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A B S T R A C T   

Business process analytics and verification have become a major challenge for companies, especially when 
process data is stored across different systems. It is important to ensure Business Process Compliance in both 
data-flow perspectives and business rules that govern the organisation. In the verification of data-flow accuracy, 
the conformance of data to business rules is a key element, since essential to fulfil policies and statements that 
govern corporate behaviour. The inclusion of business rules in an existing and already deployed process, which 
therefore already counts on stored data, requires the checking of business rules against data to guarantee 
compliance. If inconsistency is detected then the source of the problem should be determined, by discerning 
whether it is due to an erroneous rule or to erroneous data. To automate this, a diagnosis methodology following 
the incorporation of business rules is proposed, which simultaneously combines business rules and data produced 
during the execution of the company processes. Due to the high number of possible explanations of faults (data 
and/or business rules), the likelihood of faults has been included to propose an ordered list. In order to reduce 
these possibilities, we rely on the ranking calculated by means of an AHP (Analytic Hierarchy Process) and 
incorporate the experience described by users and/or experts. The methodology proposed is based on the 
Constraint Programming paradigm which is evaluated using a real example. .   

1. Introduction 

Conformance can be understood as how well a system meets certain 
specified policies or standards. Organisational systems are becoming 
more and more complex, since information processes use knowledge-, 
service-, and cloud-based systems, thereby becoming the foundation of 
Big Data environments (El-Qurna, Yahyaoui, & Almulla, 2017). 
Conformance analysis implies analysing systems that run and support 
processes in governments, industries, companies, and/or our social life 
(Beheshti et al., 2016), that present frequent policy updates, a vast 
quantity of data, and complex data-flow. Business Processes (BPs) and 
their continuous improvements are central to the operation of com-
panies. For those enterprises, business process analytics and verification 
constitute a key endeavor. Business Processes permit the description of 
the activities involved to achieve an objective in a company. The total or 
partial automation of processes creates an opportunity to gain insights 
into process execution and data analysis. It is crucial to analyse business 
processes and business process-related data captured in various infor-
mation systems, that can be distributed in Big Data environments. 

Process data is stored across different systems, applications, and ser-
vices, and is often shared between companies. 

Organisations might use business processes and rules to describe 
their daily activities. Both aspects might evolve, due to changes in the 
laws or regulations, or to new behaviour within the companies. The 
modification of the control-flow model implies rebuilding the process 
and deploying it again, and therefore work-flow tends to become stable 
over time. However, the modification and updating of business rules, 
such as decision rules or policies, and the use of various types of data 
during the execution of various instances remains highly usual. 

Fault diagnosis provides a mechanism to ensure the correct execu-
tion of the processes. In the business process context, there are certain 
specific changes derived from the nature of the business processes 
(Borrego & Gómez-López, 2019). One of the most relevant is the 
necessary efficiency of the fault detection process at run-time. Another 
characteristic is the strong relationship between the data and rules in 
various instances at the same time, where it is possible that the same 
data or rule can be shared by more than one instance or in various 
processes. This frequently occurs when data is stored in databases. These 
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relations make the diagnosis process more complex, but they also assist 
in the isolation process, since a single diagnosis cannot contradict the 
correct behaviour of the whole process. 

Since both data and rules can be modified at instantiation time, they 
cannot be included only in the design phase. Real contexts present 
highly modifiable environments, where both rules and data can evolve 
to be incorrect. Derived from the inclusion or modification of business 
rules and/or data, certain faults can be produced due to incorrect rules 
or data. In order to tackle this challenge, if an inconsistency is found, our 
approach is able to identify the origin of the problem. We propose a 
Hybrid Diagnosis methodology, where data used during the execution of 
the instances of the processes, and business rules, are simultaneously 
considered. 

The relevance in analysing the data correctness is not a new issue in 
business processes (Gómez-López, Gasca, & Pérez-Álvarez, 2015), 
especially when relational databases are used. However, the extension 
to business rules has not been included before this work, nor the 
simultaneous combination of malfunction of business rules and data. 
The Business Compliance Rules (Becker, Ahrendt, Coners, Weiß, & 
Winkelmann, 2011) that can describe the data semantics and the re-
lations between data values are named Business Data Constraints 
(henceforth referred to as BDCs) (Gómez-López et al., 2015; Gómez- 
López, Gasca, & Pérez-Álvarez, 2014). Business Compliance Rules can 
describe various types of behaviour in a company, such as the order of 
activities, agents who can execute the tasks, data value relation, etc. 
Business Data Constraints are a subset of Business Compliance Rules 
employed to describe the compliance relationship between the intro-
duced data values and the business rules. 

Two possible scenarios are presented in Fig. 1, Hybrid Diagnosis 
without using priorities, or Hybrid Diagnosis in accordance with the 
priorities between Data and Business Data Constraints. Business Data 
Constraints are designed by the Business Experts in accordance with the 
database. The minimal diagnosis is automatically obtained by solving a 
Constraint Optimization Problem. The priorities enable a ranking of the 
possible diagnoses, and therefore a more precise minimal diagnosis. 

The methodology is divided into two parts that are shown in Fig. 1. 
The first part is dedicated to design the model at design time, which is 
performed by the Business Experts, and it includes Modelling the BDCs 
in accordance with the Database, and Selection of Criteria and Alter-
natives (based on an Analytic Hierarchy Process). The second part is 
dedicated to the automatic obtainment of the minimal diagnosis, which 
is executed at instantiation time. The two steps on the left side of Fig. 1, 
which are included in the Design of the Model, are human-based, and 
they are carried out by the business experts. The rest of the steps of Fig. 1 
can be automatically executed. Our proposal tries to be user-friendly, 

and the expert is isolated of the process for obtaining the priorities 
and the generation of the Constraint Optimization Problem. However, 
the alternatives and the pairwise comparison of the alternatives are 
assessed by the expert. 

The inclusion of business rules as a possible cause of malfunction 
brings about an exponential growth in the number of possible diagnosis. 
In previous work by Ceballos, Borrego, López, and Gasca (2016), the 
necessity to diagnose simultaneous combination of malfunction of data 
and rules in business process was detected. There is, however, a vast 
number of diagnoses that can be obtained when the database is very big 
and the rules can frequently change. An AHP provides a way to prioritise 
different possibilities of the cause of faults in the reasoning method, 
which is a necessary mechanism to reduce the number of possible di-
agnoses that can be found in complex problems such as that in this 
proposal. An AHP enables probabilistic constraints to be obtained ac-
cording to the priority description regarding faults described by users 
and/or experts. 

At instantiation time, the specific data from the data-flow and the 
database is analysed (Selection of the tuples of the DB related to the 
Business Data Constraints), and, depending on the data values and the 
instantiated BDCs, the priority relationships between data and rules are 
found, according to the likelihood of fault (Priorities of the alternatives). 
In this step, it is taken into account that not every item of data has the 
same probability of being incorrect (for example, long numerical data 
may be typed incorrectly more often than numbers of two digits). Our 
proposal incorporates priorities into the fault diagnosis method, to 
enable a ranking of probabilities of faults. There is a greater amount of 
data than of business rules and, in addition to this, the data is updated 
more frequently than are the rules. This is why it is more likely that a 
failure comes from an error in an item of data (in its insertion or update) 
than from an incorrect rule, although it remains possible to have faults in 
business rules. It is important to consider the probability of fault be-
tween data and business rules, and for this reason our methodology 
incorporates the likelihood concept, which enables the probabilities of 
faults in input data and business rules to be compared. Lastly, by means 
of Constraint Programming (Creation of the COP), the minimal diagnosis 
is obtained (Solving the COP for the automatic determination of the 
minimal diagnosis). 

The paper is organised as follows. Section 2 presents an overview of 
related work found in the literature. Section 3 tackles the Model-based 
Diagnosis including data and business rules, isolating the possible 
minimal causes of non-conformance. Section 4 explains how the 
Constraint Programming paradigm can be employed to perform the 
diagnosis process. Section 5 presents how the priority models can help to 
reduce the complexity of the solution. Section 6 evaluates our proposal 

Fig. 1. Steps of the Methodology.  
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with a more complex example. In Section 7, the limitations of our pro-
posal are enumerated. And finally, conclusions are drawn and future 
work is proposed in Section 8. 

2. Related work 

Papers related to data errors in Business Processes can be classified 
into two categories: data errors at design time; and data errors of BP 
instances at runtime. 

First, and regarding the design-time analysis of the data model, one 
important aspect is the detection of the different types of errors that can 
occur in the data flow, such as missing, redundant, and conflicting data 
(Sun, Zhao, Nunamaker, & Sheng, 2006). This proposal has been 
extended to consider the analysis of business process models that take 
into account both the control flow perspective and the data flow 
perspective (Eshuis & Kumar, 2010; Sidorova, Stahl, & Trcka, 2011). 
Mechanisms to prevent errors at the structural level have been proposed 
(Trcka, van der Aalst, & Sidorova, 2009), but it is also necessary that the 
business processes comply with the established rules and policies. In 
Borrego, Eshuis, Gómez-López, and Gasca (2013, 2015), the semantics 
of activities are enriched and expressed by preconditions and post-
conditions that formally describe the behaviour that business process 
data should follow, and thus are used in design time to verify the 
correction of the model. In Pérez-Álvarez, López, Eshuis, Montali, and 
Gasca, 2020 the importance of the alignment between the workflow and 
the data storage structure is presented as a mandatory compliance 
analysis in process-aware information systems. The use of probability 
aspects in diagnosis is frequent to determine an order of possible fault 
explanations, even during the troubleshooting process for a better 
isolation, such as in Ramos et al., 2021. However, the comparison of 
different types of sources However, the comparison of different types of 
sources have not been considered. 

In Maggi, Montali, and van der Aalst (2012) and Montali, Maggi, 
Chesani, Mello, and van der Aalst (2013), business constraint supervi-
sion is based on Event Calculus. Unlike the previous textual approaches, 
a visual language based on an extended Compliance Rule Graph (Knu-
plesch & Reichert, 2017) and a framework for visually monitoring all 
relevant perspectives of the compliance of business process (Knuplesch 
et al., 2017) have been proposed. 

However, in enterprise business processes it is necessary to analyse 
the correctness of both rules and data, and to define compliance rules. In 
the literature, we find studies that perform this definition of data-aware 
compliance rules, such as Awad, Weidlich, and Weske (2011) and Ly, 
Rinderle-Ma, Knuplesch, and Dadam (2011), which define a notation 
that allows the relationships between compliance rules and data to be 
represented through data conditions. Likewise, Weidlich et al. (2011) 
propose a method to monitor the deviations that occur in control flow 
during the process execution. A deep analysis of the current state in 
business compliance patterns centred in data aspects is presented in 
Voglhofer and Rinderle-Mahofer, 2020, but unfortunately, an approach 
where both rules and data are the aim of the compliance is not analysed. 

Moreover, previous studies in the literature address either the 
diagnosis of errors in the data of business processes (Gómez-López et al., 
2014) or the diagnosis of errors in Business Data Constraints (BDCs) of 
business processes at runtime (Gómez-López et al., 2015). To the best of 
our knowledge, only in Ceballos et al. (2016) are both types of errors in 
business processes analysed at the same time. Our methodology is an 
extension of this previous work, but to the best of our knowledge, this 
proposal is the first that includes prioritization among data and rules, 
concretely it includes two main advantages: first, priorities are inte-
grated to improve the precision of the identification of the causes of non- 
conformance between data and BDCs; and second, the computation of 
the weights for the goal function provides a more accurate process based 
on the probabilities of the possible distributions of data errors in BDC 
instances. Our approach based on priorities can reduce the number of 
possible diagnoses in complex scenarios where several rules and huge 

amounts of data are involved. 

3. Conformance between data and business data constraints 

When new business rules are designed, they must be in conformance 
with the stored data. However, there are several problems that must be 
solved before incorporating these new business rules. One of these 
problems is the verification of conformance between Data and BDCs. In 
this section, we introduce how to solve this problem and a real example. 

3.1. The TCA example 

In order to study the problem in hands, we introduce a financial 
application extracted from a real scenario in order to guide the expla-
nation of the model and the steps of the methodology. The example is 
based on the activity of The Technological Corporation of Andalusia 
(TCA), which manages collaborative projects between private com-
panies and research groups. The process manages the research project 
execution, which implies the research activities and expenditures 
executed to achieve the defined objectives. Numerous members of the 
personnel modify the information related to the execution of more than 
300 projects. Data is stored in a relational database formed of 86 tables. 
Project data is entered by employees, with an average of two hundred 
items of data per employee and project for, at most, the 3 or 4 years of 
each project. Laws or regulations applied to the projects have changed in 
recent years and therefore business rules can be modified, which can 
involve a change in their compliance with the former data. 

In order to comply with laws and requirements applied to the pro-
jects, the idea involves designing and adding/modifying business rules 
to the business processes. These new business rules must be in confor-
mance with the stored data. However, there are several problems that 
must be solved before incorporating these new business rules:  

• Certain values of the database can contain errors due to human 
mistakes. These errors must be modified in order to store only correct 
information, which satisfies the business rules.  

• Certain business rules can be badly designed, and therefore the 
values stored in the database would not satisfy these rules. This 
makes their redefinition necessary, so that only well-designed rules 
are added.  

• Certain laws and requirements applied to the projects have changed 
in recent years, and therefore certain business rules can only be 
applied to business processes or to data stored associated with a 
range of years. 

The goal of this paper is to obtain an automatic methodology for the 
isolation of mistakes in stored data and business rules before the busi-
ness rules are added to the business process. 

3.2. Description of the business data constraint 

During the execution of a business process, the data flowing through 
the process can be read and updated. This data is usually obtained and 
stored in a relational database, in order to maintain its persistence. It is 
possible that the same data is being read and written in other instances 
of other processes. Therefore, data (stored in databases) constitutes a 
fundamental component in Information System and Business Process 
Management (van der Aalst, ter Hofstede, & Weske, 2003). 

To ensure that the values of the data used during the process in-
stances are compliant with the policies of the business model, Business 
Data Constraints are used. 

Definition 1. (Business Data Constraint (BDC)) Rule that represents 
the semantic relationships that exist between the data that is entered, 
accessed, and updated during the execution of the different business 
process instances. BDCs describe the correct values of relationships 
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between the data involved. 

BDCs are a type of business compliance rules. In this paper, we 
suppose that BDCs are presented as Numerical Constraints following the 
grammar shown in Fig. 2. It is important to note that the variables 
involved in the constraints can store values from both the system data-
base and the execution data flow. The following BDCs are a subset of the 
policies of the previous example (Section 3.1). These BDCs represent 
data relations and are associated with various activities.  

• BDC1: hardwareCost + softwareCost + humanCost = totalCost  
• BDC2: subsidisedCost ⩽ totalCost  
• BDC3: subsidisedPerYear ⩽ potentialSubsidised  
• BDC4: humanCostPerYear ⩽ maximumHuman  
• BDC5: subsidisedCost ⩾ 3 ⋅ subsidisedPerYear 

The variables that participate in the BDCs correspond to the values 
stored in the database, which were instantiated during execution. A part 
of the relational model referring to the previous example, composed of 
three tables, is shown in Fig. 3. This model stores the data of the projects 
(Project), their details per year (ProjectPerYear), and the spending limits 
allowed for each year and for each item (LimitsPerYear). 

3.3. Selection of the Tuples of the Relational Database 

Relational databases tend to be used as a mechanism to maintain 
data generated during process execution. It is possible for a simple BDC 
to relate attributes from several tables in the database. The fact that the 
data is located in different tables is due to the need to follow the Normal 
Forms principle defined in the theory of relational databases. Thanks to 
the normalization rules, possible update anomalies and inconsistencies 
between the items of data can be prevented. If these items of data are 
involved in the same BDC, it means they are related despite the fact that 
the data could be stored in different tables. 

The storage of data in different tables makes it difficult to verify 
compliance with the BDCs. Therefore, a denormalisation process is carried 
out that results in a new structuring of the data, but which will only be 
used in the conformance process, meaning that no changes are made in 
the relational database. 

The denormalisation process obtains a join-table where all attributes 
are together. The join-table includes all the attributes of the tables of 
Fig. 3. The join-table is shown in Fig. 5, which is obtained from the 
values of Fig. 4 and takes into consideration the relational model of 
Fig. 3. The attributes idProject from Project and ProjectPerYear tables are 
related through a primary-foreign key relationship. And similarly, for 
the relationship between tables LimitsPerYear and ProjectPerYear. 

All the variables that appear in a BDC have a related attribute in the 
join-table. It should be taken into account that, after this denormalisa-
tion process, the same value of an attribute may appear in different 
tuples of the new join-table, due to the existing 1..n relationships be-
tween certain tables. A new column is then included for each attribute 
during the denormalisation process, whose purpose is to name the 
different valuations in the database. The word Id is added to the name of 

the attribute, and the column stores a different identification (integer 
number) for each value of the related attribute. These identifications are 
necessary for it to be discerned whether two equal values in the join- 
table come from a single value before commencing the denormaliza-
tion process, since the appearance of two equal values in the same col-
umn does not imply necessarily that they come from a single value in the 
normalised database (and vice versa). 

For example, the value associated with the human cost of project 121 
is 45000, and this appears in the first two tuples of Fig. 5, while the 
column humanCostId stores the same identification in the first two tuples 
since this project has two years of activity; this is the same value that 
appears in the first tuple of the table Project (Fig. 4). As another example, 
the human cost per year of project 121 and year 2015 is 22,500, and it is 
the same as the human cost per year of project 121 and year 2016, but 
the column humanCostPerYearId stores a different value for each case (1 
and 2) because they correspond to two different tuples of the table 
ProjectPerYear before the denormalisation process. 

3.4. Verification of conformance between Data and BDCs 

For the verification of the conformance of the BDCs and the data, the 
BDCs are instantiated using the newly obtained tuples. For the example, 
its BDCs are instantiated with the tuples shown in Fig. 5. Several of the 
instances are given in Table 1. In Table 2, a summary of the compliance 
with the BDCs is presented. For each BDCi

j, j is the index of the BDC, and i 
is the index of the instance. For example, BDC1 (softwareCost  + hard-
wareCost  + humanCost  = totalCost) has two different types of tuples 
({1, 2} and {3, 4, 5}), and hence two different BDCs are created in 
accordance with the tuples BDC1

1 and BDC2
1. BDC4 is applied over five 

different tuples, thereby creating five different BDCs in accordance with 
the tuples BDC1

2, BDC2
2, BDC3

2, BDC4
2 and BDC5

2. 
Subsequent to the instantiation of the BDCs with the obtained tuples, 

BDC5
3, BDC1

4, BDC3
4, BDC1

5, BDC2
5, BDC3

5, and BDC4
5 become unsatisfiable. 

The objective is to ascertain, in an automatic way, which minimal set of 
BDCs and values of the database must be changed in order to clarify all 
this non-conformance behaviour. 

3.5. The possible minimal set of incorrect input values and BDCs 

Our approach is based on concepts and definitions of the Model- 
based Diagnosis Methodology (MBD) which, in turn, is based on a 
model named System Description (SD) and a set of values named Ob-
servations (OBS). In our case, the elements of SD are the set of BDCs, and 
the OBSs include the values stored in the database. If the instances of the 
BDCs are not satisfied when using the values stored in the database, then 
this non-conformance behaviour can have two kinds of explanation:  

• The design of one or more BDCs contains defects. The solution is to 
change these badly designed BDCs. Notice that if a BDC is incorrect, 
certain tuples where this BDC is applied can be unsatisfiable, while 
other tuples can be satisfied, although only one BDC would be 
indicated as responsible for the malfunction. 

Fig. 2. Grammar Model.  
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• One or more values stored in the database are incorrect. 

The goal of our methodology is to obtain a minimal set of elements that 
is able to explain the non-conformance behaviour. This minimal set is 
named minimal diagnosis. It is based on the parsimony principle (Peng 

& Reggia, 1990), which determines the simplest explanation to describe 
a beheaviour, that when applied to model-based diagnosis implies 
selecting the minimum set of faults. 

Definition 2. (Minimal diagnosis) is a subset MD⊆(SD ∪ OM), in such 
a way that if SD is not satisfied, then SD − MD can be satisfied, and for all 

Fig. 3. Relational Model.  

Fig. 5. Join-table following the denormalisation process.  

Fig. 4. Example of tuples for the Relational Model of Fig. 3.  
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D⊂MD : (SD ∪ OM) − D cannot be satisfied. 

A minimal diagnosis is the minimal set of BDCs and values of the 
database that must be changed in order to be able to satisfy all the in-
stances of the BDCs. In Section 4, the implementation of our method-
ology is explained, together with how to obtain the minimal diagnosis by 
transforming the knowledge of the system, regarding the diagnosis of 
the values stored in the database and the BDCs, into constraints. There 
can be more than one minimal diagnosis that is a solution to the diag-
nosis problem. For these cases, in Section 5, the specifications of 
different types of priorities are included in order to improve the preci-
sion of the diagnosis methodology and to reduce the number of possible 
minimal diagnoses. 

The isolation of the incorrect values entails a certain degree of 
complexity, derived from the number of values that are affected by a 
BDC. Whenever more than one value can provide the explanation for a 
malfunction, there may be a simpler explanation based on making only 
one BDC responsible for it, since a single BDC may involve all possible 
incorrect values. Hence, this single BDC can be considered as the only 
component required for the explanation of the malfunction. However, 
since data is more frequently introduced in the process, in an intuitive 
way it is therefore more probable to obtain an incorrect value than an 
incorrect BDC. In order to formalise this intuitive thinking, a definition 
of the weight to balance this relation should be included. 

Definition 3. (Probability between values and BDC malfunction) The 
percentage that describes the probability of the appearance of a fault in 
the data of a BDC. For example, a probability of 60% means that a BDC 

will be designated as responsible for a fault only if more than 60% of the 
instances (tuples of the joined table created for the variables involved in 
this BDC) are unsatisfiable for that BDC. 

The tuples introduced into the database can have different origins (i. 
e., input variables, triggered in the database, or derived in the activity) 
which will affect the diagnosis process. The main difference lies between 
the introduced and derived values. Input values are introduced by the 
user and can be typed incorrectly. However, derived values are calcu-
lated/created by using other values. This implies that derived values 
cannot be responsible for a malfunction, but they can be related to 
incorrect input values. 

4. Creation of constraint optimization problem for model-based 
diagnosis 

The verification of the correction of a system can be performed by 
means of the analysis of the satisfiability of the model {SD, OM}, which 
represents the conformity of the OM and the BDCs that describe the SD. 
When a non-satisfiability is detected, then the next issue is to determine 
what is responsible for the malfunction: the minimal explanation 
following the parsimony principle that can be either BDCs (SD) or the 
input values (OM). Formally, a minimal diagnosis must be found. 
Derived from the similarity of the BDCs and the arithmetic constraints, 
we propose the use of the Constraint Programming paradigm (Rossi, van 
Beek, & Walsh, 2006) to infer the minimum set of constraints that 
describe the malfunction. This section describes how to create a 
Constraint Satisfaction Problem (CSP) for the subsequent automatic 
determination of the minimum explanation of a malfunction that com-
bines SD and OM. 

The Constraint Programming paradigm includes a set of algorithms 
applied to Constraint Satisfaction Problems (CSP) in order to determine 
the values of a set of variables in a domain that satisfy a set of con-
straints. Formally, a CSP is described by the tuple 〈V,D,C〉, to describe 
the variables, the domains, and the constraints, respectively. The 
assignment of the values of the variables must satisfy the constraints. 
The resolution of a CSP implies discovering, in an efficient way, the 
values of the variables that satisfy the constraints. The possible values of 
the variables obtained can be very wide-ranging, since they depend on 
the domain, whereby it is possible to obtain the first solution found, 
every solution, or a specific solution among those that minimise or 
maximise one of the variables of the problem. In this last case, the CSP is 
called a Constraint Optimisation Problem (COP), where the goal is to 
minimise (Min-CSP) or maximise (Max-CSP) an optimisation function 
(f). Since the objective of model-based diagnosis is to minimise the 
possible explanation, the Min-CSP will be used herein. 

4.1. Constraints-based model for diagnosis 

The first step in obtaining the diagnosis entails the translation of the 
problem into a CSP, including BDCs and tuples of the join-table. To 
tackle the problem, the BDCs associated with the whole process or 
associated with each activity of the process must be combined according 
to the control-flow of the process. In previous work, Gómez-López et al. 
(2014) analyse how to combine the BDCs in a single CSP. Their proposed 
algorithm traverses the business process model and combines the BDCs 
related to each activity. 

The Min-CSP obtained by transforming the example is shown in 
Fig. 6. Below, the process for modelling the Min-CSP is given in detail. A 
Min-CSP includes variables, constraints, and an objective function.  

• Variables of the problem. All the variables that appear in a BDC 
have a related attribute in the join-table. For each of these attributes, 
a set of m variables is added to the CSP. For example, in the join-table 
(Fig. 5), the column maximumHuman stores the values while the 
column maximumHumanId stores the identification of the values 

Table 1 
Conformance between Data and BDCs  

BDC Tuple BDCj
i  

Right 

1 1,2 BDC1
1  softwareCost1  + hardwareCost1  + humanCost1  =

totalCost1    
11000  + 24000  + 45000  = 80000 ✓ 

1 3,4,5 BDC2
1  softwareCost2  + hardwareCost2  + humanCost2  =

totalCost2    
6000  + 20000  + 36000  = 62000 ✓ 

2 1,2 BDC1
2  subsidisedCost1 ⩽totalCost1     

55000  = 80000 ✓ 
2 3,4,5 BDC2

2  subsidisedCost2 ⩽totalCost2     

58000  = 62000 ✓ 
… … … … 
4 1 BDC1

4  humanCostPerYear1 ⩽maximumHuman1     

23000 ⩽13000 ×
4 2 BDC2

4  humanCostPerYear2 ⩽maximumHuman2     

22000 ⩽24000 ✓  

4 3 BDC3
4  humanCostPerYear3 ⩽maximumHuman1     

14000 ⩽13000 ×
4 4 BDC4

4  humanCostPerYear4 ⩽maximumHuman2     

12000 ⩽24000 ✓  
4 5 BDC5

4  humanCostPerYear5 ⩽maximumHuman3     

10000 ⩽25000 ✓  

… … … …  

Table 2 
Evaluation of the compliance with the BDCs.  

BDC Tuple  

1 2 3 4 5 

1 BDC1
1 ✓  BDC2

1 ✓  

2 BDC1
2 ✓  BDC2

2 ✓  
3 BDC1

3 ✓  BDC2
3 ✓  BDC3

3 ✓  BDC4
3 ✓  BDC5

3 ×

4 BDC1
4 × BDC2

4 ✓  BDC3
4 × BDC4

4 ✓  BDC5
4 ✓  

5 BDC1
5 × BDC2

5 × BDC3
5 × BDC4

5 × BDC5
5 ✓   
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stored in column maximumHuman. For the attribute 
maximumHuman, a total of m variables are added to the Min-CSP, 
where m is 3 since this it is the total number of different identifica-
tions stored in the column maximumHumanId. These 3 variables are 
named by add-ing the identification to the name of the attribute: 
maximumHuman1, maximumHuman2 and maximumHuman3 (Fig. 6). 
In brief, for each instance of an input variable k, a variable is defined: 

type var1
k ,…, varm

k ,…  

To isolate the type of source that produces the malfunction (i.e., data 
and/or BDCs), CSPs are created by using reified constraints that 
assign a truth value to a constraint to ascertain whether it can be 
satisfiable or not. These variables are associated to each BDCi or 
BDCj

i (instance j of BDCi) and to each assignment of a value to each 
varm

k (instance m of the input variable vark), in order to ascertain the 
satisfiability: 

integer
[
0, 1

]
…, rVarm

k ,…, rBDCi,…, rBDCj
i,…  

The domain of these variables only includes value zero (false value) 
or value one (true value).  

• Constraints related to the instances of variables. For each 
instance m of an input variable k, a new constraint is added to the 
Min-CSP: 

rVarm
k = ¬

(
varm

k = valuem
k

)

The reified variable rVarm
k is equalised to the negated constraint since 

the goal is to obtain the minimal number of elements with abnormal 
behaviour. For example, in constraint rMh1 =

¬(maximumHuman1 = 13000), if rMh1 is 1, then it is supposed that 
the value 13000 is erroneous (abnormal behaviour), and it must be 
changed, otherwise if rMh1 is 0, then it is supposed that the value 
13000 is correct (normal behaviour).  

• Constraints related to the instances of BCDs. For each instance 
BDCi

j, a new constraint is added in order to represent the 
satisfiability: 

rBDC1
i = ¬

(
BCDi instantiated by tuple 1

)

…
rBDCn

i = ¬
(
BCDi instantiated by tuple n

)

rBDCj
i represents the satisfiability of each instance BDCi

j. For 
example, in constraint rBDC1

4 = ¬ (humanCostPerYear1 
⩽maximumHuman1), if rBDC1

4 is 0, then humanCostPerYear1 ⩽ 
maximumHuman1 (normal behaviour), and if rBDC1

4 is 1, then 
humanCostPerYear1 > maximumHuman1 (abnormal behaviour). In 
order to represent in the CSP when a malfunction in an item of data is 
more likely than in a BDC, it is necessary to include the following 
constraint for each BDC: 

rBDCi = rBDC1
i + … + rBDCn

i =
∑n

j
rBDCj

i⩾ minLiki  

Both rBDCi and rBDCj
i are necessary to distinguish the general BDC 

from the constraint obtained when it is used in each tuple. This 
provides a way to incorporate the likelihood into the problem, 
through the parameter minLiki. The parameter minLiki is a threshold 
which is equal to the minimum number of non-compliant instances 
of a BDCi, which determines that the problem is in the design of BDCi 

and not in the input values of the instances. For example, if there are 
ten instances of BDCi then minLiki can take a value between 1 and 10. 
If the number of instances that are not satisfied is equal to or greater 
than the minLiki threshold, then BDCi becomes a part of the minimal 
diagnosis. In SubSection 4.2, it is shown how the value of each 
minLiki is calculated. 

Fig. 6. Min-CSP example.  
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Finally, it is necessary to add the following constraint for each 
BDCi: 

(rBDC1
i +…+ rBDCn

i = 0) ∨ (rBDC1
i +…+ rBDCn

i ⩾ minLiki)

There are two options: (1) 
∑n

j rBDCj
i is equal to zero, and therefore 

the BDCi is correct; or (2) 
∑n

j rBDCj
i is equal to or greater than min-

Liki, and therefore the BDCi has a defect. Values between one and 
minLiki-1 are not allowed. In other words, if 

∑n
j rBDCj

i is zero and any 

single instance BDCj
i is not satisfied by using the values stored in the 

data base, then there must be a error in one of these values, but BDCi 

is correct.  
• Objective function. This is defined as: 

minimize
(
rVar1

k + … + rVarm
k + … + rBDC1⋅minLik1 + …

+ rBDCq⋅minLikq
)

The objective is a weighted function where each rBDCi is associ-
ated with a weight equal to the parameter minLiki. To minimise the 
goal function and to obtain the minimal diagnosis, the solver will 
seek to assign the value 0 to the greatest number of variables 
included in the goal function. 

4.2. Computation of the MinLik parameter 

The minLik parameter depends on several factors. The computation 
for the proposed example is shown in Table 3, and the explanation of the 
columns is the following:  

• nInst: number of instances of BDCi.  
• nVar: number of variables involved in all instances (number of 

different types of tuples) of BDCi. For example, for BDC1, there are 
two different types of tuples ({1, 2, 3} and {4, 5}) as shown in Section 
3.3, and nVar is 8 because this is the total number of different vari-
ables in these two instances. For BDC4, there are five instances, and 
nVar is 8. 

• %errors: average percentage of data errors. This is estimation pro-
vided by an expert, and it should be based on statistics obtained on 
previous data errors. 

• nErrors: likely number of data errors of BDCi. The value of this var-
iable is derived from the rounded nearest Integer of nVar ⋅ %errors.  

• range: minimal and maximal number of instances of a BDC that can 
contain data errors. It represents the interval of instances that can 
contain errors if the total number of data errors is equal to nErrors. 
For example, there are 5 instances of BDC4 with a total of 8 input 
variables and %Errors is 20%, then nErrors is 2 ≈ 1.6 = 8 ⋅ 0.2. For 
BDC4 the range is [1, 4]. BDC4 contains 2 input variables for each 
instance, the minimal value of the range is 2 because there can be 
cases where only 1 instance contains the 2 data errors. The maximal 
number of the range is 4, which is the case when there is a data error 
in variable maximumHuman1 (tuples 1 and 3) and there is a data 
error in variable maximumHuman2 (tuples 2 and 4). 

Fig. 7 shows the probability for each possible distribution of data 
errors in BDC instances, in an example with 20 instances and %Errors 

equal to 20%. In this example, the instances of the BDC contain a 
total of 80 input variables, and therefore nErrors is 16 = 80 ⋅ 0.2. If all 
these variables are different, then the range is [4, 16]. The maximal 
number of instances that should contain a data error is 16, which is 
the case when there is one data error for each instance. If this BDC 
contains four variables for each instance, then the minimal is 4 
because that is the case when four instances contain four data errors. 
The probability for each possible distribution is calculated by taking 
into account all possible cases, and it is supposed that all cases are 
equiprobable. As a consequence, if the BDC has been instantiated 
with the values of the obtained tuples, and if there are faults in more 
than 16 instances, then the problem is probably due to a defect in the 
definition of the BDC, since 16 is the maximal number of affected 
instances if range = [4, 16] (a random distribution of data errors is 
assumed). In Fig. 7, the accumulated probability is also shown; for 
example, the accumulated probability for the interval [4, 12] is a 
nearly 70%, and for [4,13] this exceeds 90%.  

• minLik: the calculation is performed by adding 1 to the first element 
of the range where the accumulated probability is greater than 85%. 
For example, in Fig. 7, the value 13 of the interval has an accumu-
lated probability equal to 90%, and the value for the minLik 
parameter should be 1 + 13 = 14. 

4.3. Determining the minimal diagnosis 

The solution of the Min-CSP problem is given by the minimal diag-
nosis. The minimal diagnosis for the example presented in Fig. 6 is a set 
of three elements that must be modified:  

• The value associated with the variable maximumHuman1 (used in 
some instances of BDC4) is erroneous; the correct value is 23,000.  

• The BDC5 is not correct, the correct BDC should be the expression 
subsidisedCost ⩾2 ⋅ subsidisedPerYear.  

• Finally, the value associated with subsidisedPerYear5 or with 
potencialSubsidised5 (both were used in one instance of BDC3) is 
erroneous. In this case, the correct value for subsidisedPerYear5 is 
15,000. 

If and only if these changes are made, can all the BDCs be satisfied by 
applying the stored values. 

5. Priorities model-based diagnosis using Analytic Hierarchy 
Process 

The incorporation of the parameter minLik helps to distinguish the 
likelihood between data and BDCs in general, but usually not every item 
of data and BDC has the same likelihood of occurring, due to factors such 
as the person who introduces them, the size of the data or BDCs, and 
whether they have already been stored for a long time in the system. In 
order to improve the precision of the fault diagnosis, it is necessary to 
include a Decision Support System (DSS) that facilitates the specification 
of different types of priorities to data, BDCs, or the combination of both. 
For this reason, our proposal involves the Analytic Hierarchy Process 
(AHP) (Saaty, 2008), which permits the assignation of priorities so that 
not all of the data and BDCs receive the same consideration. 

The business analysts and a team of diagnosis experts are involved 
throughout the whole process of the DSS in establishing the list of 
possible fault priorities, whereas the business process managers are 
involved in setting up response plans. Our methodology helps in the 
description of these priorities and incorporates them automatically into 
the Min-CSP. It brings out the reduction of the minimal diagnosis, by 
offering the most likely diagnosis first according to the described 
priority. 

Table 3 
Obtained values of minLik parameter.  

BDC nInst nVar %errors nErrors range minLik  

1 2 8 20% 1.6 ≈ 2  [1, 2] 2  
2 2 4 20% 0.8 ≈ 1  [1, 1] 2  
3 5 10 20% 2 ≈ 2  [1, 2] 3  
4 5 8 20% 1.6 ≈ 2  [1, 4] 4  
5 5 7 20% 1.4 ≈ 1  [1, 3] 3   
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5.1. Analytic hierarchy process 

When multiple instances of a business process are executed, infor-
mation is gathered to help us understand said process in a significant 
way. In order to make better decisions regarding the possible faults in 
the multiple instances, these decisions will not be made by intuitively 
measuring intangible factors, but instead all kinds of information of the 
instances are considered to be useful, and the greater the quantity, the 
better. These goals indicate the selection of the AHP as a better method 
for their compliance. 

The existence of multiple alternatives to be chosen depending on 
multiple aspects or criteria has been included in several scenarios 
(Köksalan, Mousseau, Ozpeynirci, & Bilgin Ozpeynirci, 2009; Pereira, 
Figueira, Mousseau, & Roy, 2009; Zyoud & Fuchs-Hanuschoud, 2017). 
We propose the use of AHP for the prioritisation the possible faults. It 
enables the creation of priorities by the criteria themselves, in order to 
weigh the priorities of the possible faults and add the criteria to obtain 
the desired ranking of the faults. Multicriteria decision analysis (MCDA) 
deals with these problems and AHP is often employed to make decisions 
regarding the generation of these priorities. According to Saaty (2008) 
and Saaty (2000), the decision process is decomposed into the following 
steps: Goal Definition Phase, Selection Phase of Criteria and Alterna-
tives, Assessment Phase, and Prioritisation Phase. In subsequent para-
graphs, the application of the decision process according to the previous 
steps is presented. 

5.2. Goal definition phase 

In this phase, the problem is defined and the goal of the decision is 
specified. The goal is to diagnose faulty data or BDCs in multiple in-
stances of a business process. For each table of a database, an attribute is 
a vertical column which contains a set of values. The possible faults can 
be defined for attributes, for BDCs, or for BDCs and attributes. 

5.3. Selection phase of criteria and alternatives 

In this phase, the decision hierarchy is established from the top with 
the goal of the decision, through the intermediate levels (criteria), to the 
lowest level (alternatives). The criteria are dependent on the context of 
each particular problem and are hence defined by the business expert. 
The criteria to compare alternatives should not change during the 
execution of the business process. The definition of the criteria aims to 
compare BDCs and/or data in order to establish their hypothetical 
ranking as being responsible for a fault in runtime. 

Depending on the case of study, there can be different types of 
criteria: criteria to differentiate between items of data, criteria to 
differentiate between BDCs, or criteria for any pairwise comparison 
between data and BDCs. In particular, and for the business processes in 
the context of this paper, we suggest several examples of criteria in order 
to reflect the idea:  

• Fault probability: this criterion enables a comparison to be made 
between data and BDCs, and indicates the probability of a particular 
cluster of elements being responsible for a fault against any other 
cluster of elements.  

• Human reliability: this enables a comparison to be made of the data, 
based on the reliability of the human in charge of the inclusion of 
each value in the database, and defined by means of human roles.  

• Source reliability: this enables a comparison to be made between the 
trustworthiness of the source of different clusters of data and/or 
BDCs.  

• Data accuracy: the aim of this criterion is to determine the required 
accuracy of each cluster of data. That is, the larger an item of data is, 
the easier it is to make a typo (for example, a bank account is more 
liable to be incorrect than a person’s age), and the possible influence 
of the data in the appearance of errors is even considered (again, an 
incorrect bank account is more likely to cause faults than an incorrect 
age).  

• BDC persistence: the longer a cluster of BDCs had remained in the 
model (that is, the older it is), the more probable it is that those BDCs 
have already been tested and verified. 

The single alternatives could be: BDC1 … BDCn, BDCm … BDCp, attri-
bute1 … attributen, attributek … attributep. If there is a great number of 
single alternatives, we propose a two-phase method in order to carry out 
the Assessment phase in a more efficient way: (1) a selection of groups of 
alternatives that are considered for each criterion (Clustering of Alter-
natives), where the elements of these groups present similar behaviour 
according to the criterion; and (2) an automatic analysis of these groups 
of alternatives, which will permit the number of alternatives in the AHP 
to be reduced significantly (Disaggregation of Alternatives). These 
groups are subsets of BDCs and attributes as alternatives for each 
criterion. 

For the example detailed in Section 3, the single alternatives are 16 
(5 BDCs and 11 attributes). In Table 4, the ’simplified’ alternatives are 
shown (clusters of alternatives for criteria) established by the business 
expert in order to simplify the hierarchy. 

Once the criteria have been defined, and their simplified alternatives 
are selected, the next step entails the pairwise comparison of simplified 
alternatives for their evaluation regarding each criterion. Simplified 
alternatives are used so that the business expert can easily establish the 
numerical values in the pairwise comparisons. For our example, the 
pairwise comparisons of alternatives per criteria are shown in Fig. 8. For 
example, for criterion c1, a fault probability is higher for alternative 
SA1c1 than for alternative SA2c1, and therefore the cell c1[SA2c1, SA1c1] 
is 4, and c1[SA1c1, SA2c1] is 1/4. In other words, a fault probability in 
SA2c1 is 4 times less probable than a fault in SA1c1. 

5.4. Assessment phase 

In this phase, a set of pairwise comparison matrices are filled out. 
Also, this phase allows consistency checks of pairwise values through a 

Fig. 7. Probability for each possible distribution of data errors in BDC instances.  
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consistency index. The business expert can easily establish the numerical 
values in the comparisons using simplified alternatives, since each cri-
terion may naturally lead the expert to define certain alternatives that 
are different for each criterion. However, in order to establish weights 
for the final AHP, global alternatives are needed that are valid for all 
defined criteria. 

The simplified alternatives are split into as many global alternatives 
as necessary for all the elements in the same global alternative to present 

the same behaviour regarding each defined criterion. This may give rise 
to a large number of global alternatives, each of which is composed of 
few elements. However, they are transparent to the user and/or the 
expert, since simplified alternatives are automatically transformed into 
global alternatives and processed in subsequent steps of the methodol-
ogy. As a result, the global alternatives and their corresponding evalu-
ations per criterion are obtained automatically. 

In this way, for our example, the defined simplified alternatives give 
rise to seven global alternatives:  

A1: softwareCost, hardwareCost, subsidisedCost, humanCost  
A2: subsidisedPerYear, humanCostPerYear 
A3: potentialSubsidised, maximumHardware, totalCost max-

imumSubsidised, maximumHuman  
A4: BDC3, BDC4  
A5: BDC2  
A6: BDC1  
A7: BDC5 

These 7 global alternatives instead of 16 single alternatives (5 BDCs 
and 11 attributes) thereby imply a reduction of almost 55% of the al-
ternatives to be considered. 

Likewise, in order to illustrate the automatic generation and filling in 
of comparison matrices, the matrix for criterion c1 is shown in Table 5. 
The cells compare two global alternatives Ax and Ay for the criterion c: 
the alternatives come from the same simplified alternative for c, and 
their evaluation is always 1 (the cell is filled in with value 1). 

For example, for criterion c1, the global alternatives A2 and A3 come 
from the same simplified alternative SA3c1, and therefore the cells 
c1[A2, A3] and c1[A3, A2] in Table 5 obtain the value 1. Furthermore, 
this also occurs when comparing alternatives which are not evaluable 
through a particular criterion. For example, if the criterion c is only 
defined for data, then the alternatives that include BDCs are always 
evaluated to value 1 when compared with alternatives that include data. 

5.5. Prioritisation Phase: Priorities of the alternatives 

In this phase, the priorities obtained from the pairwise comparisons 
are transformed into a priority for each alternative. Once the global 
alternatives have been obtained, then automatic mathematical 

Table 4 
Alternatives for criteria.  

Criterion c1: Fault probability 

SA1c1 softwareCost, hardwareCost, humanCost,  
subsidisedCost, BDC1 

SA2c1 BDC2, BDC5  

SA3c1 totalCost, subsidisedPerYear, humanCostPerYear,  
maximumSubsidised, potentialSubsidised,  
maximumHardware, maximumHuman, BDC3, BDC4   

Criterion c2: Human reliability 

SA1c2 softwareCost, hardwareCost, humanCost, subsidisedCost 
SA2c2 subsidisedPerYear, humanCostPerYear 
SA3c2 totalCost, potentialSubsidised, maximumHardware,  

maximumSubsidised, maximumHuman  

Criterion c3: Source reliability 

SA1c3 softwareCost, hardwareCost, humanCost, subsidisedCost,  
subsidisedPerYear, humanCostPerYear 

SA2c3 BDC1, BDC2, BDC3, BDC4, BDC5  

SA3c3 totalCost, potentialSubsidised, maximumHardware,  
maximumHuman, maximumSubsidised  

Criterion c4: Data accuracy 

SA1c4 softwareCost, hardwareCost, humanCost, subsidisedCost 
SA2c4 maximumSubsidised, maximumHuman, totalCost,  

potentialSubsidised, maximumHardware 
SA3c4 subsidisedPerYear, humanCostPerYear  

Criterion c5: BDC persistence 

SA1c5 BDC1 

SA2c5 BDC2, BDC5  

SA3c5 BDC3, BDC4   

Fig. 8. Comparisons of alternatives from criterion c1 to c5.  
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processing of the comparisons is applied using the existing methods 
(Bouyssou, Marchant, Pirlot, Tsoukiás, & Vincke, 2006) in order to 
derive priorities for each global alternative. For our example, after 
mathematical processing, the priorities obtained for the global alterna-
tives are shown in Table 6. 

5.6. Creation of the COP in accordance with the priorities 

A priority is obtained for each alternative in the Prioritisation Phase. 
These priorities are transformed into weights, and for each priority an 
integer number is obtained. Each priority is multiplied by 100 and is 
rounded up to the nearest integer. 

The objective function is transformed in order to include these 
weights: 

minimize(
∑m

j=1
(rVj⋅wd(Vj))+

∑n

i=1
(rBDCi⋅minLiki⋅wb(BDCi)))

The function wd(Vj) returns the weight associated to the variable Vj, 
and the function wb(BDCi) returns the weight associated to BDCi. Fig. 9 
shows the application of these priorities to the objective function for the 
proposed example. The differences, for the proposed example, between 
the Min-CSP with priorities and that without priorities (Fig. 6) are 
shown in italics in Fig. 9. 

The minimal diagnosis for the example presented in Fig. 6 is a set of 
three elements that must be modified:  

• The value associated with the variable maximumHuman1 (used in 
some instances of BDC4) is erroneous, the correct value is 23,000.  

• BDC5 is not correct: the correct BDC should be the expression 
subsidisedCost ⩾2 ⋅ subsidisedPerYear.  

• Finally, the value associated with subsidisedPerYear5 (used in one 
instance of BDC3) is erroneous. Note that the variable 
potentialSubsidised5 appears in the minimal diagnosis obtained in 
Section 4.3, but it does not appear here because priorities are used. 
The variable potentialSubsidised5 (attribute potentialSubsidised) is 
included in alternative A3 (which has a priority 0.2), and 
subsidisedPerYear5 is included in alternative A2 (which has a priority 
0.18). Therefore, a review of subsidisedPerYear5 is preferred to that of 
potentialSubsidised5. 

6. Evaluation 

Previously, a reduced part of the real example has been used to 
facilitate the understanding. In this section, a more complex example is 
tackled. The relational model is depicted in Fig. 10 and the BDCs are:  

1. subsidisedCost ⩾ 2∗subsidisedPerYear  
2. humanCost ⩾ 2*humanCostPerYear  

3. subsidisedPerYear ⩽ maximumSubsidised  
4. humanCostPerYear ⩽ maximumHuman  
5. humanCost ∗ 3 ⩾ totalCost  
6. hardwareCost +softwareCost+humanCost = totalCost  
7. softwareCost < humanCost  
8. humanCost⩾2 ∗ hardwareCost  
9. subsidisedPerYear⩽potentialSubsidised  

10. humanCost ⩾ potentialSubsidised  
11. maximunIncentivable ⩾ potentialSubsidised  
12. subsidisedPerCompany ⩽ subsidisedPerYear  
13. 3 ∗ hardwareCost > subsidisedPerCompany  
14. reducedQuantity ⩽ maxReducedQuantity  
15. reducedQuantity ⩾ minReducedQuantity 

The example contains 15 BDCs, and there are 864 instances of these 
BDCs where the variables store 682 different values. To carry out the 
evaluation of this proposal, a set of experiments has been designed to 
simulate possible multiple and simple faults, both in data and in BDCs. 
The use of these tests has allowed us to confirm the applicability and 
validity of our method, since it obtains the minimum diagnosis in most 
cases. The created COPs have been solved using ILOG solver TM. 

In a first step, BDC10 is changed and nine incorrect (and random) 
values are stored in nine variables: subsidisedPerYear20, subsidisedPer-
Year31, subsidisedPerCompany10, subsidisedPerCompany58, humanCost9, 
humanCost12, totalCost9, totalCost11, totalCost19. The results after the 
valuation of the variables in the BDCs are shown in Table 7. The analysis 
of each BDC according to the tuples yields a result of 61 incorrect 
instances. 

A Min-CSP is created for the diagnosis of the example. A total of 336 
minimal diagnoses are obtained solving this COP, which entails com-
binations of 10 elements. In order to satisfy all the instances, a total of 10 
modifications must therefore be made. These 10 modifications imply: a 
change in BDC10, a change of the value associated with variables 
humanCost12, subsidisedPerYear20 and subsidisedPerYear31, and the 
following 6 modifications:  

• A change in one variable of the set: {subsidisedPerCompany10, 
subsidisedPerYear5}.  

• A change in one variable of the set: {subsidisedPerCompany58, 
subsidisedPerYear29}.  

• A change in one variable of the set: {hardwareCost11, softwareCost11, 
totalCost11}.  

• A change in one variable of the set: {hardwareCost19, softwareCost19, 
humanCost19, totalCost19}.  

• Two changes derived from one of the following two options:  
– A change of the value associated with variable humanCost9, and 

another change in one variable of the set: {hardwareCost9, 
softwareCost9, totalCost9}.  

– A change of the value associated with variable 
humanCostPerYear26, and another change in one variable of the 
set: {hardwareCost9, softwareCost9, humanCost9, totalCost9}. 

There are several minimal diagnoses since it is possible to satisfy the 61 
unsatisfied instances by changing one of the proposed minimal combi-
nations. 

In order to reduce the set of minimal diagnoses, an AHP is incorpo-
rated. The obtained priorities are used as weight values of the objective 
function. For our example, the ranking for global alternatives is shown 
in Table 8. By including the set of weights derived from the AHP and 
solving the Min-CSP problem, a total of 36 minimal diagnoses are ob-
tained, thereby reducing the complexity of the solution. This set of 
minimal diagnoses is a subset of the initial set of 336 (when weights 
derived from the AHP are not used). These 36 minimal diagnoses are 
combinations of 10 modifications: a change in BDC10, a change of the 
value associated with variables subsidisedPerYear20, 
subsidisedPerYear31, subsidisedPerCompany10, subsidisedPerCompany58, 

Table 5 
Comparisons of global alternatives for criterion c1.  

c1 A1 A2 A3 A4 A5 A6 A7 

A1 1 1/6 1/6 1/6 1/4 1 1/4 
A2 6 1 1 1 4 6 4 
A3 6 1 1 1 4 6 4 
A4 6 1 1 1 4 6 4 
A5 4 1/4 1/4 1/4 1 4 1 
A6 1 1/6 1/6 1/6 1/4 1 1/4 
A7 4 1/4 1/4 1/4 1 4 1  

Table 6 
Priorities of the global alternatives.  

A1 A2 A3 A4 A5 A6 A7 

0.10 0.18 0.20 0.20 0.11 0.12 0.09  
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Fig. 9. Min-CSP of the example including priorities.  

Fig. 10. Relational Model of the extended example.  

Table 7 
Results after the valuation of the BDCs.  

Non-satisfied instances BDCs 

0 ✓ BDC1, BDC3, BDC4, BDC9   

BDC11, BDC13, BDC14, BDC15  

1 × BDC2, BDC5, BDC7, BDC8  

4 × BDC6  

6 × BDC12  

47 × BDC10   

Table 8 
Priorities of the global alternatives.   

AHP 

BDC1, BDC2, BDC7, BDC8  0.06 
BDC5, BDC10, BDC11, BDC12, BDC13  0.07 

humanCost, hardwareCost, softwareCost, 0.07 
totalCost, subsidisedCost, reducedQuantity  

BDC6, BDC9  0.08 
subsidisedPerCompany, maximumIncentivable 0.10 

subsidisedPerYear, humanCostPerYear, 0.11 
potentialSubsidised  

maxReducedQuantity, minReducedQuantity, 0.12 
maximumSubsidised, maximumHuman  

BDC3, BDC4, BDC14, BDC15  0.14  
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humanCost9 and humanCost12, and the following 3 modifications:  

• A change in one variable of the set: {hardwareCost9, softwareCost9, 
totalCost9}.  

• A change in one variable of the set: {hardwareCost11, softwareCost11, 
totalCost11}.  

• A change in one variable of the set: {hardwareCost19, softwareCost19, 
humanCost19, totalCost11}. 

The minimal diagnosis depends on the number of faults, and on the 
number of variables and tuples affected by these faults. To obtain a 
complete set of tests which covers the different types of faults, the var-
iables and BDCs have been divided into various sets. Regarding the in-
stances of the variables (682 in the example), 25 sets of variables were 
created. The criterion for these sets was the number of tuples and the set 
of affected BDCs. For example, the variable subsidisedCost8 appears in 
four tuples affected by the same BDC, and the variable hardwareCost20 
appears in four tuples of three different BDCs. The BDCs were grouped 
into 8 sets, whose criterion was the number of affected variables. For 
example, 40 variables are affected by BDC5, BDC7, and BDC8, and 61 
variables are affected by BDC3, BDC4, and BDC11. 

Fig. 11 details the execution time (in milliseconds) on a logarithmic 
scale with base 10. Each column is named with two numbers: the first 
number represents the counter of erroneous BDCs, and the second 
number represents the counter of erroneous input data. For each col-
umn, five tests are executed by selecting different types of variables and 
BDCs. These tests are shown as a box and whisker chart. A total of 96 
tests are represented in Fig. 11. For all these single tests, the greatest 
time consumed is 21,234 milliseconds, and the minimal is 578 milli-
seconds. The time consumed for the minimal diagnosis calculation de-
pends on the number of non-satisfied BDCs instances. 

7. Limitations 

The limitations in these papers are related to the knowledge of the 
organisation regarding the relationship between their data, the capacity 
to model the data behaviour, the complexity in computing the COPs, and 
the vast quantity of data and business rules that can explain a mal-
function. Aspects of these topics include:  

• The knowledge concerning the possible values of the attributes 
managed during the business process instance. If the possible values 
of the variables and their relations are unknown, it will not be 
possible to determine a malfunction or to prioritise a set thereof. This 
means that for the priority-based diagnosis proposed in this paper, a 

key aspect is that part of the behaviour of the company is known 
using Business Rules. It is also related to the semantic capacity for 
representing the data relation, according to the real scenarios to be 
modelled. If business rules cannot be modelled as regular expressions 
of a grammar, then the model can not represent the input data 
relation.  

• The COP time evaluation is frequently a handicap for Constraint 
Programming solvers. Since the problem is solved as a COP, the 
validation time depends on the complexity of constraints and the 
domain of the variables. The complexity of CSP problems has been 
analysed in recent decades (Cheeseman, Kanefsky, & Taylor, 1991). 
Several considerations and the analysis of how the complexity can be 
affected by Constraint Satisfaction solvers in business processes are 
included in Gómez-López et al. (2014). In order to demonstrate the 
usability of our proposal, Section 6 addresses a real scenario with a 
significant number of variables and BDCs to show the range of the 
evaluation times.  

• When a vast quantity of data and BDCs is computed in a diagnosis 
process, several explanations can be found. The AHP can drastically 
reduce this number, but it can be remain high. As analysed in Section 
6, the computation time can increase, and the time needed to study 
the possibilities can also be high, although approximation does 
indeed improve and facilitate the analysis of the possible errors that 
bring out faults in a system. As long as there are more non-satisfied 
instances, then the more complex it becomes to find a minimal 
diagnosis that satisfies all instances. Therefore, it is important to 
apply the methodology when BDCs are designed, or when a BDC is 
changed, in order to prevent the accumulation of errors. 

8. Conclusions and Future work 

We propose a full methodology for the identification of the causes of 
non-conformance between Data and Business Rules (Business Data 
Constraints). In this paper, a full methodology carries out a comparison 
of the priority of the components, and executes the automatic diagnosis 
process, which includes the likelihood of errors in each item of data and 
each BDC to ascertain the most likely elements that can be failing. Our 
approach includes the likelihood of errors in data and BDCs in order to 
determine the most promising candidate that is responsible for a fault. 

The Analytic Hierarchy Process (AHP) is applied to obtain the 
probabilistic constraints according to the priority description regarding 
faults described by the users and/or experts. Moreover, since this pro-
cess may become tedious when dealing with a large quantity of data 
and/or BDCs in the model, we provide an innovative AHP clustering 
process in order to facilitate this task. The AHP clustering process 

Fig. 11. The execution time of test cases by applying AHP.  
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simplifies the prioritisation of alternatives for the users and/or experts 
(by defining simplified alternatives and then global alternatives), 
whereas the rest of the process is automated (the problem is modelled 
and solved as a COP). To evaluate our approach, a complex real example 
has been given in order to simulate single and multiple faults in data and 
BDCs. 

Furthermore, as future work, our main line of research involves 
storing the previous diagnosis and the real errors in order to update the 
weights used for prioritisation and to prevent future faults by using 
techniques to prognosticate. Another interesting line of study involves 
an extension of the proposed grammar to enable the incorporation of 
aggregate data. 
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Ceballos, R., Borrego, D., López, M.T.G., & Gasca, R.M. (2016). Hybrid diagnosis applied 
to multiple instances in business processes. In Enterprise, Business-Process and 
Information Systems Modeling - 17th International Conference, BPMDS 2016, 21st 

International Conference, EMMSAD 2016, Held at CAiSE 2016, Ljubljana, Slovenia, 
June 13–14, 2016, Proceedings (pp. 212–227). doi:10.1007/978-3-319-39429-9_14. 

Cheeseman, P., Kanefsky, B., & Taylor, W. M. (1991). In Where the really hard problems are 
In Proceedings of the 12th International Joint Conference on Artificial Intelligence 
(Volume 1, pp. 331–337). San Francisco, CA, USA: Morgan Kaufmann Publishers 
Inc.. IJCAI’91. 

El-Qurna, J., Yahyaoui, H., & Almulla, M. (2017). A new framework for the verification 
of service trust behaviors. Knowledge-Based Systems, 121, 7–22. https://doi.org/ 
10.1016/j.knosys.2017.01.011 

Eshuis, R., & Kumar, A. (2010). An integer programming based approach for verification 
and diagnosis of workflows. Knowledge-Based Systems, 69(8), 816–835. https://doi. 
org/10.1016/j.datak.2010.03.003 
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Gómez-López, M. T., Gasca, R. M., & Pérez-Álvarez, J. M. (2015). Compliance validation 
and diagnosis of business data constraints in business processes at runtime. 
Information Systems, 48, 26–43. https://doi.org/10.1016/j.is.2014.07.007 

Knuplesch, D., & Reichert, M. (2017). A visual language for modeling multiple 
perspectives of business process compliance rules. Software and Systems Modeling, 16, 
715–736. https://doi.org/10.1007/s10270-016-0526-0 

Knuplesch, D., Reichert, M., & A., K. (2017). A framework for visually monitoring 
business process compliance. Information Systems, 64, 381–409. doi:10.1016/j. 
is.2016.10.006. 
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