝑇𝑖 ―  𝓁

𝑇𝑖

Using the values of the vector  as a response variable and also the variables in the data , a 𝑃𝐹𝐼𝐹𝑖 𝑋𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑑𝑎𝑡𝑎,𝑖

simple linear model, which is given by Eq. (17), is fit to the data:

                                         (16)𝑃𝐹𝐼𝐹𝑖 =  𝜃0 + 𝜃1𝑥𝑖,1 + 𝜃2𝑥𝑖,2 + 𝜃3𝑥𝑖,3 + … + 𝜃𝑠𝑥𝑖,𝑠

where  is the bias term,  are the model coefficients and  are vectors representing the columns of 𝜃0 𝜃1,…,𝜃𝑠 𝑥𝑖,𝑠

. In a vectorized form, we have:𝑋𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑑𝑎𝑡𝑎,𝑖

,    [  ,   is an  array of data                        (17)𝑃𝐹𝐼𝐹𝑖 = 𝜃0 + 𝑋𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑑𝑎𝑡𝑎,𝑖𝜃 𝜃 =  𝜃1 ; 𝜃2 ;…;𝜃𝑠] 𝑋𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑑𝑎𝑡𝑎,𝑖 𝑚 𝑏𝑦 𝑁
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The test data represents data from presently running units similar to those whose run-to-failure data were 
used to train a linear model and construct health indicators. Preparing the test data in a similar way as described 
in Section 3.1 yields the data, . Applying the trained linear model on this data produces the 𝑋𝑇𝑒𝑠𝑡𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑑𝑎𝑡𝑎,𝑖

health states at every time instance up till the present time index, , for each individual unit in the fleet. The 𝓁𝑖

health states at the present time can then be extracted and grouped together based on similar health states. For 
this study, four health states are defined based on the PFIF values, which mostly lie in the range [0, 1], with 
one being perfectly healthy units and 0 being failed equipment. A multi-scale health stage (HS) division was 
adopted using the following criteria: above 0.75 – “healthy”; above 0.50 up to 0.75 – “good - no action”; above 
0.30 up to 0.50 – “good – monitor”; and, 0.30 and below – “soon-to-fail”. A three-stage HS division was also 
implemented with the following window boundaries: above 0.75 – “healthy”; above 0.45 up to 0.75 – “good”; 
and, 0.45 and below – “soon-to-fail”. Life-extension engineers may use expert judgment, and based on the 
peculiarity of the fleet, to assign different HS divisions. Equipment grouped together based on similar HS 
assignments can then be prioritized together for life-extension action and other associated logistics purposes.

3.3 Phase 2, route 2 – k-means clustering using fleet data

As an alternative to fitting a linear model to the data, a clustering algorithm can be used to group the units. 
Clustering is implemented after feature engineering and dimensionality reduction on the training data, thus 
identifying the trendable variables that are important condition indicators. The data that provides information 
regarding the current health state for each equipment is the last entry in the time-series for each unit. As such, 
the last row for each unit, , corresponding to the operational stage or time index, , is extracted, 𝑖 max(𝓁𝑖)
producing a reduced data, , which is an  by  array, where  is the number of units in 𝑋𝑇𝑒𝑠𝑡𝑑𝑎𝑡𝑎4𝑘 ― 𝑚𝑒𝑎𝑛𝑠 𝑚 𝑁 𝑚
the fleet and  is the number of selected trendable sensors. A k-means algorithm is then applied on the data 𝑁

, specifying the number of clusters to be equal to the desired number of health stages. The 𝑋𝑇𝑒𝑠𝑡𝑑𝑎𝑡𝑎4𝑘 ― 𝑚𝑒𝑎𝑛𝑠

overall flow of the proposed technique, covering phase 1, phase 2 route 1 and phase 2 route 2, is illustrated 
in Fig. 6. It is important to note that route 2 of phase 2 in this technique is a not as amenable to user 
specification as route 1, where users can make choices regarding the type of algorithm to use for fitting the 
regression model and the level of accuracy to aim for, including the use of non-linear models to obtain model 
parameters that yield better predictions. Using route 2, only the number of clusters (and their respective 
centroids) can be specified, which corresponds to the number of divisions in the multi-stage HS division.

**Figure 6**

Fig. 6. Methodological approach for determining the most vulnerable equipment for life-extension.

4. Case studies

To demonstrate the feasibility and applicability of the proposed technique, it is tested on the NASA’s 
publicly available database called C-MAPSS (Commercial Modular Aero-Propulsion System Simulation) 
(Saxena & Goebel, 2008).

4.1 Data description

C-MAPSS comprises four different run-to-failure datasets under varying combinations of fault modes and 
operational conditions. The training sets all start from a healthy state and terminate at the failure point of each 
unit. The test set starts from a healthy state and is terminated at some unknown point during each unit’s lifetime. 
For more details about the dataset, the readers can refer to Saxena et al. (2008). One of the datasets, FD001, is 
for a homogeneous fleet comprising run-to-failure data from 100 identical turbofan engines, with one failure 
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mode and under one set of operating conditions. Each of the 100 engine units has a distinct lifetime, , three 𝑡𝑖

columns representing operating conditions settings and another 21 columns representing sensor data. The 
dataset, which comes as a numerical array organized as described in section 3 phase 1, is ordered as presented 
in Table 3.

**Table 3**

Table 3. C-MAPSS dataset parameters and corresponding variables assigned

4.2 Application of the proposed technique

This section describes the application of the proposed technique on the dataset C-MAPSS FD001.

4.2.1 Phase 1 – data preparation and sensor selection

Data from some sensors are directly eliminated by observing some features of the data, such as the mean 
and the variance. Constant value data with near zero variances are eliminated as they do not provide any useful 
information regarding the condition of the units under observation. This step reduces the data, , from 21 𝑋
sensors to the data , comprising 14 sensors. The sensors that exhibit some variance, which are 𝑋𝑟𝑒𝑑𝑢𝑐𝑒𝑑

contained in , are sensors 2, 3, 4, 7, 8, 9, 11, 12, 13, 14, 15, 17, 20 and 21. The data, , is then 𝑋𝑟𝑒𝑑𝑢𝑐𝑒𝑑 𝑋𝑟𝑒𝑑𝑢𝑐𝑒𝑑

organized unit-by-unit as an ensemble of data for each unit, after which they are normalized using the 
standardization approach to obtain  and then smoothed using the RLOWESS algorithm.𝑋𝑖𝑟𝑒𝑑𝑢𝑐𝑒𝑑

To achieve further dimensionality reduction while ensuring that the most trendable sensors are retained for 
the construction of health indicators for each unit, the trendability, monotonicity and prognosability metrics 
are computed using the formulae in Eq. (11), Eq (12) and Eq. (15) respectively. Fig. 7(a), (b) and (c) show 
respectively three plots of trendability, monotonicity and prognosability metrics values obtained for 16 sensors. 
Figure 7(d) also shows the combined values, which are the sum of trendability, monotonicity and 
prognosability values. 

**Figure 7**

Fig. 7. The values for (a) trendability (b) monotonicity (c) prognosability and the combined metrics for 16 sensors.

To arrive at the final set of sensors to be fused to obtain the health indicators, the values of the three metrics 
are combined to obtain the plot showed in Fig. 7(d). The individual plots, as well as the combined plot, show 
that sensors 8, 9, 13, and 14 consistently exhibit the lowest trendability traits. Consequently, based on the 
exclusion criterion defined in Eq. (15), these sensors were discarded using the exclusion criterion fitness > 2.0, 
yielding the data , comprising the 10 selected sensors of 2, 3, 4, 7, 11, 12, 15, 17, 20 and 21. Fig. 8 𝑋𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑑𝑎𝑡𝑎

shows the degradation trend of the 10 selected sensors for the first three units.

**Figure 8**
Fig. 8. Degradation trend for 10 selected sensors on units 1, 2 and 3.

4.2.2 Phase 2, route 1 – construct health indicator and implement HS division

In order to fit a regression model to the preprocessed training data, , the PFIF is computed using 𝑋𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑑𝑎𝑡𝑎

the formula provided in Eq. (16). The degradation trajectory for each unit, , runs from  cycle to 𝑖 𝓁 = 1 𝓁 =  𝑇𝑖 
cycles, where  corresponds to the time index at which the trajectory is terminated (i.e. upon failure of the 𝑇𝑖

unit). These values are used to calculate the P-F interval and then the PFIF index, which is added as a column 
to the data  and used as the response variable for fitting the regression model to the data. A least 𝑋𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑑𝑎𝑡𝑎
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squares regression model is fit to the data using MATLAB, to obtain the bias term,  and the model 𝜃0

coefficients, . Values were averaged from two runs of the MATLAB code that produced good fits of the 𝜃𝑠

model, to give θo = 0.5019 and θ = [-0.0300; -0.0199; -0.0471; 0.0466; -0.0622; 0.0573; -0.0365; -0.0188; 
0.0314; 0.0369]. Using the model, the ten selected sensors are fused together to construct a single health 
indicator. The health indicators, some of which were predominantly monotonically increasing while others 
were predominantly monotonically decreasing, were all offset to start from one and then decrease progressively 
until failure. A visualization of the constructed HIs for all 100 units within the fleet is shown in Fig. 9.

**Figure 9**

Fig. 9. Constructed HIs using trained data for all 100 units within the fleet.

Following the procedure outlined in Section 3.2, the test data, which comprises data for the 100 units up to 
an undefined time, are imported into MATLAB and pre-processed to obtain . The trained 𝑋𝑇𝑒𝑠𝑡𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑑𝑎𝑡𝑎,𝑖

linear regression model is then used on  to predict the HIs for each of the 100 units in the test 𝑋𝑇𝑒𝑠𝑡𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑑𝑎𝑡𝑎,𝑖

dataset. A plot of the HIs for the first 20 units in the test data is shown in Fig. 10. It can be observed from Fig. 
10 that the trajectories for most of the units end abruptly. Extracting the HIs at the end of each trajectory gives 
the current health state of each unit. Equipment with the same health state can then be grouped together for the 
purpose of life-extension decision-making.

**Figure 10**

Fig. 10. Constructed HIs for the 20 units using the test dataset.

4.2.3 Phase 2, route 2 – Group units using k-means clustering

The fundamental goal of the proposed technique is to achieve grouping of equipment with similar health 
states so as to prioritize the most vulnerable equipment for life-extension actions. An alternative way to achieve 
this grouping is to apply a clustering algorithm, after pre-processing the data and selecting the most trendable 
features or sensors. From Fig. 10, it was established that the important indicator of the current health state for 
each unit is the last point in the data for each unit, corresponding to the point where each degradation trajectory 
ends. So, by extracting the last data point for each unit from the pre-processed test data,  we 𝑋𝑇𝑒𝑠𝑡𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑑𝑎𝑡𝑎,𝑖

obtain the data . A k-means algorithm is then run using random initialization for ten 𝑋𝑇𝑒𝑠𝑡𝑑𝑎𝑡𝑎4𝑘 ― 𝑚𝑒𝑎𝑛𝑠

replicates with 100 iterations in each replicate and square Euclidian distance as the distance measure. The 
number of clusters is set to four and then to three, for four-stage HS division and three-stage HS division 
respectively. This will produce groups of units that should have similar health states and thus help to prioritize 
life-extension decision-making. Section 5 presents the results obtained and discusses the findings. 

5. Results and discussion

This section presents the results obtained for algorithms implemented to perform three-stage and four-stage 
HS divisions. The results obtained using phase 2, route 1 of the technique (i.e. using a linear regression model) 
are compared with those obtained using phase 2, route 2 (i.e. using k-means clustering). Since the dataset 
comes with ground truth RUL values, the predicted PFIF results, which were mostly in the range [0, 1], were 
easily compared to the normalized values of the true PFIF values which were calculated as follows.

                                     (18)𝑇𝑟𝑢𝑒 𝑃𝐹𝐼𝐹𝑖,𝓁 =   
 𝑇𝑟𝑢𝑒 𝑅𝑈𝐿𝑖

 𝑇𝑟𝑢𝑒 𝑅𝑈𝐿𝑖 +  𝓁 
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                        (19)𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑇𝑟𝑢𝑒 𝑃𝐹𝐼𝐹𝑖,𝓁 =  
𝑇𝑟𝑢𝑒 𝑃𝐹𝐼𝐹𝑖,𝓁 ―  𝑚𝑖𝑛 (𝑇𝑟𝑢𝑒 𝑃𝐹𝐼𝐹𝑖,𝓁) 

𝑚𝑎𝑥 (𝑇𝑟𝑢𝑒 𝑃𝐹𝐼𝐹𝑖,𝓁) ―  𝑚𝑖𝑛 (𝑇𝑟𝑢𝑒 𝑃𝐹𝐼𝐹𝑖,𝓁)

Fig. 11 is a plot of the predicted PFIF using the regression model, against the normalized true PFIF for each unit, and 
it shows a very good match between the predicted values and the ground truth values.

**Figure 11**

Fig. 11. Comparison of predicted and true health indices.

5.1 Three-stage HS division

The grouping of equipment was implemented by setting window boundaries based on the predicted PFIF 
values in order to establish health states. The sub-sections below will present the results for the different health 
states.

5.1.1 Healthy units

The results obtained using both the regression model and k-means clustering are presented side by side in 
Table 4 for healthy units, for both the 3-stage and 4-stage HS divisions. For the three-stage HS division, it can 
be observed from the results that both the linear model and the k-means clustering algorithm grouped 27 out 
of 29 units as healthy. The other two units were grouped by the k-means algorithm as “good”. Also, the 
predicted as well as the normalised true PFIF values show that 83% of the healthy units have true PFIF values 
above 0.65; this corresponds to the units having spent only 35% of their lifetimes, with 65% of their lifetimes 
left. Given that the application of this work is for life-extension, and that healthy units are grouped as mostly 
“healthy”, with a few as “good”, this translates to 100% acceptable grouping.

**Table 4**
Table 4. Healthy units grouping for both 3-stage and 4-stage HS division (Number of units: 29)

For both the three-stage and four-stage HS divisions, it can be observed from Table 4 that group 2 of the k-
means clustering corresponds to the “healthy” units. For the four-stage HS division, it was observed that the 
match between the group assignments when using the regression model as compared to when using the k-
means clustering approach was not consistent. This is because many of those units grouped as “good” and 
“healthy” were assigned to one of the groups when using the regression model and to other groups when k-
means clustering is used. This is completely okay since the intent of this grouping in particular, and of 
prognostics in general, is to identify equipment that are about to fail before they actually fail. In that regard, 
equipment in a good state of health identified as such is not a cause for concern.

5.1.2 Good units

Table 5 presents the results for “good” units’ assignments for the three-stage HS division. In this case, 
group 1 of the k-means clustering corresponds to “good” units from the regression model. 17 out of 31 units 
were clustered as “good” by both approaches, while the k-means algorithm grouped another 13 as “healthy.” 
Only one unit was grouped by the k-means algorithm as “soon-to-fail.” Again, in the context of life-extension, 
if an equipment in a “good” state is wrongly categorised as “soon-to-fail,” there are no serious safety 
implications, even though there may be some associated logistics or cost implications. In terms of PFIF 
accuracy, 5 out of 31 units grouped as “good” have true PFIF values below 0.4 (i.e. less than 40% of their 
lifetime is left). This gives a grouping “accuracy” of about 84%.

**Table 5**
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Table 5. Good units grouping for 3-stage HS division (Number of units: 31)

5.1.3 Soon-to-fail

There is a good match between units grouped as “soon-to-fail” by using both approaches. The results 
presented in Table 6 for “soon-to-fail” units show that of the 40 units assigned to this group by the regression 
model, 31 were also assigned to the same group by the k-means clustering approach. The k-means approach 
assigned the other 9 units to group 1, which corresponds to “good” units. This is the main area of concern in 
terms of safety, reliability and availability; when “soon-to-fail” units are grouped as “good” units. However, 
the true PFIF values show that 39 out of the 40 units have values below 0.4 (i.e. all units have less than 40% 
of their lifetimes left). As such, the regression model has 97.5% “accuracy” in grouping. Looking at 
assignments using only the k-means approach, 35 units were actually grouped as “soon-to-fail,” with only two 
of them having true PFIF values above 0.4. This gives an “accuracy” of about 94% in grouping.

**Table 6**

Table 6. “Soon-to-fail” units grouping for 3-stage HS division (Number of units: 40).

5.2 Four-stage HS division

For the four-stage HS divisions, a different set of window boundaries, defined in Section 3.2, was set for 
the regression model while the parameter, k, was assigned a value of 4 for the k-means clustering approach. 
The results obtained are presented in the following sub-sections.

5.2.1 Healthy units

Given that the cut-off threshold for healthy units was set at values of predicted PFIF > 0.75 for both the 
three-stage and the four-stage HS divisions, the results obtained for “healthy” units for the regression model 
were the same. However, since the k-means clustering approach now has k = 4, the expectation was that a 
slightly different unit assignments will be obtained. As such, while the regression algorithm grouped 29 units 
as “healthy,” the k-means approach grouped 22 units as “healthy”. Details of the results have been presented 
and discussed in Section 5.1.1.

5.2.2 Good units – no action

One of the intents behind the four-stage HS division is to distinguish between units that have recorded very 
minimal degradation and those that have significant degradation but are still okay to be operated. Units with 
minimal degradation are grouped as “good – no action.” Using the specified window boundaries, 26 out of the 
100 units were extracted and grouped as “good – no action.” Out of these, the k-means approach grouped 10 
in the same category, nine as “good – monitor,” four as “healthy” and one as “soon-to-fail. However, an 
analysis of the true PFIF values for the units show that 2 units have PFIF values below 0.4, giving an 
“accuracy” of about 92% in grouping. Considering only the results for the k-means approach, there was no 
clear distinction between the groups “good – no action” and “healthy” as equipment having true PFIF values 
within the appropriate ranges were almost equally grouped into both health stages.

**Table 7**
Table 7. “Good – no action” groupings for 4-stage HS division (Number of units: 26)
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5.2.3 Good units – monitor

Table 8 presents the results obtained from using the regression model to group equipment as “good – 
monitor” along with the assignments using k-means for the same set of units. One of the units has a very low 
true PFIF value of 0.1850, implying that it was wrongly grouped and should have been grouped as “soon-to-
fail.” The k-means clustering approach assigned 11 out of the 16 units to the same group, four units were 
assigned as “soon-to-fail” while one was grouped as “good – no action”. Assignment accuracies based on true 
PFIF values are presented in summary in Table 8.

**Table 8**
Table 8. “Good – monitor” groupings for 4-stage HS division (Number of units: 16)

5.2.4 Soon-to-fail

Similar to the three-stage HS division, there is a good match between both approaches in grouping units as 
“soon-to-fail.” The results in Table 9 show that 26 out of 29 units were assigned to this group by both 
approaches, while the k-means algorithm assigned 3 equipment to the group “good – monitor.” This is an 
undesirable result given that all units due to fail soon should be identified. Considering only the k-means 
assignments, 32 units were assigned as “soon-to-fail,” out of which only one unit had a true PFIF value above 
0.4. This translates to about 97% “accuracy” in grouping.

**Table 9**
Table 9. “Soon-to-fail” groupings for 4-stage HS division (Number of units: 29)

As mentioned earlier, it is very important that no unit close to failure is grouped as either “healthy” or 
“good” as it will lead to unexpected failures. The results for both the three-stage and the four-stage HS division 
using both the regression model and the k-means algorithm show reasonably high classification accuracies 
based on the true PFIF values.

5.3 Summary of results

The summary of the entire groupings using both approaches and for the different multi-stage HS divisions is 
presented in Table 10. 

**Table 10**

Table 1. Summary of group assignments and accuracies (Note that percentages are based on number of units with true 
PFIF values within suitable thresholds).

In general, the k-means algorithm performed better for three-stage HS divisions. The k-means approach 
could not clearly distinguish between the division of “good units” into “no action” and “monitor” categories. 
However, to attain a better-defined grouping accuracy, the regression model is the proffered approach, since 
the window boundaries are user-defined. What must be noted is the importance of defining the window 
boundaries for different health states based on sound understanding on the technical details of the units.

5.4 Importance of experts’ judgements and other considerations

While the proposed technique has been demonstrated to produce consistent results, it is important to note a 
few important points. Machine learning approaches to solving engineering problems have been generally 
considered as black-box approaches due to the fact that it is difficult to explain the models used in clear and 
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specific mathematical terms. However, the reality of complex systems and the ubiquitous availability of data 
make their use inevitable. Therefore, experts’ judgements must be used to gauge the results before 
implementation. Fig. 6, which gives the overall flow of the proposed approach, factors in the important role of 
experts’ judgments. For instance, an equipment from a particular manufacturer which is known to have certain 
maintenance requirements, in spite of available data, must be considered irrespective of its grouping. 
Additionally, in order to cluster the equipment for life-extension actions (repair, upgrade or replacement), some 
other operational realities such as minimum downtime required to execute actions, safety implications, 
economic implications, etc. also need to be considered. Moreover, operational and environmental uncertainties 
like terrain (whether onshore or offshore), lead times for ordering of spares parts and logistics requirements 
for repairs all need to be factored into the decision-making framework.

6. Conclusion and future work

The fundamental theory behind data mining concepts have been around for a while now. Also, the practice 
of RCM and the use of P-F curves by maintenance and reliability engineers and specialists are well established. 
This work developed and implemented a technique that harnessed concepts from both fields, factoring in the 
recent rapid advances in sensor technologies and data collection capabilities, to help group and prioritize 
equipment within a homogeneous fleet for life-extension actions. This is a novel combination of both concepts 
and the results presented a remarkable consistency. For asset managers and decision makers, this is potentially 
an important tool that will help with better-informed and data-driven logistics planning and spare parts 
management. Much better grouping results can be achieved by using more accurate models which may include 
adding regularization to the regression model or formulating a more rigorous approach for establishing the 
window boundaries for use with the potential failure interval factor (PFIF).

The methodology for assessing the accuracy or suitability of unit assignments into groups can be formulated 
via a mathematically rigorous approach rather than just mere counts and comparison to the true PFIF as used 
in this work. Such a mathematical formulation, which is an area for future research, may in fact include the 
modelling of uncertainties into the accuracy of unit assignments. Furthermore, this work only considered 
identical units under the same operational settings for a single failure mode. It can be further extended and 
applied to a heterogeneous fleet with dissimilar units under varying loading conditions, different operational 
settings and multiple failure modes. Another important area of work will be a look at how life-extension actions 
carried out for any unit or group of units influence the continuous and ongoing use of the model. If, for instance, 
a life-extension action involves an upgrade and a replacement, it will be interesting to know how it affects the 
model in terms of base data availability for the affected unit and availability of specific sensors for additional 
or continuous data acquisition.

In terms of application, this work is essential for identifying and prioritizing vulnerable equipment for life-
extension. It adds to the repertoire of models, tools and decision support systems available to asset managers 
and reliability engineers. Feedback from the proposed process can potentially serve as useful input for plant 
and equipment design for longevity and also influence original equipment manufacturer (OEM) sensor 
placement philosophies.
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Fig. 1. RCM decision logic flowchart – adapted from  Liang et al. (2012).
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(a) (b)

(c) (d)

Fig. 7. The values for (a) trendability (b) monotonicity (c) prognosability and the combined metrics for 16 sensors.

Fig. 8. Degradation trend for 10 selected sensors on units 1, 2 and 3.



26

Fig. 9. Constructed HIs using trained data for all 100 units within the fleet.

Fig. 10. Constructed HIs for the 20 units using the test dataset.

Fig. 11. Comparison of predicted and true health indices.
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Table 1. RCM strategies and their associated application scenarios.

Maintenance 
strategy

Application scenario

No maintenance or 
run-to-failure

a. Failure of equipment/item has no safety or environmental consequences.
b.The economic consequence of failure is also negligible or tolerable.

Failure-finding a. Failure of equipment has no immediate obvious consequence.
b.Equipment typically has a backup protective safety device which can fail without being 

immediately evident.
Redesign a. Equipment whose behavior may not be fully known.

b.No known maintenance action will reduce the probability of failure.
c. Cost of known maintenance action outweighs economic consequence of failure and failure 

is not negligible or tolerable – redesign or redundancy becomes the option.
Scheduled discard a. Non-repairable items, e.g. pump impellers, seals, valve seats, etc.

b. Involves replacing and discarding equipment without regard to condition (as in conventional 
preventive maintenance).

Scheduled restoration a. Repairable equipment/items.
b.Suitable on-condition tasks cannot be devised to avert potential failure.
c. Involves overhauling or repairing items without regard to condition (as in conventional 

preventive maintenance).
On-condition 
maintenance

a. Degradable equipment/items.
b.Condition indicators are known and can be monitored using sensor data or other PT&I 

techniques.

Table 2. Pros, cons and application cases for the two broad classes of clustering algorithms

Clustering type Pros Cons Application cases
Hierarchical 
clustering 
(agglomerative 
and divisive)

a. No overlaps between 
clusters.

b. Can be applied to more 
variety of data than k-
means.

c. Typically yields a unique 
dendrogram (repeatable).

a. Applicable to relatively 
small datasets (<10,000 
observations).

b.Generating the hierarchical 
tree can be slow.

c. Can handle outliers well.
d.Does not follow a scale.

System and subsystems 
predictive maintenance 
Zhao et al. (2018); grouping 
maintainable equipment 
Abdelhadi (2019).

Partitional 
clustering (k-
means and its 
variants)

a. Computationally faster.
b. Can handle a larger 

number of observations 
than hierarchical 
clustering.

c. Clusters are clearly 
defined without overlaps.

d. Scalable as it is based on 
actual numerical data.

a. Difficulty in predefining 
optimal number of clusters.

b. Can be distorted by outliers.
c. Works only with numerical 

data.
d. Not repeatable. Random 

initialization potentially 
results in varying clusters.

Grouping maintenance 
activities Gholami & 
Hafezalkotob (2018); Fault 
type clustering Lahrache et 
al., (2017); Maintenance 
planning optimization 
(Jain, 2010; Gholami & 
Hafezalkotob, 2018). RUL 
estimation for 
heterogeneous fleet (Al-
Dahidi et al., 2016)
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Table 3. C-MAPSS dataset parameters and corresponding variables assigned

# column Measured parameter Unit of 
measurement

Variable assigned
(for this work)

1 Unit number -- unit_num
2 Time cycles Time
3 Operational setting 1 -- ops_set1
4 Operational setting 2 -- ops_set2
5 Operational setting 3 -- ops_set3
6 Total temperature at fan inlet °R sensor1
7 Total temperature at LPC outlet °R sensor2
8 Total temperature at HPC outlet °R sensor3
9 Total temperature at LPT outlet °R sensor4
10 Pressure at fan inlet psia sensor5
11 Total pressure in bypass-duct psia sensor6
12 Total pressure at HPC outlet psia sensor7
13 Physical fan speed rpm sensor8
14 Physical core speed rpm sensor9
15 Engine pressure ratio (P50/P2) -- sensor10
16 Static pressure at HPC outlet psia sensor11
17 Ratio of fuel flow to Ps30 pps/psi sensor12
18 Corrected fan speed rpm sensor13
19 Corrected core speed rpm sensor14
20 Bypass Ratio -- sensor15
21 Burner fuel-air ratio -- sensor16
22 Bleed Enthalpy -- sensor17
23 Demanded fan speed rpm sensor18
24 Demanded corrected fan speed rpm sensor19
25 HPT coolant bleed lbm/s sensor20
26 LPT coolant bleed lbm/s sensor21

Table 4. Healthy units grouping for both 3-stage and 4-stage HS division (Number of units: 29)

Unit Predicted
PFIF

Normalized
True PFIF

True
RUL

Model 
HS

k-means HS
(3-stage)

k-means HS
(4-stage)

1 0.9225 0.9867 112 Healthy Group 2 Group 2
2 0.9039 0.8334 98 Healthy Group 2 Group 2
6 0.7707 0.5742 93 Healthy Group 2 Group 2
9 1.0169 0.8360 111 Healthy Group 2 Group 2
11 0.8313 0.6652 97 Healthy Group 1 Group 4
14 0.9155 0.8764 107 Healthy Group 2 Group 2
15 0.7795 0.6430 83 Healthy Group 2 Group 2
22 1.0152 0.9299 111 Healthy Group 2 Group 2
25 0.9653 0.9447 145 Healthy Group 2 Group 4
26 0.8915 0.7591 119 Healthy Group 2 Group 2
33 0.9367 0.8502 106 Healthy Group 2 Group 2
39 1.0229 1.0000 142 Healthy Group 2 Group 2
44 0.9086 0.8361 109 Healthy Group 2 Group 2
47 0.9703 0.8102 135 Healthy Group 2 Group 2
48 0.7833 0.6682 92 Healthy Group 2 Group 4
50 0.7721 0.6356 79 Healthy Group 1 Group 4
55 0.8107 0.6772 137 Healthy Group 2 Group 4
65 0.8385 0.8025 128 Healthy Group 2 Group 4
67 0.8464 0.6407 77 Healthy Group 2 Group 2
69 0.9089 0.8660 121 Healthy Group 2 Group 4
71 0.7906 0.7909 118 Healthy Group 2 Group 4
78 0.8961 0.7427 107 Healthy Group 2 Group 4
83 0.8785 0.8146 137 Healthy Group 2 Group 4
85 1.0173 0.9777 118 Healthy Group 2 Group 2
86 0.7517 0.5446 89 Healthy Group 2 Group 4
87 0.9169 0.8436 116 Healthy Group 2 Group 4
88 0.8135 0.7830 115 Healthy Group 2 Group 2
96 0.7888 0.7265 137 Healthy Group 2 Group 2
99 0.7825 0.6756 117 Healthy Group 2 Group 2
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Table 5. Good units grouping for 3-stage HS division (Number of units: 31)

Unit Predicted
PFIF

Normalized
True PFIF

True 
RUL

Model 
HS

k-means 
HS

3 0.4564 0.4217 69 Good Group 1
4 0.6494 0.5301 82 Good Group 1
5 0.6767 0.5897 91 Good Group 2
7 0.5153 0.4332 91 Good Group 1
8 0.4969 0.4351 95 Good Group 1
16 0.6635 0.5172 84 Good Group 2
19 0.5808 0.4718 87 Good Group 1
21 0.5798 0.3220 57 Good Group 1
23 0.6426 0.5680 113 Good Group 1
28 0.6954 0.4567 97 Good Group 2
29 0.5316 0.4099 90 Good Group 2
30 0.6292 0.5427 115 Good Group 1
38 0.6067 0.3321 50 Good Group 2
45 0.5936 0.5201 114 Good Group 1
51 0.5792 0.5376 114 Good Group 2
54 0.5838 0.5416 97 Good Group 2
57 0.5224 0.4715 103 Good Group 1
59 0.7438 0.6773 114 Good Group 2
60 0.5648 0.4889 100 Good Group 2
63 0.4536 0.3735 72 Good Group 1
70 0.5967 0.4589 94 Good Group 1
73 0.6591 0.6655 131 Good Group 2
74 0.6635 0.5865 126 Good Group 1
75 0.7094 0.6959 113 Good Group 2
79 0.5214 0.4616 63 Good Group 1
80 0.5907 0.4872 90 Good Group 1
89 0.6639 0.5279 136 Good Group 2
94 0.4627 0.3411 55 Good Group 1
95 0.6753 0.7323 128 Good Group 2
97 0.5991 0.4557 82 Good Group 3
98 0.4534 0.3874 59 Good Group 1

Table 6. “Soon-to-fail” units grouping for 3-stage HS division (Number of units: 40).

Unit Predicted
PFIF

Normalized
True PFIF

True
RUL

Model 
HS

k-means 
HS

10 0.3764 0.3948 96 Soon-to-fail Group 1
12 0.4358 0.4346 124 Soon-to-fail Group 3
13 0.3651 0.3872 95 Soon-to-fail Group 3
17 0.2602 0.2622 50 Soon-to-fail Group 3
18 0.2058 0.1850 28 Soon-to-fail Group 3
20 0.0324 0.0614 16 Soon-to-fail Group 3
24 0.0678 0.0839 20 Soon-to-fail Group 3
27 0.4133 0.3777 66 Soon-to-fail Group 1
31 -0.0859 0.0077 8 Soon-to-fail Group 3
32 0.3381 0.2834 48 Soon-to-fail Group 1
34 -0.1119 0.0000 7 Soon-to-fail Group 3
35 0.0754 0.0254 11 Soon-to-fail Group 3
36 0.2490 0.1286 19 Soon-to-fail Group 1
37 0.1405 0.1507 21 Soon-to-fail Group 3
40 0.3335 0.1850 28 Soon-to-fail Group 3
41 0.1418 0.1241 18 Soon-to-fail Group 3
42 0.0032 0.0354 10 Soon-to-fail Group 3
43 0.3733 0.2922 59 Soon-to-fail Group 3
46 0.3231 0.2766 47 Soon-to-fail Group 1
49 -0.0802 0.0414 21 Soon-to-fail Group 3
52 0.0819 0.1312 29 Soon-to-fail Group 3
53 0.1987 0.1362 26 Soon-to-fail Group 3
56 0.2212 0.0869 15 Soon-to-fail Group 1
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Table 7. “Good – no action” 
groupings for 4- stage HS 

division (Number of units: 26)

Unit Predicted
PFIF

Normalized
True PFIF

True
RUL

Model 
HS

k-means 
HS

4 0.6494 0.5301 82 Good - no action Group 3
5 0.6767 0.5897 91 Good - no action Group 2
7 0.5153 0.4332 91 Good - no action Group 3
16 0.6635 0.5172 84 Good - no action Group 2
19 0.5808 0.4718 87 Good - no action Group 3
21 0.5798 0.3220 57 Good - no action Group 3
23 0.6426 0.5680 113 Good - no action Group 4
28 0.6954 0.4567 97 Good - no action Group 4
29 0.5316 0.4099 90 Good - no action Group 4
30 0.6292 0.5427 115 Good - no action Group 3
38 0.6067 0.3321 50 Good - no action Group 4
45 0.5936 0.5201 114 Good - no action Group 3
51 0.5792 0.5376 114 Good - no action Group 4
54 0.5838 0.5416 97 Good - no action Group 2
57 0.5224 0.4715 103 Good - no action Group 4
59 0.7438 0.6773 114 Good - no action Group 2
60 0.5648 0.4889 100 Good - no action Group 4
70 0.5967 0.4589 94 Good - no action Group 4
73 0.6591 0.6655 131 Good - no action Group 4
74 0.6635 0.5865 126 Good - no action Group 3
75 0.7094 0.6959 113 Good - no action Group 2
79 0.5214 0.4616 63 Good - no action Group 3
80 0.5907 0.4872 90 Good - no action Group 3
89 0.6639 0.5279 136 Good - no action Group 4
95 0.6753 0.7323 128 Good - no action Group 4
97 0.5991 0.4557 82 Good - no action Group 1

Table 8. “Good – monitor” groupings for 4-stage HS division (Number of units: 16)

Unit Predicted
PFIF

Normalized
True PFIF

True
RUL

Model 
HS

k-means 
HS

3 0.4564 0.4217 69 Good - monitor Group 4
8 0.4969 0.4351 95 Good - monitor Group 3
10 0.3764 0.3948 96 Good - monitor Group 3
12 0.4358 0.4346 124 Good - monitor Group 3
13 0.3651 0.3872 95 Good - monitor Group 1
27 0.4133 0.3777 66 Good - monitor Group 3
32 0.3381 0.2834 48 Good - monitor Group 3
40 0.3335 0.1850 28 Good - monitor Group 1
43 0.3733 0.2922 59 Good - monitor Group 1
46 0.3231 0.2766 47 Good - monitor Group 3
63 0.4536 0.3735 72 Good - monitor Group 3
72 0.3421 0.3196 50 Good - monitor Group 3

58 0.1746 0.1847 37 Soon-to-fail Group 3
61 0.0945 0.1097 21 Soon-to-fail Group 3
62 0.1633 0.2046 54 Soon-to-fail Group 3
64 0.1404 0.1441 28 Soon-to-fail Group 3
66 0.2531 0.0706 14 Soon-to-fail Group 3
68 -0.0256 0.0101 8 Soon-to-fail Group 3
72 0.3421 0.3196 50 Soon-to-fail Group 1
76 -0.0740 0.0173 10 Soon-to-fail Group 3
77 0.1484 0.1844 34 Soon-to-fail Group 3
81 -0.0803 0.0038 8 Soon-to-fail Group 3
82 -0.0128 0.0254 9 Soon-to-fail Group 3
84 0.3014 0.2880 58 Soon-to-fail Group 3
90 0.2574 0.1679 28 Soon-to-fail Group 3
91 0.2184 0.1400 38 Soon-to-fail Group 1
92 0.1977 0.1109 20 Soon-to-fail Group 3
93 0.3072 0.2961 85 Soon-to-fail Group 1
100 0.1791 0.0769 20 Soon-to-fail Group 3
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Unit Predicted
PFIF

Normalized
True PFIF

True
RUL

Model 
HS

k-means 
HS

84 0.3014 0.2880 58 Good - monitor Group 1
93 0.3072 0.2961 85 Good - monitor Group 3
94 0.4627 0.3411 55 Good - monitor Group 3
98 0.4534 0.3874 59 Good - monitor Group 3

Table 9. “Soon-to-fail” groupings for 4-stage HS division (Number of units: 29)

Unit Predicted
PFIF

Normalized
True PFIF

True
RUL

Model 
HS

k -means 
HS

17 0.2602 0.2622 50 Soon-to-fail Group 1
18 0.2058 0.1850 28 Soon-to-fail Group 1
20 0.0324 0.0614 16 Soon-to-fail Group 1
24 0.0678 0.0839 20 Soon-to-fail Group 1
31 -0.0859 0.0077 8 Soon-to-fail Group 1
34 -0.1119 0.0000 7 Soon-to-fail Group 1
35 0.0754 0.0254 11 Soon-to-fail Group 1
36 0.2490 0.1286 19 Soon-to-fail Group 3
37 0.1405 0.1507 21 Soon-to-fail Group 1
41 0.1418 0.1241 18 Soon-to-fail Group 1
42 0.0032 0.0354 10 Soon-to-fail Group 1
49 -0.0802 0.0414 21 Soon-to-fail Group 1
52 0.0819 0.1312 29 Soon-to-fail Group 1
53 0.1987 0.1362 26 Soon-to-fail Group 1
56 0.2212 0.0869 15 Soon-to-fail Group 3
58 0.1746 0.1847 37 Soon-to-fail Group 1
61 0.0945 0.1097 21 Soon-to-fail Group 1
62 0.1633 0.2046 54 Soon-to-fail Group 1
64 0.1404 0.1441 28 Soon-to-fail Group 1
66 0.2531 0.0706 14 Soon-to-fail Group 1
68 -0.0256 0.0101 8 Soon-to-fail Group 1
76 -0.0740 0.0173 10 Soon-to-fail Group 1
77 0.1484 0.1844 34 Soon-to-fail Group 1
81 -0.0803 0.0038 8 Soon-to-fail Group 1
82 -0.0128 0.0254 9 Soon-to-fail Group 1
90 0.2574 0.1679 28 Soon-to-fail Group 1
91 0.2184 0.1400 38 Soon-to-fail Group 3
92 0.1977 0.1109 20 Soon-to-fail Group 1
100 0.1791 0.0769 20 Soon-to-fail Group 1

Table 2. Summary of group assignments and accuracies (Note that percentages are based on number of units with true 
PFIF values within suitable thresholds)

Three-stage HS division Four-stage HS division
Number of units and percentage accuracy Number of units and percentage accuracyCategory Model Accuracy k-means Accuracy Category Model Accuracy k-means Accuracy

Healthy 29 83% 40 75% Healthy 29 83% 22 95%
Good – no action 26 100% 23 96%Good 31 84% 28 97% Good - monitor 16 94% 24 67%*

Soon-to-fail 40 97% 32 100% Soon-to-fail 29 100% 31 84%

*Low because k-means algorithm could not clearly distinguish this group; some were assigned to the group above it and others to the 
group below.
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RESEARCH HIGHLIGHTS

 A novel framework for prioritizing equipment toward life extension;

 Combining the concept of P-F curve in condition monitoring with machine learning;

 Adopting data mining and k-means clustering algorithms to determine most vulnerable 

equipment for end-of-life treatment;

 To cluster equipment with similar degradation profiles and same safety performance 

requirements;

 To validate the proposed models using the NASA’s publicly available datasets.


