
ANALYTIC CONTINUED FRACTIONS FOR REGRESSION:
A MEMETIC ALGORITHM APPROACH

A PREPRINT

Pablo Moscato
School of Electrical Engineering and Computing,

The University of Newcastle,
Callaghan, NSW 2308, Australia

Pablo.Moscato@newcastle.edu.au

Haoyuan Sun
California Institute of Technology,

Pasadena, CA, USA
hsun2@caltech.edu

Mohammad Nazmul Haque
School of Electrical Engineering and Computing,

The University of Newcastle,
Callaghan, NSW 2308, Australia

Mohammad.Haque@newcastle.edu.au

January 6, 2020

ABSTRACT

We present an approach for regression problems that employs analytic continued fractions as a novel
representation. Comparative computational results using a memetic algorithm are reported in this
work. Our experiments included fifteen other different machine learning approaches including five
genetic programming methods for symbolic regression and ten machine learning methods. The
comparison on training and test generalization was performed using 94 datasets of the Penn State
Machine Learning Benchmark. The statistical tests showed that the generalization results using
analytic continued fractions provides a powerful and interesting new alternative in the quest for
compact and interpretable mathematical models for artificial intelligence.

Keywords Symbolic Regression ·Memetic Algorithm · Analytic Continued Fractions.

1 Introduction

Symbolic regression is a unique type of multivariate regression analysis in which the goal is to find the mathematical
expression of an unknown target function that would fit a dataset S = {(x(i), y(i))}, i.e. a set of pairs of an unknown
multivariate target function f : Rn → R. It has been argued that when analysing experimental data for decision making
symbolic regression methods should at least be used to complement standard multivariate analysis [1]. Compared with
the output of artificial neural network approaches, the models generated by symbolic regressions are generally more
amenable to downstream studies via uncertainty propagation and sensitivity analysis and thus more “explainable” [2, 3].
The other benefit of symbolic regression is the lack of assumptions on prior knowledge on the underlying process or
mechanism which produced the observed data [4]. This allows researchers to explore problem domains for which they
have incomplete knowledge and identifying underlying trends and patterns without subjecting human bias.

Over the past three decades, symbolic regression had produced an impressive number of results in many applications.
For instance, symbolic regression has helped to extract physical laws using experimental data of chaotic dynamical
systems without any knowledge of Newtonian mechanics [5], which then motivated the data-driven discovery of
hidden relationships in astronomy [6]. More recent applications include prediction of friction systems performance [7],
identification of nonlinear relationships in fMRI data [8], radiotherapy dose reconstruction of childhood cancer
survivors [9], also in the oncology field our own work on uncovering mechanisms of drug response in cancer cell lines
using genomic and experimental data [10], predicting wind farm output from weather data [11], energy consumption

ar
X

iv
:2

00
1.

00
62

4v
1

 [
cs

.N
E

]
 1

8
D

ec
 2

01
9

A PREPRINT - JANUARY 6, 2020

forecasting [12], computer game scene generation [13], Boolean classification [14]. They have also played a role in the
elicitation of functional constructs from surveys [15] and in the analysis of consumer and business data [16].

One common approach to implementing symbolic regression is Evolutionary Computation (EC). EC is a family of
optimization algorithms inspired by biological evolution, in particular, building upon Darwin’s theory of natural
selection. In EC, a population of candidate solutions (of a problem, generally posed as an optimization one) is subject
to a set of heuristics and exact algorithms to produce new solutions, while less desirable solutions are being removed
from the population currently under consideration.

EC approaches to symbolic regression are commonly based on Genetic Programming (GP) with a tree-based representa-
tion. Karabioga et al. proposed Artificial Bee Colony Programming which also used the tree-based representation
method for symbolic regression in [17] and the method showed competitive performance against GP-based methods.
Each solution (aka a mathematical expression) is written as a syntax tree and new solutions are produced by exchanging
subtrees of two solutions (crossover) or modifying a syntax element, such as a binary operator (mutation) [4]. Although
highly popular, several researchers noted that recombination methods based on sub-tree crossovers have shown not to
be better than some simple mutation of the sub-branches [18]. Clegg et al. in [18] cite previous contributions to this
issue by Angeline [19] and Luke and Spector [20], in which they stated that “due to findings like these, some people
now implement their GP’s without using crossover at all, i.e. using mutation only.”

We believe that this problem difficulty in symbolic regression could be addressed with generic problem-domain
information about function approximation to search for better models. Like GP, Memetic Algorithms (MAs) is a generic
denomination for a population-based approach to solve complex problems. However, MA takes explicit advantage of
heuristic and exact methods in which solutions are individually optimized and also recombined and changed to improve
the diversity of the population [21]. First started at the California Institute of Technology three decades ago [22, 23],
research in MAs has demonstrated over the past three decades that problem-domain information can be used to produce
local search (LS) methods that can significantly accelerate the evolutionary process. Trujillo et al. in [24] recognize this
fact and they point that, in contrast, local search has been underused in Genetic Programming. In their view, some of
the problems faced by Genetic Programming are linked to the use of a tree-based representation of solutions. They
conclude “that numerical LS and memetic search is seldom integrated in most GP systems” and that “The fact that
memetic approaches have not been fully explored in GP literature, opens up several areas (for) future lines of inquiry”.
We agree with this statement, in fact, of the 3918 publications we found about Memetic Algorithms (MAs) on the
bibliographic database Web of Science (on 20/11/2019), we have identified very few regarding the use of local search
for symbolic regression. However, it is also true that some researchers have been trying to address the need of including
individual optimization to existing Genetic Programming approaches, e.g. [25], [26], [27], [28]. While this list is
probably not comprehensive, it is recognized that introducing individual optimization steps into EA methods based on
current representations for solutions has been a challenge for symbolic regression approaches.

In this paper, we introduce a new approach to regression with a memetic algorithm and we analyze its performance
against other existing implementations of symbolic regression and machine learning approaches. In particular, our
contributions are as follows:

• We introduce a novel method to represent mathematical expressions with analytic continued fractions by
drawing inspirations from Padé approximants. We discuss the advantages of this particular representation over
the more traditional syntax-tree based representation.

• We implement a MA for symbolic regression with the continued fraction representation, a hierarchical
population structure to manage the quality of the population of solutions, and an individual search method
based on the Nelder-Mead algorithm.

• We compare our MA-based approach with 15 other state-of-the-art implementations of symbolic regression
with 94 benchmark data sets. We demonstrate that our algorithm is able to extrapolate well-fitting relationships
and its performance is comparable to other methods.

Following this introduction the remainder of this paper is organized as follows: the datasets and methods used
in Section 2, in particular, the memetic algorithm is described in Section 2.2; we then present an illustrative one-
dimensional example of using symbolic regression to approximate an important special function in mathematics, the
Gamma Function in Section 2.3. The computational results are presented in Section 3 followed by their discussion in
Section 4. Finally, Section 5 contains concluding remarks and discusses the possibility of future work in the area.

2 Data and Methods

In this section, we describe the proposed methods and datasets used to estimate its performance. We describe in detail
the proposed symbolic regression method’s representation, followed by the memetic algorithm for model identification,

2

A PREPRINT - JANUARY 6, 2020

and an illustrative example of the proposed method in approximating the gamma function. Next, the section will
describe the experimental procedures and datasets used to measure the performance of the proposed method.

2.1 On representations and guiding functions

The paradigm of genetic programming (GP) [29] has been highly influential for the development of symbolic regression
methods (e.g. [30]). In most cases, these GP approaches work by maintaining a population of models that fit the data
on the samples given as a training set, with “mutations” (i.e. small structural changes in the structures that code for
these models) randomly changing the population. In addition, some “recombination” methods are used; generally these
are simple heuristics involving the structures exchanging significant parts of them to create new individuals. These
processes generate new structures and, consequently, new models and a “guiding function” is used to somehow bias
the search for better models, by encouraging the better models to be used more frequently in future iteration of the
evolutionary process. In the area of symbolic regression, the “guiding function” is often some sort of merit function, e.g.
the Mean Squared Error (MSE) or the Mean Absolute Difference (MAD). Using a plethora of different techniques, in
general some part of the population is eliminated and some of the new models obtained via mutation and recombination
may remain in the population (while less performing models according to the guiding function are deleted). Some other
approaches to select the new population of solutions involve other considerations like data preprocessing [31] and the
use of metrics that quantify the population diversity to avoid a premature convergence of the population to the same
type of model or very similar variants on the same theme [32].

2.1.1 Representation of models by parsing trees

The syntax tree representation is simple and intuitive, and frequently used in evolutionary computation. Due to the
influence of tree-based techniques for other problem domains, symbolic regression inherited this representation in
GPs. Mathematical expressions were created by parsing tree structures and the evolutionary operators of mutation and
recombination were defined on them. In a syntax tree representation, each node represents a mathematical operator, a
variable, or a constant; and for each node representing an operator, its arguments are given as the children of this node.
This approach has become very popular and the open-source GPTIPS [30] and the commercial software Eureqa [5, 33]
are just two good examples of the many implementations that use this technique.

These implementations generally required user-defined “building blocks”, the operands or functions that normally
include the four arithmetic functions (i.e. addition, subtraction, multiplication and division), but other mathematical
functions like logarithmic, exponentiation, trigonometric functions, etc., are sometimes needed as per implicit require-
ment of the problem characteristics. This breaks the assumption that we are not using problem domain information (i.e.
we may be biasing the GP to bring solutions that involve some sinusoidal component for model building, by including
the function sin(), while it may not be required at all). In addition, a representation based on parsing syntax trees, even
with only the four basic arithmetic functions, could be handicapped to uncover some particular types of models that
frequently are the best explanation in many real world problem. We refer to those models that can be defined as the
ratio of two polynomials on the variables. The syntax tree representation has trouble uncovering these models in the
search space. This is particularly evident after the population has evolved for some generations and most of the existing
polynomial models are fitting the data relatively well, however, in general, it is unlikely that from those, via the use of
division, we can produce a ratio of two polynomials that also fit the data well.

The subtle way by which a powerful representation can create an implicit bias is generally not discussed in the literature.
Correctness and completeness, instead of evolvability, seems to be the main concern, and functions defined as the
ratio of higher order polynomials in subsets of the set of domain variables are less likely to be generated during the
evolutionary computation run. Consequently, since both recombination and mutation fail to create new models that are
competitive to remain in the population, we reach a stagnation of the search process. As models become increasingly
similar, we reach premature convergence, which limits the performance of GP-based approaches in many symbolic
regression applications.

2.1.2 Representation via multivariate Padé approximants

One possible way to address this issue would be to find a representation that restricts all models to be rational functions
(i.e. ratios of two polynomials). We first recall the following important definitions. An analytic function is defined
as any function that can be written as a convergent power series in a neighborhood of each point in its domain D. A
holomorphic function is a complex-valued function of one or more complex variables that is, at every point of its
domain, complex differentiable in a neighborhood of the point. A meromorphic function on an open subset D is a
function that is holomorphic on all of D except for a discrete set of isolated points, called the poles of the function.
Every meromorphic function on D can be expressed as the ratio between two holomorphic functions defined on D
(with the denominator not being the constant 0), and any pole must coincide with a zero of the denominator.

3

A PREPRINT - JANUARY 6, 2020

Figure 1: Approximation of Sin(x) using the Padé approximant of (1) and Maclaurin series expansion of Sin(x) for
orders={3, 5, 7, 9}. The values in x-axis are shown in [−7, 7] and y-axis are shown within the range of [−2.0, 2.0].

We also know that every meromorphic function has best approximating rational functions known as the Padé approx-
imants [34]. This is very interesting since it is known that, numerically, Padé approximants are generally a better
approximation to a function than truncating its Taylor series at the same order, and it may still be of use where the
Taylor series does not converge. For example, the Padé approximant of sin(x) at order [5/6] is given by:

sin(x) ≈
12671

4363920x
5 − 2363

18183x
3 + x

121
16662240x

6 + 601
872784x

4 + 445
12122x

2 + 1
, (1)

which provides a close fit in the interval (-5,5) of the real numbers (see Fig. 1). A Maclaurin series expansion (i.e.
a Taylor series centered at zero) would need to be a polynomial of at least order 13 to approximate sin(x) to be at
least competitive with expression given in (1), a polynomial of order 5 in the numerator and one of order 6 in the
denominator.

For a problem involving symbolic regression in a multi-dimensional domain D, a possible representation could be one
based on multivariate Padé approximants [35, 36, 37]. These representations may be useful since they may allow us
to just use a basic mathematical form (ratio of multivariate polynomials). However, searching for a best fitting Padé
approximant would require us to guess a priori the degree of two polynomials (in the numerator and denominator);
we offer a novel approach to circumvent this problem. Most remarkably, this new method for machine learning and
artificial intelligence has roots in eighteen-century mathematics as we will show in the following section.

2.1.3 Representation via analytic continued fractions

We shall employ a representation based on regular C-fractions [38], which are the corresponding continued fractions
of a Padé approximant [39]. To motivate this representation, we first note that the Padé approximant for sin(x) given
by (1) can be written as follows:

sin(x) ≈ x−
1
6x

3

1 +
1
20x

2

1−
11
420x

2

1 +
25

2772x
2

1−
11
900x

2

1 +
1331
82650x

2

1

(2)

4

A PREPRINT - JANUARY 6, 2020

Some readers may remember a result by Euler [40] who first derived an equation that connects a finite sum of products
with a finite continued fraction, as in Eq. (3) [40]. Let SP = a0 + a0a1 + a0a1a2 + · · ·+ a0a1a2 · · · an, then:

SP =
a0

1−
a1

1 + a1 −
a2

1 + a2 −
. . .

. . .
an−1

1 + an−1 −
an

1 + an

(3)

Since the result can be proved by induction on n, this means that we can apply this result in the limit.

This fact takes directly to our proposed representation (e.g. the power of this representation for special functions
can be found in [38]). If, for instance, the left-hand side of the equation is a convergent and infinite series, then the
right-hand side represents a convergent and infinite continued fraction. As an example, we consider the function
tanh(x1 +5x2) = sinh(x1 +5x2)/ cosh(x1 +5x2). Unless sinh(x1 +5x2) and cosh(x1 +5x2) are given as “building
blocks”, it would be very difficult for a system to evolve the ratio. However, Gauss proved in 1812 (see [41] p. 138,
[42] p. 349) that tanh(x1 + 5x2) can be well written as:

tanh(x1 + 5x2) = α0 +
f0(x)

α1 +
f1(x)

α2 +
f2(x)

α3 +
. . .

(4)

with α0 = 1, f0(x) = x1 + 5x2, fi(x) = (x1 + 5x2)2, for any natural number i > 0, and with the set {αi} with
i > 0 being the odd natural numbers in increasing values (i.e. α1 = 1, α2 = 3, α3 = 5, α4 = 7, α5 = 9, α6 = 11, . . .).
Numerically, just a few levels would give a good approximation to the original function.

With these examples in mind, we introduce a representation of mathematical expression which we will use for symbolic
regression. For a multivariate function f : Rn → R we can then write:

f(x) = g0(x) +
h0(x)

g1(x) +
h1(x)

g2(x) +
h2(x)

g3(x) +
. . .

(5)

where gi(x) ∈ R for all integer i ≥ 0.

For each function fi : Rn → R is associated with a vector ai ∈ Rn and a constant αi ∈ R:

gi(x) = ai
Tx + αi (6)

Also, for each function hi : Rn → R is associated with a vector bi ∈ Rn and a constant βi ∈ R:

hi(x) = bi
Tx + βi (7)

From (5), (6) and (7), we can write (using Carl Friedrich Gauss’ mathematical notation for continued fractions [38]):

f(x) = a0
Tx + α0 +

∞
K
i=1

(
bi

Tx + βi
aiTx + αi

)
(8)

We then note that the Padé approximant for sin(x) initially given by (1) can be written as:

sin(x) ≈ x+
6

K
k=1



−x3/6 k = 1
x2/20 k = 2
−11x2/420 k = 3
25x2/2772 k = 4
−11x2/900 k = 5
1331x2/82650 k = 6

1
(9)

5

A PREPRINT - JANUARY 6, 2020

This shows that the representation naturally contains the Padé approximant as a finite sum in terms of the variables x
and x2. Also, our representation allows a good truncated approximation to tanh() (e.g. by using Lambert’s continued
fractions) even if the functions sinh() and cosh() have not been provided as “building blocks”. Since only the four
fundamental arithmetic operations are used, the continued fraction representation is able to approximate a function
to increasing precision with more “depth” and in the limit it will converge to the target function of interest. We will
formally define the notion of depth in Section 2.1.4.

Analytic continued fractions are thus giving us a powerful representation; not only we can represent elementary
functions (like sin(), log(), cos(), tan−1(), etc.), but other special functions (like the Error function erfc(), and the
Incomplete Gamma Function, etc.) can also be represented in this way [43]. We also note that there exists other possible
representations (e.g. Stieltjes fractions, Thron fractions or Generalized T-Fractions, Thiele interpolating continued
fractions, and Jacobi or J-Fractions) (see [38] for their definitions). While exploring these alternative representations
is an interesting research avenue with merits of its own, we concentrate our study in the one proposed here as a first
benchmark on its performance for symbolic regression on a large dataset.

The use of analytic continued fractions would certainly power many other aspects of evolutionary computation due to
its well-established mathematical properties and theoretical foundations. It has also the added advantage that it liberates
from the need of sometimes “guessing building blocks” as continued fractions can represent an infinite number of
functions that can be represented by an infinite but convergent series. Indeed, in addition to symbolic regression, we
feel that analytic continued fractions will be a welcomed representation for the evolutionary computation community
for many modelling approaches.

2.1.4 Convergents and the depth of the representation

While our representation is defined as an infinite sum, in practice, we expect that the sum should be truncated in a
computational setting. Some solutions include: either we leave the truncation as another variable (since it directly
relates to the “complexity” of the model that fits the data in question), or we leave it variable and somehow penalize
those models that fit the data well but the truncation has a high value (e.g. for Eq.(9) that value is 6, and we will say that
the “depth” is equal to 6). Our formal definition of “depth” is associated with the convergent of a continued fraction.
This links with known results from analytic continue fractions since the convergents of regular C-fractions are exactly
the Padé approximants [39], so the depth of n for a model is defined to be the nth convergent of our representation
(i.e. a model of depth of n also contains a model of depth n′ for all 0 ≤ n′ < n). This said, if we decide to have a
representation with a fixed “depth” of six (or the third convergent), this means that in Eq. (5), we have h6(x) = 0 but
g5(x) is not constrained to be equal to zero. Clearly, the selection of a higher order (and fixed) depth would guarantee a
more precise fit, but may lead to overfitting on the training set and poor generalization in the test sets.

Our representation is then quite general and, in principle, may be adopted for any arbitrarily defined maximum depth.
For some problem domains, a multi-objective approach could be employed (e.g. following similar experiences in
GP-based symbolic regression [44]), in which minimization of depth is one of the objectives since it directly contributes
to model complexity. We note that the use of model complexity as a second objective is common in GP and in other
domains (e.g. to control so-called the undesired effect of “bloating” in the solutions obtained). Since solving the
high-dimensional non-linear optimization problem we face, we need to employ a powerful and robust optimization
solving technique, one that enforces both individual and global non-linear optimization. Towards this end, we present
our memetic approach in the following section.

2.2 A memetic algorithm for model identification

In this section, we present a memetic algorithm [21] to search for the best coefficients for (8), and deliver a best model
for our training data. We call this regression method using this memetic algorithm and continued fraction representation
as ‘Continued Fraction Regression’ (CFR). Our selection and design of this optimization technique in part stems from
our familiarity with the technique [22] and the robustness shown in thousands of different applications, including many
in the area of non-linear optimization. We also aim here to show how it can be easily implemented from the combined
use of non-linear optimization solvers and a few primitives that organize the search via interaction of a set of agents.

The “guiding function” of a solution is its mean squared error (MSE) and the goal of the population is to find the model
that minimizes the MSE. Clearly, others can be used as well. However, the comparison of different guiding functions is
outside of the scope of this paper.

The advantage of the memetic algorithm is that it combines problem domain information (i.e. the use of CFR, based
on established mathematical theory for function approximation), together with local optimizers which are robust and
global search mechanisms to search for good subsets of variables to create models with.

6

A PREPRINT - JANUARY 6, 2020

Unlike the GP’s tree-based representation, we have a fixed representation. We do not search in a space of trees but in
the high-dimensional space defined by all the coefficients in the formula of a CFR. In some sense, we are solving two
optimization problems, one nested in the other one: (1) identify which are the variables that are needed in a model, and
(2), given those variables what are the values of the coefficients in (8).

The decision of including or not a variable in turn decides if its associated coefficients should be optimized or not. This
is handled by the recombination and mutation parts of the algorithm. A population of models is then maintained, and
we refer as a “generation” the period of the MA evolutionary process in which we perform the operations of mutation,
recombination and individual search optimization to find the best coefficients. We employ a very simple recombination
approach needed for variable selection, but our recombination could also be considered “memetic” [45]. We use a direct
search method for individual model optimization and it is described in Sec. 2.2.3. Coefficients are optimized by the use
of a variant of a Nelder-Mead algorithm (which provides a kind of individual search mechanism).

One key aspect we maintain from previous successful implementations of memetic algorithms [46] is the use a
population structure, which is explained in Sec. 2.2.1.

We then start with the discussion of the individual model optimization and the population structure which may be the
most uncommon feature of an MA for some of our readers. To improve the readability of the paper, we have shown the
high-level view of the memetic framework for the symbolic regression in Algorithm 1 and it summarizes the description
of the algorithm presented in later sections.

Algorithm 1: CFR Algorithm
Input :Num. of Vars nV ars, Mutation Rate µr, training data Dtrn

Output :Best solution to fit the problem, best

/* Generate Initial Population by a randomized algorithm */
1 pop← InitialPopulation(nV ars,Dtrn)
2 best← pocket(pop.root)

3 for gen ∈ 1→ numGen do
/* Mutate each current solution in the population */

4 popµ ←Mutate(pop, µr)
/* Generate new Population by recombination mechanism */

5 popr ← RecombinePopulation(popµ)

/* Local Search Optimization of current solutions */
6 foreach agent ∈ popr do
7 LocalSearch(agent)
8 end
9 if guiding function stagnates for consecutive 5 gens then

10 reset(popr.root)
11 end

/* Replace old population with evolved population */
12 pop← popr

/* Keep track of the best solution */
13 if guiding_function(best) < guiding_function(pocket(pop.root)) then
14 best← pocket(pop.root)
15 end
16 end
17 return best

2.2.1 A memetic algorithm with a hierarchical population structure

Tree-structured MAs In fact, a tree-based population structure of agents was initially proposed in the early 90s [47]
and it has been subsequently used for the solution of many combinatorial optimization problems such as the asymmetric
traveling salesman problem [47, 46], hierarchical clustering and phylogenetics [48, 49], multistage capacitated lot-sizing
problem [50], gene expression linear ordering microarray data[51], Lot Sizing and Scheduling[52], total tardiness
single machine scheduling [53], Quadratic Assignment Problem [54], Gate Matrix Layout problem [55], 3D Protein
Structure Prediction [56] to mention just a few very challenging applications. Other problem domains include the
number partitioning problem [57], and many problems in bioinformatics and visualization [58, 59] dealt with by our

7

A PREPRINT - JANUARY 6, 2020

Figure 2: The structure of a population consisting of 13 agents.

group over many years (in which tree-based memetic algorithms were used to solve particular sub-problems of interest).
The number of publications that have used a ternary-tree topology exceeds 40 (according to Google Scholar) and it has
been employed during the research work of several PhD Theses in different countries being an established alternative to
other topologies in use. In [46], a comprehensive study of 40 different tree topologies was conducted with population
sizes varying from 85 to 7 agents (each having two solutions being considered). Many of them included binary trees of
different lengths. One measure of merit for these experiments was the “gap” to the known optimal solutions on the set
of instances, and the CPU time employed. Interestingly, from this analysis, the ternary tree topology was shown to have
the best quality trade-off between solution quality and time, and we have subsequently adopted this topology in several
other applications.

Agents The basic unit of population in our system is called an agent. Each one has two possible different solutions
(models), which are referred as the pocket and the current [46][55][54]. Our population contains 13 agents and they are
organized as a depth-3 ternary tree (Fig. 2). This approach has enabled in many cases good performances with a small
population size of 13 agents (thus having a total of 26 solutions).

Initial Population The initial population is decided by a randomized algorithm that works as follows. For each
agent in the population we need to initialize two solutions. Each one is done the same and it is as follows. We select
with equal probability the inclusion of a variable in a model, and when this is done we select at random with uniform
probability a coefficient for each of the occurrences of a variable in a model (i.e. if we are working with depth equal to
8 it will be 17 coefficients to set to a value selected uniformly at random between -3 and 3 for each variable occurrence
in the model). We also set in the same way any αi and βi values in from (6) and (7).

Premature convergence in evolutionary algorithms needs to be addressed by introducing some techniques. Some of them
are numerical, adaptive algorithms and heuristics that aim to control for loss of diversity. One that is non-numerical in
nature is “isolation by distance”, the introduction which are rules that prevent certain solutions to be recombined. One
way of doing this is via the use of a “population structure”, thus by restricting the recombination of solutions.

Algorithm 2 shows the process of generating an initial population. Here, we generate 13 agents. We generate two
solutions per agent (one ‘pocket’ and one ‘current’ solution), where each solution consists of a set of variables taken
uniformly at random. Associated coefficients of the variables are also generated uniformly at random in the range of
−3 to 3. Then we evaluate the guiding function score of both solutions. We place the ‘pocket’ and ’current’ in such a
manner so that it maintains the invariants of pocket solution having better guiding function value than the one of the
current solution.

Invariants Our algorithm maintains the following invariants in the population structure. First, within each agent,
the pocket solution always has a better value of the guiding function value than its current solution. In addition, the
pocket solution of each non-leaf node is always better or equal in quality to the three in the level immediately below to
it. Maintaining these two invariants guarantees that there is a flow of good models upwards in the tree structure. A
tree-based population structure avoids in part premature convergence [60].

2.2.2 Recombination and mutation to identify sets of variables for the models

The evolutionary operators of mutation and recombination are responsible for the selection of the variables that will
have nonzero coefficients and be included in a model. For example, the following function

f(w, x, y, z) = 2.1 w +
4.7 x+ w + 1.01

x+
1.3 + 5.7 y

3.9 x

(10)

8

A PREPRINT - JANUARY 6, 2020

Algorithm 2: InitialPopulation
Input :Number of Variables nV ars, training data Dtrn

Output :Randomly initialized Population pop

/* Instantiate 13 Agents in the population */
1 pop← Agent(13)
2 foreach agent ∈ pop do

/* Randomly generate two solutions per agent */
3 current(agent)← ContinuedFraction(nV ars)
4 pocket(agent)← ContinuedFraction(nV ars)

/* evaluate and save guiding function of both solutions */
5 guiding_function(current(agent))← evalGF(current(agent), Dtrn)
6 guiding_function(pocket(agent))← evalGF(pocket(agent), Dtrn)

/* within each agent, the pocket solution always holds better value of guiding
function than its current solution */

7 MaintainInvariant(agent)
8 end
9 return pop

only has the variable z missing, so it uses three.

The recombination operator takes two solutions and generates an offspring by combining the set of variables present in
two parent individuals. At each step, one of the three possible recombination operators is chosen uniformly at random.
We choose one recombination by considering the union (∪), intersection (∩), and symmetric difference (4) between the
set of variables present in the models to be recombined.

The recombination operator then acts on each subpopulation, from top to bottom. Within each subpopulation, the
operation is performed on each agent as follows (leader labelled as `, and supporters are labelled s1, s2 and s3 from left
to right):

1. current(`)← Recombine(pocket(`), current(s1))
2. current(s3)← Recombine(pocket(s3), current(`))
3. current(s1)← Recombine(pocket(s1), current(s2))
4. current(s2)← Recombine(pocket(s2), current(s3))

The Recombine() process of two agents to create an offspring is shown in Algorithm 3. Here, we select the variables
in the offspring by applying the operator chosen uniformly at random on the variables of both parents. For each depth
of the continued fraction, we compute the associated coefficient value for each variable. In the case of the new variable
is being selected only from a single parent, where we copy the associated coefficient from that parent into the offspring
solution. However, if this variable is already a part of the both parents (a and b), we compute the new value of coefficient
for corresponding variable as: cofa + rand(−1, 4) ∗ (cofb − cofa)/3 (historically, this randomized approach has been
previously used in early Scatter Search methods for non-linear optimization). We use the same formula to compute
the value of constant (β) portion of the continued fraction. Then the guiding function is reevaluated. The new model
then will contain a variable with nonzero coefficient only if that variable belongs to the set being preserved and at least
one of the parents contains the same variable in the model. The individual search step is then the one in charge of
optimizing the non-zero coefficients of the newly created model.

Like in other evolutionary computation algorithms, mutation is a random mechanism used to increase the di-
versity of the population. Here we have decided to incorporate two forms of mutation operators (‘major mu-
tation’ and ‘soft mutation’) in our implementation to toggle random variables. We choose a mutation oper-
ation depending on the guiding function value of current and pocket solutions. We do a ‘major mutation’
on the current if the guiding function value is either within 120% of the guiding function value of pocket
(current.guiding_function < 1.2 ∗ pocket.guiding_function) or greater than twice of the pocket’s guiding
function value (current.guiding_function > 2 ∗ pocket.guiding_function). A ‘soft mutation’ is taken place in
other cases.

For the ‘major mutation’ (detail of this mutation operation, toggleVariables(), is shown in Algorithm 4), we select
a variable uniformly at random for toggle and modify associated coefficients in all depths of the continued fraction.

9

A PREPRINT - JANUARY 6, 2020

Algorithm 3: Recombine
Input :Two agents take part in recombination a, b, choice of an operator uniformly at random form {∪,∩,4} as OP
Output :Offspring as the Current solution of agent a

/* Initialize parents (p1, p2) and offspring ch */
1 p1 ← pocket(a), p2 ← current(b)
2 ch← φ

/* Apply a recombination operator chosen uniformly at random on variables of two parents
into offspring */

3 ch.vars()← p1.vars() OP p2.vars()

/* Recombine the coefficients for each term (h) of the continued fraction */
4 for i = 0 to (2 ∗ depth) do
5 cofa ← p1.hi.coef(), varsa ← p1.hi.vars()
6 cofb ← p2.hi.coef(), varsb ← p2.hi.vars()

/* recombine coefficient values for variables */
7 cofχ ← φ
8 for vi = 1 to nV ars do
9 if ch.featAt(vi)= true then

10 if varsa[vi] = true and varsb[vi] = true then
11 cofχ[vi]← cofa[vi] + rand(−1, 4) ∗ (cofb[vi]− cofa[vi])/3
12 else if varsa[vi] = true then
13 cofχ[vi]← cofa[vi]
14 else if varsb[vi] = true then
15 cofχ[vi]← cofb[vi]
16 end
17 end
18 end

/* Update new coefficients of the term in offspring */
19 ch.hi.coef()← cofχ

/* compute new value of constant (β) for term hi in the offspring solution ch using β
of p1.hi and p2.hi */

20 ch.hi.β ← p1.hi.β + rand(−1, 4) ∗ (p2.hi.β − p1.hi.β)/3
21 end

/* Update current solution and apply Local Search */
22 current(a)← ch
23 a← localSearch(a)
24 return a

If the randomly selected variable was already incorporated (“switched on”) for the depth, we remove the variable.
However, either we “remember” the existing coefficient value or assign ‘zero’ to “remove” with probability 50%.
Alternatively, if the variable was not incorporated, we switch it on and replace the coefficient either by ‘zero’ or by a
uniformly random number in the range of -3 to 3 with the probability of 50%. In the case of ‘soft mutation’ (shown in
Algorithm 5 as modifyVariable()), we select a depth and a variable, both uniformly at random. If the variable was
already incorporated, toggle the variable selection and ‘remove’ the coefficient by assigning zero as value. Otherwise,
we ‘modify’ the coefficient of the random variable by a uniformly generated random number in the range of -3 to 3 and
toggle the variable selection. Finally, the local search operation is executed on the mutated solution in order to optimize
non-zero coefficients. We do not apply mutation on pocket solutions because we consider them as a “collective memory”
of good models visited in the past. They influence the search process via recombination only.

2.2.3 Individual model optimization via a direct search method

A period of individual search operation is performed every generation on all current solutions. We remind again that
each solution corresponds to a single model, this means that if a current model becomes better than its corresponding
pocket model (in terms of the guiding function of the solution), then an individual search optimization step is also
performed on the pocket solution/model before we swap it with the current solution/model. Individual search can then

10

A PREPRINT - JANUARY 6, 2020

Algorithm 4: toggleVariables
Input :A Continued Fraction Solution cfrac
Output :The modified solution cfrac

/* select a variable index uniformly at random */
1 N ← cfrac.nV ars
2 vIdx← randChoice(N)

/* for each depth of continued fraction, toggle the selection of variables of the term
(h) */

3 foreach h ∈ cfrac do
/* Case 1: cfrac variable is turned ON: Turn OFF the variable, and either ‘Remove’ or

‘Remember’ the coefficient value at random */
4 if cfrac.varAt(vIdx) = true then
5 h.varAt(vIdx)← false
6 h.coefAt(vIdx)← coinToss(0, h.coefAt(vIdx))
7 else

/* Case 2: term variable is turned OFF: Turn ON the variable, and either ‘Remove’
or ‘Replace’ the coefficient with a random value between -3 to 3 at random */

8 if h.varAt(vIdx) = false then
9 h.varAt(vIdx)← true

10 h.coefAt(vIdx)← coinToss(0, rand(-3 3))
11 end
12 end
13 end

/* Toggle the randomly selected variable */
14 cfrac.varAt(vIdx)← ¬cfrac.varAt(vIdx)

Algorithm 5: modifyVariable
Input :A Continued Fraction Solution cfrac
Output :The modified solution cfrac

/* Randomly select a variable which is turned ON */
1 candV ars← {∀i : cfrac.varAt(i) = true}
2 vIdx← randChoice(candV ars)

/* Randomly select a term (h) of continued fraction */
3 h← randChoice({∀term ∈ cfrac})
/* Modify the coefficient value */

4 if h.varAt(vIdx) = true then
5 h.coefAt(vIdx)← 0
6 else
7 h.coefAt(vIdx)← rand(-3 3)
8 end
/* Toggle the randomly selected variable */

9 h.varAt(vIdx)← ¬h.varAt(vIdx)

11

A PREPRINT - JANUARY 6, 2020

make a current model better than the pocket model (again, according to the guiding function), and in that case they
switch positions within the agent that contains both of them.

To do these optimizations, we used a modified version of Nelder-Mead algorithm recently proposed by Fajfar et al. [61]
to optimize the coefficients of a model. Nelder-Mead methods, also known as the downhill simplex algorithm, is a
derivative-free nonlinear optimization algorithm known for its simplicity and relatively good empirical performance [62].

To run the Nelder-Mead algorithm, the list of constants and coefficients in a model is mapped to a vector by the order
in which they appear. The initial simplex is generated by adding a unit step to each dimension of said vector. This
heuristic of initializing the simplex is described in [62]. The individual search stops when the best and worst vertex of
the simplex are within numerical tolerance, or when a maximum number of iterations is reached. In our implementation,
we set the numerical tolerance as 10−3 and the maximum iterations of 250.

While our memetic algorithm does individual search optimization with a modified Nelder-Mead algorithm [61], the
nature of the non-linear optimization problem indicates that more powerful solvers could later be used. We have chosen
to start with a Nelder-Mead solver as a way of ensuring and promoting reproducibility, keeping the core memetic
algorithm as simple as possible [63] for this first in-depth test of performance of the new representation in real-world
problems.

2.2.4 Small batch learning

To deal with datasets having more than 200 samples, during an execution of individual search, a small subset of the
set of training samples (20%) is selected uniformly at random (from the whole training set) and during the individual
search optimization, the guiding function value is computed only using these samples. This selection is conducted every
time an individual search optimization is required. For each model, 4 independent local searches are performed (using
the variant of the Nelder-Mead algorithm discussed before); the result with the best guiding function value (on the
entire dataset) is chosen. This allows to have some sort of sampling of the quality of the variables in independent trials
of the individual search process.

2.2.5 Diversity Management

We have set up a time-limit on the best model currently in the population (i.e. the one represented by the pocket solution
of the root agent of our tree hierarchy) to influence the search. Our criterion for relevance has been fairly strict: if no
better model has been produced for five (5) straight generations, then the pocket of the root agent is removed and a
new solution is created at random. This is a fairly strong requirement, but for a depth-3 ternary tree, a solution that has
climbed to the top and has been “the best seen” for five generations had already the opportunity to influence the search
procedure and we avoid being trapped into a local minimum of the search space and not exploring other combinations
of variables.

2.2.6 Model complexity management

In the area of symbolic regression, and in some GP implementations, the tendency of fitting better the data at the cost of
producing more complex models is called “bloating”. This is an undesirable characteristic as one of the objectives of
symbolic regression is to have easy to interpret, small and useful models and with better generalization [64].

We decided to set up an adaptive control for the complexity of our feasible solutions by penalizing the number of
variables being used by a model. At initialization of the set of models, a whitelist is generated uniformly at random
and independently done for each individual. Each input variable then has a probability p = 1/3 to be present in the
whitelist. Only variables on the whitelist may be assigned with a value so that no bloated solution appear in the initial
population. To bias the search towards solutions of lesser complexity, we penalize the complexity.

As mentioned above, the Mean Squared Error (MSE) metric is used to quantify the goodness of solution. It is computed
for the average of the squared error of prediction (y′) with the measured/observed (y) value of the target for all n
samples {(x(i), y(i))} in the dataset (S) according to:

MSE =
1

n

n∑
i=1

(y(i) − y′(i))
2
. (11)

Instead of comparing the quality of the solutions by the goodness of fit alone (measured by MSE), we aim at minimizing
an “adjusted MSE” given by:

adjusted MSE = MSE× (1 + ∆× # of variables used) (12)

12

A PREPRINT - JANUARY 6, 2020

Table 1: Parameter value of the CFR-based memetic algorithm for regression.

Parameter Value

Delta 0.10
Fraction’s Depth 4
Reset root of population after stuck for generations 5
Number of Generations 200
Mutation Rate 0.10
Number of Nelder-Mead Instances 4
Number of Iterations in Nelder-Mead 250
Nelder-Mead terminates if stagnates for consecutive iterations of 10
Percentage of Samples used to evaluate a model in local search 20%

where ∆ > 0 is the scale of the penalty. Different values of ∆ help to achieve different balances between goodness of
fit and complexity depending on the workload.

Table 1 shows the value of the parameters used for our experiments.

2.3 Learning the Gamma Function

The Gamma function Γ(x) is one of a number of analytic extensions of the factorial function to real and complex
numbers. Many common integral calculations in applied mathematics can be expressed in terms of the Gamma function.
For complex numbers with a positive real part, the Gamma function is defined via the convergent improper integral:

Γ(z) =

∫ ∞
0

xz−1e−x dx. (13)

However, the only complex numbers for which the Γ(z) is not defined are the non-positive integers for which it has
simple poles.

The Gamma function occurs in many areas of statistics and data analysis and it frequently appears in the study of natural
phenomena where there exists a process in which an decay in time is present and this decay follows a law of the form
f(t)e−g(t) where t represents time [65]. For instance, when f(t) is a power function and g(t) is a linear function of
time, respectively, thanks to a change of variables we can write:∫ ∞

0

tbe−at dt =
Γ(b+ 1)

ab+1
. (14)

We have chosen to show the performance of the technique on a testbed problem before presenting the computational
results in a large benchmarking dataset. This illustrates the role of the depth of the continued fraction representation in
increasing the approximation to the true values. This said, we propose that learning the values of Γ(x) on an interval
on the reals around the zero is an interesting challenge for symbolic regression methods and could be now added to
the list of benchmarking functions of one variable. It is also an interesting test function since for non-positive integers
the target function values alternate signs between its poles, while for positive integers there are no poles but its values
increase faster than an exponential function (since for any positive integer n, Γ(n) = (n− 1)!).

As an example of how we can approximate the Gamma Function in the interval in which the function alternates signs
between some poles, we have chosen the interval [−2.683, 4.5] (see Fig 3). We have generated a set S = {(x, y)} of 873
samples using a uniform separation step. To simulate a situation similar to the one we will observe in the experimental
setting that was used later in the paper (in which we compare our results with other methods having a high-dimensional
input space), we have created an input space consists of the variable x and all of its powers up to degree 6. This then
creates an instance of symbolic regression of 7 dimensions since now we have (x) = [1, x, x2, . . . x6]. We have run our
memetic algorithm for several depths of the representation, i.e. 2, 4 and 6. Fig. 3 shows the learning outcome of Γ(x)
for different depths.

We note that the GP based software Eureqa version 1.24.0 ([5, 33]) was able to very quickly find a solution of the form:

Γ(x) ≈ ax3 +
b

x+ x2
, (15)

with a ≈ 0.096350 and b ≈ 1.00808 However, further computation using nearly one million generations (approximately
40 minutes) was required to finally deliver a better solution:

Γ(x) ≈ c1 + c2x+
c3
x

+ c4x
6 +

c5
c6x+ x3 + c7x2

, (16)

13

A PREPRINT - JANUARY 6, 2020

(a) Depth = 2

(b) Depth = 4

(c) Depth = 6

Figure 3: Results of our memetic algorithm (red +) learning the Γ(x) function with x ∈ [−2.683, 4.5] (blue o) producing
models restricted to a maximum value of Depth: (a) Depth = 2, (b) Depth = 4 and (c) Depth = 6 in CFR. The
values in Y -axis are shown in the range of {−30, · · · , 30}. However, we have two points at x = −1.978 and x = 0.072
out of this range (y = 62.00324026 and y = 139.476602, respectively) for Depth = 6 (in Sub-Fig. (c)) that have been
omitted for clarity. Understandably, with a deeper model we can approximate the function better, although we have
observed some runs for which Depth = 4 obtaining results remarkably similar to those of Depth = 6 in this figure.
This indicates that global optimization methods will have a remarkable role in using small depth analytic continued
fraction representations for symbolic regression.

14

A PREPRINT - JANUARY 6, 2020

with c1 ≈ 0.201148, c2 ≈ 0.216747, c3 ≈ 0.492681, c4 ≈ 0.001204, c5 ≈ 1.004562, c6 ≈ 2.000514, c7 ≈ 3.000165.

In terms of time, our method required only 87.5 seconds, a fraction of the time employed by Eureqa on the same laptop,
to obtain the solution shown in Fig. 3(c). Since Eureqa cannot be used for large-scale batch experimentation in our
clusters (being an interactive package running on our workstations), we resort to a battery of tests recently proposed for
the study of the performance of genetic programming and other machine learning methods in systematic manner. The
next section presents the benchmarking tests and results.

2.4 Experimental settings and Datasets

To compare the performance of our proposed algorithms with other state-of-the-art algorithms we have used a standard
benchmark dataset [66]. In addition to MSE score, we will also compute the normalized MSE score (NMSE) that
provides information about the deviation (loss) of the performances and which allows comparisons between different
databases. The NMSE score is calculated by normalizing the MSE score with respect to the variance (Var) of the
measured/observed value (y) [67] according to: Var(y) = 1

n−1
∑n
i=1 |yi − y|2. The NMSE score is given by:

NMSE =
1

n

n∑
i=1

(
yi − y

′

i

)2
Var(y)

. (17)

2.4.1 The 94 Datasets from the Penn Machine Learning Benchmarks

Oslon et al. [66] compiled a collection of datasets to evaluate machine learning problems, known as Penn Machine
Learning Benchmarks (PMLB)1. Later on, Orzechowski et al. [68] selected a subset of 94 datasets from PMLB which
are suitable for regression problems. We have employed these 94 datasets [68] for the evaluation of our memetic
algorithm.

Since each of those 94 datasets only has a single file of samples associated to the regression problem, we have selected
uniformly at random 75% of the entries as a training set and the remaining 25% as testing for the algorithm to measure
the performance (i.e. an independent test set). To make the results more significant and free from bias, that split of
train-test has been taken uniformly at random for each of the 100 independent executions of the memetic algorithm.

2.4.2 Computational Environment

We have compiled the algorithm with gcc compiler version 4.8.5 in 64 bit Red Hat Enterprise Linux Server 7.5
(Maipo). We have executed the algorithm on The University of Newcastle’s High Performance Computing (HPC) grid2;
we split the execution of the CFR on 94 datasets into 10 batches. For each batch, we assigned 2 CPU cores, 8GB RAM,
and a total of 100 hours of CPU wall time to execute 100 independent runs of the algorithm.

3 Results

3.1 Results on Penn Machine Learning Benchmarks Datasets

We measured the MSE and NMSE scores obtained on the training set for each of the datasets. The model found during
the training phase was also evaluated on the testing data. We tabulated the median scores of MSE and NMSE for both
in training (t) and testing (T) scores of the algorithm for the 100 independent runs. Table 2 summarizes the scores for
all benchmark datasets. We have sorted the results from the smallest to the largest of the median NMSE scores achieved
in testing.

Table 2: Median value of the proposed approach (Computed Over 100 runs) for
the MSE and NMSE scores on Training (t.) and Testing (T.) splits on the 94
Benchmark Datasets.

Dataset tmse Tmse tnmse Tnmse Dataset tmse Tmse tnmse Tnmse

rabe_266 8.381 9.641 0.003 0.004 sl_ex1714 1.11e6 1.86e6 0.145 0.299

Continue on the next page
1https://github.com/EpistasisLab/penn-ml-benchmarks
2https://www.newcastle.edu.au/research-and-innovation/resources/research-computing-services/

advanced-computing

15

https://github.com/EpistasisLab/penn-ml-benchmarks
https://www.newcastle.edu.au/research-and-innovation/resources/research-computing-services/advanced-computing
https://www.newcastle.edu.au/research-and-innovation/resources/research-computing-services/advanced-computing

A PREPRINT - JANUARY 6, 2020

Table 2: Median value of the proposed approach (Computed Over 100 runs) for
the MSE and NMSE scores on Training (t.) and Testing (T.) splits on the 94
Benchmark Datasets.

Dataset tmse Tmse tnmse Tnmse Dataset tmse Tmse tnmse Tnmse

a.elec2000 4.09e6 1.42e7 0.001 0.005 fri_c3_500_10 0.238 0.278 0.244 0.307
a.neavote 0.725 0.903 0.046 0.059 fri_c2_500_50 0.270 0.310 0.284 0.307
cpu 6.37e2 1.33e3 0.028 0.077 fri_c0_250_5 0.249 0.308 0.246 0.311
fri_c2_1000_5 0.069 0.078 0.069 0.080 fri_c0_1000_50 0.275 0.313 0.279 0.314
fri_c1_1000_5 0.079 0.088 0.079 0.088 fri_c2_250_25 0.249 0.326 0.252 0.317
fri_c3_1000_5 0.081 0.094 0.080 0.096 fri_c0_500_10 0.285 0.324 0.281 0.324
v.galaxy 8.00e2 8.86e2 0.090 0.099 fri_c0_500_25 0.262 0.307 0.262 0.325
fri_c2_500_5 0.083 0.105 0.083 0.105 fri_c0_500_50 0.285 0.349 0.285 0.346
fri_c4_1000_10 0.103 0.115 0.106 0.112 fri_c1_500_50 0.333 0.355 0.342 0.347
fri_c1_500_5 0.095 0.116 0.096 0.117 fri_c1_1000_50 0.330 0.350 0.333 0.349
a.apnea2 1.17e6 1.17e6 0.114 0.129 sl_case1202 2.17e3 2.80e3 0.262 0.355
fri_c1_1000_10 0.129 0.135 0.130 0.134 fri_c0_250_10 0.298 0.376 0.301 0.373
a.apnea1 1.16e6 1.21e6 0.109 0.138 fri_c0_100_5 0.240 0.377 0.243 0.388
chatfield_4 2.47e2 2.96e2 0.123 0.141 fri_c3_250_10 0.343 0.413 0.339 0.420
fri_c3_1000_25 0.128 0.141 0.129 0.150 fri_c4_250_25 0.333 0.394 0.321 0.421
ESL 0.265 0.309 0.133 0.150 fri_c0_250_25 0.293 0.411 0.295 0.422
fri_c2_1000_10 0.136 0.157 0.138 0.151 sl_ex1605 95.070 103.057 0.411 0.423
fri_c1_500_10 0.138 0.153 0.140 0.153 fri_c0_250_50 0.345 0.431 0.340 0.423
fri_c2_1000_25 0.154 0.156 0.154 0.160 fri_c3_250_25 0.323 0.407 0.322 0.426
fri_c3_500_5 0.128 0.159 0.131 0.160 rmftsa_ladata 3.135 3.208 0.384 0.433
fri_c1_1000_25 0.155 0.175 0.156 0.167 a.vehicle 2.17e4 3.73e4 0.279 0.440
fri_c4_1000_25 0.145 0.176 0.145 0.179 fri_c1_250_10 0.379 0.458 0.384 0.449
fri_c3_1000_10 0.156 0.168 0.154 0.180 fri_c3_1000_50 0.383 0.449 0.387 0.453
FacultySalry 1.751 3.127 0.083 0.180 fri_c2_100_5 0.328 0.500 0.326 0.459
machine_cpu 2.24e3 3.74e3 0.089 0.190 fri_c1_100_10 0.365 0.472 0.369 0.462
fri_c1_250_5 0.128 0.187 0.126 0.190 LEV 0.409 0.418 0.444 0.465
fri_c2_250_5 0.147 0.187 0.145 0.190 vineyard 4.734 7.993 0.242 0.475
cloud 0.095 0.165 0.083 0.195 fri_c4_1000_50 0.423 0.445 0.417 0.476
fri_c0_1000_5 0.182 0.197 0.182 0.200 fri_c2_100_10 0.382 0.537 0.399 0.482
fri_c2_500_10 0.178 0.217 0.178 0.211 fri_c0_100_10 0.277 0.504 0.279 0.487
fri_c4_500_25 0.164 0.212 0.163 0.218 fri_c4_500_10 0.436 0.484 0.407 0.488
auto_price 6.54e6 7.62e6 0.187 0.219 fri_c4_1000_100 0.526 0.541 0.520 0.546
elusage 86.700 1.19e2 0.147 0.219 fri_c1_250_50 0.457 0.532 0.452 0.551
autoPrice 6.35e6 7.56e6 0.184 0.220 no2 0.303 0.320 0.531 0.563
fri_c3_500_25 0.177 0.242 0.177 0.225 fri_c3_500_50 0.582 0.605 0.582 0.595
USCrime 2.02e2 3.72e2 0.127 0.227 fri_c1_100_5 0.397 0.579 0.395 0.598
fri_c2_1000_50 0.214 0.230 0.214 0.230 pollution 1.29e3 2.40e3 0.319 0.623
chs_geyser1 36.539 38.619 0.223 0.237 ERA 2.553 2.665 0.653 0.671
fri_c2_500_25 0.219 0.228 0.217 0.242 sl_case2002 55.722 59.521 0.591 0.674
vinnie 2.375 2.371 0.253 0.242 fri_c4_500_50 0.625 0.664 0.623 0.680
fri_c2_250_10 0.204 0.239 0.210 0.248 v.env. 7.380 8.412 0.574 0.687
fri_c3_250_5 0.202 0.274 0.196 0.252 fri_c4_250_10 0.594 0.702 0.587 0.697
fri_c0_500_5 0.210 0.258 0.206 0.258 fri_c3_100_5 0.469 0.679 0.463 0.698
fri_c0_1000_10 0.254 0.260 0.253 0.262 fri_c0_100_25 0.450 0.778 0.461 0.745
fri_c0_1000_25 0.222 0.258 0.223 0.266 SWD 0.484 0.488 0.736 0.749
fri_c1_500_25 0.204 0.278 0.203 0.275 pm10 0.681 0.693 0.870 0.885

3.2 Performance Comparison with State-of-the-art Algorithms

We compared our method with a selection of Genetic Programming (GP) and Machine Learning (ML) based regression
approaches presented in [68] for the ranking computed over MSE scores. In [68] each of the GP-based algorithms was
ran for 100,000 evaluations (i.e. population size × number of generations, see details in [68]), except the eplex-1m
that was allowed to run for 1 million generations. We labelled our proposal as ‘CFR’ (standing for the fact that it is
based on ‘Continued Fraction Regression’) and it was ran 10 times to compare with the outcomes presented in [68]
(that also run the methods 10 times). A detailed description of the algorithms that are compared against CFR can be
found in [68], however, we are listing them to enhance the readability of the paper. They are:

1. Genetic Programming-based Algorithms:

16

A PREPRINT - JANUARY 6, 2020

4

8

12

16

C
F
R

ep
le
x-
1m

ep
le
x

m
rg
p

af
p

gs
gp

R
a
n
k
in
g

(T
ra
in
)

(a) Training Performance of Algorithms

4

8

12

16

C
F
R

ep
le
x-
1m

ep
le
x

m
rg
p

af
p

gs
gp

R
a
n
k
in
g

(T
e
s
t)

(b) Testing Performance of Algorithms

Figure 4: Median Ranking of the performance of CFR compared with GP-based algorithms (as reported in [68]) for the
MSE score on a) Training and b) Testing datasets.

(a) afp: Age-fitness Pareto Optimization [69]
(b) eplex: ε-Lexicase selection [70]
(c) eplex-1m: Variation of eplex with stopping criteria of 1 million evaluations (population size × genera-

tions) [70]
(d) gsgp: Geometric Semantic Genetic Programming [71]
(e) mrgp: Multiple Regression Genetic Programming [72];

2. Machine Learning-based Algorithms:

(a) adaboost: Adaptive Boosting (AdaBoost) Regression (ada-b) [73]
(b) gradboost: Gradient Boosting Regression (grad-b) [74]
(c) kernel-ridge: Kernel Ridge (krnl-r) [75]
(d) lasso-lars: Least-Angle Regression with Lasso (lasso-l) [76]
(e) linear-regression: Linear Regression (l-regr) [77]
(f) linear-svr: Linear Support Vector Regression (l-svr) [78]
(g) mlp: Multilayer Perceptrons (MLPs) Regressor [79]
(h) rf: Random Forests Regression [80]
(i) sgd-regression: Stochastic Gradient Descent Regression (sgd-r) [81]
(j) xgboost: Extreme Gradient Boosting (xg-b) [82].

To illustrate the differences in the performances of the algorithms, we will use violin plots3. These plots combine the
box-and-whisker plot with the quantitative distribution of the results. The box-and-whisker plot represents the five
number descriptive statistics. The ends of the box represent the upper and lower quartiles, a vertical line inside the box
represent the median and two whiskers outside the box extend to the highest and lowest value of the observations. In
addition to these statistics, the colored violin shows the quantitative distribution of the results.

3.2.1 Performance Comparison with GP-based algorithms

Fig. 4 shows the median ranking of the GP-based approaches (including the proposed CFR) for 10 repeated runs on
the 94 benchmark datasets. From the performance in Fig. 4(a) on the training set, we can observe that mrgp achieved
the best results median ranking among six algorithms. The proposed CFR appeared the 3rd in median ranking for the
training set. However, observing the generalization performance of those algorithms on the testing set (Fig. 4(b)), our
method has improved to 2nd rank. We note now that mrgp, the best-performing approach in the training set, is now in the
3rd place for testing (and very close to eplex). In addition, mrgp’s 75th percentile ranking is the 2nd worst performance
exhibited by all GP-based methods in the testing set. Now if we consider the 75th percentile of the median ranking
on testing, CFR appears as the best regression method among the GP-based approaches. In terms of generalization
performances, we can claim that the proposed CFR exhibited better performance than many of the state-of-the-art
GP-based regression approaches.

17

A PREPRINT - JANUARY 6, 2020

4

8

12

16

C
F
R

xg
-b

gr
ad
-b

m
lp rf

kr
nl
-r

ad
a-
b

la
ss
-l

l-s
vr

l-r
eg
r

sg
d-
r

R
a
n
k
in
g

(T
ra
in
)

(a) Training Performance of Algorithms

4

8

12

16

C
F
R

xg
-b

gr
ad
-b

m
lp rf

kr
nl
-r

ad
a-
b

la
ss
-l

l-s
vr

l-r
eg
r

sg
d-
r

R
a
n
k
in
g

(T
e
s
t)

(b) Testing Performance of Algorithms

Figure 5: Median Ranking of the performance of CFR compared with ML-based algorithms (as reported in [68]) for the
MSE score on a) Training and b) Testing datasets. The leftmost three are the boosting-based methods.

3.2.2 Performance Comparison with ML-based algorithms

Fig. 5 shows the median ranking of the 10 ML-based approaches and the proposed CFR for 10 repeated runs on
the 94 benchmark datasets. On the training set (Fig. 5(a)), we can observe that the gradboost achieved the best
middle quartile performance. The proposed CFR is, at least, better than four rightmost machine learning algorithms
(linear-svr, linear-regression, lasso-lars and sgd-regression).

When we look at the generalization performance of those Machine Learning (ML)-based algorithms on the testing set
(Fig. 5(b)), CFR achieved the joint top position with the xgboost and gradboost while considering the middle quartile.
Moreover, based on the 25th percentile result, the CFR achieved the 1st position among all ML-based methods. However,
the two best-performed boosting-based algorithms in training set, xgboost and gradboost, swapped their ranks on
testing while we consider the 25th percentile of the median ranking. We note that gradboost was unable to achieve 1st

ranking position for any of the testing sets, despite it being ranked 1st for some experiments in testing sets.

3https://seaborn.pydata.org/generated/seaborn.violinplot.html

18

https://seaborn.pydata.org/generated/seaborn.violinplot.html

A PREPRINT - JANUARY 6, 2020

Table 3: Number of times an algorithm ranked 1st (1st) and Last (L) for both the train (t) and test (T) sets, ordered by
descending frequency of ranked 1st on the test sets (T 1st).

Algorithm tL TL t1st T 1st Algorithm tL TL t1st T 1st

CFR 2 0 1 23 eplex 0 1 0 1
mrgp 0 26 17 23 lass-l 19 4 0 1
eplex-1m 0 0 0 19 ada-b 1 1 0 0
mlp 1 0 11 12 afp 22 1 0 0
xg-b 0 0 6 7 grad-b 0 0 38 0
krnl-r 0 0 11 3 gsgp 0 36 0 0
rf 0 0 2 3 l-svr 5 8 0 0
l-regr 3 6 1 2 sgd-r 41 11 0 0

To better understand the global picture, Table 3 shows the number of times an algorithm ranked 1st and last for the
mean of 10 runs on both the train and test splits of 94 benchmark datasets. We have sorted the algorithms in decreasing
order of the number of times it ranked 1st on the testing set (T 1st). We note that there are 6 algorithms (adaboost,
afp, gradboost, gsgp, linear-svr and sgd-regression) which were unable to achieve 1st ranking position for
any of the testing sets. Although, gradboost was ranked 1st for the highest number of times (38 out 94 datasets) in
training, it never achieved the 1st rank in testing. The sgd-regression was the worst-performing algorithm among all
by ranked last in training for the highest number (41) of datasets. Considering the generalization performance, gsgp
was the worst among 16 algorithms for being ranked last in 36 testing set. The proposed CFR and mrgp achieved the
joint 1st position in generalization performance for being ranked 1st in highest number of datasets (23 out of 94). It is
also notable that, mrgp became last for 26 datasets out of 94 for the ranking in the testing set. Hence, CFR superseded
the mrgp by never being last in testing performances for any of the 94 datasets.

3.3 Statistical Significance Testing

To check whether there are any significant differences in the median rankings of the algorithms based on their MSE
performances, we have used a modification of the Friedman test [83] by Iman and Davenport [84]. The obtained
p-value (p-value < 2.2e-16, Corrected Friedman’s chi-squared = 68.089 with df1 = 15, df2=1395) indicates that the null
hypothesis “all the algorithms perform the same” can safely be rejected. Therefore, we proceeded with the post-hoc
test.

For post-hoc test, we have applied Freidman’s post-hoc test and plotted the p-values in the heatmap shown in Fig. 6.
Grey color indicates the p-values with ‘significant differences’ (p ≤ 0.05) between the pair of algorithms being tested.
The yellow (0.05 < p ≤ 0.10) and red (p > 0.10) color expressed there exist ‘no significant’ differences between the
pairs of algorithms.

In addition to the post-hoc results, the differences among algorithms can also be easily visualized using a Critical
Difference (CD) diagram proposed in [85], which is based on the Nyemeni post-hoc test and might have slightly
different results from the pairwise Friedman test. Here, the critical difference of rankings between the algorithm are
computed and if the performance difference of any pair of algorithms are greater than the critical difference, they are
regarded as “significantly different”. The algorithms are placed on x-axis at the place of their median ranking, then
statistically “non significant” algorithms are connected with horizontal lines. We have plotted the CD graph (in Fig. 7)
using the implementation of [86] for our experiments with a significance threshold of p = 0.05. For this test, the
critical difference is found to be 2.3834 and significantly different algorithms are not connected by the horizontal line.
Form the plot it is clear that there is no significant differences found in the rankings of CFR, eplex-1m, xgboost,
gradboost algorithms on 94 benchmark datasets. Moreover, the median ranking of CFR is within 3 to 4, which is the
best result among all of the algorithms.

3.4 Runtime Comparison of the Algorithms

To compare the running time requirements of CFR with GP-based methods, we used an Ubuntu 18.04 Computer with 4
CPU cores and 20 GB RAM to execute all algorithms. We also selected 10 datasets (USCrime, Fac.Salaries, autoPrice,
elusage, anlc_vehicle, anlc_neavote, anlc_elect.2000, sl_ex1714, rabe_266, chatfield_4) for which the GP methods
required the least amount of reported runtime in [68] to facilitate this benchmarking. We have limited the running time
for each of the algorithms to 72 hours in our experimental setup.

Figure 8 shows the total running time requirements of the algorithms for the 10 selected datasets in a) as reported [68]
and b) experimental environment of [68]. It is notable that the eplex-1m was able to finish the execution in only one of

19

A PREPRINT - JANUARY 6, 2020

C
FR

ep
le
x−
1m

xg
−b

gr
ad
−b m
lp rf

ep
le

x

kr
nl
−r

m
rg
p

ad
a−
b

af
p

la
ss
−l

l−
sv
r

l−
re
gr

sg
d−
r

gs
gp

gsgp
sgd−r
l−regr
l−svr
lass−l
afp
ada−b
mrgp
krnl−r
eplex
rf
mlp
grad−b
xg−b
eplex−1m
CFR

0
0.

2
0.

4
0.

6
0.

8
1

Color Key

Figure 6: Heatmap showing the levels of p-values obtained by the Post-hoc pairwise Test using Freidman’s Aligned
Rank Test for the performances of the algorithms.

3 4 5 6 7 8 9 10 11 12 13 14

CD

CFR
eplex−1m

xg−b
grad−b

mlp
rf

krnl−r
eplex

mrgp

ada−b
afp
lass−l
l−svr
l−regr
sgd−r
gsgp

Figure 7: Comparison of all algorithms against each other with the Nemenyi test. This critical difference (CD) plot used
the median rankings of algorithms in each of the 94 benchmark datasets. Groups of algorithms that are not significantly
different (at p = 0.05) are connected.

20

A PREPRINT - JANUARY 6, 2020

1e+02

1e+05

1e+08

af
p

ep
le

x

ep
le

x−
1m

gs
gp

m
rg

p

R
un

tim
e

of
 a

lg
or

ith
m

s
in

 s
ec

 (
lo

g
sc

al
e)

a) Runtime Reported in Paper

 × 101e+02

1e+05

1e+08

af
p

ep
le

x
ep

le
x−

1m

gs
gp

m
rg

p

C
FR

b) Runtime Required in Experiment

Datasets
analcat_elect.2000
analcat_neavote

analcat_vehicle
autoPrice

chatfield_4
elusage

FacultySalaries
rabe_266

sleuth_ex1714
USCrime

Figure 8: Total running time of the algorithms in seconds (in logarithmic scale) for 10 datasets selected from the
benchmark. a) Total running time reported in the paper [68] vs. b) Total running time required for the algorithms in
the experimental computer for the 10 datasets. In the experimental computer, eplex-1m only completed one run in a
dataset so the total time is expected to be at least ten times more than the one in the graphic (we indicated it with an
arrow that shows this fact).

the datasets (USCrime) using 3115.36 times more CPU than CFR. Now we compare the ratio of the required running
time by the reported value.

We found that the running time of afp in the experimental computer is higher by a factor of 4.93 than the reported
values using the hardware of [68]. Similarly, the runtime of eplex has increased by a factor of 5.17 in the experimental
computer. Besides, gsgp required an average CPU times by a factor of 0.93 than the values reported in [68]. Finally,
mrgp has exhibited a runtime increment by a factor of 4.18 in the experimental environment. In the experimental setup,
we have found that the CFR superseded the GP-based algorithms in terms of running time.

3.5 The performance profile of all algorithms

Dolan and Moré [87] proposed an approach to visualize the information that results from running multiple optimization
algorithms over a set of datasets. This approach leads to the creation of a ‘performance profile’. We will use it here to
show the results of the 16 learning algorithms over the 94 datasets studied.

The performance profile is an (x, y)-plot and there are as many discontinued functions in the graph as algorithms are
compared. To create it, we first need to identify, for each of the 94 datasets on which generalization has been tested, the
minimum average MSE value observed (i.e. the best average MSE result obtained by one of the 16 algorithms, where
the average is obtained using the 10 independent runs). This value is then taken as a useful reference; it then used
to calculate the percentual relative error differences observed. Accordingly, assume that we have the curves of two
algorithms A1 and A2 that respectively cross the points (500, 30) and (500, 70). The x value of 500 indicates that for a
relative error difference corresponding to 500 percent to the minimum average MSE value observed, algorithm A1 has
obtained such relative error difference (on average) in only 30 percent of the 94 datasets. In comparison, the algorithm
A2 has achieved such a performance in 70 percent of the datasets.

Varying the value of the percentual relative error difference, we can generate a curve that will go from 0 to 100 percent
(for all algorithms). On a given interval on the x-axis, an algorithm A would dominate an algorithm B if the y value of
any point of its performance profile curve is larger than the of A for the same value of x, regardless of which value of x
we are choosing on that interval. Fig. 9 shows the performance profiling of the algorithms on two different intervals

21

A PREPRINT - JANUARY 6, 2020

0 250 500 750 1000 1250 1500 1750 2000
% of relative error difference

0

20

40

60

80

100

%
 o

f d
at

as
et

s
CFR
eplex-1m
xg-b
grad-b
mlp
rf
krnl-r
eplex
mrgp
ada-b
afp
lass-l
l-svr
l-regr
sgd-r
gsgp

(a) All Algorithms on the x-axis interval from 0 to 2000

0 100 200 300 400 500
% of relative error difference

0

20

40

60

80

100

%
 o

f d
at

as
et

s

CFR
eplex-1m
xg-b
grad-b
mlp
rf
krnl-r
eplex
mrgp
ada-b
afp
lass-l
l-svr
l-regr
sgd-r
gsgp

(b) All Algorithms on the x-axis interval from 0 to 500

Figure 9: Performance Profiles for all algorithms on the x-axis intervals: a) [0, 2000] and b) [0, 500].

22

A PREPRINT - JANUARY 6, 2020

which allows to have an overall picture of the performance of the whole group of algorithms tested in this work. The
order of the algorithms in this figure is the one obtained from the statistical analysis and results presented in Fig.7.
Sub-fig. 9(a) shows the profile for all algorithms on the interval [0,2000]. On that interval, only a few of the 16 learning
algorithms achieved the top 100 percent mark. CFR is the first in achieving it and does it at a percentual relative error of
451. The xgboost achieves the same feat at 547 later followed by eplex-1m at 615. Sub-fig. 9(b) shows the profiling
on the x-axis interval of [0,500]. The performance profiles of CFR, eplex-1m, xgboost, and xgboost, relative to the
other curves, indicate that for some datasets the other algorithms obtain present errors in generalization that are 5 times
larger than the best one observed. This speaks of the relative robustness of CFR, eplex-1m, xgboost and xgboost in
generalization performances.

3.6 Median MSE scores of Top 4 algorithms for 94 Datasets

In this section, we tabulated the performance (measured in MSE score) of top four methods in Table 4. These four
methods (CFR, explex-1m, grad-b and xgb-b) has shown no significant differences of performances in Fig.7. We
highlighted the best performances of CFR in bold in compared with other three method’s MSE score.

Table 4: The median value of MSE score for 10 runs obtained in Test sets of the
best four algorithms. A bold-face in ‘CFR’ column indicates it has achieved the
best score among four algorithms for corresponding dataset.

Dataset eplex-1m grad-b xg-b CFR Dataset eplex-1m grad-b xg-b CFR

ESL 0.274 0.319 0.272 0.268 fri_c3_1000_10 0.077 0.066 0.062 0.068
SWD 0.390 0.405 0.408 0.432 fri_c0_1000_5 0.042 0.074 0.071 0.106
LEV 0.425 0.424 0.422 0.353 fri_c3_100_5 0.250 0.182 0.093 0.125
ERA 2.514 2.585 2.567 2.450 fri_c1_1000_5 0.049 0.047 0.047 0.050
USCrime 3.93e2 2.57e2 3.78e2 2.20e2 fri_c3_250_5 0.126 0.110 0.108 0.086
FacultySalry 4.035 8.071 4.111 1.277 fri_c4_250_10 0.148 0.173 0.172 0.133
vineyard 6.010 8.223 7.825 4.222 fri_c4_500_50 0.079 0.141 0.114 0.169
auto_price 5.89e6 3.89e6 4.03e6 6.01e6 fri_c3_500_5 0.103 0.085 0.071 0.078
autoPrice 4.17e6 5.29e6 2.87e6 4.83e6 fri_c3_1000_50 0.068 0.082 0.070 0.120
cloud 0.110 0.208 0.144 0.095 fri_c1_1000_25 0.057 0.070 0.067 0.076
elusage 1.35e2 1.99e2 1.37e2 65.797 fri_c0_100_10 0.149 0.319 0.307 0.226
machine_cpu 3.80e3 2.23e3 2.69e3 2.10e3 fri_c2_1000_50 0.063 0.069 0.076 0.118
a.vehicle 4.14e4 2.41e4 4.20e4 1.55e4 fri_c4_1000_10 0.050 0.074 0.060 0.063
vinnie 2.287 2.860 2.659 1.934 fri_c0_100_5 0.152 0.193 0.164 0.202
pm10 0.640 0.431 0.399 0.621 fri_c2_500_50 0.049 0.101 0.109 0.130
a.neavote 1.180 0.818 0.917 0.401 fri_c2_500_10 0.064 0.088 0.097 0.081
a.elect2000 4.33e7 3.40e8 7.72e8 5.09e5 fri_c3_1000_5 0.059 0.049 0.048 0.046
pollution 1.87e3 2.19e3 1.67e3 1.42e3 fri_c1_500_5 0.068 0.077 0.074 0.075
no2 0.272 0.227 0.210 0.295 fri_c0_500_25 0.047 0.132 0.127 0.144
a.apnea2 1.12e6 9.42e5 7.86e5 6.09e5 fri_c2_100_10 0.750 0.321 0.233 0.320
a.apnea1 8.16e5 9.98e5 5.28e5 6.96e5 fri_c0_250_10 0.047 0.183 0.170 0.259
cpu 1.75e2 2.36e3 8.83e2 1.64e2 fri_c1_500_50 0.091 0.111 0.133 0.116
fri_c0_250_5 0.065 0.162 0.165 0.176 fri_c1_500_10 0.062 0.086 0.069 0.075
fri_c3_500_25 0.064 0.090 0.097 0.081 fri_c2_500_25 0.077 0.097 0.110 0.121
fri_c1_500_25 0.117 0.108 0.107 0.111 fri_c4_250_25 0.157 0.206 0.178 0.110
fri_c1_1000_50 0.066 0.073 0.077 0.104 fri_c3_500_50 0.101 0.132 0.131 0.156
fri_c4_500_25 0.127 0.111 0.095 0.111 fri_c3_500_10 0.062 0.079 0.066 0.075
fri_c3_1000_25 0.056 0.069 0.059 0.064 fri_c1_250_10 0.114 0.123 0.105 0.130
fri_c4_1000_100 0.047 0.087 0.072 0.227 fri_c1_250_50 0.098 0.171 0.154 0.140
fri_c2_1000_25 0.051 0.064 0.070 0.077 fri_c0_500_5 0.048 0.099 0.106 0.124
fri_c0_1000_50 0.044 0.111 0.113 0.141 fri_c0_500_50 0.053 0.131 0.170 0.211
fri_c1_100_10 0.485 0.245 0.154 0.233 fri_c0_100_25 0.259 0.419 0.383 0.365
fri_c4_1000_25 0.058 0.076 0.066 0.081 fri_c0_250_25 0.064 0.209 0.209 0.224
fri_c1_1000_10 0.047 0.051 0.049 0.059 fri_c0_500_10 0.048 0.153 0.138 0.202
fri_c2_100_5 0.509 0.277 0.255 0.259 fri_c1_100_5 0.490 0.208 0.176 0.241
fri_c0_1000_10 0.047 0.096 0.093 0.155 fri_c2_250_10 0.128 0.123 0.116 0.140
fri_c2_250_5 0.104 0.113 0.094 0.086 fri_c3_250_25 0.116 0.194 0.184 0.111
fri_c2_500_5 0.079 0.068 0.073 0.054 sl_ex1714 1.42e6 1.57e6 2.31e6 6.83e5
fri_c0_1000_25 0.039 0.092 0.093 0.074 rabe_266 7.107 7.316 3.043 2.643
fri_c2_1000_5 0.046 0.048 0.045 0.044 sl_case2002 75.772 56.240 72.363 41.742

Continue on the next page

23

A PREPRINT - JANUARY 6, 2020

Table 4: The median value of MSE score for 10 runs obtained in Test sets of the
best four algorithms. A bold-face in ‘CFR’ column indicates it has achieved the
best score among four algorithms for corresponding dataset.

Dataset eplex-1m grad-b xg-b CFR Dataset eplex-1m grad-b xg-b CFR

fri_c1_250_5 0.084 0.103 0.093 0.093 rmftsa_ladata 3.012 3.511 3.212 2.764
fri_c3_250_10 0.086 0.150 0.120 0.084 v.env. 9.624 9.798 9.540 4.700
fri_c0_250_50 0.071 0.238 0.252 0.254 sl_ex1605 101.824 98.440 91.986 83.998
fri_c4_500_10 0.065 0.084 0.072 0.072 v.galaxy 3.13e2 2.68e2 2.24e2 4.34e2
fri_c2_250_25 0.179 0.173 0.156 0.149 chatfield_4 2.82e2 3.84e2 2.88e2 1.89e2
fri_c2_1000_10 0.069 0.062 0.058 0.073 sl_case1202 3.29e3 3.42e3 3.20e3 1.39e3
fri_c4_1000_50 0.051 0.088 0.068 0.092 chs_geyser1 38.888 39.902 42.887 31.053

4 Discussion

After analyzing the median ranking of state-of-the-art regression algorithms (both of the GP and ML-based) we found
that our proposed approach comparable performance while compared with all state-of-the-art approaches. The results
show that the use of continued fractions is a promising new idea due to its representational power.

Moreover, the proposed algorithm, named CFR in this contribution, was ranked as 1st a total of 23 times. Among fifteen
algorithms, only mrgp) showed a similar result. However, it became last in test for the maximum number of times
(26). eplex-1m is in the second position in terms of the number of times an algorithm become first in the ranking.
Interestingly, the base algorithm eplex was not able to outperform any of the top 3 algorithms, including its own
variant eplex-1m. CFR also achieves a comparable or better result at a fraction of the amount of evaluations required
by eplex-1m and mrgp. Consequently, we can claim that CFR could be potentially preferred over mrgp due to its
better overall performance and robustness in generalization capability.

The statistical test on the results (in Fig. 6) unveiled the lack of significance of those differences. We have found that
there are no statistically significant differences for the performance of CFR with the eplex-1m and xgboost algorithm.
Nonetheless, running the eplex for a million evaluations (in eplex-1m) improves the performance as expected. In
contrast, we note that we have executed the CFR for only 200 generations. Furthermore, the critical difference (CD)
analysis (in Fig. 7) revealed that the performance of CFR is statistically comparable to the best three state-of-the-art
algorithms (eplex-1m, xgboost and grad-boost) and better than the rest of them. Moreover, the average ranking of
CFR (which was consistently between 3 and 4) for 94 datasets makes it ahead of all of the algorithms in the CD plot.

Another important issue to consider is that the CFR results have been obtained with minimal level of parameter tuning.
In contrast, the hyper-parameters of the state-of-the-art algorithms in the experiment were extensively tuned using
grid-search for the experiments as reported by [68]. Similarly, the performance of the CFR could be improved if the
parameters of the algorithms are tuned per datasets or by including techniques such as boosting. Hence, we believe
there is a clear avenue for further research in this area with the joint optimization of parameters for the inclusion of
boosting in a new type of memetic algorithm.

5 Conclusion

In this paper, we present a comprehensive experimental comparison of an alternative method for multivariate regression
problems that uses analytic continued fractions as a representation of the mathematical models. This has led to a
challenging type of nonlinear optimization problem and we have presented a memetic algorithm for this problem using
a hierarchical structured population. A variant of the classical Nelder-Mead-based search was proposed as the individual
optimization. We compared the performances of our proposed method with 10 machine-learning and 5 GP-based
regression methods on 94 benchmark datasets. The results indicated a better generalization performance than many
state-of-the-art regression approaches. In terms of the number of times an algorithm ranked 1st for the generalization in
the experimental setup, the CFR ranked the 1st among the 16 methods, which indeed is a very promising outcome for a
first implementation of this new idea. Fig. 9 shows that in comparison with the top 4 algorithms, our proposed method
is the first at reaching ceiling of 100 percent making it more robust at a fraction of the computational time required to
obtain the models with the best GP-based approach (eplex-1m) (e.g. for one dataset (US Crime) mrgp and eplex-1m
was 1040 times and 3120 times slower, respectively).

The proposed approach can be extended by including adaptations that could explore parameter optimization of the
memetic algorithm to improve the performance in generalization. We foresee that more sophisticated gradient descent
methods could be used in place of the Nelder-Mead solver as an optimizer in our memetic algorithm.

24

A PREPRINT - JANUARY 6, 2020

In terms of running time, our approach with GP-based methods, the memetic algorithm exhibited better performances
compared against all of the GP-based methods. CFR required the least amount of CPU time to execute on 10 selected
datasets. The eplex-1m was the most compute extensive GP-based method. However, further possibilities exist to
improve the running time of our memetic algorithm including: adopting more efficient local search approach, adding
the capability to adopting the local-search over distributed computing, and/or utilize more powerful processors (GPUs
or TPUs). We encourage the computing community to explore the possibilities of this new approach for regression
involving analytic continued fractions and to extend to other domains of machine learning and artificial intelligence (e.g.
classification).

Acknowledgements

We thank Dr Markus Wagner, School of Computer Science at The University of Adelaide, Australia for his thoughtful
comments that helped us to improve an earlier version of the manuscript. We also thank the members of Prof. Jason H.
Moore’s research lab at the University of Pennsylvania, USA, for making both the source code of their experiments
and the Penn Machine Learning Benchmarks datasets available. M.N.H. and P.M. thank Renata Sarmet from the
Universidade Federal de São Carlos, Sao Paulo, Brazil for discussion about the performance profile plot and sharing her
Python code to produce one of the figures.

CRediT author statement

Pablo Moscato: Conceptualization, Methodology, Formal analysis, Investigation, Writing - Original Draft, Writing -
Review & Editing, Supervision, Project administration, Funding acquisition. Haoyun Sun: Methodology, Software,
Validation, Formal analysis, Investigation, Writing - Review & Editing. Mohammad Nazmul Haque: Methodology,
Software, Validation, Formal analysis, Investigation, Writing - Original Draft, Writing - Review & Editing, Visualization.

References

[1] John Duffy and Jim Engle-Warnick. Using Symbolic Regression to Infer Strategies from Experimental Data, pages
61–82. Physica-Verlag HD, Heidelberg, 2002.

[2] Clemens Otte. Safe and interpretable machine learning: A methodological review. In Christian Moewes and
Andreas Nürnberger, editors, Computational Intelligence in Intelligent Data Analysis, pages 111–122, Berlin,
Heidelberg, 2013. Springer Berlin Heidelberg.

[3] Sheng Sun, Runhai Ouyang, Bochao Zhang, and Tong-Yi Zhang. Data-driven discovery of formulas by symbolic
regression. Materials Research Society Bulletin, 44(7):559–564, 2019.

[4] Pablo Moscato and Natalie Jane de Vries. Marketing meets data science: Bridging the gap. In Business and
Consumer Analytics: New Ideas, pages 3–117. 2019.

[5] Michael Schmidt and Hod Lipson. Distilling free-form natural laws from experimental data. Science, 324(5923):81–
85, 2009.

[6] M.J. Graham, S.G. Djorgovski, A.A. Mahabal, C. Donalek, and A.J. Drake. Machine-assisted discovery of
relationships in astronomy. Monthly Notices of the Royal Astronomical Society, 431(3):2371–2384, 2013.

[7] Gabriel Kronberger, Michael Kommenda, Andreas Promberger, and Falk Nickel. Predicting friction system
performance with symbolic regression and genetic programming with factor variables. In Proceedings of the
Genetic and Evolutionary Computation Conference, GECCO 2018, Kyoto, Japan, July 15-19, 2018, pages
1278–1285, 2018.

[8] Marcus Märtens, Fernando A. Kuipers, and Piet Van Mieghem. Symbolic regression on network properties. In
Genetic Programming - 20th European Conference, EuroGP 2017, Amsterdam, The Netherlands, April 19-21,
2017, Proceedings, pages 131–146, 2017.

[9] Marco Virgolin, Tanja Alderliesten, Arjan Bel, Cees Witteveen, and Peter A. N. Bosman. Symbolic regression and
feature construction with GP-GOMEA applied to radiotherapy dose reconstruction of childhood cancer survivors.
In Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2018, Kyoto, Japan, July
15-19, 2018, pages 1395–1402, 2018.

[10] Jake Fitzsimmons and Pablo Moscato. Symbolic regression modelling of drug responses. In First IEEE Conference
on Artificial Intelligence for Industries, Sep 26, 2018 - Sep 28, 2018, Laguna Hills, CA, USA, 2018.

25

A PREPRINT - JANUARY 6, 2020

[11] Ekaterina Vladislavleva, Tobias Friedrich, Frank Neumann, and Markus Wagner. Predicting the energy output of
wind farms based on weather data: Important variables and their correlation. Renewable Energy, 50:236 – 243,
2013.

[12] Ramón Rueda Delgado, Luis G. Baca Ruíz, Manuel Pegalajar Cuéllar, Miguel Delgado Calvo-Flores, and Maria
del Carmen Pegalajar Jiménez. A comparison between NARX neural networks and symbolic regression: An
application for energy consumption forecasting. In Jesús Medina, Manuel Ojeda-Aciego, José Luis Verdegay
Galdeano, Irina Perfilieva, Bernadette Bouchon-Meunier, and Ronald R. Yager, editors, Information Processing
and Management of Uncertainty in Knowledge-Based Systems. Applications - 17th International Conference,
IPMU 2018, Cádiz, Spain, June 11-15, 2018, Proceedings, Part III, volume 855 of Communications in Computer
and Information Science, pages 16–27. Springer, 2018.

[13] Miguel Frade, Francisco Fernández de Vega, and Carlos Cotta. Breeding terrains with genetic terrain programming:
The evolution of terrain generators. Int. J. Computer Games Technology, 2009:125714:1–125714:13, 2009.

[14] Jorge Muruzábal, Carlos Cotta, and Amelia Fernández. Some probabilistic modelling ideas for boolean classifica-
tion in genetic programming. In Genetic Programming, pages 133–148, 2000.

[15] Natalie Jane de Vries, Jamie Carlson, and Pablo Moscato. A data-driven approach to reverse engineering customer
engagement models: Towards functional constructs. PLOS ONE, 9(7):1–19, 07 2014.

[16] P. Moscato and N. J. de Vries. Business and Consumer Analytics: New Ideas. Springer, 2019.
[17] Dervis Karaboga, Celal Ozturk, Nurhan Karaboga, and Beyza Gorkemli. Artificial bee colony programming for

symbolic regression. Information Sciences, 209:1–15, 2012.
[18] Janet Clegg, James Alfred Walker, and Julian Frances Miller. A new crossover technique for cartesian genetic

programming. In Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, GECCO
’07, pages 1580–1587, New York, NY, USA, 2007. ACM.

[19] Peter J Angeline. Subtree crossover: Building block engine or macromutation. Genetic Programming, 97:9–17,
1997.

[20] Sean Luke and Lee Spector. A comparison of crossover and mutation in genetic programming. Genetic
Programming, 97:240–248, 1997.

[21] Ferrante Neri, Carlos Cotta, and Pablo Moscato, editors. Handbook of Memetic Algorithms, volume 379 of Studies
in Computational Intelligence. Springer, 2012.

[22] P. Moscato. On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms.
C3P Report 826, Caltech Concurrent Computation Program, 1989.

[23] Pablo Moscato. Memetic algorithms: The untold story. In Handbook of Memetic Algorithms, pages 275–309.
2012.

[24] Leonardo Trujillo, Emigdio Z-Flores, Perla S. Juarez Smith, Pierrick Legrand, Sara Silva, Mauro Castelli,
Leonardo Vanneschi, Oliver Schütze, and Luiz Munoz. Local Search is Underused in Genetic Programming. In
Ann Arbor, editor, Genetic Programming Theory and Practice XIV. Springer, 2017.

[25] S Cagnoni, D Rivero, and L Vanneschi. A purely evolutionary memetic algorithm as a first step towards
symbiotic coevolution. In 2005 IEEE Congress on Evolutionary Computation (CEC), Vols 1-3, Proceedings, IEEE
Congress on Evolutionary Computation, pages 1156–1163. IEEE; IEEE Computat Intelligence Soc; IEE; Evolut
Programming Soc, 2005. IEEE Congress on Evolutionary Computation, Edinburgh, SCOTLAND, SEP 02-05,
2005.

[26] Raja Muhammad Atif Azad and Conor Ryan. A Simple Approach to Lifetime Learning in Genetic Programming-
Based Symbolic Regression. Evolutionary Computation, 22(2):287–317, 2014. PMID: 24079729.

[27] Robyn Ffrancon and Marc Schoenauer. Memetic semantic genetic programming. In Proceedings of the Genetic
and Evolutionary Computation Conference, GECCO 2015, Madrid, Spain, July 11-15, 2015, pages 1023–1030,
2015.

[28] Maria Semenkina and Eugene Semenkin. Memetic self-configuring genetic programming for solving machine
learning problems. In IIAI 4th International Congress on Advanced Applied Informatics, IIAI-AAI 2015, Okayama,
Japan, July 12-16, 2015, pages 599–604. IEEE Computer Society, 2015.

[29] J.R. Koza. Genetic Programming: On the Programming of Computers by Means of Natural Selection. The MIT
Press, Cambridge, MA, 1992.

[30] Dominic P. Searson, David Leahy, and Mark Willis. GPTIPS: An open source genetic programming toolbox for
multigene symbolic regression. In Int. Multiconference of Engineers and Computer Scientists, volume 1, pages
77–80, 2010.

26

A PREPRINT - JANUARY 6, 2020

[31] Chen Chen, Changtong Luo, and Zonglin Jiang. Block building programming for symbolic regression. Neurocom-
puting, 275:1973 – 1980, 2018.

[32] Marcin Szubert, Anuradha Kodali, Sangram Ganguly, Kamalika Das, and Josh C. Bongard. Reducing antagonism
between behavioral diversity and fitness in semantic genetic programming. In Proceedings of the Genetic and
Evolutionary Computation Conference 2016, GECCO ’16, pages 797–804, New York, NY, USA, 2016. ACM.

[33] Michael Schmidt and Hod Lipson. Eureqa (version 1.24.0), 2018. Software.
[34] George A. Baker Jr. Padé approximant, 2012.
[35] Claudine Chaffy. How to compute multivariate pade approximants. In Bruce W. Char, editor, SYMSAC 1986,

Proceedings of the Symposium on Symbolic and Algebraic Manipulation, Waterloo, Ontario, Canada, July 21-23,
1986, pages 56–58. ACM, 1986.

[36] Ping Zhou, Annie A. M. Cuyt, and Jieqing Tan. General order multivariate padé approximants for pseudo-
multivariate functions. II. Math. Comput., 78(268):2137–2155, 2009.

[37] C. Akal and A. Lukashov. Newton-padé approximations for multivariate functions. Applied Mathematics and
Computation, 334:367–374, 2018.

[38] Franky Backeljauw and Annie A. M. Cuyt. Algorithm 895: A continued fractions package for special functions.
ACM Trans. Math. Softw., 36(3):15:1–15:20, 2009.

[39] Lisa Lorentzen. Padé approximation and continued fractions. Applied Numerical Mathematics, 60(12):1364 –
1370, 2010.

[40] Leonhard Euler. Introductio in analysin infinitorum, volume 1, chapter 18. 1748. Reprinted as Opera (1)8.
[41] Carl Douglas Olds. Continued fractions. Technical report, Random House„ 1963.
[42] Hubert Stanley Wall. Analytic theory of continued fractions. Courier Dover Publications, 1948.
[43] Richard E. Crandall. Projects in Scientific Computation. Springer-Verlag, Berlin, Heidelberg, 1994.
[44] Ekaterina Vladislavleva, Guido Smits, and Dick den Hertog. Order of nonlinearity as a complexity measure for

models generated by symbolic regression via pareto genetic programming. IEEE Trans. Evolutionary Computation,
13(2):333–349, 2009.

[45] Brent E. Eskridge and Dean F. Hougen. Memetic crossover for genetic programming: Evolution through imitation.
In Kalyanmoy Deb, editor, Genetic and Evolutionary Computation – GECCO 2004, pages 459–470, Berlin,
Heidelberg, 2004. Springer Berlin Heidelberg.

[46] Luciana Buriol, Paulo M. França, and Pablo Moscato. A new memetic algorithm for the asymmetric traveling
salesman problem. Journal of Heuristics, 10(5):483–506, Sep 2004.

[47] Pablo Moscato and Fernando Tinetti. Blending heuristics with a population-based approach: A memetic algorithm
for the traveling salesman problem. Technical report, CeTAD, Report 92-12. Universidad Nacional de La Plata,
C.C. 75, 1900 La Plata, Argentina, 1994.

[48] Carlos Cotta and Pablo Moscato. Inferring phylogenetic trees using evolutionary algorithms. In Juan Juli’an
Merelo Guerv’os, Panagiotis Adamidis, Hans-Georg Beyer, José Luis Fernández-Villacañas Martín, and Hans-Paul
Schwefel, editors, Parallel Problem Solving from Nature - PPSN VII, 7th International Conference, Granada,
Spain, September 7-11, 2002, Proceedings, volume 2439 of Lecture Notes in Computer Science, pages 720–729.
Springer, 2002.

[49] Carlos Cotta and Pablo Moscato. A memetic-aided approach to hierarchical clustering from distance matrices:
application to gene expression clustering and phylogeny. Biosystems, 72(1):75 – 97, 2003. Computational
Intelligence in Bioinformatics.

[50] Regina Berretta and Luiz Fernando Rodrigues. A memetic algorithm for a multistage capacitated lot-sizing
problem. International Journal of Production Economics, 87(1):67 – 81, 2004.

[51] Carlos Cotta, Alexandre Mendes, Vinícius Garcia, Paulo M. França, and Pablo Moscato. Applying memetic
algorithms to the analysis of microarray data. In Günther R. Raidl, Jean-Arcady Meyer, Martin Middendorf,
Stefano Cagnoni, Juan J. Romero Cardalda, David Corne, Jens Gottlieb, Agnès Guillot, Emma Hart, Colin G.
Johnson, and Elena Marchiori, editors, Applications of Evolutionary Computing, EvoWorkshop 2003: EvoBIO,
EvoCOP, EvoIASP, EvoMUSART, EvoROB, and EvoSTIM, Essex, UK, April 14-16, 2003, Proceedings, volume
2611 of Lecture Notes in Computer Science, pages 22–32. Springer, 2003.

[52] Claudio Fabiano Motta Toledo, Márcio da Silva Arantes, Paulo Morelato França, and Reinaldo Morabito.
A memetic framework for solving the lot sizing and scheduling problem in soft drink plants. In Raymond
Chiong, Thomas Weise, and Zbigniew Michalewicz, editors, Variants of Evolutionary Algorithms for Real-World
Applications, pages 59–93. Springer, 2012.

27

A PREPRINT - JANUARY 6, 2020

[53] A.S. Mendes, P.M. Franca, and P. Moscato. Fitness landscapes for the total tardiness single machine scheduling
problem. Neural Network World, 12(2):165–180, 2002.

[54] Matthew Harris, Regina Berretta, Mario Inostroza-Ponta, and Pablo Moscato. A memetic algorithm for the
quadratic assignment problem with parallel local search. In IEEE Congress on Evolutionary Computation, CEC
2015, Sendai, Japan, May 25-28, 2015, pages 838–845, 2015.

[55] Alexandre Mendes, Paulo M. França, Pablo Moscato, and Vinícius Garcia. Population studies for the gate matrix
layout problem. In Advances in Artificial Intelligence - IBERAMIA 2002, 8th Ibero-American Conference on AI,
Seville, Spain, November 12-15, 2002, Proceedings, pages 319–339, 2002.

[56] Leonardo de Lima Correa, Bruno Borguesan, Mathias J. Krause, and Márcio Dorn. Three-dimensional protein
structure prediction based on memetic algorithms. Computers & OR, 91:160–177, 2018.

[57] Regina Berretta, Carlos Cotta, and Pablo Moscato. Metaheuristics. chapter Enhancing the Performance of
Memetic Algorithms by Using a Matching-based Recombination Algorithm, pages 65–90. Kluwer Academic
Publishers, Norwell, MA, USA, 2004.

[58] Carlos Cotta, Alexandre Mendes, Vinícius Garcia, Paulo França, and Pablo Moscato. Applying memetic algorithms
to the analysis of microarray data. In Stefano Cagnoni, Colin G. Johnson, Juan J. Romero Cardalda, Elena
Marchiori, David W. Corne, Jean-Arcady Meyer, Jens Gottlieb, Martin Middendorf, Agnès Guillot, Günther R.
Raidl, and Emma Hart, editors, Applications of Evolutionary Computing, pages 22–32, Berlin, Heidelberg, 2003.
Springer Berlin Heidelberg.

[59] Mario Inostroza-Ponta, Regina Berretta, and Pablo Moscato. Qapgrid: A two level qap-based approach for
large-scale data analysis and visualization. PLOS ONE, 6(1):1–18, 01 2011.

[60] Pablo Moscato, Alexandre Mendes, and Regina Berretta. Benchmarking a memetic algorithm for ordering
microarray data. Biosystems, 88(1-2):56–75, 2007.

[61] Iztok Fajfar, Janez Puhan, and Árpád Bũrmen. Evolving a Nelder-Mead algorithm for optimization with genetic
programming. Evolutionary computation, 25, Jan 2016.

[62] S. Singer and J. Nelder. Nelder-Mead algorithm. Scholarpedia, 4(7):2928, 2009. revision #91557.
[63] Haoyuan Sun and Pablo Moscato. A memetic algorithm for symbolic regression. In 2019 IEEE Congress on

Evolutionary Computation (CEC), Wellington, New Zealand, 2019. IEEE.
[64] Grant Dick. Bloat and generalisation in symbolic regression. In Grant Dick, Will N. Browne, Peter A. Whigham,

Mengjie Zhang, Lam Thu Bui, Hisao Ishibuchi, Yaochu Jin, Xiaodong Li, Yuhui Shi, Pramod Singh, Kay Chen
Tan, and Ke Tang, editors, Simulated Evolution and Learning - 10th International Conference, SEAL 2014,
Dunedin, New Zealand, December 15-18, 2014. Proceedings, volume 8886 of Lecture Notes in Computer Science,
pages 491–502. Springer, 2014.

[65] Steven J Miller. The Gamma Function and Related Distributions, book chapter 15, pages 413–438. Princeton
University Press, Princeton, NJ, 2015.

[66] Randal S. Olson, William La Cava, Patryk Orzechowski, Ryan J. Urbanowicz, and Jason H. Moore. Pmlb: a large
benchmark suite for machine learning evaluation and comparison. BioData Mining, 10(1):36, Dec 2017.

[67] Joaquin Quiñonero-Candela, Carl Edward Rasmussen, Fabian Sinz, Olivier Bousquet, and Bernhard Schölkopf.
Evaluating predictive uncertainty challenge. In Joaquin Quiñonero-Candela, Ido Dagan, Bernardo Magnini,
and Florence d’Alché Buc, editors, Machine Learning Challenges. Evaluating Predictive Uncertainty, Visual
Object Classification, and Recognising Tectual Entailment, pages 1–27, Berlin, Heidelberg, 2006. Springer Berlin
Heidelberg.

[68] Patryk Orzechowski, William La Cava, and Jason H. Moore. Where are we now?: A large benchmark study of
recent symbolic regression methods. In Proceedings of the Genetic and Evolutionary Computation Conference,
GECCO ’18, pages 1183–1190, New York, NY, USA, 2018. ACM.

[69] Michael Schmidt and Hod Lipson. Age-Fitness Pareto Optimization, pages 129–146. Springer New York, New
York, NY, 2011.

[70] William La Cava, Lee Spector, and Kourosh Danai. Epsilon-lexicase selection for regression. In Proceedings of
the Genetic and Evolutionary Computation Conference 2016, GECCO ’16, pages 741–748, New York, NY, USA,
2016. ACM.

[71] Alberto Moraglio, Krzysztof Krawiec, and Colin G. Johnson. Geometric semantic genetic programming. In Carlos
A. Coello Coello, Vincenzo Cutello, Kalyanmoy Deb, Stephanie Forrest, Giuseppe Nicosia, and Mario Pavone,
editors, Parallel Problem Solving from Nature - PPSN XII, pages 21–31, Berlin, Heidelberg, 2012. Springer Berlin
Heidelberg.

28

A PREPRINT - JANUARY 6, 2020

[72] Ignacio Arnaldo, Krzysztof Krawiec, and Una-May O’Reilly. Multiple regression genetic programming. In
Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation, GECCO ’14, pages
879–886, New York, NY, USA, 2014. ACM.

[73] Harris Drucker. Improving regressors using boosting techniques. In Proceedings of the Fourteenth International
Conference on Machine Learning, ICML ’97, pages 107–115, San Francisco, CA, USA, 1997. Morgan Kaufmann
Publishers Inc.

[74] Jerome H. Friedman. Greedy function approximation: A gradient boosting machine. Annals of Statistics,
29:1189–1232, 2000.

[75] Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press, 2012.
[76] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society:

Series B, 58:267–288, 1994.
[77] Bradley Efron, Trevor Hastie, Iain Johnstone, and Robert Tibshirani. Least angle regression. Annals of Statistics,

32:407–499, 2004.
[78] Alex J. Smola and Bernhard Schölkopf. A tutorial on support vector regression. Statistics and Computing,

14(3):199–222, Aug 2004.
[79] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,

2014.
[80] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, Oct 2001.
[81] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel,

Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David
Cournapeau, Matthieu Brucher, Matthieu Perrot, and Édouard Duchesnay. Scikit-learn: Machine learning in
python. J. Mach. Learn. Res., 12:2825–2830, November 2011.

[82] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the 22Nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16, pages 785–794, New
York, NY, USA, 2016. ACM.

[83] Milton Friedman. The use of ranks to avoid the assumption of normality implicit in the analysis of variance.
Journal of the american statistical association, 32(200):675–701, 1937.

[84] Ronald L Iman and James M Davenport. Approximations of the critical region of the fbietkan statistic. Communi-
cations in Statistics-Theory and Methods, 9(6):571–595, 1980.

[85] Janez Demšar. Statistical comparisons of classifiers over multiple data sets. Journal of Machine learning research,
7(Jan):1–30, 2006.

[86] Borja Calvo and Guzmán Santafé Rodrigo. scmamp: Statistical comparison of multiple algorithms in multiple
problems. The R Journal, Vol. 8/1, Aug. 2016, 2016.

[87] Elizabeth D. Dolan and Jorge J. Moré. Benchmarking optimization software with performance profiles. Mathe-
matical Programming, 91(2):201–213, Jan 2002.

29

	1 Introduction
	2 Data and Methods
	2.1 On representations and guiding functions
	2.1.1 Representation of models by parsing trees
	2.1.2 Representation via multivariate Padé approximants
	2.1.3 Representation via analytic continued fractions
	2.1.4 Convergents and the depth of the representation

	2.2 A memetic algorithm for model identification
	2.2.1 A memetic algorithm with a hierarchical population structure
	2.2.2 Recombination and mutation to identify sets of variables for the models
	2.2.3 Individual model optimization via a direct search method
	2.2.4 Small batch learning
	2.2.5 Diversity Management
	2.2.6 Model complexity management

	2.3 Learning the Gamma Function
	2.4 Experimental settings and Datasets
	2.4.1 The 94 Datasets from the Penn Machine Learning Benchmarks
	2.4.2 Computational Environment

	3 Results
	3.1 Results on Penn Machine Learning Benchmarks Datasets
	3.2 Performance Comparison with State-of-the-art Algorithms
	3.2.1 Performance Comparison with GP-based algorithms
	3.2.2 Performance Comparison with ML-based algorithms

	3.3 Statistical Significance Testing
	3.4 Runtime Comparison of the Algorithms
	3.5 The performance profile of all algorithms
	3.6 Median MSE scores of Top 4 algorithms for 94 Datasets

	4 Discussion
	5 Conclusion

