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Abstract

Acoustic Event Classification (AEC) has become a significant task for machines to perceive the surrounding auditory
scene. However, extracting effective representations that capture the underlying characteristics of the acoustic events
is still challenging. Previous methods mainly focused on designing the audio features in a ‘hand-crafted’ manner.
Interestingly, data-learnt features have been recently reported to show better performance. Up to now, these were
only considered on the frame-level. In this article, we propose an unsupervised learning framework to learn a vector
representation of an audio sequence for AEC. This framework consists of a Recurrent Neural Network (RNN) encoder
and a RNN decoder, which respectively transforms the variable-length audio sequence into a fixed-length vector
and reconstructs the input sequence on the generated vector. After training the encoder-decoder, we feed the audio
sequences to the encoder and then take the learnt vectors as the audio sequence representations. Compared with
previous methods, the proposed method can not only deal with the problem of arbitrary-lengths of audio streams,
but also learn the salient information of the sequence. Extensive evaluation on a large-size acoustic event database
is performed, and the empirical results demonstrate that the learnt audio sequence representation yields a significant
performance improvement by a large margin compared with other state-of-the-art hand-crafted sequence features for
AEC.

Keywords: Audio sequence-to-vector, recurrent autoencoder, acoustic event classification, machine learning, deep

learning, computer audition

1. Introduction

Acoustic Event Classification (AEC) plays an essen-
tial role in enabling the environmental awareness for
intelligent machines, and has recently attracted consid-
erable attention (Chul (2008)); [Stowell et al.| (2015); |Ye
et al.| (2015); lPhan et al.| (2016))). It can be referred
to the field of Computational Auditory Scene Analysis
(CASA) (Wang and Brown| (2006))), which has an as-
sumption that the audio recordings can be automatically
categorised by the location where they were recorded.
It has a close relationship to another well-documented
task, Acoustic Event Detection (AED) (Phan et al.
(2014); Xia et al.| (2019)), where the latter focuses on
automatically finding accurate onset and offset of an
acoustic event (e. g., a car passing) in a given duration
of audio recording. In many previous studies, the two
tasks are jointly implemented in a system that, the au-
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dio recordings were segmented by AED then classified
into different groups in the scheme of the AEC task.
The recent trend including this proposed work prefers a
holistic AEC system which does not need a segmenta-
tion step in the AEC task.

One central goal of AEC is to extract discrimi-
native representations that are robust enough to cap-
ture the acoustic event content. In the past decade,
many efforts have been reported towards this direction.
For example, following the success in speech recog-
nition, Mel-Frequency Cepstral Coefficients (MFCC)
have been applied as the most dominant feature type for
AEC (Ma et al.| (2006); \Giannoulis et al.| (2013)). How-
ever, unlike speech recognition, AEC highly relies on
longer temporal information to make a decision (Chu
et al.[(2009)). In this regard, spectro-temporal features
were introduced to capture the event modulation pat-
terns in both time and frequency domains (Schroder
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et al.| (2015)); Rakotomamonjy and Gasso| (2015)); Ren
et al.| (2017a)). For instance, a filterbank of two-
dimensional Gabor functions was used to decompose
the the spectro—temporal power density into multiple
components (Schroder et al| (2015)). Similar work
was done in (Chu et al.| (2009)), where a Gabor dic-
tionary was implemented with atom parameters (i.e.,
scale, time, frequency, and phase) for the Matching Pur-
suit (MP) decomposition, and the generated MP features
have shown their efficiency (Chu et al.|(2009)). Further-
more, another trend aims to build higher-level features
from the spectro-temporal features of acoustic event. In
this context, Histogram of Gradients (HOG) representa-
tion was investigated to provide the information of the
changing direction of spectral power (Rakotomamonjy
and Gassol| (2015)). Besides, a fusion of acoustic and
visual features was proposed for the AEC task in (Xie
and Zhu| (2019)). Despite its efficiency, it is claimed
that using a fusion of acoustic and visual features in-
creases the computational cost. Before executing fea-
ture extraction and classification, it was also found that
a segmentation step was needed and helps to improve
the model robustness in a noisy scenario (Mulimani and
Koolagudi| (2019)). Although huge efforts have been
made on designing optimal features, AEC still remains
a challenging task since the audio contains high variety
owing to the complex acoustic environment. For this
reason, a solution is to combine a variety of features ex-
tracted in either time or frequency domain into a fused
high-dimensional space (Zhang and Schuller| (2012)).
The primary assumption is that the classification model
can automatically select important features for a specific
class, which, however, can be quite challenging during
model building.

Another ignored challenge is that most of the previ-
ous works were mainly based on Fourier transformation
features, which cannot optimise the Heisenberg-like
time—frequency trade-off (De Bruijn| (1967)). There-
fore, a multi-resolution analysis should be taken into ac-
count. Qian et al. used wavelet-based features in (Qian
et al.| (2017)) and found that it can improve the per-
formance of the models built by only using Fourier
transformation features. Different from these human
hand-crafted features, some other models were built on
higher representations learnt via deep learning (LeCun
et al.| (2015)). Ren et al. introduced scalogram-based
representations to the AEC task in (Ren et al.[ (2017b,
2018b))). Furthermore, an attention-based convolutional
neural network (CNN) model was proposed in (Ren
et al. (2018a)). Zhang et al. additionally proposed
a fine-resolution CNN (FRCNN), which can make the
feature representations be easily customised in various

time—frequency resolutions (Zhang et al.| (2020)). Ab-
doli et al. proposed a one-dimensional CNN based
system which can learn representations directly from
the audio signal, which outperformed the human hand-
crafted features and the 2D CNN based representa-
tions (Abdoli et al.| (2019)).

Apart from the above mentioned supervised learn-
ing scenarios, deep unsupervised representation learn-
ing techniques have achieved tremendous success in
machine learning (Hinton et al.| (2006)); [Bengio et al.
(2006, [2013)). The key idea is to learn more complex
abstractions as data representations in the higher layers
of artificial deep neural networks from simple features
in the lower layers in an unsupervised training fashion.
The unsupervised representation learning has begun to
be applied to AEC, and has shown its efficiency in state-
of-the-art research. In (McLoughlin et al.|(2015)), Deep
Belief Networks (DBN) were employed for pre-training
with unlabelled data. The extracted bottleneck features
were then fed into a concatenated softmax layer for
final classification. To capture the temporal informa-
tion, sequential frames within a sliding window were
batched as the network input. Similarly, a fully Deep
Neural Network (DNN) structure was introduced in (Xu
et al.[(2016)), where the raw features in continuum were
scaled into one super high-dimensional vector and then
considered to be the input for a deep ‘pyramid’ struc-
ture. All these unsupervised representation learning re-
searches have advanced the performance of AEC sys-
tems significantly.

However, all these works either attempt to learn high-
level representations at the frame-level, as the studies
did in the field of speech recognition (McLoughlin et al.
(2015)); [Lee et al.| (2009)), or assume that the analysed
recordings share a fixed duration (Xu et al.| (2016). In-
deed, many event sounds have a strong temporal domain
signature as aforementioned. For instance, the chirping
of insects is typically noise-like with a broad and flat
spectrum, which makes it hard for a system to distin-
guish it as a noise or an insect sound within one or sev-
eral audio frames. Moreover, the acoustic events are
often presented in arbitrary lengths, rather than fixed
lengths. This renders the work in (Xu et al.| (2016))
infeasible in realistic applications. To overcome the
raised problems for AEC, we propose an unsupervised
sequence representation learning approach, which em-
ploys multilayer Grated Recurrent Unit Recurrent Neu-
ral Networks (GRU-RNN) to learn representations of
audio sequences. The model consists of a RNN encoder
to map an input sequence into a fixed-length vector, and
a RNN decoder to reconstruct the input sequence from
the generated vector into a sequence-to-sequence learn-



ing strategy. Our primary assumption is that the rep-
resentation captures the sequence information as it inte-
grates a ‘restoration ability’ with the help of the decoder.

The employed encoder-decoder architecture is in-
spired by the ones used in natural language process-
ing (Sutskever et al.|(2014)), where the architecture was
used for, for example, translating sentences from one
language to another (Sutskever et al.| (2014); Bahdanau
et al.[(2014); Luong et al.|(20135))), or predicting the next
sentence from previous ones (Shang et al.|(2015)). Sig-
nificantly differing from these works, the essential idea
of the proposed framework in this article aims to learn
a vector representation of a sequence with an arbitrary
length. The learnt representations can then be utilised
for pattern recognition by any classification models.

The proposed approach is partially motivated by the
work in (Srivastava et al.| (2015)), where a Long Short-
Term Memory (LSTM) encoder-decoder architecture
was employed for video reconstruction and future pre-
diction. In addition, it relates to (Dai and Le| (2015)) as
well, where the LSTM encoder-decoder was utilised for
initialising the neural networks and further improving
their generalisation capability. The proposed approach,
however, is the attempt to obtain a vector representation
in a purely unsupervised learning procedure.

The major contributions of this article mainly in-
clude: i) We propose an unsupervised learning frame-
work to extract high-level audio sequence representa-
tions via a GRU-RNN encoder-decoder for AEC. Com-
pared with previous works, this framework not only can
deal with flexible-length audio recordings. More im-
portantly, it also holds the potential to distil the inherent
event characteristics embedded in the audio sequences
through infinite unlabelled data, which are ubiquitous
and cheep to obtain due to popularity of digital devices.
ii) We evaluate the performance of the learnt sequence
representations on a large-scale acoustic event database.
The results demonstrate the high effectiveness and ro-
bustness of the learnt representations. iii) The proposed
method cannot only benefit the future work in AEC sys-
tem design, but also other relevant studies in audio or
multi-modality related applications.

2. Related Work

There are two dominant methods to represent the au-
dio sequence for AEC. The first method is likely in-
spired by speech recognition technology, in which the
whole sequence is represented by sequential Low-Level
Descriptors (LLDs) (e.g., MFCCs) frame by frame.
Then, it uses generative models to estimate the joint
probability distribution of features and labels to arrive at

a final judgment (Stowell et al.|(2015))), or uses discrimi-
native models like by a Support Vector Machine (SVM)
to predict the frames successively then voting for a fi-
nal decision (McLoughlin et al.| (2015)). While the se-
quence temporal information is going to be utilised as
mentioned above, they are still far from being well-
explored. The second method intends to expand all
descriptors and concatenates them into a long vector,
and then feeds the vector into a model for discrimina-
tive training and evaluation (Xu et al| (2016)). This
method simply assumes that all audio recordings have
a fixed length. Also, this method possibly results in a
curse of dimension issue when the recording duration
increases. Rather than straightforwardly using the se-
quential frame-wise LLDs, recent promising methods
are more in favour of the sequence-wise statistic fea-
tures. These methods show the ability to handle the
arbitrary-length recordings, and map them into fixed-
dimensional vector representations.

One efficient method is the Bag-of-Audio-Words
(BoAW) (Aucouturier et al| (2007); [Lu et al.| (2014)).
It uses a codebook of acoustic words (i. e., frame-level
LLDs) that are randomly selected or generated via a
clustering method (i. e., k-means) on the training set, to
quantise the frame-wise LLDs. Then, a histogram of the
occurrences of each word in the dictionary is built over
the whole sequence, and regarded as the sequence rep-
resentation. Another popular method is based on func-
tionals (e. g., mean, standard deviation, skewness, kur-
tosis, maximum, minimum), which are applied to each
of the LLD contours to extract the statistic information
over the whole sequence (Zhang and Schuller (2012)).
However, all of these features for audio sequence are
still hand-crafted.

Recently, some pre-trained models are proposed to
extract to extract good embeddings from audio, e.g.,
the OpenL3ﬂ These models were pre-trained by large
amount of audio data and can be used to train shallow
classifiers with limited size of data /Cramer et al.|(2019).
We believe this contribution can significantly help over-
come the (labelled) data scarcity issue for specific au-
dio classification task. It is noted that building such
efficient pre-trained models still need large amount of
labelled data and huge computational resources. Ad-
ditionally, transfer learning technologies are quite de-
pendent on empirical knowledge that can make the pre-
trained models work well. In this article, we propose
to learn the audio sequence representation in an unsu-
pervised way for the application of AEC. Although a
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Figure 1: Illustration of Gated Recurrent Unit.

related work has been done in (Chung et al.| (2016)), it
is mainly focused on word-level audio for spoken term
detection. To the best of our knowledge, this is the first
effort in this direction towards modelling the long audio
sequence for a classification task.

3. Unsupervised Learning of Audio Sequence Rep-
resentations

In this article, we are interested in evaluating the
performance of a RNN-based sequence-to-sequence
encoder-decoder approach for AEC. Before an empir-
ical evaluation, we first describe the proposed method
in this section.

3.1. Grated Recurrent Unit

To implement the RNN encoder-decoder, we select
the Grated Recurrent Unit (GRU) as the recurrent hid-
den unit of our RNNs, which was initially proposed
by Cho et al. (Cho et al.| (2014)). Analogous to the
LSTM unit, this recurrent unit can also capture the long-
term dependencies in sequence-based tasks and can well
address the vanishing gradient problem (Chung et al.
(2014)). Hence, GRU is often regarded as an alternative
to LSTM units. However, the GRU has fewer parame-
ters since it does not have a separate memory cell nor
an output gate, which results in a faster training process
and less-data demand for generalisation. Besides, many
experiments have shown that the GRU performs com-
petitive to or slightly better than the LSTM unit in most
tasks (Chung et al.| (2014); Jozefowicz et al.| (2015)).

The typical structure of a GRU is depicted in Fig.
which consists of a reset gate r, an update gate z, an
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Figure 2: Unsupervised framework for learning of audio sequence
representations with a sequence-to-sequence Recurrent Neural Net-
work (RNN) encoder-decoder.

activation £, and a candidate activation . Mathemat-
ically, let x = (x,Xp,...,Xr) be an input audio se-
quence, where x, € R isinad dimension feature space
(e. g., MFCC). The activation h{ of the j-th GRU at time
t is updated by the previous activation hfi , and the can-

didate activation %/, that is

n =1 -z)Hh | +2h. (1)
The update gate z, is calculated by
7 = sigm(WeX, + Wichiy + by, &)

where W denotes the weights matrix and b stands for
the bias vector. The update gate z/ is used for deciding
how much the activation h’ is to be updated with a new
activation h’ Thus, when z/ is close to zero, the hidden
state almost keeps unchanged in the next time-step. Op-
posed to this, when zf is close to one, the hidden state
will be overwritten by a new version. In this way, it is
expected to maintain any important feature owing to the
update gate of the GRU. '

The candidate activation iz,] is computed mainly by
considering the input x,, the reset gate r;, and the previ-
ous time-step hidden activation h,_;, as follows

h] = tanh(WyX, + Win(r, ©h,_) + by, (3)

where © is an element-wise multiplication, and r; is a
set of reset gates. Here, the reset gate r/ decides on how
much the previous activation h‘tj_l impacts the candidate
activation 71{ . Only when r; equal zero, the candidate ac-
tivation will be overwritten by the current inputs. Sim-
ilar to the update gate, the j-th reset gate is computed
by .

rtj = sigm(WX,x, + Whrht—l + br)j~ (4‘)

3.2. Audio Sequence Representation Learning

The proposed unsupervised representation learning
framework of audio sequences is illustrated in Fig. [2]



which comprises a GRU-RNN encoder and a GRU-
RNN decoder. The primary objective of this framework
is to transform an arbitrary-length audio segment, given
as a sequence of feature vectors x = (Xi,Xo,...,X7),
into one fixed-length vector representation v.
Specifically, the RNN encoder reads the acoustic fea-
ture x, sequentially and reversely as done in (Sutskever
et al.|(2014)), and the hidden state h, is updated accord-

ingly by
h, = f(x;,h 1,2, 1)) )

where f denotes the GRU activation function as intro-
duced in the above section. After the last acoustic fea-
ture x; has been read and processed, the hidden state h;
of the RNN encoder can be viewed as the learnt vector
representation v of the whole input sequence.

The decoder aims to reconstruct the input sequence
of the encoder in a ‘normal’ direction, as X =
(X1,X2,...,X7). To do this, the last hidden state h; of
the encoder is copied to the decoder as its initial hidden
state, i.e., ﬁl =h,.

Then, the decoder predicts the feature vector X by
given its hidden state ﬁ,, update gate Z,_;, reset gate f,_,
and its input x,_;, that is,

X = g(X;_l,ﬁ,,i,_l,f;_l), (6)

where g is the GRU activation function as well. Note
that, rather than using the previously predicted feature
sequence, we utilise the original feature sequence as the
decoder input, which is motivated by the finding of the
work (Bengio et al.|(2015)). That is, the original feature
sequence is helpful in improving the model robustness
to its own errors when training.

The RNN encoder and decoder are jointly trained by
minimising the reconstruction error, measured by the
averaged Mean Square Error (MSE):

T

I .

N LR )
t=1

The whole training process is carried out in a fully unsu-
pervised manner since label information is not required
at all.

Finally, when the audio sequences are fed into the
pre-trained encoder-decoder, and the last hidden state
of the encoder for each audio sequence will be viewed
as its fixed-dimensional vector representation v. Since
this vector is able to reconstruct itself by the RNN de-
coder, we believe that such a vector contains the whole
sequence information in a compressed way.

Table 1: Quantitative description of Findsounds2016.

category #class #segment duration
Animals 67 1998 1h 53m
Birds 102 1766 1h 53m
Household 53 2097 1h 27m
Insects 7 235 16m
Mayhem 35 1471 50m
Miscellaneous 70 2628 1h 45m
Musical Instruments 57 4112 3h 35m
Nature 18 754 1h 3m
Office 18 1188 50m
People 45 2165 1h 44m
Sports Recreation 22 266 9m
Tools 21 296 18m
TV Movies 22 645 24m
Vehicles 33 1714 2h 9m
Total 570 21335 18h 23m

4. Experiments and Results

In this section, we are devoted to estimating the effec-
tiveness and the robustness of the proposed framework
for learning audio sequence representations. Exten-
sive experiments are conducted on a large-size acoustic
event database, and the empirical results are compared
with other state-of-the-art baselines.

4.1. Database Description

The database selected for our experiments — Find-
sounds2016 — is supposed to be a large publicly avail-
able databases for the AEC research when conducting
the experiments (Piczak| (2015)). It was collected from
the website of ‘www.findsounds.com’, which provides
a comprehensive set of event-annotated audio record-
ings from real environments, reaching from nature (e. g.,
nature and animals) over human beings (e. g., people)
to manufactured articles (e. g., musical instruments and
vehicles). Specifically, we discarded two categories
(i.e., Holidays and Noisemakers) from the original
dataset due to the sample-overlapping with other cate-
gories, resulting in a final set of 14 common acoustic-
event categories. Each category further includes a num-
ber of classes (subsets), giving rise to a total of 570
classes and 21 335 independent audio segments, with a
total duration of more than 18 hours. More details on the
number of segments and recording time per category are
summarised in Table |1} The averaged duration over all
audio segments is 3.1 s with a maximum and a minimum
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Figure 3: Duration distribution of audio segments for each acoustic-
event category over the whole Findsounds2016 database.

of 10.0s and 0.1's, respectively. In detail, Fig. 3] illus-
trates the duration distribution for each acoustic-event
category over the whole database. Obviously, these du-
ration distributions are highly overlapped and mainly
range from one to six seconds. Moreover, owing to the
diversity of the audio formats in the original dataset re-
trieved from the web, we converted all audio files into a
uniformed format with 16-bit encoding, mono-channel,
and 16 kHz sampling rate. It is noted that the majority
samples of this dataset are monophonic audio. Only a
limited or negligible number of overlapped sounds ex-
1st.

For training the back-end classifier, each subset of
the Findsounds2016 database was equally and sequen-
tially partitioned into training set (7312 instances),
test set (7 106 instances), and validation set (6917 in-
stances). In addition, we always upsampled the training
set to alleviate the unbalanced class-distribution prob-
lem, by randomly repeating the samples in less domi-
nated classes several times with the random seed zero.

4.2. Experimental Setup

For training RNN encoder-decoders to learn the audio
sequence representations, we theoretically could feed
the raw signals into the network directly. However,
the long sequence-length leads to a high requirement of
computational resource. As MFCCs have been repeat-
edly verified to be the efficient features for most acous-
tic recognition tasks and we have limited computational
resource, we extracted 13 MFCCs (including one loga-
rithmic energy) per frame using a window size of 60 ms

at a step size of 60ms. Compared with the conven-
tional parameters for extracting MFCCs (i. e., window
size: 25ms, step size: 10ms), the ones we selected
due to i) the audio pattern normally changes slower than
the speech pattern. In this case, within a longer frame
window size, the audio signal is still considered to be
stationary; ii) a longer frame window size is helpful
to extract rich low fundamental frequency information,
which fits for audio analysis; iii) a longer frame step
size compared to one used for speech can reduce the ex-
tracted number of frames and consequently significantly
speed up the network training process.

In this case, the longest sequence of Findsounds2016
has 167 MFCC feature vectors. Finally, all the extracted
features were standardised by the means and variations
of the training set.

To accelerate the RNN encoder-decoder training pro-
cess, we used a mini batch of 64 sequences as network
input. In this case, we padded zeros at the end of each
sequence to force them equilong. The padded zeros,
however, are ignored when calculating the reconstruc-
tion errors (i.e., training loss) in the training process
by setting their weights to zero. Further, to control the
learning process, we checked the training loss after run-
ning every 500 batches. To update the network weights,
we employed the classic Stochastic Gradient Decent
(SGD) with an initial learning rate of 0.7. This value
dynamically reduced with a decay factor of 0.99 when
the training loss was not improved any more over the
previous three checking points. Additionally, a gradient
norm clipping operation was performed with a clipping
ratio of 5 to handle the gradient blowup problem. The
whole learning process was stopped once there was no
training loss improvement over 20 successive checking
points.

To assess the discrimination and the robustness of the
learnt audio sequence representations via the pre-trained
RNN encoder-decoder, we further adopted nowadays
two of the most frequently used classification models.
One of them is the SVM trained with the sequential min-
imal optimisation algorithm. The complexity value of
C was optimised in {0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2,
5} on the validation set. Another one is the GRU-RNN
with one hidden layer, while the number of hidden units
was optimised in {128, 256, 512, 1024} on the vali-
dation set. Additionally, the GRU-RNNs were trained
with Adam SGD with an initial learning rate of 1074,
to which an exponential decay was applied at every 10*
steps with a decay rate of 0.96. Further, the gradient
norm clipping ratio was set to 1.2, and the batch size
was set to 128. For equal comparison, the training pro-
cesses of all networks were stopped at the 500th epoch.
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Figure 4: Performance comparison (F1-measure) between the learnt audio sequence representations via a variety of RNN Encoder-Decoders (ED)
and four hand-crafted features on the validation set of Findsounds2016. Performance was evaluated by (a) the SVMs with various complexity

values, C, or (b) the GRU-RNNSs with various numbers of hidden units, 7.

To measure the system performance, we utilised F1-
measure (F1) as a primary metric, mainly due to the
facts that i) F1 provides an overview performance in
a multi-class setting as it is calculated by the har-
monic mean of unweighted precision and recall; ii) F1
is among the most widely used evaluation metrics in
AEC, for example, in a series of challenges of Detec-
tion and Classification of Acoustic Scenes and Events
(DCASE) (Stowell et al.|(2015)); Mesaros et al.|(2016)).
Additionally, we took the Unweighted Accuracy (UA,
or unweighted recall) as a complementary metric. It is
obtained by the sum of the accuracies over all classes
divided by the number of classes. Thus, UA also well
indicates the system performance in a class-unbalanced
task.

Further, unless stated otherwise, a one-side z-test was
undertaken to evaluate the statistical significance of per-
formance improvement.

4.3. Compared Features of Audio Sequence

To verify the effectiveness of the learnt representa-
tion of audio sequence, we selected one BoAW feature
set and three functional-based feature sets for compari-
son. All these feature sets are widely used for AEC or
related acoustic tasks (e. g., emotion) nowadays. A brief
description of the four feature sets is as follows:

* BoAW feature set: The codebook includes 2048
audio words. Each frame of the sequence is then
assigned to the nearest 256 audio words. After-
wards, a normalised histogram is applied to convert
the word occurrence accounts into a fixed-length
vector (Lu et al.| (2014)).

¢ the extended Geneva Minimalistic Acoustic Pa-
rameter Set (eGeMAPS): It consists of 88 impor-
tant acoustic attributes, which were selected by ex-
tensive experiments on acoustic pattern classifica-
tion tasks (Eyben| (2016))).

¢ the 2011 Audio-Visual Emotion recognition Chal-
lenge
(AVECI1) feature set: It contains 1941 attributes
and was used in (Zhang and Schuller (2012)) for
AEC.

* the INTERSPEECH 2013 Computational Paralin-
gusitics ChallengE (ComParEl3) feature set: It
includes a large-scale acoustic attributes up to
6373 (Eyben|(2016)).

4.4. Results

To evaluate the robustness of the proposed frame-
work, we constructed the RNN encoder-decoders in sev-
eral structures, mainly towards a deep or a wide direc-
tion. To assess the deeper networks, we fixed the num-
ber of hidden units per layer as 512, and then set the hid-
den layers to one, two, or three, resulting in three RNN
encoder-decoders in different depths. To assess the
wider networks, we fixed the depth of hidden layer as
one, but set the number of hidden units to 512, 1 024, or
2048, leading to additional two RNN encoder-decoders
in different widths. Note that the RNN encoders and
corresponding decoders always share the same struc-
tures.

Fig. 4| illustrates the performance of the learnt repre-
sentations obtained by diverse RNN encoder-decoders,
as well as four conventional feature sets based on BoAW



Table 2: Performance comparison (F1 and UA) between the learnt
audio sequence representations via a variety of RNN Encoder-
Decoders (ED) and four hand-crafted features on the test set of Find-
sounds2016. Performance was evaluated by both SVMs and GRU-
RNNG.

[%] SVMs GRU-RNNs
feature types | F1 ~ UA | Fl UA

BoAW 419 353 | 444 395
eGeMAPS | 36.4 349 | 476 414
AVECI11 504 428 | 54.0 487
ComParE13 | 49.7 43.6 | 53.2 46.2

ED:512-1 | 58.1 529 | 61.1 549
ED:512-2 | 684 634 | 71.8 67.4
ED:512-3 | 80.6 76.6 | 80.5 784
ED: 1024-1 | 72.0 65.8 | 72.6  70.0
ED:2048-1 | 852 804 | 89.0 87.6

or functionals (i.e., eGeMAPS, AVECI11, and Com-
ParE13). The performance was estimated on the vali-
dation set of Findsounds2016 for 14 acoustic-event cat-
egories.

Specifically, Fig. ] (a) depicts the feature perfor-
mance when taking the SVMs as discriminative models.
From this figure, one can obviously observe that the re-
sults delivered by the learnt representations are remark-
ably higher than the other four state-of-the-art baselines.
The best result is achieved at 85.6 % of F1 by using
the representations learnt by the RNN encoder-decoder
with one hidden layer of 2 048 hidden units (ED: 2048-
1). This result is almost double of the best baseline
achieved by using ComParE13 or AVECI11 feature set
(i.e., 50.2 % of F1).

Further, when increasing the depth of the neural net-
works from one to two and three, one can see a steady
and significant performance improvement. Similarly,
when extending the width of the neural networks from
512 to 1024 and 2048, again huge performance im-
provement is obtained. This indicates that appropriately
increasing the complexity of the sequence-to-sequence
model, either in a deep way or in a wide way, can no-
tably improve the effectiveness of the learnt representa-
tions.

Similar observations can be found in Fig. E](b), where
GRU-RNNs were employed as discriminative models.
Generally speaking, however, GRU-RNNs yield better
performance than SVM in all cases. The best result fur-
ther rockets to 88.8 % of F1. Additionally, an interesting
observation can be seen that the learnt representations
performs better when using relatively simple networks
for classification, yet the hand-crafted features incline

to choose the relative complex networks for classifica-
tion in order to get better results. This indicates that the
learnt representations is easier to be learnt by a simple
machine learning model than the selected hand-crafted
features.

We further evaluated the learnt representations on the
test set by employing both SVMs and GRU-RNNs for
classification with the best parameter settings optimised
on the validation set. Table 2] displays the correspond-
ing results in terms of F1 and UA. Consistently, the
RNN encoder-decoder with 2048 hidden units offers the
most efficient features, contributing to 85.2 % of F1 and
80.4 % of UA by means of SVMs, and 89.0 % of F1
and 87.6 % of UA by means of GRU-RNNs. Compared
with the best baseline, they provide absolute gains as
high as 35.0 % of F1 and 38.9 % of UA. To further in-
vestigate the effectiveness of the learnt representation,
we randomly selected 20 samples from each categories
and projected them into the leading two discriminant di-
rections found by Linear Discriminant Analysis (LDA).
The visualisation of the audio sequence representations
is displayed in Fig.[5] Notably, the samples belong to
different categories are strongly discriminative, which
reasonably results in a high prediction accuracy.

To intuitively demonstrate the best performance we
achieved by using the GRU-RNN based classifier with
one hidden layer and 128 hidden units, Fig. [6illustrates
the prediction confusion matrix on the test set, which
is obtained by using the vector representations learnt
by the RNN encoder-decoder comprised of one hidden
layer with 2048 hidden units. Generally speaking, the
acoustic segments represented by the proposed vectors
can be well distinguished into corresponding categories.
In more detail, one can notice that the category of ‘Mis-
cellaneous’ (labelled as 5 in Fig. [6) is relatively easier
to be misclassified into the others, which keeps in line
with the fact that its contents include many quite similar
acoustic events to the other categories.

In addition, we performed the same experiments on
the acoustic-event classes. Rather than utilising the
whole 570 classes, we discarded those classes having
extremely sparse samples (fewer than 20). This leads to
a subset of 229 selected classes, and a slightly smaller
training set (6 277), test set (6202), and validation set
(6 122). Table[3|shows the corresponding results for var-
ious features or representations. Interestingly, the learnt
representations consistently outperform the frequently
used feature sets, and yield the highest F1 and UA of
47.7 % and 39.0 %, respectively, for 229 types of acous-
tic events.

In future work, one needs to consider implement-
ing our method in an unsupervised learning paradigm,



1 9 0: Animals
1: Birds
2: Household

3: Insects
4: Mayhem
5: Miscellaneous

6: Musical Ins.
g 7: Nature
8: Office

9: People

10: Sports Rec.
11: Tools

12: TV Movies
13: Vehicles

Figure 5: Visualisation of the audio sequence representations learnt
from the RNN encoder-decoder. 20 samples per class are randomly
selected through the whole dataset and projected into the leading
two discriminant directions found by Linear Discriminant Analysis
(LDA). Each sample is remarked by the category number (0~13) it
belongs to.
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Figure 6: Normalised confusion matrix (x10~#) of predictions on the
test set obtained by the best GRU-RNN classification model (one hid-
den layer with 128 hidden units). The labels from O to 13 sequentially
indicate the categories from ‘Animals’ to ‘Vehicles’ as listed in Ta-
ble[[ within the same order.

Table 3: Performance comparison (F1 and UA) for classifying 229
classes of acoustic events between the learnt audio sequence rep-
resentations via a variety of RNN Encoder-Decoders (ED) and four
hand-crafted features on the test set of Findsounds2016. Performance
was evaluated by both SVMs and GRU-RNNs.

[%] SVMs GRU-RNNs
feature types | F1 =~ UA | Fl UA

BoAW 185 17.8 | 17.7 175
eGeMAPS 182 20.1 | 21.8 209
AVECI11 26.8 23.6 | 200 18.8
ComParE13 | 27.1 23.8 | 23.1 215

ED: 512-1 19.9 20.1 | 25.6 23.0
ED:512-2 | 290 264 | 315 273
ED:512-3 | 346 32.0 | 432 365
ED: 1024-1 | 245 238 | 32.6 285
ED: 2048-1 | 351 30.8 | 47.7 39.0

which has been demonstrated to be successful in ex-
tracting semantic representations from large size data
set (Jansen et al.| (2018))).

5. Conclusions

In this article, we proposed an unsupervised frame-
work to learn the essential patterns of acoustic events
that are embedded through the whole audio sequence.
In this framework, a Recurrent Neural Networks (RNN)
based sequence-to-sequence encoder-decoder is used,
where the inputs are the sequential and reverse acoustic
feature vectors and the targets are their counterparts in
normal order. This encoder-decoder is trained without
any category information such that it has the huge po-
tential to explore big unlabelled data in the real world.
We then extracted the bottleneck features as the audio
sequence representations for acoustic event classifica-
tion, and evaluated them through traditional machine
learning algorithms.

This framework can address the audio sequences with
arbitrary durations, and compress them into vector rep-
resentations with a fixed dimension. Since the learnt
representation can be well recovered to its original ver-
sion by the decoder, it is thus supposed to contain the
most important sequence information. The effective-
ness and robustness of the proposed framework was
extensively examined by the experiments on a large
dataset, which have raised the state-of-the-art baselines
into a significantly high level.

Encouraged by the achieved results, we will fur-
ther evaluate our proposed method in a recently re-
leased weekly labelled dataset AudioSet (Gemmeke



et al.| (2017)). We believe that the proposed learning
representation approach is a major breakthrough in the
development of the RNN based encoder-decoder mod-
els, which could potentially lead to a range of exciting
applications way out of our chosen exemplary appli-
cation. These applications, which highly characterised
with sequential patterns via either audio or video sig-
nals, include activity detection, emotion recognition,
polyphonic sound tagging, and the like.
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